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Hülfsmittel zur Bestimmung der sich stetig mehrenden
Sammlung dienen muss.

Allen Herren, die sich um die Vermehrung unserer
Sammlung verdient gemacht haben, sei die sich stetig
entwickelnde Sammlung auch ferner ihres besondern
Wohlwollens empfohlen.

Dr. U. Bigler.

Betrachtung des räumlichen Integrals

m d x dy dz

r i+«

ausgedehnt über das Innere des Ellipsoïdes

Xa,Y2 Za

Eingereicht den 22. Januar 1887.

Der Punkt, von welchem aus der Strahl r gezählt
wird, habe die Coordinaten a, b, c, während der laufende
Punkt die Coordinaten x, y, z haben soll, so dass

r2 (x-a)a + (y—b)a -l- (z—c)a

ist. In Polarcoordinaten ausgedrückt, ist das Raum-
element d x d y d z gleich ra sin 9 d q> d 9 d r somit

dxdydz Ç C C sin 9 d cp d 9 d r
r,+n ~ 333 r-,+a '
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wo aber für 9, 9, r entsprechende Grenzen zu setzen
sind. Liegt nun der Punkt a, b, c, den ich Bezugspunkt
nennen will, innerhalb des Raumes, über welchen das

Integral sich ausdehnt, so ist Null die untere Grenze für r.
Soll nun auch für diesen Fall das Integral seine Bedeutung

nicht verlieren, so muss die reelle Componente von
2—a positiv sein, also a westlich des Meridianes (2) liegen.
Ich nehme an, die reelle Componente von a liege zwischen
0 und 2. Der Grund dieser letztern Annahme wird sich
im Verlaufe der Rechnung ergeben. Es ist nun

wo die Convergenz an der untern Grenze nur verlangt,
dass a östlich des Meridians (—1) liege. Ferner ist auch

oo

lp^.(eigv+e-ig»)dv-loderiBs0i
o

je nachdem 0 < g < 1 oder 1 < g ist. Setze ich nun

a
x2 ya za_vxag-T+B+"C~~^A'

a ra x - i v •2x'ßl=,r*,[ +i v *2x'
so ist

/•,.,•111 +Q0 + Q0 + 00 + X + 0O

— 00—OC—X O O

X y ^j- (e ~ + e J d x d y d z d <p d x, wo nun

die Variabein x, y, z von —oo bis +oo laufen.
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Wenn

ya y—\cp y A
21 —-77=—«x— ,,-T =t=- • a x;(/A fA^-i?)

j/Ax + Up VA
«Ij 77T-- • X— ,-. —j— • a x ;

J/A |/Ax + i 9

m j/Bx-iy ^B
18 _^r~'y-ì^=ìT'bx;
„ J/Bz + W J/B
Si=~7b—'y~7BlTLVbx;

_ l/Cx-i<? FC
y Ü J/C x—i <?

|/Cz + i<r (/C
®i — 7/tt ' z— Jn ¦ ~ ' c ^)/C ^Cx + i«?

'viz-iv Bx—i<? Cx-i<yJ'
SD Y ia2* 4. ip2x ic2x ~\

1 v\Ax + i9 Bx + i9 GX + icp)

gesetzt wird, so kann man nun dem Ausdrucke V
folgende Form geben :

+ CO + O0 +CG-f CC + OO „

-ce—oc—x O O

x /e-(3I2+S32+62-r-3)a)+e-(3I21+S\-|-621+®2in x
dxdydzdçodx-

Die reellen Componenten der Quadratwurzeln in den
Ausdrücken für 21, 33 etc. werden positiv verstanden. Ich
habe nun in dem Aufsatze über das Potential der
elliptischen Scheibe bewiesen,*) dass

*) Siehe nachfolgender Aufsatz.



— 55 —

I-** l/Ä T-582 VB\ e dx =-7=^= .r(-i); \ e dy =-,=^4= 'Hi);

-*A !/C 7 -«.'. |/A~ „.,Ie dzn^-w dx=^fcr;^);

somit ist auch

3) y- VJL }/A"B~C ff Bin <p ^-
r(^) }} 9 ' ~

V 2 / o O

x( + -—e I d*d*
\]/n(A-i<p) ]/n(k\\a)

wenn iT (A—i cp) (A—i cp) (B—i cp) (C—i #) bedeutet.

Man setze nun s also
x

* Z-Ìa i- ~ib -JC2\ oïï çp| -r -¦ h -s—¦ r ~ri—;— Ï 9 S,\A—is B—is C—is/ '

ÄT17+B+I7+C+T7; ^Sl'

und wenn cp constant gedacht wird, so ist

a ds
d x — x • —9
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folglich

—9 S —9 Sx \
X I e + e Idsd».

Vü(A-is) J/J7(A + is) / f

Ich integrire nun zuerst nach cp. Weil sinç) -jp-X

X(e^_-^). so ist

-<pS j S/e~(S-i)<p_e-(S+i)^
e d* -2T3 2^"

sing
# -VS^ 1 ç/e"(S-i)y_e-(S+i)^d^

Damit dieses Integral auch an der untern Grenze con-
vergire, muss « östlich des Meridians (0) liegen. Nach

der bekannten Formel

« —îçp — meo
le — e dçp r(l—n) (mn—ln)
J cp 1+n n

findet man nun, dass

- »efsinf/) ~"*s. p(t) //Qi,H ^0 U-?\

ist, wo die imaginären Componenten der Logarithmen

von S+i und S -i zwischen — n und n liegen sollen.
2 2
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Ferner hat man

folglich ist

5) y-ÖÄM. -^Û-V; 2—« r('+«) x

xR(S + i)'~"-(S-irf ds-r?(S1+ij~f-(S-ij~tds].
LJ i^J3(A-is) Bf

oJ i|/JT(A+is) S|J

Die Zerlegung in eine Summe zweier Integrale ist dess-
halb zulässig, weil beide für das bezeichnete Gebiet von
a convergiren. Im Horizonte verschwinden dieselben wie

—=. Ich setze nun den Integrationsweg des ersten Inte-
J/s »

grales im Horizonte vom Ostpunkte bis zum Nordpunkte in
positiver Richtung fort und verlege den neuen Weg auf die

Nordhälfte der lateralen Axe. Hier sei nun s e
% u

gesetzt, so dass die neue Variable u die positive Hälfte der
Realitätslinie in positiver Richtung durchläuft. Man sieht
sich nun genöthigt, hier folgende zwei Fälle zu
unterscheiden :

1. Der Bezugspunkt (&, b, c) liege ausserhalb des

Ellipsoides.

Ist t die Wurzel der Gleichung

aa ba ca

A + u+ B+u + C + u '

Bern. Mittheil. 1887. Nr. 1176.
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die dem Ellipsoid entspricht, das durch den Punkt (a, b, c)

geht, so ist für das Intervall o < u < t die Grösse T

grösser als 1 und für das Intervall t<u kleiner als 1,

wenn

+A+u B+u C + u

gesetzt wird. Für das Intervall o < u < t hat man

l0g(S+ i) =l0g (T-l) —if ,l0g(S-i) l0g(T-rl)—y

und für t < u

logCS + i) log(1-T) + ~, log(S-i)=log(1+T)-^,

wo die Logarithmen von T-l, 1—T etc. reell zu
verstehen sind. Es ist demnach

f(S+i)I"i-(S-i)I"\dj_e t f(T-l) MT+1)' \du_
g ij/JT(A-is) 's? g j/JT(A+u) u|

i*(l-«)2 ,_« 1* (-2+«) ,_»
+ e ;i(l-T) ä

—ej» (1 + T) »du
V

"
J/(A + u) u|"

Beim zweiten Integral der Formel V setze man den

Integrationsweg im Horizonte vom Ostpunkte bis zum
Südpunkte in negativer Richtung fort und verlege den neuen
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Weg auf die Südhälfte der lateralen Axe. Hier sei
st

s e 2
u, wo nun u die positive Hälfte der Realitätslinie

in positiver Richtung durchläuft. Für o < u <; t
hat man

log(S1-|-i) log(T+l) + ^,log(S-i)=log(T-l)+^

und für t < u

log (Sx+i) =log (l+T) + ~, log (S-i) log (l-T)-i|
Man findet so, dass

ffe+0'lMgiZJ>'"~*. ds-° T UT+1)' MT-l)'2ia
S i j/JT(A+is)

'
f oJ »yn(A + u) «

s-

a î tt a

+ e ^ fd + T)1
^
+ e a(l-T)' j du,

V yjT(A + u) uf

folglich

C(s + i)'~î-(S-i)'^ ds + CfA-rO^-fA+i)'"* d_s

g i]/n(A-is) 's| g i\/n(A+is)
' 'j

% _?
„ «» 1(1—T)1 5 du
2 sin-^r- i ¦ ' ¦ - • •—2 J¦t7JT(A + u) uf
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und demnach

X

n'I^ABG
6) Y~r(1+»)r(2-g) X

^/ aa ba ca -A, «

\y U+u + B+u + C+uJ/ * du
}/(A+u)(B+u)(C+u) a

U1

2. Der Bezugspunkt fa, b, c) liege innerhalb des

Ellipsoïdes.

Weil in diesem Falle auf dem ganzen Wege von u
die Grösse T kleiner als 1 ist, so hat man

k)g(S+i) log(l-T) + Ì|, log(S-i) log(l+T)-^,
also

f(S+i)' *-(S-ö' * ds
g ij/(A-is '

J
<¦? —ina
De 2 (1 + T)' a+j(i + T)x » du.
g Yn(A+u)

'
u|'

ferner ist

log(S1+i) log(l + T)+^,log(S1-i) log(l-T)-^
also auch
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f(S1+i)' ^-(S-iV \ ds_

g i]fn(A+is) f
a —Irta a

f-i(l+T)' *-ie » (1-T)1 » du
;'

"

|/iI(A + u)
"

uf
folglich

r(s+rH-(s-i)"a.d_s +
f(s1+i)'~^-s1-i)1^ ds

g iyn(A-is) « s' i|/(A+iB) '
f

2 sin «* C (1—T)' » du
2 oJ^inÄ+"u)'u|'

und somit

^ABÇ_

i Vx Ia+u t B+u ^ C+u l duX Ì j/(A+u)(B+u)(C+u) * ~«
u *
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