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Alfred Jonquière.

Mathematische Untersuchungen
über die Farben dünner Gypsblättchen

im polarisirten Lichte.

Vortrag gehalten in der Sitzung vom 14. März 1885.

Die Erscheinungen, welche an dünnen Gypsblättchen
im polarisirten Lichte auftreten, gehören wohl zu den

schönsten und lehrreichsten der gesammten Optik. Es

gibt wohl kaum Thatsachen, die für die Anschauungen
über das Wesen des Lichts von so grosser Bedeutung sind
und deren Erklärung so sehr für die Richtigkeit der Un-
dulationstheorie spricht, wie die Farbenerscheinungen
doppeltbrechender Krystallplatten im polarisirten Lichte.
Von den einfachen Prinzipien der Undulationstheorie
ausgehend, ist es möglich, die verwickeltsten Erscheinungen
der Optik mit mathematischer Sicherheit vorauszube-
stimmen, bevor sie noch durch das Experiment bestätigt
sind. Die vorliegende kleine Arbeit hat zum Zwecke, zu
zeigen, wie es möglich ist, die an dünnen Gypsblättchen
im polarisirten parallelen Lichte auftretenden Erscheinungen

mit Hülfe der reinen Mathematik unabhängig vom
Experimente mit Sicherheit zu bestimmen.

Lässt man einen durch einen beliebigen Polarisator
polarisirten Lichtstrahl senkrecht durch ein dünnes
Gypsblättchen treten, dessen beide optischen Achsen in der
Schnittebene liegen, und betrachtet man das Blättchen
durch ein Nicol'sches oder Foucault'sches Prisma, den sog.
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Analysator, so sieht man im Allgemeinen eine mehr oder
weniger deutlich ausgeprägte Farbe. Sind Analysator und
Polarisator entweder in paralleler oder in gekreuzter Stellung

und dreht man das Gypsblättchen um den Strahl als

Axe, so ändert sich die Intensität der Färbung ; dreht
man dagegen bei unveränderlicher Stellung des Blättchens
den Analysator, so ändert sich die Färbung selbst. Es ist
wohl sehr schwierig, wenn nicht geradezu unmöglich, ohne

Anwendung von Mathematik eine Erklärung dieser Er-
gcheinungen zu geben, welche nicht nur für einige
spezielle Fälle passt, sondern alle denkbaren Fälle in sich
schliesst. Bei Zuhülfenahme des mächtigen Hülfsmittels
der Mathematik gestaltet sich dagegen die Sache ziemlich
einfach und übersichtlich.

Es stelle in
nebenstehender Figur die

Zeichnungsebene die
Ebene des Gypsblätt-
chens dar. In o sei die
Eintrittsstelle des

senkrecht einfallenden
Strahls, dessen

Schwingungsebene in PP zur
q> geraden Linie verkürzt

erscheint. Im Krystall
sind Schwingungen nur
nach zwei zu einander
senkrechten Richtungen

GG und G'G' möglich ; der einfallende in der Richtung
PP schwingende Strahl muss daher in 2 Strahlen zerlegt
werden, von denen der eine nach GG, der andere nach
G'G' schwingt. Nehmen wir an, die Strecke oP stelle der
Grösse nach die Vibrationsintensität des einfallenden

P

a

m,
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Strahls dar, d. h. die Geschwindigkeit, mit welcher ein

unter dem Einflüsse dieses Strahls schwingendes Aether-
theilchen die Gleichgewichtslage passirt; dann erhalten
wir die Vibrationsintensitäten der beiden Strahlen im
Krystall, indem wir die Strecke oP a auf GG und G'G'

projiciren. Bezeichnen wir dann den Winkel, den die
beiden Richtungen PP und GG mit einander bilden, mit
cp, so haben wir

po a cos cp ; qo a sin cp.

Mit diesen Vibrationsintensitäten treten die beiden
Strahlen aus dem Krystall. Da aber die Elastizität des

Aethers im Blättchen nach der Richtung G G eine andere

ist, als nach der Richtung G' G', so pflanzen sich auch die
beiden Strahlen im Krystall mit ungleicher Geschwindigkeit

fort und es wird ein Strahl dem andern um eine
bestimmte Strecke voraneilen. Nach dem Austritt aus dem
Blättchen werden die beiden Strahlen einen absoluten

Gangunterschied y. oder einen in Wellenlängen

ausgedrückten Gangunterschied - — haben, wenn wir mit l die

Wellenlänge des einfallenden Lichtes bezeichnen.

Die beiden bei o austretenden Strahlen können nicht
interferiren, weil ihre Schwingungsebenen rechtwinklig zu
einander stehen, die Interferenz wird aber zu Stande

kommen, wenn die Schwingungen der austretenden Strahlen
auf die Schwingungsebene des Analysators reduzirt werden.

A A sei die Schwingungsebene des Analysators. Sie

bilde mit der Schwingungsebene P P des Polarisators den

Winkel \p. Die Projektionen mo und no von po und qo
stellen die Vibrationsintensitäten der beiden Strahlen nach

der Reduktion auf die Schwingungsebene A A des Analysators

dar und wir haben offenbar
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mo — po cos (i/>— cp) a cos cp cos {4>—cp)

no — — qo sin {4>—cp) — a sin oj sin (i/>—oj)
und zwar ist no negativ zu nehmen, weil es der als
positiv angenommenen Richtung om entgegengesetzt ist.

Diese beiden Componenten mo und no kommen nun
zusammen zur Interferenz. Wir kennen die
Vibrationsintensitäten der beiden interferirenden Strahlen, die des

einen ist a cos cp cos (V>—<"/>), diejenige des andern
— a sin cp sin (V;—<?) ; ihr Gangunterschied beträgt, wie wir

gesehen haben, .- Wellenlängen. Aus diesen Daten lässt

sich leicht die Vibrationsintensität des aus den beiden

Strahlkomponenten resultirenden Strahls berechnen. Es

ist nämlich nach einer bekannten Formel der mathematischen

Optik

V J/u2 -f va + 2 u • v • cos 2 ti «w

wo u und v die Vibrationsintensitäten zweier interferi-
render Strahlen, w ihren in Wellenlängen ausgedrückten
Gangunterschied, V die Vibrationsintensität des resultirenden

Strahls bedeutet. Unter Anwendung dieser Formel
erhalten wir für unsern Fall

V — \ |_a2 cos2 #cos2 {4>—cp) + a2sin2#> sin2(i/>—cp)

— 2aJcos9>cos (4>—cp) sin cp sin {\p—cp) cos 2^-y
Die Lichtintensität J ist bekanntlich proportional dem

Quadrate der Vibrationsintensität V, kann also einfach
Va gesetzt werden. Es ist somit

J a" f cosVcos2(t/>—cp) -t- sinVsin2 (t/j—cp)

— 2cos cp cos (</;—cp) sin cp sin (¦¦/>—cp) cos 2 3i—j-
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aa jcos2 cp 1—sin2 (d>— <p)\ + sin2 cp sin2 ty—cp)

1 * "1

—^sin2 cp sin 2{4>—g>) cos 2 n—

J a2 cos2 cp — cos 2 #> sin2 (»/>—cp)

jr sin 2 cp sin 2 ty—cp) cos 2 # -^

Alle Erscheinungen, welche an dünnen Gypsblättchen
im polarisirten Lichte auftreten, lassen sich aus dieser
Formel ableiten. Man muss dieselbe nur gehörig
untersuchen und die in mathematischer Form gewonnenen
Resultate richtig interpretiren, um die bei allen denkbaren

Stellungen des Analysators und des Gypsblättchens sich

zeigenden Erscheinungen vollständig zu erklären.

Die Formel enthält 4 Variable

cp, d. h. die Stellung des Gypsblättchens,
y\> oder die Stellung des Analysators,
x eine Grösse, die, wie wir später sehen werden, haupt¬

sächlich von der Dicke des Blättchens abhängt;
endlich

l, d. h. die Farbe des einfallenden Lichts.

In Bezug auf diese 4 Variablen lassen sich verschiedene

Fälle unterscheiden:

1. i/>, x, X seien konstant, cp variabel, d. h. das
Gypsblättchen werde gedreht. Wir fragen uns, welche Lage
wir dem Gypsblättchen geben müssen, damit es in seiner

grössten oder kleinsten Helligkeit erscheint. Der erste
Differentialquotient des Ausdruckes für J in Beziehung
auf cp liefert uns, wenn wir ihn o setzen, diejenigen
Werthe von cp, für welche wir entweder ein Maximum
oder ein Minimum von Helligkeit haben. Welches von

Bern. Mittheil. 1884. Nr. 1111.
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beiden der Fall ist, entscheidet der zweite Differentialquotient,

indem bekanntlich einem positiven Vorzeichen
des zweiten Differentialquotients ein Minimum, einem

negativen Vorzeichen dagegen ein Maximum entspricht.
Wir finden durch Differentiation

iy> a2 — sin 2 cp + 2 sin 2 cp sin2 {\p—cp) + cos 2 cp sin 2 (i/>—#)

— cos 2 o? sin 2 (</>—cp) cos 2 zc -y + sin 2<jr cos 2 {\p—cp) cos 2 ti ~j-\

J' a2 j — sin 2 r/> cos 2 (i/> — r/?) + cos 2 <? sin 2 (^—cp)

+ sin2{2cp—ip)cos'23i^-

J' — aJ (l — cos 2.7 y sin 2 (2?—VO 0

sin 2 (2#—1/0 0

2(2<?—1/0 n^
n?r è

CP T + T
wo n eine beliebige ganze Zahl bedeutet. Für den zweiten

Differentialquotienten findet man unmittelbar den Ausdruck

J" —4a2 (l—C0S27*-) 008 2(2*?-^)

— 4a2 1—cos 2.7-— J cos n n

woraus man sofort ersieht, dass man Maxima für gerade,
Minima für ungerade n hat. Wir haben also

„ ^ 31 1p \\> 3* \{>
Maxima fur cp =-^, ^-+ -^, ti + —, — + —

ti ìb 37i \i> Ö31 \b Iti il.
Minima for *=T+T, T+T>T+T,T + T

Sind Analysator und Polarisator gekreuzt, so ist
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^ -—- und wir haben dann

für cp 45°, 135°, 225°, 315° grösste Helligkeit
für cp 90°, 180°, 270°, 360° absolute Dunkelheit.

Beim Drehen des Gypsblättchens ändert sich also,
wie wir soeben gesehen haben, die Helligkeit. Es fragt
sich nun noch, ob die Intensität aller Farben sich in
gleichem Masse verändert, d. h. ob das ßlättchen stets
dieselbe Farbe zeigt, oder ob auch diese einer Veränderung
unterworfen ist. Auch hierüber gibt uns unsere Formel
Aufschluss.

Wir sehen zunächst, dass alle Farben mit derselben
Intensität auftreten für alle diejenigen Werthe von cp, für

welche das Glied sin 2<p sin 2(i/>—$-<) cos 2#y- verschwindet.

In diesem Falle erscheint das Blättchen farblos und

zwar je nach dem Werthe von \p mehr oder weniger hell.
Der genannte Fall tritt offenbar ein für die folgenden
Werthe von cp :

31 Tt 331 §31

V o, V>, -y, ~2 + V», *i n + V" -jp ~2 + ^
In der Mitte zwischen je 2 solchen Stellungen, wo das

Blättchen farblos erscheint, befinden sich die Stellurigen
grösster und kleinster Helligkeit. Schon der Umstand,
dass der Uebergang von einem Maximum zu einem Minimum

von Intensität durch Farblosigkeit hindurchgeht, lässt
als wahrscheinlich erscheinen, dass das Blättchen in den

Maximum-Stellungen eine andere Farbe zeigt, als in den

Minimum-Stellungen. Diess bestätigt auch unsere Formel.

i ih
Setzen wir nämlich einmal cp (2n + 1)V+ o~'

andere Mal cp =-^-+ -^, so erhalten wir
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für die Minimum-Stellungen :

J a2 [cos2j(2n + l)~+ -£-} — cos j (2n + 1) -~ + xP }

x sin2 y — (2n + l)-7-| + -y cos2xp cos23i—\;

für die Maximum-Stellungen :

J a2 [cos2(n-|-+-|-)-cos(n,-l-|-^)sin2(-^-I1J)

—s-sin2 xp COS 2n ~\
In den Minimum-Stellungen werden diejenigen Farben

am meisten hervortreten, für welche cos 2;i—am grössten

ist, dagegen werden diejenigen Farben am wenigsten sichtbar

sein, für welche cos 2^-y sich seinem kleinsten Werthe

nähert. Gerade das Umgekehrte tritt bei den Maximum-
Stellungen ein. Bei diesen sind diejenigen Farben, für

welche cos 2^-r- gross ist, schwach, diejenigen, für welche

cos2.?-r- klein ist, stark vertreten. Es folgt daraus, dass

die Farbe, welche das Blättchen in seinen Maximum-
Stellungen zeigt, zu der den Minimum-Stellungen
entsprechenden Farbe in einem ähnlichen Verhältnisse steht,
wie eine Farbe zu ihrer komplementären. Obschon die
beiden Farben im Allgemeinen nicht genau komplementär

sind, so erscheinen sie doch dem Auge als nahezu

komplementär. Es ist leicht zu sehen, wie sich die
Sache gestaltet, wenn Polarisator und Analysator
gekreuzt sind. An Stelle der Farblosigkeit tritt dann
vollkommene Dunkelkeit und die Minimum-Stellungen fallen
mit den Stellungen vollkommener Dunkelheit zusammen.
Das Blättchen zeigt dann beim Drehen nur eine Farbe.
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2. cp, •/., l seien konstant, \p variabel, d. h. der
Analysator werde gedreht. Wir fragen uns, welche Stellung
wir dem Analysator geben müssen, um ein Maximum oder
Minimum von Intensität zu erhalten. Durch Differentiation
in Bezug auf xp finden wir:

J'= —a2 cos2^sin2(i/)—y>) + sin2iycos2(i/)—y)cos2^Y

tg 2 {xp—cp) -f tg2 cp • cos 2 3i-j- 0

tg {2xp—2r/i—nn) — tg2<p cos 2 3i
y.

xp — -^arctg [— tg2y.cos2.iyj + v+~-
Für den zweiten Differentialquotienten erhält man

den Ausdruck

J" — 2a2 cos2<ycos2(*/>—cp)—sin2(/isin2(i/>—cp)eos 2^yl

=—2a2cos 2 cp cos 2{xp — oj)[l—tg 2 cp tg 2f>—05) cos 2*y]

— 2a2 [l+tg22(<p—f/>)l cos 2 y cos 2 (^—cp)

Wie wir sehen, sind die Werthe von xp, für welche
die Intensität ein Maximum oder Minimum ist, abhängig
von cp, der Lage des Blättchens, x, der Dicke desselben,
und l, der Farbe des einfallenden Lichts; ebenso hängt
das Vorzeichen von J". von diesen 3 Grössen ab. Für
jede Lichtsorte sind die Werthe von \\>, für welche Maxima
oder Minima eintreten, andere. Umgekehrt wird einem
bestimmten Werthe von xp, d. h. einer bestimmten Stellung
des Analysators, im Allgemeinen nur eine oder wenigstens
eine beschränkte Anzahl von Farben entsprechen, welche
in grösster Helligkeit erscheinen. Bei jeder neuen Stellung

des Analysators tritt auch eine neue Farbe in den
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Vordergrund und das Blättchen muss daher beim Drehen
des Analysators nothwendig seine Farbe verändern.

Setzen wir in 3" xp -\—— an Stelle von xp, so ändert

der Faktor cos 2 {xp—cp) und mit ihm J" das Vorzeichen,

d. h. wenn für eine bestimmte Stellung des Analysators
eine bestimmte Farbe in grösster Helligkeit auftrat, so
hat man für dieselbe Farbe nach Drehen des Analysators
um 90° ein Minimum und umgekehrt.

Substituiren wir in unserer Hauptformel für J

xp + — an Stelle von xp, so ergibt sich

J, a2 cos2 cp — cos 2 cp cos2 {xp — cp)

+ -=- sin 2 cp sin 2 (</>—cp) cos 2*y
J -t- Jx a2[2cos2<F—cos2y] a2

Die beiden Intensitäten ergänzen sich zu a2, d. h. zur
grössten Intensität, welche überhaupt möglich ist. Da
diess für alle Farben gilt, so wird nach Drehung des

Analysators um 90° jede Farbe in der komplementären Intensität

auftreten. Das Blättchen muss daher in der
Komplementärfarbe erscheinen.

Setzen wir schliesslich in der Hauptformel
3i nn. n

cp — und xp -n+ -r-, so ist

2r 1 1
_ y. -i a2

^__TSinn.,.co8 2*TJ T
Die gefundene Intensität ist ganz unabhängig von der

Farbe des Lichts. Wenn also eine der Schwingungsrichtungen

im Krystall mit der Schwingungsebene des Polarisators

einen Winkel von 45° macht und die Schwingungsebene

des Analysators parallel oder rechtwinklig zu dieser
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Stellung ist, so zeigen sich alle Farben in derselben In-

a2
tensität -y und das Resultat wird somit sein, dass das

£t

Blättchen farblos hell erscheint.
3. Nachdem wir den Einfluss der Stellung des

Gypsblättchens und des Analysatore kennen gelernt haben,
bleibt uns zunächst übrig, zu untersuchen, inwiefern die

Dicke des Blättchens die Erscheinungen beeinflusst. Zu
dem Zwecke müssen wir vorerst die Bedeutung der Grösse

y. genau feststellen. Ist \ die Wellenlänge einer bestimmten

Farbe, sind ferner \ und >2 die Wellenlängen derselben

Farbe für die beiden Strahlen im Krystall und n und n'
die bezüglichen Brechungsexponenten, so ist, wenn wir
die Dicke des Blättchens mit d bezeichnen:

_=n;r;=n';oderX1-.v;X2 F
Auf die Dicke des Blättchens gehen daher für den

einen Strahl —, für den andern — Wellenlängen. Nach

dem Austritt aus dem Krystall haben die beiden Strahlen

einen Gangunterschied von —^-r—- Wellenlängen. Dieser

Gangunterschied ist aber nach Früherem y. Wir

haben somit die einfache Beziehung : — d (n—n').
Wenn wir den gefundenen Werth von y. in die Formel

für J einsetzen und J nach d differenziren, so erhalten wir
T- a2 ti (n —n') d(n—n')Jd \ sin 2cp sin 2 {xp—cp) sm 23t -±—.—'-

- d(n—n') d(n—n')
sin 23i v .—'- o ; 2n —^ '- xk

wo r eine beliebige ganze Zahl bedeutet

2 n—n'
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Berücksichtigt man, dass 2n —^-r—- xn ist, so

ergibt sich der zweite Differentialquotient

r 2a2 ti2 (n-n')2 .„.„,,Ja 72 sin 2* sin 2{xp—cp) cos r*

Das Vorzeichen von Ja hängt ab vom Faktor
sin 2cp sin 2(V>—cp) und von r.

Ist sin 2cp sin 2{xp—cp) positiv (was z. B. bei gekreuzten
Polarisatoren der Fall ist), so hat man

1 X 3 X 5 X

2 n—n" 2 n n"
X 2X 3X

Maxima für d

Minima für d —
n—n n—n n—n

Umgekehrt wird das Verhältniss, wenn
sin 2cp sin 2{<p—cp) negativ ist (bei parallelen Polarisatoren).

Dreht man den Analysator um 90°, so ändert der
Faktor sin 2cp sin 2{\p—</) sein Vorzeichen und wir haben
dann Maxima für dieselben Dicken, für welche wir früher
Minima hatten, und umgekehrt.

Die Brechungsexponenten n und n' sind ausser von
der Beschaffenheit des Krystalls nur noch abhängig von X,

von der Farhe des Lichts. Die obigen Werthe von d sind
also nur Funktionen von X.

4. Es bliebe nun schliesslich noch übrig, zu
untersuchen, welche Farbe bei einer bestimmten Stellung des

Gypsblättchens und des Analysators und bei gegebener
Dicke des Blättchens im Maximum oder Minimum von

Helligkeit auftritt. Zu diesem Zwecke sollte man die

Intensität J nach X differenziren. Diese Differentiation ist
jedoch nur ausführbar, wenn man n und n' als Funktionen
von X kennt. Da jedoch eine mathematische Beziehung
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zwischen den beiden Brechungsexponenten n und n' und
der Wellenlänge X kaum bekannt ist, so sind wir genöthigt,
auf diese Untersuchung zu verzichten.

Zum Schlüsse können wir uns noch folgende Frage
zur Beantwortung vorlegen :

Es sei eine bestimmte Lichtsorte von der Wellenlänge X

und eine bestimmte Stellung xp des Analysators gegeben.
Wir fragen uns, welche Dicke das Blättchen haben muss
und welche Lage wir dem Gypsblättchen geben müssen,
damit die betreffende Farbe im Maximum der Intensität
erscheint.

Nach Früherem haben wir für ein Maximum folgende

Bedingungen :

n3i xp

r X

2 n—n'

Wir wissen jedoch noch nicht, ob r gerade oder
ungerade sein soll.

Es war Jd Const, x sin 2cp sin 2 {xp—cp) cos r*
Setzen wir cp -^ + -y, so wird

sin 2cp sin 2{xp—<p) sin {n3t+xp) sin {xp—nn — sinV
Somit Jd Const, x sin 2xp. cos r.i

Damit Jd negativ wird, muss r ungerade sein; im
Fall eines Maximums muss also die Dicke d die folgenden
Werthe haben :

_ 1 X _3_ X 5_ X

T ' n—n" ~2' n-n" 2 ' n—n' ' ""

Bern. Mittheil. 1885. Nr. 1112.
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Wenn die Dicke des Blättchens ein ungerades

Vielfaches von -rr- • ist und wenn wir dem Blättchen
2 n—n'

eine solche Stellung geben, dass eine seiner Schwingungsrichtungen

parallel oder rechtwinklig zur Halbirungslinie
des Winkels xp ist, so erscheint die betreffende Farbe von
der Wellenlänge X im Maximum der Intensität. Dieses

Maximum selbst finden wir, wenn wir in der Hauptformel
H7i xb rfür J -r- -f — statt cp und -^- • statt d einsetzen,
2 2 2 n—n' '

wo r eine ungerade Zahl bedeutet. Man gelangt dann
nach mehreren Reduktionen zu dem merkwürdigen Resultate,

dass J a2 ist, also ganz unabhängig von der

Stellung des Analysators. Wenn man nur dem Gypsblättchen

eine solche Lage gibt, dass eine seiner Schwingungsrichtungen

parallel oder rechtwinklig zur Halbirungslinie
von xp ist, so wird stets, wenn die Dicke des Blättchens

ein ungerades Vielfaches von — • —-, ist, die betreffende° 2 n—n'
Farbe in der grössten Intensität a2, welche überhaupt
möglich ist, auftreten.

Auf ganz ähnliche Weise gelangt man zu dem Resultate,

dass, wenn eine der Schwingungsrichtungen im Blättchen

einen Winkel von 45° mit der Halbirungslinie von xp

macht, und wenn die übrigen Bedingungen dieselben sind,
wie oben, die betreffende Farbe die Intensität 0 hat, d. h.

vollständig fehlt.
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