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Prof. Dr. G. Sidler.

Trisektion eines Kreisbogens und
die Kreisconchoide.

Vorgetragen in der mathemat. Sektion am 11. Januar 1873.

(Mit 4 Tafeln.)

Von der Aufgabe, einen Kreisbogen in drei gleiche
Theile zu theilen, hat neulich Herr Hippauf eine ein-
fache Losung mit Hiilfe der Kreisconchoide gegeben.!)
Wir wollen erst diese LOsung reproduziren, und dann
weitere Eigenschaften der genannten Curve beifiigen.

§ 1. Trisektion eimes Kreisbogens.

1) Sei AUVB der zu theilende Kreisbogen (Fig. 1),
C dessen Mittelpunkt und O der andere Endpunkt des
durch A gehenden Durchmessers. Seien ferner U und V
die gesuchten Theilpunkte, so dass Bogen AU=UV
= VB, so ist, wenn wir die Geraden CU und OV ziehen,
CU||OV, denn /. AOV:%X: Z. ACU. Ebenso ist
Sehne UV || AB. Ziehen wir also durch C einen Strahl
CP || Sehne AB, so ist CUVP ein Parallelogramm, also
wenn R der Radius des Kreises,
1) PV=R
2) CP = Sehne UV.
1) Losung des Problems der Trisektion eines Kreisbogens mit-

telst der Conchoide auf cirkularer Basis, von Dr. H. Hippauf, Rektor
der mittleren Biirgerschule zu Halberstadt. Leipzig bei Teubner 1872.
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Wenn ferner die Radien CU und CV die Sehne AR
in u und v schneiden, so ist A UAuw» AUCV wegen
Gleichheit der entsprechenden Winkel, also Au=AU,
aber AU=UYV, und somit

3) CP = Au — Bv.

2) Denken wir nun, dass der Endpunkt B des Bo-
gens AB vom festen Punkte A aus den gegebenen Kreis
umlaufe, so ist der Ort des Punktes P eine Curve, die ent.
steht, wenn wir vom andern Endpunkt O des Durchmessers A0
aus nach einem variabeln Punkte X des Kreises einen Strahl
ziehen, und auf diesem Strahle von X aus eine konstante Strecke
XP —dem Radius R in derjenigen Richtung auftragen, wo der
Winkel CXP — der Hilfte des von X durchlaufenen Bogens AX
wird. (Fig. 2.)

Wihrend Bogen AX von 0° bis 180° wichst, ist
L. CXP spitz; wenn aber AX von 180° bis 360° wichst,
ist £. CXP stumpf. Waihrend also X von A aus in
rechtliufigem Sinn die Kreisperipherie umléuft, be-
schreibt P eine Curve CPOP‘G. — Wenn der Bogen AX
um 360° zugenommen hat, also X nach einem ganzen
" Umlauf an seinen frithern Ort zuriickgekommen ist, so
hat der Winkel CXP um 180° zugenommen; die ent-
sprechenden Richtungen von XP sind also einander
entgegengesetzt. Wenn daher X die Kreisperipherie
zum zweiten Mal umléuft, so beschreibt P den zum frii-
hern symmetrischen Curvenzweig GP“OC. — Nach zwei
Umliufen des Punktes X kehrt die Ortscurve von P
in sich selber zuriick. — Diese Curve nennen wir nach
Analogie der gewohnlichen Conchoide, wo die Basis
eine Gerade ist, eine Kreisconchoide.

Wenn X von A aus einen Bogen von 120° be-
schrieben hat, so dass £ AOX =60°, so fillt P in O



SRR .. Q-

hinein, und unmittelbar vorher wird der Punkt P un-
endlich nahe an O liegen. Im Doppelpunkte 0 bilden daher
die Tangenten der Conchoide mit der Axe OA Winkel von 60°.

3) Haben wir fiir den gegebenen Kreis die Con-
choide gezeichnet, so ziehen wir, um einen gegebenen
Bogen AB dieses Kreises in drei gleiche Theile zu theilen (Fig. 3),
vom Mittelpunkt C des Kreises aus parallel zur Sehne
AB den Radius-Vektor CP der Conchoide. Dies voraus-
gesetzt, erhalten wir die Theilpunkte U und V,

a) indem wir im Bogen AB von A aus eine Strecke
gleich dem Radius-Vektor CP dreimal als Sehne ein-
tragen, Sehne AU = UV = VB = CP;

b) der Strahl OP trifft den gegebenen Bogen im
zweiten Theilpunkt V, und der zu OP parallele Radius
CU des Kreises trifit den Bogen im ersten Theilpunkt U ;

¢) machen wir auf der Sehne AB die Strecken Au
und Bv gleich CP, so gehen die Radien Cu und Cv
durch die gesuchten Theilpunkte.

4) Da Au gleich und parallel CP, so ist, wihrend
der Endpunkt B des zu theilenden Bogens AB die Pe-
ripherie des Kreises umlduft, der Ort des Punktes u, wo
der Radius CU die Sehne AB trifft, eine zur obigen Hiilfscurve
congruente Conchoide, die um eine Strecke gleich dem Ra-
dius des Grundkreises parallel zu jener verschoben ist.

Wenn B von A aus den Kreis beschreibt, so hat
im Anfang (Fig. 4) die Sehne AB die vertikale Tan-
gentenrichtung Ae«, also CP die vertikale Tangenten-
richtung Cy. Nun bleibt stets £ {CP = ¢AB, d. h.:
der Punkt P bewegt sich von C aus dergestalt, dass der Radius-
Vektor CP von seiner Anfangsrichtung Gy aus einen Winkel vCP
beschreibt gleich und im gleichen Sinne, wie der Radius-Vektor
AB von seiner Anfangsrichtung A« aus, odecr einen Winkel yCP!

Bern. Mittheil. 1873. Nr. 816,



— 34 —

der halb so gross ist wie der zu theilende Kreisbogen AB. Da-
durch ist fiir jeden Bogen AB der entsprechende Con-
choidenpunkt P eindeutig bestimmt. Sei z. B. Bogen
AB =3 .180% so ist £ yCP =3 .90°, also geht der
Radius-Vektor CP von C aus nach rechts zum Con-

choidenpunkt G; die Sehne von %E ist also = CG==2R,

wie sein soll.
Eine durch C gehende Gerade trifft die vollstandige

Conchoide (Fig. 2) ausser in C noch in drei Punkten
P,, P, P,. Die Radien-Vektoren CP,, CP,, CP, sind
gleich den Sehnen der Kreisbogen

AB AB +360° AB + 2. 360

3° 3 2 3 '

§ 2. Neue Erzeugungsarten der Kreisconchoide.

5) Sei OA ein Durchmesser des Grundkreises (Fig.
5), und O der Pol der Conchoide, so ziehen wir von
O aus einen Strahl nach einem variabeln Punkte X des
Grundkreises, und tragen auf diesem Strahl von X aus
nach lLeiden Seiten die Strecken XP und XP, auf,
gleich dem Radius CA des Kreises, so ist der Ort der
Punkte P und P; die Conchoide.

Beschreiben wir jetzt um A als Mittelpunkt einen
Kreis mit demselben Radius AC, und ziehen durch A
den Durchmesser TT,|] OX, und die Geraden TP, AX,
TP, so sind AXPT und AXP,T, Parallelogramme (weil
AT gleich und parallel XP), und da £ AXO = 90°, so
sind dies Rechtecke; also ist TP die Tangente im
Punkte T, und OP _. TP. Die obige Conchoide ist daher
auch der Ort der Fusspunkte P der Perpendikel, die vom festen
Pankte 0 auf die variabeln Tangenten TP eines um A als Mittel.
punkt beschriebenen, wit dem frithern gleichgrossen, Kreises ge-
fallt werden.
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Den frithern Kreis um C wollen wir den Grundkreis,
den jetzigen Kreis um A zum Unterschied den Leitkreis
nennen. Dem in Bezug auf den Pol O convexen Theile
des Leitkreises entspricht die innere, und dem in Bezug
auf O concavem Theile des Leitkreises die &ussere
Schleife der Conchoide; die Beriihrungspunkte der von
O an den Leitkreis gehenden Tangenten ergeben den
Doppelpunkt der Curve. — Diese Auffassung der Kreis-
conchoide als Fusspunktencurve ergibt uns eine reiche
Zahl von Eigenschaften derselben.

Denken wir uns von C und von G aus Perpendikel
auf den Strahl OX gefillt, so liegen die Fusspunkte
derselben zwischen P und P,. Hieraus sehen wir, dass
die innere Conchoidenschleife von einem Kreise um 0C als Durch«
messer ganz umschlossen wird, hingegen die dussere Schleife ganz
ausserhalb eines um 0G als Durchmesser beschriebenen Kreises liegt.

6) Die obige Betrachtung fiihrt uns auf ein neues Vers
fahren, einen Winkel mittelst der Conchoide in drei gleiche Theile
zn theilen.

Sei wieder (Fig. 6) Bogen AU = UV = VB, so ist
CU || OV. Machen wir nun nach Grosse und Richtung
VP = CU, so ist CUPV ein verschobenes Quadrat, also
CP_L UV, d. h. CP_L AB, und somit 2. ACP =1/,ACB.

Machen wir nun AT gleich und parallel CU, so ist
ATPV ein Parallelogramm; aber AV _LL OV, und somit
auch PT senkrecht zu AT und zu OP, also TP Tan-
gente an den Ortskreis von T, und P der zu T gehorige
Punkt der Fusspunktencurve dieses Kreises in Bezug
auf den Pol O. Ferner ist CATU ein verschobenes
Quadrat, also £. ACT =1/, ACU.

Aber £. ACU = !/, ACB. Die obigen Relationen
ACT =1/, ACU und ACP =1/, ACB, ergeben also

L ACT =1/3 ACP.
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Sei also GCP der zu theilende Winkel (Fig. 7), so
beschreiben wir um irgend einen Punkt A des einen
Schenkels CG einen durch den Scheitel C gehenden
Kreis, machen aut diesem Schenkel nach der entgegen-
gesetzten Seite CO = CA und construiren die Fuss-
punktencurve jenes Kreises in Bezug auf den Pol O.
Wenn nun der andere Schenkel CP diese Curve in P trifit, so
ziehe man den Radius AT des Leitkreises parallel zur Geraden
OP, und den Strahl GT nach dem Endpunkt T dieses Radius, so
ist £ GCT — '/, GCP. Dies ist die von Herrn Jouanne
angegebene Coustruction. )

7) Wir kehren zur Betrachtung der Conchoide als
Fusspunktencurve des Punktes O in Bezug auf den
Leitkreis A zuriick. Es liegt P auf einem um OT als
Durchmesser beschriebenen Kreise ; wenn daher J die
Mitte von OT (Fig. 8), so ist JP =JO, und wéhrend
T den Leitkreis beschreibt, so beschreibt J einen Kreis
ab von halb so grossem Radius um die Mitte C von
OA, der in Bezug auf jenen den Punkt O zuin dussern
Aehnlichkeitspunkt hat. Es ist CJ parallel und gleich-
gerichtet mit ATy und daher auch CJ | OP.

Das von J auf OP gelillte Perpendikel Jp ist die
Symmetrieaxe des gleichschenkligen Dreiecks OJP und
Tavngente an den Ortskreis von J. Die Pankte P und p
beschreiben &hnliche und dhnlich liegende Curven, von
denen O der Aehnlichkeitspunkt und 1 : 2 das Aehn-
liechkeitsverhiltniss ist.

Nehmen wir von C in Bezug auf die Tangente Jp
den symmetrischen Punkt U und beschreiben um U als

') Trisection de l'angle au moyen du Limagon de Pascal, par
M. Jouanne, prof. au lycée de Caén. Nouvelles Annales de Mathé-
matiques par MM. Gerono et Bourget. IX. 1870. pag. 40.
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Mittelpunkt einen Kreis durch J, der vom Strahl UP
in e« getroffen werde, so haben wir zu beiden Seiten
von Jp symietrische Figuren. Es ist daher UP = CO
= R, und Bogen Jo = Bogen Ja. Wiihrend nun J den
Kreis um C beschreibt, rollt der Kreis U auf diesem
Kreise, und der Punkt > hat zu dem rollenden Kreise

. ; ; . . R
eine feste Lage. Wenn daher ein Kreis vom Bad1us——2- auf

einem gleichgrossen festen Kreise rollt (Fig. 9), so beschreibt
ein mit dem rollendea Kreise fest verbundener Punkt P, der vom
Mittelpunkt U dieses letztern in der Distanz R liegt, eine mit
unserer Conchoide identische Curve. ')

Wenn der Punkt ¢, wo der Strahl UP den rollenden
Kreis schneidet, mit dem festen Kreis zur Bertihrung
kommt, so geht P durch den innern Scheitel C, und
wenn der diametrale Punkt von ¢ zur Berithrung kommt,
so geht P durch den #dussern Scheitel G. Wenn CUP
ein gleichseitiges Dreieck (Bogen aJ = 60°), so geht
P dr-ch den Doppelpunkt O.

§ 3. Die Normalen der Curve, die doppelt
beriihrenden Kreise u. s. f.

8) Wir denken uns den Leitkreis A als Grenzcurve
eines eingeschriebenen Polygons von unendlich vielen
Seiten. Zwei aneinanderstossende Seiten, die den Punkt
T des Kreises gemein haben (Fig. 10), stellen verlangert
zwel benachbarte Tangenten TP und TP/ dar. Fillt
man nun von O die Perpendikel OP und OP’ auf diese
Tangenten, so liegen P und P’ auf dem um OT als
Durchmesser beschriebenen Kreise. Dieser Kreis hat

) Vergl. Steiner: Von dem Krimmungsschwerpunkt ebener
Curven § XXXVI. Crelles Journal fiir Mathematik, Band 21.
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also zwei unendlich nahe liegende Punkte P und P
it der Conchoide gemein und beriihrt daher die letz-
tere in P. Die Normale der Conchoide im Punkt-P fillt
somit mit dem Radius PJ dieses Kreises zusammen.
Wenn daher T der irgend einem Punkt P der Conchoide entspre.
chende Punkt des Leitkreises A ist, so geht die Normale des
Punktes P durch die Mitte J der Geraden OT. (I'ig. 11.) |
Der Ort des Punktes J ist ein Kreis vom Radius

I; um C als Mittelpunkt, und es ist CJ parallel und

gleichgerichtet mit AT, oder mit XP, wenn AX _L OP.
Beschreiben wir daher die Conchoide in der urspriing-
lichen Weise (Fig. 12), indem wir vom Funkte O Strahlen
nach einem variabeln Punkte X des Grundkreises C zie-
hen, und auf diesen Strahlen von X aus je eine Strecke
XP gleich dem Radius dieses Kreises auftragen, so ist,
wenn wir in einem concentrischen Kreise von halb so grossem
Radius einen Radius GJ parallel und in gleicher Richtung wie XP
ziechen, PJ die Normale der Conchoide im Punkte P.

Rufen wir uns die Erzeugung unserer Conchoide
als epicykloidische Linie zurtick, so stimmt dies mit
dem bekannten Satz, dass die Normale eines Punktes
einer durch Rollen erzeugten Curve durch den betref-
fenden Beriihrungspunkt der rollenden Curve geht.

9) Betrachten wir die Normale PY und P;Y zweier
Punkte P und P; der Conchoide (Fig. 13), die dem-
selben Punkte X des Grundkreises entsprechen. Da
JJ;1 || PP; und C und X die Mitten von JJ; und PP, sind,
so gehen diese Normalen durch den ndmlichen Punkt
Y der Geraden CX, und da CJ = 1/, XP, so ist auch
CY =1/, XY, d. h.: CY = XC. Es liegt daher Y eben-
falls auf dem Grundkreise und ist der Diametralpunkt
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von X, Die Normalen der beiden Punkte P und P, der Conchoide,
die irgend einem gegebenen Punkte X des Grundkreises entspre-
chen, gehen daher durch den audcrn Endpunkt Y des durch den
Punkt X gehenden Durchmessers des Grundkreises (Fig. 14).

10) Die vorhergehende Betrachtung fiihrt uns auf
neue Eigenschaften unserer Curve. Sei Z der Punkt,
wo die Normale PY den Grundkreis zum zweitenmal
schneidet (Fig. 15), so sind die Dreiecke PZO und PXY
einander idhnlich; aber XP = 1/, XY, also

ZP = Y, 20,
wo ZP in P normal zur Conchoide steht. Dies gilt,
ob wir P auf der dussern oder auf der innern Schleife
annehmen, und wir haben den Satz: Jeder Punkt Z des
Grundkreises ist ven den beiden Schleifen der Conchoide gleich
weit entfernt, und zwar halb so weit als vom festen Punkte 0.

Daher: Ein Kreis, den wir mit einem Radius — !/, Z0 wm
irgend einen Punkt Z des Grundkreises als Centrum beschreiben,
beriihrt sowohl die adussere als die innere Schleife der Conchoide;
der Grundkreis ist der Ort der Mittelpunkte der die beiden
Schleifen doppelt beriihrenden Kreise.

Oder: Wenn man von einem festen Punkte O eines Kreises
Strahlen zieht nach einem variabeln Punkte Z desselbem, und um
Z als Centrum je einen Kreis schligt, der durch die Mitte des
Strahls Z0 geht, so ist unsere Conchoide die Einhillungscurve
dieser Kreisschaar.

Es ist OP || AY, also £ ZPX = ZYA, oder
L. ZPX = AOZ.
Da ZP =1/, Z0, so ist ferner 2 sin ZOP = sin ZPX
: . . (ZXN _ . (AZ
= sin AOZ, d. h.: 2 sin (“‘j‘) == sin (T)’ oder
Sehne ZX =1/, Sehne AZ.
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Dasselbe gilt fiir den Berithrungspunkt P, des Kreises

um Z mit der innern Schleife (Fig. 16). Also
Sehne ZX — Sehne ZX; = !/, Sehne AZ. Daher

Die Radien Vektoren OP u. OP, der beiden Berihrungspunkte
der Conchoide mit einem der obigen Kreise bildemn gleiche Winkel
mit dem Radius Vektor des Centrums Z dieses Kreises. Die Drei-
ecke OZP und OZP; sind ein hithsches Beispiel von
zweil verschiedenen Dreiecken, die zwei Seiten und den
der kleinern Seite gegeniiberstehenden Winkel gleich
haben.,

Wenn wir um irgend einen Punkt Z des Grundkreises einen
Kreis mit dem Radius ’/,Z0 geschlagen haben, so trage man von
Z aus nach beiden Seiten die Sehnen ZX und ZX; gleich der Hilfte
der Sehne AZ auf, so sind X und X, die beiden Punkte des Grund-
kreises, die den Beriihrungspunkten der Conchoide mit jenem Kreise
entsprechen.

Wir konnen die Beriithrungspunkte P und P, des
Kreises Z auch direkt erhalten: Da £ ZPX = ZP,X,,
s0 sind OPZ und OP,Z supplementire Winkel, also OP,ZP
ein einschreibbares Viereck. Sei M der Mittelpunkt des
umschriebenen Kreises, so ist MZ _L PP,. Aber PP,
steht auch senkrecht zur Tangente an den Grundkreis
in Z, denn wir konnen PP; als die Schnittsehne des
Kreises Z mit dem unmittelbar benachbarten Kreise
dieser Schaar ansehen. Es ist daher MZ eine Tangente
an den Grundkreis, somit wird dieser vom Kreise um
OP,ZP rechtwinklig geschnitten, und daher ist auch
MO eine Tangente an den Grundkreis, und M in Bezug
auf diesen letztern der Pol der Geraden OZ. Legen wir
daher durch 0 und Z einen Orthogonalkreis zum Grundkreise, so sind
die Schnittpunkte dieses Kreises mit demjenigen, deu wir um Z mit
dem Radius 1/, ZO geschlagen haben, die beiden Beriihrungspunkte

P und P, des letztern Kreises mit der Conchoide.
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Sei endlich u der Winkel AOZ, und ¢, ¢, die
Winkel der Radien Vektoren OP, OP; mit der Axe OCG.

Wir fanden oben 2 sin (%{) = sin (AZ) d, Bt

2
2 sin k(p—_ﬂ) = sln u = sin (ﬁ_—(’f—l),
2 2
.9 D1 @ D d
= e = o == e
woraus sin €085 3 cos 5 SIng 0, oder

@
tg% =3 tg 5~

Wenn also die beiden Schleifen je von einem nimlichen Kreise
beriihrt werden, so stehen die Tangenten der Halften der Winkel,
die die Radien Vektoren OP und OP, der beiden Berithrungspunkte mit
der Axe der Curve bilden, in dem konstanten Verhaltniss 3 : 1 zu
einander. ‘
Wir haben ein zweites System von doppelt beriih-
renden Kreisen, die je die ndmliche Schleife in zwei
zur Axe OCG symmetrischen Punkten tangiren. Der
Ort der Mittelpunkte dieser zweiten Schaar ist die
Symmetrieaxe der Curve. Wenn die Berithrungspunkte
vom innern Scheitel C aus bis zum #ussern Scheitel
G die Curve durchlaufen, so bewegt sich der Mittel-
punkt des tangirenden Kreises auf der Curvenaxe vom
Kriimmungsmittelpunkt des Seheitels C aus nach links
hin ins Unendliche, und kehrt dann aus dem Unendlich-
fernen rechter Hand zurtick bis zum Kriimmungsmittel-
punkt des Scheitels G (Fig. 29).

11) Es fillt uns nun leicht, die dussersten Punkte
links in der Conchoide, sowie die hochsten und die
tiefsten Punkte in den beiden Schleifen zu bestimmen.

Untersuchen wir zuniichst die aussersten Punkte links
oder die Doppeltangente der Curve. Die Tangente in
einem solchen Punkte P steht senkrecht zum Durch-

Bern. Mittheil, 1873. Nr. 817.
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messer OA des Grundkreises (Fig. 17), also ist die Nor-
male PJY || OA; anderseits CJ[| XOP. Also ist OPJC

ein Parallelogramm, und daher:
OP=CJ=1,d h.: OX=0P=""

Wir erhalten also eine sehr einfache Construction
des Punktes X des Grundkreises, der dem gesuchien
Punkte P der Conchoide entspricht.

Ferner ist AY—=und || OX, also AY==und || OP, und
somit YP = AQ = 2R. Also ist PYX ein gleichschenk-
liges Dreieck , und da O die Mitte von PX, so ist
OY _L PX. Sei nun PE L OA, so sind die rechtwink-
ligen Dreiecke OEP und POY einander &hnlich, denn sie

haben die Winkel bei O und bei P gleich,
OE __ 0OP__1

also OP — PY — a» Yoraus
_ R ~ _RJIB
OE =3 und EP = g

Auch, falls wir die Conchoide als Fusspunktencurve
construiren, erhalten wir in einfacher Weise den dem
obigen Punkt P entsprechenden Punkt T des Leitkreises.
Denn denken wir uns (Fig. 17) das Dreieck POY zum
Parallelogramm, d. h. Rechteck OPTY ergiinzt, so ist
AYT eine Gerade =2 AY = R, also T jener Punkt des
Leitkreises um A, und ferner ist OT =PY = OA. —
Wenn wir also (Fig. 18) um O mit OA als Radius einen
Kreis beschreiben, der den Leitkreis A in T trifft, so
entspricht diesem Punkt T des Leitkreises in der in
Bezug auf den Punkt O genommenen Fusspunktencurve
der #usserste Punkt P links.

12) Untersuchen wir endlich die hdchsten und tiefsten
Punkte der beiden Schleifen. (Fig. 19 a u. b.) Die Normale
PUY eines solchen Punktes P steht senkrecht zum



Durchmesser OCA des Grundkreises. Sei D der Punkt,
wo dieselbe den Grundkreis zum zweitenmal schneidet,
so ist XD _L PY; also XD || OA, und daher A XDPw»
A OXA (denn jedes ist ahnlich A OVX), woraus

0X OA _
*X—D"I-X—P-—_2, d. h. OX——2XD-

Setzen wir also OX =r, so ist OV =R —zm, wo

das obere Zeichen der dussern und das untere der in-

nern Schleife entspricht. Die Relation OX° = 2R.0V
gibt also r? & -IEI: — 2R? =0,

Die positiven Wurzeln dlesel Gleichungen sind die
Radien Vektoren der Punkte X und X‘ des Grundkreisess
die den hochsten Punkten der beiden Schleifen ent-
sprechen.

Fiir die dussere Schleife ist also

a) r= 0X = ::L%YER , op=rir=21Y /3By
und fiir die innere Schleife
b) M= OXI — 1—+4£§§R , OPI — 1.1__R_ —3 1' I/33

Endlich sind die auf O bezogenen rechtwinkligen
Coordinaten der beiden Punkte P und P’
x=0U=R=%— 4 , y=UP = J)(OP —=x)(OP+x),
woraus fiir die Coordinaten des hochsten Punktes P
der dussern Schleife

15;'6'./333 = 1,2065 R

‘X"—:OU:

( y = UP '_‘Tle ]/4_144.66 33 R=1,7602 R,

und fiir die Coordinaten des hochsten Punkts P* der



innern Schleife
~ /29
xf = P = Llwrﬁligﬂ = 0,57846 R.

y = UP = %‘/ 414 — 66 /33 R = 0,36900 R.

Um diese Punkte P zu construiren, ziehen wir aus
den Formeln (a und b.)
r—r_ R

5 =7 > Ve =R /2, woraus

I'J+ r 2_ R 2 -y
(557) =(3) + (&2
Im gegebenen Grundkreise ziehe man z. B. (Fig. 20)

den Radius Cs L OA, mache auf OA die Strecke
On = Sehne Os, ziche durch n senkrecht zu OA die

Gerade nm — —]4%’ und trage anf dem Strahle Om von

m aug, respektive nach innen u. nach aussen die Strecken
ma und ma‘ — mn auf. Dies vorausgesetzt, mache man
Sehne OX = Oa und Sehne OX‘ = Oa’, und trage end-
lich auf ersterer von X aus nach aussen und auf letz-
terer von X’ aus nach innen die Strecken XP und X'P’
= R auf, so sind P und P’ die hichsten oder tiefsten
Punkte der beiden Schleifen.

§ 4. Kriimmungsmittelpunkte und FEvolute
der Conchoide.

13) Wenn wir in einem zum Grundkreise C con-

) . .. R . )
centrischen Kreise vom Radius -5 einen Radius CJ

parallel und in gleicher Richtung wie XP ziehen, so

ist PJ die Normale der Conchoide im Punkte P, und
ferner ist JP = JO (Nr. 8).
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Betrachten wir zuerst einen Punkt P der dussern
Schleife (Fig. 21 a), so ist £ CJO =JOP, und £ CJY
= JPO, also £ CJY = CJO. _

Wenn aber > ein Punkt der innern Schleife (Fig.
210), so ist, wenn C’ auf der Verlingerung des Radius
CJ liegt, £ CJY = CJO.

Denken wir uns daher den Punkt O als Lichtquell
und den Ortskreis von J als reflektirende Curve, so ist
JP die nach rickwirts gehende Ifortsetzung des von
diesem Kreise reflektirten Strahles OJ. Die Einhiallungs-
kurve der Strahlen PJ ist daher einerseits die Evolute
der Conchoide und anderseits die dem Lichtquell O ent-
sprechende Reflexionsbrennlinie des Kreises J. Die Evo-
lute der Conchoide ist also die Brennlinie, welche durch Reflexion
der vom Pole 0 ausgehenden Strahlen an einem zum Grundkreise
concentrischen Kreise von halb so grossem Radius erzeugt wird. )

14) Um nun das Kriimmungscentrum fiir irgend einen
Punkt der Conchoide zu erhalten, denken wir uns die
letztere wieder als Fusspunktenkurve des Leitkreises A
(Kig. 22). Seien T und T’ zwei benachbarte Punkte
dieses Kreises, OP und OP’ diec von O auf die Tan-
genten an T und T* gefillten Perpendikel und J und J’
die Mitten der Strahlen OT und OTY, so sind PJ und P*J’
zwel benachbarte Normalen der Conchoide, die sich im
Krimmungsmittelpunkt M des Bogens PP‘ schneiden.
Dies vorausgesetzt, zichen wir TS und T‘S parallel zu
PM und P'M, so ist TST' ein zu JMJ’ dhnliches und
dahnlich liegendes Dreieck von doppelten Dimensionen

) Vergleiche : Emil Weyr. Ueber die Ideutitit der Brennlinien mit
den Evoluten der Fusspunktenkurven. Zeitschrift fiir Mathematik
von Schlomilch, Jahrgang 1869, pag. 376.
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und O der Aehnlichkeitspunkt beider Dreiecke; es
liegen daher O, M, S in einer Geraden, und M ist die
Mitte von OS. |

Da C die Mitte von OA, so ist AT||CJ. Es ge-
hore nun P der dussern Conchoidenschleife an, oder
es liege T anf dem in Bezug auf O concaven Theile
des Leitkreises, so halbirt CJ den Winkel OJM, und
somit halbirt auch AT den Winkel OTS, und analog
AT‘ den Winkel OT'S. Nehmen wir von S in Bezug
auf die Tangente TP den symmetrischen Punkt S, so
erscheint die Summe OT 4 TS = 0S;, wenn man O und
S festhilt und T auf dem Leitkreise bewegt, als ein
Minimum, und daher unterscheidet sich OT‘4 T‘S von
OT + TS nur um ein unendlich Kleines der zweiten
Ordnung. Man kann somit O und S als die Brennpunkte
einer Ellipse ansehen, die durch T und T‘ geht, und
alsdann sind TA und T'A Normalen dieser KEllipse, und
somit der Kreis A der Kriimmungskreis derselben im
Bogen TT'. — Wiirde aber T auf dem in Bezug auf O
convexen Theile des Kreises A liegen, oder P der in-
nern Conchoidenschleife angehoren, so wéren O und S
die Brennpunkte einer durch T gehenden Hyperbel, die in
diesem Punkte den Leitkreis A zum Kriimmungskreise
héatte. — Beschreiben wir daher um O als Brennpunkt einen
Kegelschnitt, der durch einen Punkt T des Leitkreises geht, und hier
diesen Kreis zum Krimmungskreise hat, so ist der Mittelpunkt M
des Kegelschnittes das Krimmungscentrum des jenem Punkt T emt.
sprechenden Conchoidenpunktes P.') — Es ist PJ —= !/, OT und
JM =1/, TS, also ist der Eriimmungsradius PM im Punkte P der
Conchoide gleich der halben Hauptaxe des obigen Kegelschmittes.

1) Vergleiche : Emil Weyr, Construktion des Kriimmungskreises
fir Fusspunktenkurven, Sitzungsberichte der Wiener Akademie fiiv
1869, zweite Abtheilung, pag. 169.
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Da die Figur OJM und der Ortskreis von J der
Figur OTS und dem Ortskreis von T #hnlich sind im
Verhiiltniss 1 : 2, so kann man den obigen Satz auch
wie folgt ausspr2chen (Fig. 12): Man beschreibe um 0 als
Brennpunkt einen Kegelschnitt, der den zum Grundkreis G com-

centrischen Kreis vom Radius—g—in irgend einem Punkte J oskulirt

so ist der andere Brennpunkt M dieses Kegelschnitts das Kriimmungs-
centrum desjenigen Punktes P der Gonchoide, dessen vom Grundkreis
ausgehender Fahrstrahl XP parallel und gleichgerichtet mit dem
Radius CJ jenes Hilfskreises ist. Der Krimmungsradius PM der
Conchoide ist gleich der Hauptaxe dieses Kegelschnitts.

Da wir fiir irgend einen Punkt P der Conchoide die
Normale von vornherein kennen, so haben wir, um M
zu erhalten, nach dem erstern der obigen Sitze die
Richtung der Hauptaxe eines Kegelschnitts zu bestim-
men, von dem uns der eine Brennpunkt O, ein Peri-
pheriepunkt T und das Kriimmungscentrum A von T
gegveben ist. Aus der bekannten Construktion des Kriim-
mungscentrums eines Kegelschnitts (v. Nr. 23) ergibt
sich hiernach das folgende Verfahren (Fig. 23): Man
konstruire die Conchoide als Fusspunktenkurve des
Punktes O in Bezug auf den Leitkreis A. Sei nun AT
irgend ein Radius des Leitkreises, so fille man von A
ein Perpendikel AD auf den Strahl OT, und von D
wieder ein Perpendikel DE auf AT; dann geht die
Normale der Conchoide in dem zu T gehorigen Punkt
P der Conchoide durch die Mitte J von OT, und der
Strahl OE schneidet diese Normale im Krimmungscentrum M.

Der Ort des Punktes D ist der um OA als Durch-
messer beschriebene Kreis. Construirt man daher die
Conchoide mittelst des Grundkreises C (Fig. 24), so
ziehe man durch A den Strahl AT — und gleichgerichtet



48 -

mit XP, und fille von D, wo der Strahl OT den Grund-
kreis zum zweitenmal trifft, ein Perpendikel DE auf
AT, so schneidet der Strahl OE die Normale PY im Krimmungs-
centrum M des Punktes P.

15) Fiir die Scheitel G und C, sowie fiir den Doppel-
punkt O wird die obige Konstruktion des Kriimmungs-
centrums illusorisch.

Fiir die Scheitel nehmen wir den Satz zu Hiilfe, dass
der Kriimmungsradius eines Hauptscheitels einer Ellipse
oder Hyperbel von den beiden Brennpunkten O und S
harmonisch getheilt wird : Man lege daher durch O ir-
vend eine Gerade (Fig. 25) und nelune auf derselben
zwel willkiirliche Punkte U und V. Wenn nun die
Strahlen VA und UA von den Geraden UG und VG
respective in u und v, und von den Geraden UC und VC
in u’ und v’ geschnitten werden, so bestimmen die Ge-
raden uv und u’v’ auf OA die Punkte S und S‘, so dass
die Mitte M von 0S das Krimmungscentrum des Scheitels G, und die
Mitte M’ von 08’ dasjenige des Scheitels C ist.

Seien ¢ und ¢’ die Kriimmungsradien der beiden
Scheitel. Die harmonische Relation
o5 ="4(0x + 0a) £ oy = g + g oraus
den Scheitel G der dussern Schleife :

OM=¢%,R , o =0G — OM ="?,R

Analog (355 = 5z + 0G = 2R+ |
Scheitel der innern Schleife:

OM' =?%,R, ¢ =0C — OM' = '/,R

Die Kriimmungsradien der beiden Scheitel erhiilt
man auch direkt durch folgende Betrachtung (Fig, 26):
Ziehen wir durch O einen Radius Vektor OC‘G’ der

worans fir den
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Conchoide, der mit der Axe OCG einen unendlich-
kleinen Winkel o bilde , und den Grundkreis zum
zweiten Mal in A’ treffe, und sei Y der Gegenpunkt von
A‘, so sind nach Nr. 9 G'Y und C‘Y die Normalen von
G’ und C’, die die Axe in den Kriimmungsmittelpunkten
M und M’ der Scheitel G und C treffen. Nun ist CC
= Row, GG'=3Row und OY = AA’ =2 Re, und wir
haben

GM_ GG _ 30 . B
GO GGH0Y 30+ 20— /» &ls0 GM="/R.
CcM _ CC e

TO =CO +0Y ot 3a— l3» 8lso CM'=7/sR.

16) Den Doppelpunkt der Conchoide erhalten wir,
wenn wir von O aus Tangenten an den Leitkreis legen,
indem die Schnittpunkte derselben mit dem von O auf
dieselben gefillten Perpendikel in den Punkt O selber
hineinfallen, und diese Tangenten an den Leitkreis sind
zugleich die Normalen der Leiden sich in O schnei-
denden Zweige der Conchoide (Nr.8), und sind auch

Tangenten an den um C mit dem Radius—%—beschrie-

benen Kreis; der Berithrungspunkt J dieses letzteren
Kreises ist die Mitte von OT. '

Ziehen wir nun (Fig. 27) durch O einen Strahl, der
im Leitkreise eine sehr kleine Sehne T‘T“ bildet, so
bildet derselbe im Ortskreise von J eine Sehne J'J* =
1, T“T*, und wenn wir von O die Perpendikel OP' und
OP*“ auf die Tangenten an T’ und T fillen, so sind
P‘J* und P*J* die Normalen in den Punkten P* und P*
unserer Curve. Sei n der Schnittpunkt dieser Normalen,
so ist J‘nJ” ein gleichschenkliges Dreieck, denn die
Winkel bei J* und J* sind doppelt so gross, als die

Bern. Mittheil. 1873. Nr. 818.
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Winkel, die die Tangeten an T und T* mit der Sehne
T'T bilden. Wenn nun die Sekante OT‘T* zur gemein-
samen Tangente OJT an die beiden Kreise wird, so
fallt n in den Beriihrungspunkt J hinein, und somit ist
J das Kriitmmungscentrum des einen Conchoidenzweigs
im Punkte O. Beschreibt man daher um C einen Kreis mit dem

Radius —1-;-, s0 sind die Normalen im Doppeipunkte 0 der Con-

choide die von 0 aus an diesen Kreis gehenden Tangenten, und
die entsprechenden Kriimmungscentra sind die Berithrungspunkte
J dieser Tangenten. Aus dem rechtwinkligen Dreieck OCJ
erhialt man fiir die Grosse dieser Kriimmungsradien

7 = E_I_/Z‘i — (,86603 R.

17) Auch fiir die Punkte B unserer Curve (Fig. 28),
die vertikal oberhalb oder unterhalb O liegen (OB=R),
ergeben sich ecinfache Werthe des Kriimmungsradius.
Die Normale eines solchen Punktes B geht durch A.
Sei nun OO0 = 2 ein sehr kleiner Bogen des Grund-
kreises, B’ der zu O’ gehorige Punkt unserer Curve,
u der Schnittpunkt von OB’ mit BA, und ON = OB,

sO ist
BN=ow, NBP=00'=20, uN = B—;I:-;i, also uB’=%§°—
Wenn ferner A’ im Grundkreise der Gegenpunkt von
0, so ist B‘A‘ die Normale in B’, und der Schnittpunkt
M von BA und B‘A‘ das Kriimmmungscentrum des Bo-
gens BB‘. Aber AA’|| 00, d. h. || uB’, also

L) oY 20 =5%,, woraus lﬁr‘-f’/

MA = AAY 2 4o uA o
Lassen wir nun B’ unendlichnahe an B riicken, so er-
halten wir fiir den Krimmungsradius des Punktes B
5/ 5

9

BM = °/,BA = R — 1,2423 R.
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18) Jetzt haben wir eine klare Anschauung von der
Evolute unserer Curve. .

Betrachten wir zuerst (Fig. 29) die eine Hailfte
CDOEFG der Conchoide, die einem ganzen Umlauf des
erzeugenden Punktes X des Grundkreises im recht-
laufigen Sinn entspricht. — Dem innern Scheitel C der
Conchoide als dem Krimmungsmaximum ist ein Rick.

kehrpunkt ¢ der Evolute zugeordnet, Cc—_—%. Das

Kriimmungscentrum d des hochsten Punktes D der in-
nern Schleife ist der ausserste Punkt links in der Evolute.
Imm Punkte o, wo die Normale des Punktes O den um

C mit dem Radius%—beschriebenen Kreis beriihrt, wird

dieser Kreis selber von der Evolute berihrt. Das Krimmungs-
centrum e des #dussersten Punktes links in der Con-
choide ist der tiefste Punkt der Evolute. Das Kritmmungs-
centrum f{ des tiefsten Punktes F der dussern Schleife
ist der ausserste Punkt rechts in der Evolute. Das Kriim-
mungscentrum g endlich des &ussern Scheitels G ist

R

wiederum ein Rickkehrpunkt der Evolute, Cg = —

Der zweiten Hiltte GF'E‘OD‘C der Conchoide entspricht
eine symmetrische Hilfte gf‘e‘o’d‘c der Evolute. — Die
genannten ausgezeichneten Punkte der Evolute, sowie
alle Zwischenpunkte konnen wir wmittelst des Vorher-
gehenden construiren.

Die beiden Punkte o und o‘, wo die KEvolute den

um C mit dem Radius %— beschrieberien Kreis beriihrt,

theilen die Evolute in zwei ungleiche Halften, wovon
die links liegende oder gegen O convexe Hilfte oded‘o,
der innern Schleife und die gegen O concave Hilfte
o‘e‘f'gfeo der dussern Schleife der Conchoide zugehort.
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Die Bogenlange der Evolute zwischen irgend zwei Punk-
ten ist gleich der Differenz der diesen Punkten ent-
sprechenden Kriimmungsradien der Stammkurve. Die
obigen Werthe . = /5, 0o = '/, /3 , 05 = 9/, ergeben
daher fiir die Evolutenbogen, die der halben innern
Schleife CDO, und der halben #ussern Schleife OFG
der Stammkurve entsprechen,

Bogen cdo = (1/,}/3 — Y5 ) R.

Bogen oefg = (°/; — '/,J/3 ) R.
Die ganze in sich zurickkehrende Evolute hat die
Bogenlinge = **/; R

19) Die Polargleichung der Conchoide, auf den
Punkt O als Pol und die Axe OCG als Anfangsrichtung
bezogen, ist

a) r = R(rcosg 3 1),
wo das obere Zeichen fiir die innere und das untere fiir
die dussere Schleife gilt. Nach der bekannten Formel
dr? d*r
o= (r*+ "'")/ P+ 23— )

erhdlt man hieraus fir den Kriimmungsradius irgend
eines Punktes der innern Schleife
(5 —4cos ¢)®,
9 —6cos g
und fiir die #ussere Schleife hat man cos ¢ mit ent-
gegengesetztem Zeichen zu nehmen.

Setzen wir den Radius R des Grundkreises — 1, so

ist fiir den hochsten Punkt D der innern Schleife (Nr. 10)
r— — 2 I V3d, woraus ¢os ¢ = “_j-%]/33d h. p=32°32/,

und o, = 1/2‘/186 = V5 = 0,52686.

L R Y

l)) 0 =




Selen x und y die auf O bezogenen rechtwinkligen Coor-
dinaten von D (v. Nr. 12), so sind die auf dus Centrum
C des Grundkreises bezogenén Coordinaten des ent-
sprechenden Punktes d der Evolute, X = x — 1, Y =
y — 0, oder

X, = —0,42154 | Y, = —0,15786.
Fiir den dussersten Punkt links in der Conchoide
ist r = OE = '/,, woraus cos ¢ = — !/,, und

o ¥ = 1 0667,
und mit derselben Bezeichnung wie vorhin sind die auf
C bezogenen Coordinaten des Evolutenpunktes e,
X=x+¢— 1. Y = y, woraus

Xe=—"/j50= 006833, Y. =— 1/8]/1_5_:: --0,48412.
Fiir den tiefsten Punkt F der dussern Schleife ist
/93 4 % 39

P == L%%iﬁé, WOoraus cos@ = [_/E‘%S__I’ d. h, g =— 530 37",

und o, = 1/2‘/13@%235@ = 1,5939,

und die auf C bezogenen Coordinaten des Kvoluten-
punktes f sind X =x —1, Y = y — o, woraus
X, =0,2065 , Y, = —0,1663.
Nehmen wir wieder den Punkt C zum Anfangs-
punkte rechtwinkliger Coordinaten , so ergibt sich als
Gleichung der Evolute, oder der durch Reflexion er-

: ¢ @ ; . R
zeugten Brennlinie eines Kreises vom Radius 5 > WO

der Lichtquell O auf der x Axe in der Distanz —= — R
vom Centrum C dieses Kreises liegt (v. Salmon, higher
plane curves, pag. 116),

{16 (x> + y*)—(x — R)2— y2{°=108, y*(x’+y* — R?)".



§ 5. Flicheninhalt und Bogenlinge der Kreisconchoide.

29) Fiir irgend eine Lage TP der den Leitkreis A
umgleitenden Tangente (Fig. 30) ist AX gleich und pa-
rallel TP, und das von zwei benachbarten Radien Vek-
toren AX und AX‘ des Gruudkreises begrenzte Flachen-
element dieses letztern ist bis auf Unendlichkleines der
zweiten Ordnung gleich dem von den entsprechenden
Tangenten TP und T'P‘des Leitkreises begrenzten Flachen-
element der Fusspunktenkurve. Daher ist auch

Fliche TLCP — Kreissegment AKX.

Wihrend TP den halben Leitkreis CTG umgleitet,
iiberfahrt AX die ganze Fliche des Grundkreises. Sei
daher '/, die von der halben Fusspunktenkurve CPOFG
uud der Axe CG begrenzte Flache, so hat man

1, B — 1/, Leitkreisfliche — Grundkreisflache.

In unserm Kalle, wo der Leitkreis gleich dem Gruand-
kreise, ist also

kF = 3zR* d. h.:
Die Gesammtfiiche der Kreisconchoide, d. h. die Summe der innern
und der aussern Schleife, ist das Dreifache von der Flache des
Grundkreises.

Wenn TP durch den Doppelpunkt O geht (Fig. 31),
so nimmt AX die Lage AV an, wo Bogen AU = UV=

(4

VO :%, und die obige Betrachtung gibt:

1/, Schleife OC + OTLC = Kreissegment AUV.
Aber
\segm. AUV == A AUV + Segm. AU + Segm. UV,
|Flaiche OTLC=A0CT—Segm.CT=AAUV—Sgm.VO,
woraus durch Subtraction
1/, Schleife OC = Segm. AU + Segm. UV 4+ Segm. VO,
d. h,: Die Fliche der innern Schleife ist gleich der Differenz
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awischen der Fliche des Grundkreises und der Fliche des dem-
selben eingeschrieben¢n regelmadssigen Sechsecks. Daher:

gInnere Schleife = aR?* — g'g—st,

( Aeussere Schleife—=2:2R?* + 3—1/2§R2.

Der von der innern Schleife und dem Grundkreise umgrenzte
Mond hat gleichen Flicheninhalt wie das dem Grundkreise ein-
geschriebene regelmassige Sechseck.

Aeuss. Schleife — inn. Schleife — zR?=3)3 , R?, d. h.:
Die beiden krummlinigen Dreiecke (Fig. 32), welche der Leitkreis
C& von der mondformigen Fliche zwischen beiden Schleifen auss
schneidet, haben zusammen gleichen Flacheninhalt wie das dem
- Leitkreis umschriebene gleichseitige Dreieck.

21) Gemdss der Formel F — 3aR* ist die (Gesammt-
fliche der Conchoide gleich der Fliche einer Ellipse,
deren halbe Axen 3R und R, d. h. gleich der Axe OG
. der Conchoide und dem dazu senkrechten Radius Vektor
OB derselben sind.

Auch in Bezug auf die Bogenlingen steht diese
Ellipse in einer merkwiirdigen Beziehung zur Con-
choide. In der That, wenn wir O zum Pol und OG zur
Anfangsrichtung von Polarcoordinaten nehmen, so ist
die Gleichung unserer Conchoide

r =R (2cosgp — 1).
Von ¢ = o0 bis —, wo ¢ in rechtliufigem Sinn von der

Anfangsrichtung OC aus gezaéhlt wird, durchliuft der
Endpunkt P des Radius Vektors, OP — r, die halbe

innere Schleife CDO. Von ¢ — —3—blS 2z nehmen wir den

absoluten Werth von r, zéhlen aber ¢ in rechtliufigem
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Sinne von der Richtung OC’ aus, so durchliuft dann P
die halbe &ussere Schleife OFG (Fig. 33). Fir das
Bogenelement ds erhalten wir nun

ds?=r*dg* + dr* = R? |(2c0s ¢ — 1)* + 4sing?{de? =
= R? (5 — 4 cos ¢) » deo®.

Der vom innern Scheitel C aus gezihlte Conchoiden-
bogen CP ist also

®
s:RS /5 — 4cosg « dg,
0

oder, wenn wir ¢/s — v setzen,

Y
a) Conchoidenbogen CP:GRS YT =17, (cos v)¢ « dv.
' (0]

Bezeichnet aber v die excentrische Anomalie eines
Punktes E der obigen Ellipse, so sind die auf O be-
zogenen rechtwinkligen Coordinaten dieses Punktes

x =3Rcosv , y =Rsinv,
woraus fir das Bogenelement do der Ellipse

do? = dx? + dy? = R® (9 sin v? 4 cos v%) . dvZ.

Somit haben wir

v S
b) Ellipt. Bogen GE = 3R g YT — 8/, cos v? . dv.
0

Wir erhalten also
Conchoidenbogen CP = 2 . Elliptische Bogen GE,
d. h.: Ein Bogen CP der Conchoide ist doppelt so gross als ein
Bogen GE der obigen Ellipse, wenn der Polarwinkel des Punktes P
doppelt so gross ist als die excentrische Anomalie des Punktes E.
Wenn P auf der innern Schleife CDO liegt, so ist
@ = COP, und wenn P auf der #éussern Schleife OFG,
so ist ¢ = C‘OP. Construiren wir die Conchoide als
Fusspunktencurve von O in Bezug auf den Leitkreis
CTG, so wird in beiden Fillen ¢ = CAT, also
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v :-%— — CGT, und somit, wenn K in dem um die

~ grosse Axe der Ellipse als Durchmesser beschriebenen
Kreise dem Punkte E enftspricht, o ist OK || GT.

Wenn P den halben Umfang COG der Conchoide
beschreibt, so durchliuft OK den Kreisquadranten: es
ist daher der Bogen COG doppelt so gross als der El-
lipsenquadrant GB, und somit die Gesammtlinge der
Conchoide gleich dem Umfang der Ellipse.

Construiren wir also eine Ellipse, deren halbe Axen die Sym-
metricaxe 06 und der hiezn senkrechte Radius Vektor 0B der Con-
choide sind, so hat die Conchoide mit dieser Ellipse gleichen Flichen-
inhait und gleichen Umfang.

Da Bogen COG = 2 . Bogen GB, so hat man auch

Conchoidenbogen CP = 2 - Ellipsenbogen GE,

% Conchoidenbogen GP = 2 « Ellipsenbogen BE.

22) Bekanntlich hat Steiner Bogenlinge und Flichen-
inhalt der Fusspunktencurven mit Bogenldnge u. Flichen-
inhalt von Rollcurven in Verbindung gebracht!): Der
Kreis A (Fig. 34) rolle auf einer festen Geraden g, und
O sei ein mit diesem Kreise starr verbundener Punkt,
so betrachten wir die von O beschriebene Rolllinie.
Sei T der irgend einer Lage von O entsprechende Be-
rithrungspunkt des Kreises A mit der Basis g, und T¢
ein unendlich nahe liegender Punkt des Kreises. Wenn
T’ mit g zur Beriithrung kommt, so nehme O die Lage
O’ an; dann hat sich T um den frithern Abstand des
Punktes T von g vertikal gehoben. Der Strahl OT
nimmt also mit Vernachldssigung eines Unendlichkleinen

1) Steiner: Von dem Krimmungsschwerpunkt ebener Curven.
Crelles Journal fiir Mathematik. Band 21, pag. 33 und 36.

Bern. Mittheil. 1873. Nr. 819,
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der zweiten Ordnung die Lage O'T an; somit ist OTO’
ein gleichschenkliges Dreieck, und 0O’ L OT, d. h.:
Die Normale der von 0 beschriebenen Rolllinie geht in jedem Mo-
mente durch den entsprechenden Beriihrungspunkt T des rollenden
Kreises mit der Basis.

Sei g’ die Tangente von TY, so geht mit derselben
Annidherung die Figur OTg’ in O‘Tg iiber, also ist der
Winkel von OP mit g gleich dem Winkel von O‘T mit
g, und daher £ O‘TO gleich dem Winkel ¢ zwischen
den Tangenten g und g’, also

00 = ¢ . OT.

Fillen wir aber von O die Perpendikel OP und OP’
auf die Tangenten g und g‘, so liegen P und P’ auf dem
um OT als Durchmesser beschriebenen Kreis; wenn
also J die Mitte von OT, und Winkel PJP' = o, so ist

PP = w» PJ.
Aber © = 2¢, und PJ = 1/,0T ; daher
gl PP = Q0

Da ferner . JPO=JOP, und PP’ und OO’ respektive
zu PJ und zu OJ senkrecht stehen, so sind die gleich
langen Strecken PP’ und OO0’ gegen OP gleich geneigt,
und somit ist O‘P* || OP. Also Flache POP'=1/,POO'P‘;
oder wenn P und Q die Endpunkte der von O und O*
auf die Basis g gefillten Senkrechten sind, so haben
wir mit Weglassung von Unendlichikleinem der zweiten
Ordnung

b) Fliche POP’ = 1/, POO‘Q.

Halten wir also einmal den Kreis A und den Punkt
O fest, lassen die Tangente g den Kreis umgleiten, und
nehmen den Ort der Fusspunkte P der von O auf diese
variable Tangente gefillten Perpendikel; oder halten
wir zweitens die Tangente g fest, lassen den Kreis A,
mit dem der Punkt O in starrer Verbindung gedacht
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wird, auf der Geraden g rollen, und betrachten die
von O beschriebene Rolleurve, so ist jedem Punkte P
der Fusspunktencurve ein Punkt Op der Rolllinie zu-
geordnet, und umgekehrt (Fig. 35), und zwar so, dass
wenn Tp im ersten Fall den Beriithrungspunkt des festen
Kreises mit der vertikalen Tangente, und im zweiten
Fall den Beriihrungspunkt des rollenden Kreises mit
der festen Tangente bezeichnet, / OATp = TpAOp ist.
Dies vorausgesetzt, ist das von irgend zwei benachbarten Punkten
PP’ begrenzte Bogenelement der Fusspunktencurve gleich dem von
den entsprechenden Punkten Op und Op, begrenzten Bogenelement der
Rollcurve. Und das von den Radien Vektorem OP, OP‘ begrenzte
Flichenelement der Fusspunktencurve ist halb so gross, als das
Flichenelement der Rollcurve, das von den zur Basis g senkrechten
Ordinaten der Punkte Op, op, begrenzt ist.

Wenn AO = 2R, so ist die Fusspunktencurve un-
sere Conchoide. Dem Scheitel C der innern Schleife
entspricht der tiefste Punkt O, der Rolllinie. Fiir den
Doppelpunkt O der Fusspunktenlinie geht die Tangente
g durch den Punkt O; diesem Punkt entspricht also
der Durchschnittspunkt O  der Rolleurve mit der Basis,
und hier steht die Tangente der Rolllinie senkrecht zur
Basis. Dem Scheitel G der dussern Schleife entspricht
der hichste Punkt Og der Rollcurve.

Lassen wir also den Leitkreis A auf einer festen Geraden rollen,
und den mit ersterm starr verbundenen Punkt 0, dessen Distanz vom
Centrum des Kreises gleich dem Durchmesser desselben ist, eine
cykloidische Linie beschreiben, so ist irgend ein Bogen CDOP unserer
Kreisconchoide gleich dem entsprechenden Bogen ocoopp dieser cy=
kloidischen Linie, und die vom Radius Vektor OP @iberfahrene Fliche
OCDP der Conchoide halb so gross als die von der Ordinate OpP des
entsprechenden Punktes 0 " jener Rolllinie dberfahrene Flache
T.O0, ooopp.
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§ 6. Elementare Ableitung der oben benutzten Construktion
der Kriimmungsradien einer Ellipse.

23) Seien O und S die Brennpunkte, T irgend ein
Peripheriepunkt einer Ellipse, und y und + die Winkel,
welche die Brennstrahlen TS und TO dieses Punktes
mit der grossen Axe bilden (Fig. 36). Die Normale TA
halbirt den Winkel STO, und wenn wir mit u die beiden
gleichgrossen Winkel STA und OTA bezeichnen, so
erhalten wir fiir den Winkel ¢, den die Normale mit
der Hauptaxe bildet, ¢ — x — u = ¥ + u, woraus

¢ =, (x + )

Sei nun T’ ein benachbarter Punkt der Ellipse und
a , 8 die Winkel TST', TOT‘, so ergibt sich fiir den
Winkel ¢’, den die Normale T‘A mit der Hauptaxe
macht, ¢' =1/, {(x + &)+ (¥ + 8){, und somit fir
den Winkel TAT' = y, den die Normalen TA und T‘A

mit einander bilden,
7 =(e + B8),
Sei endlich ¢ der Krimmungsradius TA, und s der

Bogen TT‘, so ist s = gy, also —Z— = 1/, (a + B).

Denken wir uns aber von T Perpendikel auf die
Strahlen T'S und T'O gefillt, so bilden diese Perpen-
dikel, s unendlich klein vorausgesetzt, mit s ebenfalls
Winkel = u, und wenn r, ' die Brennstrahlen ST, OT"
darstellen, so erhalten wir fiir diese Perpendikel die
Werthe re¢ — scosu, r,8 = scosu. Die Relation

%: 1, (« + 8) gibt somit
1, (1,1
?— /2(?+?)008l1,

d. h.: Wenn man in den Brennpunkten S und 0 Senkrechte zu den
Brennstrahlen ST und OT zieht, welche Senkrechten die Normale des
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Panktes T in N und N, treffen, so wird der Krimmungsradius TA
von den Punkten N und N; harmonisch getheilt.

Aber, wenn e die Iixcentricitit, so dass OS = 2ae
= ¢ (r + 1;), so sind die Abschnitte, in welche die Nor-
male TA die Brenndistanz theilt (Fig. 37), SE = er und
OE = er;. In der That, es ist einerseits SE + OE =
e (r 4+ ry), und anderseits, da TE den Winkel STO hal-
birt, (S)Ig L Sei ferner n die von der Hauptaxe be-
grenzte St1ecke TE der Normalen, so geben die Drei-
ecke STE und OTE

elr? =r? — 2rn cos u 4 n?,
err2 =1 — 2r;n cos u + n’

Es sind demnach r und r; die beiden Wurzeln der
Gleichung (1 — e?)r2 — 2rn cos u 4+ n* = o0, und somit
ist (1 —eY)rry =n*, (1 — e*)(r+ 1) = 2n cos u.

Fithren wir diese Werthe in den obigen Ausdruck
o= 2rry ein, so erhalten wir o = _n___

., (r+r)cosu cos u?

Wenn daher die Halbirungsgerade des Winkels STO dio Haupt-
axe in E schneidet, so ziehe man durch E einen Strahl ED senkrecht
zu ET, und durch D, wo dieser Sirahl den Brennstrahl 0T trifft,
eine Gerade DA senkrecht zu OT; dann schneidet diese letztere die
Normale TE im Krimmungscentrum A des Punktes T.

Fiir die Scheitel der Hauptaxe versagt diese Con-
struction. Die Perpendikel aber, die man in den Brenn-
punkten O und S auf den Brennstrahlen eines solchen
Scheitels errichtet, treffen die Normale dieses Scheitels
in den Punkten O und S selber. In diesem Falle gibt
also der frithere Satz: Der Kriimmungsradius eines Haupt-
scheitels einer Ellipse wird von den Brennpunkten 0 und S har-

monisch getheilt.
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Resumé,

Zum Schlusse wollen wir die wesentlichsten Re-
sultate der vorangehenden Untersuchung zusammen-
fassen:

Von einem festen Punkte 0 auf der Peripherie eines Kreises
werden Strahlen uach einem variabeln Punkte X dieses Kreises ge-
zogen, und auf diesen Strahlen je von X aus die Strecken XP und XP,
gleich dem Radius des Grundkreises nach beiden Seiten aufgetragen.
— Die Ortscurve der Punkte P und P, ist auch die Fusspunktencurve
des Punktes 0 in Bezug auf einen mit dem obigen gleich grossen Kreis,
der den andern Endpunkt des durch 0 gehenden Durchmessers jenes
zum Centrum hat (Nr. 5). — Die namliche Curve entsteht beim

Rollen eines Kreises vom Radius % auf einem mit dem rollenden

gleich grossen Kreise; ein mit dem Rollkreise fest verbundener
Punkt im Abstand R vom Centrum dieses bheschreibt die Curve
(Nro. 7).

Diese Curve kanmn in verschiedener Weise zur Dreitheilung
eines Winkels verwerthet werden (Nr. 3 und 6).

Die Normalen der beiden Punkte P und P, der Curve, die irgend
einem gegebenen Punkte X des Grundkreises entsprechen, gehen
durch den andern Endpunkt Y des durch X gehenden Durchmessers
des Grundkreises (Nr. 9).

Ein Kreis, den wir um irgend einen Punkt Z des Grundkreises
mit einem Radius — !/, Z0 schlagen, beriihrt sowohl die dussere
als die innere Schleife der Curve. Die Beriihrungspunkte P und P,
dieses Kreises sind die Schnittpunkte desselben mit einem neuen
Kreise, den wir durch 0 und Z orthogonal zum Grundkreise legeu. Die
Radien-Vektoren OP und OP, dieser Beriihrungspunkte bilden gleiche
Winkel mit dem Radius-Vektor des Centrums Z des beriihrenden
Kreises, und zwischen den Polarwinkeln ¢ und ¢, jener Punkte be.

steht die Relation tg _qg_ = 3tg %‘— (Nr. 10).



Die Evoiute unserer Curve ist die durch Reflexion entstehende
Brennlinie eines mit dem Grundkreise concentrischen Kreises vom
halb so grossem Radius, wenn die Strahlen vom Punkte 0 ausgehen
(Nr. 13). — Diese Evolute wird auch von dem einen Brennpunkt
eines Kegelschnitts beschrieben, der den obigen Hilfskreis in einem
variabeln Punkte oskulirt und den festen Punkt 0 zum anderem
Brennpunkt hat (Nr. 14).

Die Gesammtfliche der Curve, d. h. die Summe der beiden
Schleifen, ist das Dreifachevon der Fliche des Grundkreises (Nr. 20).
— Die Curve hat mit einer Ellipse, deren halbe Axen die Symmetrie-
axe und der hiezu senkrechte Radius-Vektor der Curve sind, glei-
chen Flacheninhalt und gleichen Umfang (Nr. 21). — Wenn ein
mit dem Grundkreise gleich grosser Kreis auf einer festen Geraden
rollt, und ein mit diesem festverbundener Punkti, in einer Distanz
vom Centrum gleich dem Kreisdurchmesser, eine verkiirzte Gykloide
beschreibt , so hat die obige Curve mit dieser Rollcurve gleiche
Bogenlange und halb so grossen Flacheninhalt (Nr. 22).

B T

Prof. Dr. H. Dor.

Notiz iiber drei Schidel

aus den schweiz. Pfahlbauten

Greng bei Murten, Liischerz und Mérigen am Bielersee.

RPN

Vorgetragen in der Sitzung vom 28. Februar 1873.

Die Seltenheit der menschlichen Ueberreste in den
schweizerischen, wie auslindischen Pfahlbauten hat
bekanntlich die Archéologen zur Ansicht gebracht,
welche durch die zahlreichen Funde von Aschenurnen
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