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von den 0,169 gr. des im Objekte vorhandenen Magans
0,1685 gr., welches Resultat nun als befriedigend ange-
sehen werden konnte.

Vollig reine Nikellosung wird durch den Ozonstrom
unter keiner Bedingung afficirt, ein Gemenge beider Lo-
sungen wieder mit bekanntem Mangangehalte ergab den
letzteren mit der wiinschenswerthen Genauigkeit, so dass
die Methode bei Einhaltung der néthigen Vorsichtsmass-
regeln brauchbar ist. Es soll aber die Bemerkung nicht
unterdriickt werden, dass das Verfahren weder sehr ex-
peditiv, noch billig ist, wesshalb auch Niemand dasselbe
zur Bestimmung des Mangans in reinen Ldsungen ver-
wenden wird, zu Trennungen aber, bei welchen alle iibri-
gen Methoden nur sehr mangelhafte Ergebnisse liefern,
kann es unter Umstidnden unentbehrlich werden.

Dr. J. H. Graf.

Ueber bestimmte Integrale.
Theilweise vorgetragen in der Sitzung vom 24. Mai 1884.

Einleitung.

Zum Gedédchtniss meines verstorbenen Kollegen und
Freundes, Herrn Prof. J. J. Schinkolzer*), wage ich es,
diese kleine Arbeit iiber ,Einige bestimmte Integrale“ zu
veroffentlichen. Nach dem unerwartet raschen Hinscheide
des Genannten setzte ich eine Vorlesung iiber I'-Funk-

*) Ueber sein Leben siehe die Schrift « Zum Andenken an
J. J. Schonkolzer », in Kommission Dalp’sche Buchhandlung, Bern,
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tionen fort, die Schonholzer angefangen hatte und wurde
so wieder gezwungen, mich mit diesem schonen Gebiete
zu befassen. Da vermuthet werden konnte, es finde sich
unter den nachgelassenen Papieren des Verstorbenen noch
Einiges, was der Verdffentlichung werth wire, so iiber-
nahm ich auch die Durchsicht derselben. Jedoch zeigte
es sich, dass nur Einzelnes hiefiir geeignet war. Schin-
holzer’s Bedeutung als Mathematiker lag nicht im scho-
pferischeén Schaffen, sondern in der Methode und Behand-
lung des Gegebenen. Allerdings trug er sich oft mit dem
Gedanken, einzelne Gebiete, wie die Bessel’schen Funk-
tionen, angefeuert von unserm Altmeister und hochver-
dienten Lehrer, Herrn Prof. Dr. Schlifli, nach eigenen
Ansichten und Methoden zu behandeln. Eine aufreibende
Lehrthitigkeit aber, der er sich mit jugendlicher Begei-
sterung hingab, und wohl auch schon ein beginnendes
Unwohlsein hinderten ihn, jenen Gedanken auszufiihren.

Mogen diese nachfolgenden wenigen Zeilen in uns das
Andenken an ihn neu beleben.

Ich schmeichle mir nicht, viel Neues zu bieten, jedoch
glaube ich, da bei der Ausmittelung bestimmter Integrale
die Umformung des Integrationsweges immer noch viel zu
wenig angewendet wird, durch Vorfiihrung einiger Beispiele
das Interesse fiir dieses kurze und oft iiberraschend ein-
fache Verfahren zu wecken.

Ich werde zuerst einen kurzen, einfachen Beweis von

. n
I'(a) I'(1—a) = .

geben, hierauf einige zusammengehorige Integrale behan-
deln und endlich langer bei

— x2
y e dx .

verweilen.
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§ 1.
Das Euler’sche Integral erster Art
1
vt Pt g — L@ T'(b)

geht bekanntlich dadurch, dass als Spezialfall a +b =1

gesetzt wird, iiber in
1

a—1 —a
S = Ox (1—x) dx=1I(a) I'(1 — a),
da I' (1) = 1 ist.
Hieraus folgt durch Integration die vielfach angewandte
Grundgleichung
I'a) I'(1 —a) =

sinnan’ 0. &Lk

Die Richtigkeit dieser Formel kann auf mannigfache
Art und Weise gezeigt werden, am einfachsten und schén-
sten gestalten sich die Beweise durch Integration des
obigen Integrals S mittelst Umformung des Integrations-
weges. Ich verweise hiebei auf einen Aufsatz von Herrn
Prof. Dr. Schlifli in den ,Mittheilungen der Naturforschen-
den Gesellschaft“ von Bern vom Jahre 1862, pag. 261 u. ff,,
im Fernern auf einen ahnlichen Beweis, den Prof. J. J.
Schonholzer in seiner Hauptarbeit, betitelt ,Ueber die
Auswerthung bestimmter Integrale mit Hiilfe von Ver-
anderungen des Integrationsweges“, Bern 1877, gegeben
hat. Beide Verfahren scheinen mir aber noch nicht ein-

fach genug zu sein.
1

a—1 —a
SOX (1 —x) dx kann durch Substitution von

S

o0
a—1
(Pt
v T5y dy {tibergefiihrt werden, so dass

y .
1+y ™
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also zur Betrachtung vorliegt, wenn wieder statt y die
Variable x geschrieben wird :

ooa—-—l
s—_—-S’l‘ dx, 0 < a < 1.

0l+X
Als Unstetigkeitspunkte kommen in Betracht 0, — 1, oo.
—1

Im Nullpunkt verhilt sich S wie g x  dx = % xa,
also ganz convergent. :

Am Horizont verhilt sich

) a —2 1 a—1 1 1\1—a
Swmgx dx—a___lx —a_lo(—x—) ,

ist also ebenfalls stetig und convergent.

I. Wir filhren den Weg von Null nach Osten, fiigen
die siidliche Hélfte des Horizonts bei, befestigen den
Faden im Westen und ziehen an, so dass nun der Weg,
— 1 siidlich ausweichend, von Null nach Westen geht.

. — .
Dann ist x durch e “x zu ersetzen und es ist

oo . . ) oo
—ima iz _a—1 —ir . a—1
e e X . g dx —iza } X
S i — =3 ——-—-—-—dz

0 1 + e_mx 1—x

Der Punkt — 1 ist zugénglich, da nun der Pol bei
+ 1 ist. Wir erhalten somit

ira xa_ldx
e D = S:) I __—'}-{— (1)

II. Wir fiihren das Integral von Null nach Osten,
schalten die nordliche Halfte des Horizonts ein und be-
festigen im Westen und ziehen an, so dass der Weg nun
von Null nach Westen — 1 nordlich ausweicht, dann ist

x in e'"x iibergegangen, also
Bern. Mittheil, 1884. Nr. 1089.



8 e 17 a g- e_” Xaq—l . emr dx
§ 14+ ¢7x
i _o%"—l dx
i s‘ Ty somit
5 - xa-»l
e "8 = S T % (2.)
0

Der Punkt — 1 ist zugédnglich, da der Pol nun bei
+ 1 ist.

Wir subtrahiren nun (2.) von (1.)

—00 (e}
g . " xa—i Xa—-l
ira —iza
—_ dx — S
(e ¢ ") 8 JI—x ™ 01-_xdx

0
vozaml Xa—]
= s dx + S dx
0

Fig. 2.

K

R)
Fig. 1.

Da die Variation des Integrals lings des Horizonts
= 0 ist, so fiigen wir (Fig. 1) den Horizont tiber Siiden,



Osten, Norden, Westen bei und ziehen auf einen recht-
laufig durchlaufenen Kreis um + 1 zusammen (Fig. 2) und
werthen nach Cauchy aus, dann ist

a—1

2] sin an Smg——-——— dx = 2iz - (+- D*
@ = 217
4 7
somit B o= = , demnach
sin ax
I'(a) I'(1 —a8) = —
. a) = sin az

Dieser Beweis scheint mir desshalb einfacher zu sein
gegeniiber dem Schonholzer’schen, weil einige Kunstgriffe
mit Potenzen von e vermieden sind, auch ist er einfacher

als derjenige, der von Herrn Schldifli 1862 gegeben wor-
den ist.

§ 2.
Es sei
1 x2n :
S=S , dx,ni:“=z,x——:z/2
o V1—x
A YT =1—2"
dz
g = 1/2 21/2
1 ' :
S =1 Szn (l—z)_‘/2 vz g
0

1
=1, S 22 (1 — z) " * dz, ist nach Euler I
0
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I' @+ ") I' Cfy)

= 1/2
I'(n+ 1)
2n — 1 g 2
1/2 - 3/2 - 5/2 ..... 5 (F (1/2))
— 1/
201 ¢ 2 ¢« 3 .. n _
r(Yy) =Vn
Also erhalten wir die bekannte Formel
g_ 1-3-.5....@n—1 =
T 2 4 o6 ... 2n 2
Setzen wir X = sinz, dx = cosz dz
" — sin®"z, /T — sin z® — cos z

Die Grenzen 0 und 1 werden zu 0 und — . dann ist

2 b ]
3 x2n %singllz
—,1— 2dx=S 05 Z « C0SzZ dz
a — X
0 V 0
._'I’
9
== S singnz dz
0
Oder wir setzen x = cosz, dx = — sinz dz
A .
Grenzen 0 und 1 werden — und 0, dann ist
2 b
1 2n 0 9y
X cos~ Z X
S - = dx = — TS . sinz dz
1—Xx L A
0 V b)
_._’I_,‘
2 9
— g cos "z dz
*0
Es ist somit:
1 7 a
2n i 5
X 2 .9 2 9
g—.l — x = S sin“"x dx = \ cos""x dx
o V11— X 0 0
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_1+3.5....@2n—1) =
T 2e4406...... 2n 2
Schonholzer behandelt das vorliegende Integral auf

folgende Weise :

Er 4
2 ¢ . -
S =S sin®®x dx, wir substituiren z — tgx
0
. tg x Z
$ip X = ——=— =
V1 + tg?lx Y1 + 28
2 z2n 1
gin“"x = , —— dx = dz,
(1 + Za)ﬂ €0s°X
dx L 1 « dz

17z Y117

Die Grenzen sind 0 und oo, dann ist
z?n

o0 Z2‘11 o
_ 1
B = ‘g) g)n—{-l dz = 7/, S(I . Z2)n+1 dz

(1 +z M
Wir konnen hier verschiedene Wege einschlagen.

Setzen wir z. B.
2 =1t, 2z dz = dt

dz = %; iizi
dt
= 1/2 1/2
i
oo tﬂ——l/z
so wird S = 1/ S dt
. A (1 + t)n—{—l

welches Integral folgendermassen behandelt werden kann.

Wir fithren die neue Variable y = ] _:'_ " ein.

Wenn t — 0, ist auch y =0
t = o, y = 1, also sind die Grenzen

des neuen Integrals O und 1.



y 4+ ty =t
y ] = F o4 ¥ dy
b= T e e g
1 —y R —
1 +t= 1 , Somit ist

el
1
SZl/zsyn—
0

1
0

ho(eyy ™ -y -y P dy

_y L@+ L) _1-35..2n—1) =
? I'(n+1) 2.4-6 on ok
somit erhalten wir
cQ
el o 1<8.5.. _ 5
0

Schonholzer gibt folgendes Verfahren an:
fo'e) ZQn
Es sei also S = 1/, S = dz
+1
Yoo (1 + 2%
Wir fiigen den Horizont von Ost iiber Nord nach
Westen hin zu und ziehen den Weg auf einen Kreis zu-

sammen, der + i rechtliufig umgibt (Fig. 3).




Wir erhalten sodann

2n
Z

S (Z 4 i)n!—i-l (Z—-—i)n+1

O

Der weiter von Schinholzer verfolgte Weg fithrt zu
einem falschen Resultat; jedoch kann man sich auf fol-
gende Weise helfen:

dz

S:1/2

Wir setzen z —i=1t,z=i4t,z4+i=Q2i+1)
also

5 — 1 (i + t)°" dt

- 2

(2i 4 t)n—{~1 tIl-.t-l’

O

g _ 1 1 S (1 + w’" __du
.__'21'1—!—2 (1+1/2u)n+1 un+1
und dies ist nach Cauchy

= —;— . —lﬁ - Coeff. von u" in der Entwicklung von
2

wir setzen t — iu

i

1+ w" @+ "

— _g_ . _;? . XZ (nQ—nk) (——nlml) (%))
Foh 6RO 6

I

2

n

a 1 (2o)! € L )
2 Qn'zo(—1)1'(n-i-l)lll(ni-’t-)!“n!.(g)
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'g" (2n)' E( 1) - (n—x)!>r(%)l’
a.ber( ——k)'ll () ,,somit

§olbeb@anb 3 3y

Nun ist, wenn n positiv ganz

(£ =3 ) ()

x = a = 1 ges. folgt

G =X 60y

I

2 1:3.5....2n—1
2 n! 2"
_ 7 1.3.5....2n—1
T g 2¢4 46 . 2n
Wir betrachten ferner
1
2n + 1
S-—s'x — dx, x”—-z,xgn=zll
y1— x?
X — l/‘l, X211+1 n -+
dx = 1y 2
ZZ

1 1 1 17 1
S#gzn""/’(l—-z)_/’-l/zz ’zdz=1/2“zn(1-z) I dg
*0 *0



=Y I'(n+ 1) I'(Yy)
¢ I'(n + %,)

1+2¢38 ...1nI()

=1/ .
—h 1/2+3/2.5/2 . . 2“;1 DYy
_ 1«23 ..... I
3/245/2 .. ... .. 2“;1
2446 ..... 2n
3+57..... (2n 4+ 1)

Wie frither folgt durch Substitution von x = cos z
und x = sin z
schliesslich die Reihe

1 2n+1 5 -
2 2
Vl -~—de——-—S cosgn‘HX dx=S sin?® Fly dx
2.4 .... 2n
3.5 . (2n+1)
i‘l_.‘
2
Man kann auch hier von S sin2n+1x dx ausgehen.
0
Es sei
id oo
i 2n+1
2
S — " 2"+l 4 S —; dz, wenn
"0 o I+ zz) z = tgXx
Nun sei z? = t, dz =
t/“
S = 1/,’2 sv tn (1 -+ t)_n—3/2 dt,
0
. t _—
sodann wird y = T+t substituirt

Bern. Mittheil. 1884. Nr. 1090.
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1
&=%Sfﬂ—ﬂﬁwy
0

— Fn+1)I'(,) 2+4+6...... 2n
2 Trm+%)  3:5-.7...... on + 1

Dieses Integral ldasst sich nicht mittelst Umformung
des Integrationsweges behandeln.

Betrachten wir

0y 1—x"
% = 1 . diul
n 1
z ", dann ist
1 11 1
G L _dz TzlSwla—nnm
0777 (1 — z)° 0
1 n—1
_1. @) r( A, 1
n I’ (n) D gn % . I'(n)
dr(L)r(sl) = 2

sin —;—
Setzen wir z. B. n = 2, dann ldsst sich I' (/,) be-
rechnen. Es sei

2
S=SIL=1/M=i. t
/1 — x? I 2 sin%.r(2
0 9 2)
Da aber bekanntlich
rQ =1.rQ1 =1,
so hat man sofort
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2 s
(L (W) =2, T(h) ==
Dies wird bestitigt durch

1
“ dx { . }1
= arcsmx0=

vy (L) =2, 10w =y

also auch hier

S
2 ?

§ 3.

Laplace hat unter seinen grossartigen Problemen iiber
Geburtsstatistik und Sterblichkeit etc. auch die Aufgabe
hinterlassen, die Wahrscheinlichkeit zu bestimmen, dass
eine Nadel von gegebener Linge auf eine eingetheilte
Ebene geworfen irgend eine Grenzlinie treffe.

Wenn a = Anzahl der Treffer,

b = Anzahl der Nichttreffer,
so ist a + b = n Anzahl der Wiirfe.

Nach N. Pliiss, ,Aufgaben und Versuche iiber geo-
metrische Wahrscheinlichkeit,“ Basel 1881, wird die em-
pirische Wahrscheinlichkeit fiir grosse Zahlen dargestellt
durch

p
2 — x? '/(a + b)?
R = _HS —
Vo e dx, wo p & v

0
Die verschiedenen Werthe von R koénnen nach Tafeln

gefunden werden.
Von Interesse ist die Integralfunktion

R = s‘e_xz dx

Ueber dieselbe kinnte wohl eine ganze Monographie
geschrieben werden; versuchen wir, einige der Haupt-
eigenschaften anzugeben.
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Wahlen wir vorerst die Grenzen O und oo, so hat
Hattendorff, ,Partielle Differentialgleichungen,“ pag. 34,
ausgehend von

co 5 oo .
A=S‘e_x dx=ge*y dy,
0 0

da es auf den Integrationsbuchstaben nicht ankommt, das
Doppelintegral

Q0 CO R )
A*.—_—;S §e“x Y dx dy
0

betrachtet und durch Integration den bekannten Werth

a2
2
Bekannt ist auch folgender Beweis:

w 2
Es sei A = S ¢ © dx

A? = —z—, also A = ~V—— gefunden.

0
®© po0
Aﬂmg Se—_(x_'_Y)dxdy
0

Dieses Doppelintegral ist offenbar der vierte Theil
v
des Rotationskorpers, den die Kurve z =e *" beschreibt,
wenn sie sich um die z-Achse dreht. Nun aber ist

— x® = Log. z, x> = — Log. z,
1
daher 4A2=——7zSLog.z-dz=n,
_ 0
A
also & == =5

Der gewohnlichste Weg, das Integral auszuwerthen,
ist derjenige, wo mar I-Funktionen zu Hiilfe nimmt.
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Nach Fuler II

oo-—- X a'———l
L {8)= Y & X dx
0

e 1
folgt I'(Y,)= g e ¥ x 1 dx,
0
o —x
also auch S L dx=Va

O x
Wir ersetzen x durch x,% dann folgt

X g X e 2 2%, dx R -
[ g (T 2m0n (%
‘0

o Vx 0 %1
Lassen wir also die Accente weg, so folgt wieder
co
e T dx =1, V= (L)

0
Es gehe nun x in — x iiber, dann fithrt der Weg von

Null nach Westen und es folgt
<00 0
f— X_z __X2 —
-—Se dx=+Se dx = Y, V= (2.)
0 — O

Wir addiren (_1.) und (2.), dann ist

N

0 =0
oo
also s‘ e ¥ dx = |z (5.
o0
Schinholzer untersucht den Zusammenhang zwischen

o -2 1 1
Azgeﬁk dxundiﬁ—s‘ey vy dy

) 7

B 'o
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Der Weg des 2. Integrals ist, wie aus der unter das
Integral gestellten Figur ersichtlich, eine rechtliufig von
Westen um Null geworfene Schleife.

Wir zerreissen A und setzen

0 2 o 2
A=Se—X dx—{—Se“X dx

Nun setzen wir x? = —y
X = —1| yil’, dx = — %y_"i/“ dy
somit folgt
0 . 0 1
Se__x dx = — —;—Sey y—/2 dy,
Y o — 0
wo y die Phase — = hat.
Im 2. Theil hat x die Phase 0, also, dax = — iy %,
muss y die Phase + z haben, somit ist
o0 5 i w~ R w
Se*x_ dx=--7s e’y * dy
0 0

Im 2. Integral iibersteigt aber die Phase von y die-
jenige von y im 1. Integral um 2 x.

Denken wir uns daher, y umlaufe das Ende des
1. Integrationsweges, so gewinnt die Phase von y gerade
2 2. Wir konnen also die beiden Integrale zusammen-
heften, indem wir den Weg als eine rechtlidufig von — oo
um Null geworfene Schlinge betrachten. Es ist somit

_ iy~ 1 2ia
& = 25” dy 2 T

_@ —— L siya=ya
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Alles nach der Normalform von Weierstrass ilber
I'-Funktionen, welche lautet

1 1 X _—a
r(a)"—zinsex dx

£

Verweilen wir noch bei

- 2
A == S e dx
— o0
Als Klippe oder Pol kann bei diesem Integral nur
Unendlich in Frage kommen. In welchem Gebiet ist dieses
Integral nun giltig ?
& = Coj. x? — Sin, x?2
Nun wichst bekanntlich
Gof. x* von 1 bis =+ o
Sin. x* von o bis &+ oo
es sind Ausdriicke, denen bekanntlich die gleichseitige
Hyperbel x? — y? = a? zu Grunde liegt. Es wird somit
das Giiltigkeitsgebiet begrenzt durch die Asymptoten der

a

gleichseitigen Hyperbel, welche die Phasen —Z— und — T
NW N /N0




besitzen (Fig. 4). Innerhalb dieses Gebiets kann sich die
Variable auch ohne Gefihrde der Unendlichkeit ndhern.
Man darf, wie Herr Prof. Dr. Schldfli im Jahrgang 1862 der
Mittheilungen unserer Gesellschaft angibt, den Weg auch

n 3n 3=

unter den Phasen — — vom Nullpunkt

AL
nach dem Horizont fiihren.
Nehmen wir z. B.

R 2
Bzge_X dx = Y, /=

0
Fithren wir den Weg unter der Phase %, also direkt
von Null nach NO, dann haben wir offenbar x durch

T

175
Xe Zu ersetzen.

xe * — x (cos—} + i sin%) = x (1 + 1) VY,
x? wird zu x* (1 +1)* - ¥/, = ix? dx zu (1 + i) }, dx
Dann ist
e 1vi —
S e XA +D)YLdi=", )7

0 ,
Beidseitig mit (1 — i) }?/, multiplizirt

SO:— X gy = 1, ]ﬂ} 1 — i (4.)

0
Hieraus folgt :

. x 1 1/
S(cos x? — i sin x?) dx =1/, V%—-2—V§

also :

oo —
S cos x2 dx = Y/, Vi;—

0



I

oo _
. T
S; sin x* dx = Y/, VE

SO:in 2 dx = V—g— (5.)

S cos x? dx
0 0

Wie steht es mit der Convergenz dieser letztern Inte-
grale ? .

Dass dieselben an der untern Grenze convergiren,
ist fiir sich klar. Was die obere Grenze anbetrifft, so
bedenken wir, dass

8

I

9 cos x? — 4 (sin xz) 3 sin x*
T odx X x?
und
5 et d (cos X~ cos x?
“ S]H X _— — T ) — 5
dx X X

gesetzt werden darf, so geht hieraus hervor, dass auch
an der obern Grenze sich die Integrale convergent ver-
halten.”)

Nun konnen wir aber den Integrationsweg auch fol-
gendermassen zusammensetzen :

Wir gehen von Null aus (Fig. 5) unter dem Azimuth

3T7l nach NW ab, fiigen den Horizont von NW bis SW

ein, kehren dann unter dem Azimuth — —?’—f von SW nach

Null zuriick und gehen von dort unter dem Azimuth
b/ 4

-1 nach SO, fiigen wieder den Horizont von SO bis NO
bei und kehren endlich wieder unter dem Azimuth % nach
Null zuriick. Der Weg ist nun eine geschlossene Curve,

¥) Schlifli, Mittheilungen der Naturforschenden Gesellschaft in
Bern, 1862.

Bern. Mittheil. 1884. Nr. 1091.
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welche ein Gebiet, das keine Pole enthilt, rechtliufig um-
schliesst. Der Weg kann auf einen Punkt zusammen-
gezogen werden; somit ist das Integral lings dieses ganzen
Weges = 0.

N
NO
7
, +
0¥ {?
N/
S0
A}
Iig. 5.

Dass dies richtig ist, unterliegt keinem Zweifel, jedoch
muss es sich auch direkt aus der Formel selbst beweisen

lassen.
oo

Es ist nach (1.) “eh ¥ dx = Yy Vo
0

I. Weg von Null nach NW.
3:7
: i 5 o y e O I
g ¥ N 1 , o7 L
x geht iliber in xe X ((,os i + 1 sin 1 )
=x({—1)h=—x0—D}Y
x? wird somit zu — ix?% somit haben wir

B ‘ e (1 -0 Y dx =y 7
"0



Wir multipliziren beidseitig mit (1 + i) }/,

o0 i

S e dx — — 1, = (1 +1) (6.)
0
II. Weg von SW nach Null.
igﬂ " 3 3
“her i =i __ 2E e O
x geht iiber in xe =3 (cos 1 isin —

= — x (1 41i) Vﬁ;
x? wird zu ix?
— O

— M ar R = a

0
Wir multipliziren beidseitig mit (1 — i) }/*/, und
kehren die Grenzen um

0 S
s' e Y dx = 1, 5 - ) (7.)
II1. Weg von Null nach SO.
. ; _—ii : b4 i .
x geht iber in xe '* = x (cos T —isin T)

= x (1 —1i) }JY,, x® wird zu — ix?

Vo - i =y ye
0
Beidseitig mit (1 + i) }/'/, multiplizirt

§°fo* dx = Y/, V_; (1 + i) | (8.
0

IV. Weg von NO nach Null.

SO:— = i = s V}Q{ (1 — i) nach (4.)
0



i B8] —
- SZ{ = ax =, V—;E (1—1)
Soe— I g = 1y, Vg (1—i) 9.)

o0

Fassen wir nun (6.), (7.), (8.) und (9.) zusammen, so
geben die linken Seiten das Integral genommen im recht-
laufigen Sinn um das beschriebene Giiltigkeitsgebiet, die
rechten Seiten heben sich auf; es ist somit unsere Be-
hauptung auch direkt nachgewiesen.

§ 4.

Nehmen wir Integral (3.)
e 2
g e dx = |
oo
Nach Meyer, ,Bestimmte Integrale“, pag. 117, substi-
tuiren wir statt x die Variable x }/a und erhalten
S dx V“
oo
nmal nach a differenzirt gibt
SDO— ax! _2n (2 n)! '/ 7
e X th = —-’—T . J——
L n! (4a) a

a = 1 gesetzt

o0

— l P
( o Xi X2 n dx — _(f?n)g-‘ﬁ . V"l
J n! 2

Diese Formel kann, wie auch Schinholeer angibt,
noch auf andere Weise ausgemittelt werden. Es kann
nach friitherem Vorgang (§ 3)



= B =

s 2 I3 ] 1
\' eﬁx XZn dx — _ % (_ IJ"Sey yn— f2 dy

RS

gesetzt werden und dies ist nach der bekannten Normal-
form von Weierstrass
i 2ia(—=1

2 " '/, —mn)

B R i L e B e

I (Y,)
:V—;' 1-3-5...(211—1_)
2!1
_ oy, @n)!
=V n! 922»

Um weitere Integrale abzuleiten, gehen wir aus von (3.)

s 2
S e~ dx = |2

— 00

Wir ersetzen x durch x + ai

x2 ,  x? 4 2ai x — a?

also folgt

—_x2 . . . .
e (cos2ai x — sin2ai x) dx = ¢ V 2
oo
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Hieraus folgen die bekannten Integrale

& 2 2 =
(e_x cos2ax dx = e * |/a (10.)
oo
o
7x2 .
( e sin 2ax dx = o (11.)
"E- mee

Nach Hatiendorff, Differentialgleichungen, pag. 36 u.ff.,
kann man (10.) auch auf folgende Weise erhalten :

2 .2 = (2 ax)2ll
g e © cos2ax dx = g e 2: (— 1) =t dx
l"_- n -

2 oo —xz 9
(— )((-2—1‘;% e~ X 2 dx

2a)* — (2n)!

= >
E( )" 'izn)I Vo e
py

2n o a2 _
(=1 Ly Va=c¢ " |

I

0
0

0
Aber auch (11.) kann man so behandeln :

2

o0
S ¢ sin 2ax dx =

>0
o0 91 —1 o
E( ])“ 22) " (euxz i1y
(2n-—1)

1

o0 0 @ " 0 \

abergc_x g dx:(e—}s in—l dx +
LCX) LOO

¢ 2n_1
ge_xxn_ dx
)



— OT o=

Beim 1. Integral x in — x verwandelt folgt

0 .
¢ - 2 .
_ e 15 X @n—1 g

[ ®]
o0 " 2 ]
Ve_xxn_ dx

s Y
V e ¥ sin 2ax dx = 0
Ersetzen wir ferner in (3.)
x durch x (a + bi)
x* , x*(a? + 2abi — b?
dx also durch (a + bi) dx, dann ist

o0
e wiq2 ) w2 Kt 1
g = x% a? 4-x b? — 2abi . (a+b1) dx — V"

Yoo
Sk 2 2 2abi x2 V__
_ — 95 7
Se X b) abi x dx:_—F'
2o '{_ 1

0
g g~ ¥ Wb (cos 2 abx® — i sin 2 abx?) dx =

(a—bi) YVn
t.2‘%- b2
OO g 2 [ a
S e X WD) Gog 9abx? dx = aaé l ;)— 0<b<a (12.)

— O

H

R 2 2 2
S e (" —W3 sin 2 abx? dx

— OO0

_i/ 2 0<b<" (1%)
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Setzt man nun sowohl in (12.) als in (13.)
al—b?=1, 2ab=«,

dann ist
1T+ a4+ 1 V1 + o — 1
— b -
- 2 b) - 2 3
a? + b = )1 + o,
ferner sei
x? = u, dx = —@:,
2V u
dann ist
o 2 2 2
S eﬁ(a —hix cos 2 abx? dx? =
— OC
=4 2 2 2
2 S e_(a e cos 2 abx? dx
0
oo}
L —1 _du l/]/l—i—ff +1
- S(; e  coSau /i 51 4 o) Va (14.)

Analog wird

g — = sinZabx2 dx =
oe 2 b'}. 2
2 g e_(a —bx sin 2 abx? dx
0
oo
—u |/1 1 p? s 1
— S e  sinou — l/ 51 & o &3 (15.)

0

Diese Darstellung ist conform derjenigen, diec am
Anfang des § 3 gezeigt worden ist.*)

o Vugleiche pag. 61.

e
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