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Prof. Dr- G. Sidler.
Trisektion eines Kreisbogens und

die Kreisconchoide.

Vorgetragen in der mathemat. Sektion am 11. Januar 1873.

(Mit 4 Tafeln.)

Von der Aufgabe, einen Kreisbogen in drei gleiche
Theile zu theilen, hat neulich Herr Hippauf eine
einfache Lösung mit Hülfe der Kreisconchoide gegeben.1)

Wir wollen erst diese Lösung reproduziren, und dann
weitere Eigenschaften der genannten Curve beifügen.

§ 1. Trisektion eines Kreisbogens.

1) Sei AUVB der zu theilende Kreisbogen CFig. 1),
C dessen Mittelpunkt und 0 der andere Endpunkt des

durch A gehenden Durchmessers. Seien ferner U und V
die gesuchten Theilpunkte, so dass Bogen AU UV

VB, so ist, wenn wir die Geraden CU und OV ziehen,
AV

CU || OV, denn Z. AOV=^-= L. ACU. Ebenso ist

Sehne UV||AB. Ziehen wir also durch C einen Strahl
CP || Sehne AB, so ist CUVP ein Parallelogramm, also

wenn R der Radius des Kreises,
1) PV R
2) CP Sehne UV.

') Lösung des Problems der Trisektion eines Kreisbogens
mittelst der Conchoide auf cirkularer Uasis, ron Dr. H. Hippauf, Rektor
der mittleren Bürgerschule zu Halberstadt. Leipzig bei Teubner 1872.



— 32 —

Wenn ferner die Radien CU und CV die Sehne AB
in u und v schneiden, so ist A UAuc/d AUCV wegen
Gleichheit der entsprechenden Winkel, also Au=AU,
aber AU=UV, und somit

3) CP Au Bv.

2) Denken wir nun, dass der Endpunkt B des Bo-
gens AB vom festen Punkte A aus den gegebenen Kreis
umlaufe, so ist der Ort des Punktes P eine Curve, die

entsteht, wenn wir vom andern Endpunkt 0 des Durchmessers AO

aus nach einem variabeln Punkte X des Kreises einen Strahl
ziehen, und auf diesem Strahle von X aus eine konstante Strecke
XP dem Radius R in derjenigen Richtung auftragen, wo der

Winkel CXP der Hälfte des von X durchlaufenen Bogens AX

wird. (Fig. 2.)
Während Bogen AX von 0° bis 180° wächst, ist

L. CXP spitz ; wenn aber AX von 180° bis 360° wächst,
ist L. CXP stumpf. Während also X von A aus in
rechtläufigem Sinn die Kreisperipherie umläuft,
beschreibt P eine Curve CPOP'G. — Wenn der Bogen AX
um 360° zugenommen hat, also X nach einem ganzen
Umlauf an seinen frühern Ort zurückgekommen ist, so
hat der Winkel CXP um 180° zugenommen ; die
entsprechenden Richtungen von XP sind also einander
entgegengesetzt. Wenn daher X die Kreisperipherie
zum zweiten Mal umläuft, so beschreibt P den zum
frühern symmetrischen Curvenzweig GP"OC. — Nach zwei
Umläufen des Punktes X kehrt die Ortscurve von P
in sich selber zurück. — Diese Curve nennen wir nach

Analogie der gewöhnlichen Conchoide, wo die Basis
eine Gerade ist, eine Kreisconchoide.

Wenn X von A aus einen Bogen von 120°

beschrieben hat, so dass Z-AOX 60°, so fällt P in O
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hinein, und unmittelbar vorher wird der Punkt P
unendlich nahe an O liegen. Im Doppelpunkte 0 bilden daher

die Tangenten der Conchoide mit der Axe OA Winkel von 60°.

3) Haben wir für den gegebenen Kreis die
Conchoide gezeichnet, so ziehen wir, um einen gegebenen

Bogen AB dieses Kreises in drei gleiche Theile zu theilen (Fig. 3),
vom Mittelpunkt C des Kreises aus parallel zur Sehne
AB den Radius-Vektor CP der Conchoide. Dies
vorausgesetzt, erhalten wir die Theilpunkte U und V,

a) indem wir im Bogen AB von A aus eine Strecke
gleich dem Radius-Vektor CP dreimal als Sehne

eintragen, Sehne AU UV VB CP;
b) der Strahl OP trifft den gegebenen Bogen im

zweiten Theilpunkt V, und der zu OP parallele Radius
CU des Kreises trifft den Bogen im ersten Theilpunkt U ;

c) machen wir auf der Sehne AB die Strecken Au
und Bv gleich CP so gehen die Radien Cu und Cv
durch die gesuchten Theilpunkte.

4) Da Au gleich und parallel CP, so ist, während
der Endpunkt B des zu theilenden Bogens AB die
Peripherie des Kreises umläuft, der Ort des Punktes u, wo

der Radius CU die Sehne AB trifft, eine zur obigen Hülfscurve

congruente Conchoide, die um eine Strecke gleich dem
Radius des Grundkreises parallel zu jener verschoben ist.

Wenn B von A aus den Kreis beschreibt, so hat
im Anfang (Fig. 4) die Sehne AB die vertikale
Tangentenrichtung Aa, also CP die vertikale Tangentenrichtung

Cy.. Nun bleibt stets Z_ <CP — «AB d. h. :

der Punkt P bewegt sich von C aus dergestalt, dass der Radius-

Vektor CP von seiner Anfangsrichtung Cy aus einen Winkel yCP

beschreibt gleich und im gleichen Sinne, wie der Radius-Vektor

AB von seiner Anfangsrichtung Act aus, oder einen Winkel Y.CP'

Bern. Mittheil. 1873. Nr. 816.
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der halb so gross ist wie der zu theilende Kreisbogen AB.

Dadurch ist für jeden Bogen AB der entsprechende Con-

choidenpunkt P eindeutig bestimmt. Sei z. B. Bogen
AB 3 • 180°, so ist L. ^CP 3 • 90° also geht der
Radius-Vektor CP von C aus nach rechts zum Con-

AB
choidenpunkt G ; die Sehne von -^- ist also CG=2R,

wie sein soll.
Eine durch C gehende Gerade trifft die vollständige

Conchoide (Fig. 2) ausser in C noch in drei Punkten
P0, Pj, P2. Die Radien-Vektoren CP0, CP,, CP2 sind

gleich den Sehnen der Kreisbogen
AB AB + 360° AB + 2 - 360

3 ' 3 ' 3

§ 2. Neue Erzeugungsarten der Kreisconchoide.

5) Sei OA ein Durchmesser des Grundkreises (Fig.
5), und 0 der Pol der Conchoide, so ziehen wir von
0 aus einen Strahl nach einem variabeln Punkte X des

Grundkreises, und tragen auf diesem Strahl von X aus
nach Leiden Seiten die Strecken XP und XPt auf,
gleich dem Radius CA des Kreises, so ist der Ort der
Punkte P und Pt die Conchoide.

Beschreiben wir jetzt um A als Mittelpunkt einen
Kreis mit demselben Radius AC, und ziehen durch A
den Durchmesser TTX|| OX, und die Geraden TP, AX,
TtP,, so sind AXPT und AXP^ Parallelogramme (weil
AT gleich und parallel XP), und da L. AXO 90°, so

sind dies Rechtecke ; also ist TP die Tangente im
Punkte T, und OP _L TP. Die obige Conchoide ist daher

auch der Ort der Fusspunkte P der Perpendikel, die vom festen

Punkte 0 auf die variabeln Tangenten TP eines um A als Mittelpunkt

beschriebenen, mit dem frühern gleichgrossen, Kreises

gefällt werden.
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Den frühern Kreis um C wollen wir den Grundkreis,

den jetzigen Kreis um A zum Unterschied den Leitkreis

nennen. Dem in Bezug auf den Pol 0 convexen Theile
des Leitkreises entspricht die innere, und dem in Bezug
auf 0 concavem Theile des Leitkreises die äussere
Schleife der Conchoide; die Berührungspunkte der von
O an den Leitkreis gehenden Tangenten ergeben den

Doppelpunkt der Curve. — Diese Auffassung der
Kreisconchoide als Fusspunktencurve ergibt uns eine reiche
Zahl von Eigenschaften derselben.

Denken wir uns von C und von G aus Perpendikel
auf den Strahl OX gefällt, so liegen die Fusspunkte
derselben zwischen P und P^ Hieraus sehen wir, dass

die innere Conchoidenschleife von einem Kreise um OC als

Durchmesser ganz umschlossen wird, hingegen die äussere Schleife ganz

ausserhalb eines um OG als Durchmesser beschriebenen Kreises liegt.

6) Die obige Betrachtung führt uns auf ein neues

Verfahren, einen Winkel mittelst der Conchoide in drei gleiche Theile

zu theilen.

Sei wieder (Fig. 6) Bogen AU UV VB, so ist
CU||OV. Machen wir nun nach Grösse und Richtung
VP CU, so ist CUPV ein verschobenes Quadrat, also
CP _L UV, d. h. CP _L AB, und somit A ACP V, ACB.

Machen wir nun AT gleich und parallel CU, so ist
ATPV ein Parallelogramm ; aber AV _L 0V, und somit
auch PT senkrecht zu AT und zu OP, also TP
Tangente an den Ortskreis von T, und P der zu T gehörige
Punkt der Fusspunktencurve dieses Kreises in Bezug
auf den Pol 0. Ferner ist CATU ein verschobenes

Quadrat, also A ACT 1/2 ACU.
Aber A ACU 1/3 ACB. Die obigen Relationen

ACT Vi ACU und ACP */» ACB, ergeben also

A ACT 7a ACP.
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Sei also GCP der zu theilende Winkel (Fig. 7), so

beschreiben wir um irgend einen Punkt A des einen
Schenkels CG einen durch den Scheitel C gehenden
Kreis, machen auf diesem Schenkel nach der entgegengesetzten

Seite CO CA und construiren die
Fusspunktencurve jenes Kreises in Bezug auf den Pol 0.
Wenn nun der andere Schenkel CP diese Curve in P trifft, so

ziehe man den Radius AT des Leitkreises parallel zur Geraden

OP, und den Strahl CT nach dem Endpunkt T dieses Radius, so

ist A GOT 7;> GCP. Dies ist die von Herrn Jouanne
angegebene Construction. 1j

7) Wir kehren zur Betrachtung der Conchoide als

Fusspunktencurve des Punktes O in Bezug auf den

Leitkreis A zurück. Es liegt P auf einem um OT als
Durchmesser beschriebenen Kreise ; wenn daher J die
Mitte von OT (Fig. 8), so ist JP JO, und während
T den Leitkreis beschreibt, so beschreibt J einen Kreis
ab von halb so grossem Radius um die Mitte C von
OA, der in Bezug auf jenen den Punkt 0 zum äussern
Aehnlichkeitspunkt hat. Es ist CJ parallel und
gleichgerichtet mit AT, und daher auch CJ||OP.

Das von .1 auf OP gefällte Perpendikel Jp ist die
Symmetrieaxe des gleichschenkligen Dreiecks OJP und

Tangente an den Ortskreis von J. Die Punkte P und p
beschreiben ähnliche und ähnlich liegende Curven, von
denen O der Aehnlichkeitspunkt und 1 ; 2 das Aehn-
lichkeitsverhältniss ist.

Nehmen wir von C in Bezug auf die Tangente Jp
den symmetrischen Punkt U und beschreiben um U als

') Trisection de l'angle au moyen du Limaçon de Pascal, par
M. Jouanne, prof, au lycée rie Caën. Nouvelles Annales de
Mathématiques par MM. Gerono et Bourget. IX. 1870. pag. 40.
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Mittelpunkt einen Kreis durch J, der vom Strahl UP
in et getroffen werde, so haben wir zu beiden Seiten

von Jp symmetrische Figuren. Es ist daher UP CO

R, und Bogen Ja — Kogen Ja. Während nun J den
Kreis um C beschreibt, rollt der Kreis U auf diesem

Kreise, und der Punkt P hat zu dem rollenden Kreise

eine feste Lage. Wenn daher ein Kreis vom Radius— auf

einem gleichgrossen festen Kreise rollt (Fig. 9) so beschreibt

ein mit dem rollendea Kreise fest verbundener Punkt P, der vom

Mittelpunkt U dieses letztern in der Distanz R liegt, eine mit
unserer Conchoide identische Curve. lj

Wenn der Punkt a, wo der Strahl UP den rollenden
Kreis schneidet, mit dem festen Kreis zur Berührung
kommt, so geht P durch den innern Scheitel C, und

wenn der diametrale Punkt von a zur Berührung kommt,
so geht P durch den äussern Scheitel G. Wenn CUP
ein gleichseitiges Dreieck (Bogen aJ 60°), so geht
P di'-ch den Doppelpunkt 0.

S 3. Die Normalen der Curve, die doppelt
berührenden Kreise u. s. f.

8) Wir denken uns den Leitkreis A als Grenzcurve
eines eingeschriebenen Polygons von unendlich vielen
Seiten. Zwei aneinanderstossende Seiten, die den Punkt
T des Kreises gemein haben (Fig. 10), stellen verlängert
zwei benachbarte Tangenten TP und TP' dar. Fällt
man nun von 0 die Perpendikel OP und OP' auf diese

Tangenten, so liegen P und P' auf dem um OT als
Durchmesser beschriebenen Kreise. Dieser Kreis hat

') Vergi. Steiner : Von dem Krümmungsschwerpunkt ebener
Curven § XXXVI. Crelles Journal für Mathematik, Band 21.
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also zwei unendlich nahe liegende Punkte P und P'
mit der Conchoide gemein und berührt daher die letztere

in P. Die Normale der Conchoide im Punkt P fällt
somit mit dem Radius PJ dieses Kreises zusammen.
Wenn daher T der irgend einem Punkt P der Conchoide entsprechende

Punkt des Leitkreises A ist, so geht die Normale des

Punktes P durch die Mitte J der Geraden OT. (Fig. 11.)
Der Ort des Punktes J ist ein Kreis vom Radius

r>

-„- um C als Mittelpunkt, und es ist CJ parallel und

gleichgerichtet mit AT, oder mit XP, wenn AXj_OP.
Beschreiben wir daher die Conchoide in der ursprünglichen

Weise (Fig. 12), indem wir vom Funkte 0 Strahlen
nach einem variabeln Punkte X des Grundkreises C

ziehen, und auf diesen Strahlen von X aus je eine Strecke
XP gleich dem Radius dieses Kreises auftragen, so ist,
wenn wir in einem concentrischen Kreise von halb so grossem

Radius einen Radius CJ parallel und in gleicher Richtung wie XP

ziehen, PJ die Normale der Conchoide im Punkte P.

Rufen wir uns die Erzeugung unserer Conchoide
als epicykloidische Linie zurück, so stimmt dies mit
dem bekannten Satz, dass die Normale eines Punktes
einer durch Rollen erzeugten Curve durch den betreffenden

Berührungspunkt der rollenden Curve geht.

9) Betrachten wir die Normale PY und PtY zweier
Punkte P und Px der Conchoide (Fig. 13), die
demselben Punkte X des Grundkreises entsprechen. Da
JJi || PPt und C und X die Mitten von JJX und PPj sind,
so gehen diese Normalen durch den nämlichen Punkt
Y der Geraden CX, und da CJ 1fì XP, so ist auch
CY V» XY, d. h. : CY XC. Es liegt daher Y ebenfalls

auf dem Grundkreise und ist der Diametralpunkt
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von X. Die Normalen der beiden Punkte P und ?t der Conchoide,

die irgend einem gegebenen Punkte X des Grundkreises entsprechen,

gehen daher durch den andern Endpunkt T des durch den

Punkt X gehenden Durchmessers des Grundkreises (Fig. 14).

10) Die vorhergehende Betrachtung führt uns auf
neue Eigenschaften unserer Curve. Sei Z der Punkt,
wo die Normale PY den Grundkreis zum zweitenmal
schneidet (Fig. 15), so sind die Dreiecke PZO und PXY
einander ähnlich ; aber XP 1/2XY, also

ZP Vi ZO,
wo ZP in P normal zur Conchoide steht. Dies gilt,
ob wir P auf der äussern oder auf der innern Schleife

annehmen, und wir haben den Satz : Jeder Punkt Z des

Grundkreises ist ven den beiden Schleifen der Conchoide gleich

weit entfernt, und zwar halb so weit als vom festen Punkte 0.

Daher : Ein Kreis, den wir mit einem Radius 1/2 ZO um

irgend einen Punkt Z des Grundkreises als Centrum beschreiben,

berührt sowohl die äussere als die innere Schleife der Conchoide ;

der Grundkreis ist der Ort der Mittelpunkte der die beiden

Schleifen doppelt berührenden Kreise.

Oder : Wenn man von einem festen Punkte 0 eines Kreises

Strahlen zieht nach einem variabeln Punkte Z desselben, und um

Z als Centrum je einen Kreis schlägt, der durch die Mitte des

Strahls ZO geht, so ist unsere Conchoide die Einhüllungscurve

dieser Kreisschaar.

Es ist OP || AY, also A ZPX ZYA, oder

A ZPX AOZ.
Da ZP V2 ZO, so ist ferner 2 sin ZOP sin ZPX

sin AOZ, d. h.: 2 sin (-x-) — sin (-ö-)} °^er

Sehne ZX 1/i Sehne AZ.
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Dasselbe gilt für den Berührungspunkt P,, des Kreises
um Z mit der innern Schleife (Fig. 16). Also

Sehne ZX Sehne ZXX 1/2 Sehne AZ. Daher
Die Radien Vektoren OP u. 0PX der beiden Berührungspunkte

der Conchoide mit einem der obigen Kreise bilden gleiche Winkel

mit dem Radius Vektor des Centrums Z dieses Kreises. Die Dreiecke

OZP und OZPx sind ein hübsches Beispiel von
zwei verschiedenen Dreiecken, die zwei Seiten und den
der kleinern Seite gegenüberstehenden Winkel gleich
haben.

Wenn wir um irgend einen Punkt Z des Grundkreises einen

Kreis mit dem Radius 72Z0 geschlagen haben, so trage man von

Z aus nach beiden Seiten die Sehnen ZX nnd ZX gleich der Hälfte

der Sehne AZ auf, so sind X und X, die beiden Punkte des

Grundkreises, die den Berührungspunkten der Conchoide mit jenem Kreise

entsprechen.

Wir können die Berührungspunkte P und P, des

Kreises Z auch direkt erhalten: Da A ZPX ZPjXj,
sosindOPZundOPiZ supplementäreWinkel, alsoOPiZP
ein einschreibbares Viereck. Sei M der Mittelpunkt des

umschriebenen Kreises, so ist MZ _L PPj. Aber PPt
steht auch senkrecht zur Tangente an den Grundkreis
in Z, denn wir können PPX als die Schnittsehne des

Kreises Z mit dem unmittelbar benachbarten Kreise
dieser Schaar ansehen. Es ist daher MZ eine Tangente
an den Grundkreis, somit wird dieser vom Kreise um
OPjZP rechtwinklig geschnitten, und daher ist auch
MO eine Tangente an den Grundkreis, und M in Bezug
auf diesen letztern der Pol der Geraden OZ. Legen wir
daher durch 0 und Z einen Orthogonalkreis zum Grundkreise, so sind

die Schnittpunkte dieses Kreises mit demjenigen, deu wir um Z mit
dem Radius 1/2 ZO geschlagen haben, die beiden Berührungspunkte
P und Pj des letztern Kreises mit der Conchoide.
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Sei endlich u der Winkel AOZ, und cp, cp1 die

Winkel der Radien Vektoren OP, OPa mit der Axe OCG.

Wir fanden oben 2 sin (-«-) sin (-«-) d. h.:

2 sin [V=p) sin u sin (2+21),
Cp Cpi n Cp Cp,

woraus sm Ycos-^ — 3 cos j8my o, oder

%* »*?.
Wenn also die beiden Schleifen je von einem nämlichen Kreise

berührt werden, so stehen die Tangenten der Hälften der Winkel,

die die Radien Vektoren OP und OP, der beiden Berührungspunkte mit
der Axe der Curve bilden, in dem konstanten Verhältniss 3 ; 1 zu

einander.

Wir haben ein zweites System von doppelt
berührenden Kreisen, die je die nämliche Schleife in zwei
zur Axe OCG symmetrischen Punkten tangiren. Der
Ort der Mittelpunkte dieser zweiten Schaar ist die

Symmetrieaxe der Curve. Wenn die Berührungspunkte
vom innern Scheitel C aus bis zum äussern Scheitel
G die Curve durchlaufen, so bewegt sich der Mittelpunkt

des tangirenden Kreises auf der Curvenaxe vom
Krümmungsmittelpunkt des Seheiteis C aus nach links
hin ins Unendliche, und kehrt dann aus dem Unendlich-
fernen rechter Hand zurück bis zum Krümmungsmittelpunkt

des Scheitels G (Fig. 29).

11) Es fällt uns nun leicht, die äussersten Punkte
links in der Conchoide, sowie die höchsten und die
tiefsten Punkte in den beiden Schleifen zu bestimmen.

Untersuchen wir zunächst die äussersten Punkte links
oder die Doppeltangente der Curve. Die Tangente in
einem solchen Punkte P steht senkrecht zum Durch¬

Bern. Mittheil. 1873. Nr. 817.
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messer OA des Grundkreises (Fig. 17), also ist die
Normale PJY || OA ; anderseits CJ || XOP. Also ist OP.1C

ein Parallelogramm, und daher:

OP CJ =—, d. h.: OX=OP y.
Wir erhalten also eine sehr einfache Construction

des Punktes X des Grundkreises, der dem gesuchten
Punkte P der Conchoide entspricht.

Ferner ist AY=und || OX, also AY— und || OP, und
somit YP AO 2R. Also ist PYX ein gleichschenkliges

Dreieck und da 0 die Mitte von PX so ist
OY J_ PX. Sei nun PE _L OA, so sind die rechtwinkligen

Dreiecke OEP und POY einander ähnlich, denn sie

haben die Winkel bei 0 und bei P gleich,
OE OP 1

also
Qp py=-£, woraus

,.„ R „_ R 1/Ï5
OE -s- und EP —rh—

o o

Auch, falls wir die Conchoide als Fusspunktencurve

construiren, erhalten wir in einfacher Weise den dem

obigen Punkt P entsprechenden Punkt T des Leitkreises.
Denn denken wir uns (Fig. 17) das Dreieck POY zum
Parallelogramm, d. h. Rechteck OPTY ergänzt, so ist
AYT eine Gerade 2 AY R, also T jener Punkt des

Leitkreises um A, und ferner ist OT PY — OA. —
Wenn wir also (Fig. 18) um 0 mit OA als Radius einen
Kreis beschreiben, der den Leitkreis A in T trifft, so

entspricht diesem Punkt T des Leitkreises in der in
Bezug auf den Punkt 0 genommenen Fusspunktencurve
der äusserste Punkt P links.

12) Untersuchen wir endlich die höchsten und tiefsten
Punkte der beiden Schleifen. (Fig. 19 a u. b.) Die Normale
PUY eines solchen Punktes P steht senkrecht zum
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Durchmesser OCA des Grundkreises. Sei D der Punkt,
wo dieselbe den Grundkreis zum zweitenmal schneidet,
so ist XD _L PY ; also XD || OA, und daher A XDPc/5

A OXA (denn jedes ist ähnlich A OVXJ, woraus

g ^ 2, d.h. OX 2XD.

Setzen wir also OX r, so ist OV R qp —- wo

das obere Zeichen der äussern und das untere der
innern Schleife entspricht. Die Relation OX 2R.OV

Rr
gibt also r2 ± =f — 2R3 0.

Die positiven Wurzeln dieser Gleichungen sind die
Radien Vektoren der Punkte X und X' des Grundkreises?
die den höchsten Punkten der beiden Schleifen
entsprechen.

Für die äussere Schleife ist also

a) r (Ja ~ R OP r + R /-—R.> 4 ' 4
und für die innere Schleife

b) r' OX' !^J^-R OP1 r1-R=~3+|/33R.j 4 ' 4

Endlich sind die auf 0 bezogenen rechtwinkligen
Coordinaten der beiden Punkte P und P'

x OU R ± -^ y UP= (/(OP — x)(OP+x),

woraus für die Coordinaten des höchsten Punktes P

der äussern Schleife

x _ ou _ 154|33R _ 1)2965R

| y UP =y6 J/414 + 66 |/33 R 1,7602 R,

und für die Coordinaten des höchsten Punkts P' der
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innern Schleife

x' O'U' —^—3 R 0,57846 R.

y U'P' =: -U/ 414 ~ 66 j/33 R 0,36900 R.

Um diese Punkte P zu construiren, ziehen wir aus
den Formeln (a und b.)

—s— —-j- j/rr' R J/2 woraus

YYYtYcv^.
Im gegebenen Grundkreise ziehe man z. B. (Fig. 20)

den Radius Cs _L OA, mache auf OA die Strecke
On rr Sehne Os, ziehe durch n senkrecht zu OA die

r>
Gerade nm -p, und trage auf dem Strahle Om von

m aus, respektive nach innen u. nach aussen die Strecken
ma und ina' =r mn auf. Dies vorausgesetzt, mache man
Sehne OX Oa und Sehne OX' Oa', und trage endlich

auf ersterer von X aus nach aussen und auf
letzterer von X' aus nach innen die Strecken XP und X'P'
— R auf, so sind P und P' die höchsten oder tiefsten
Punkte der beiden Schleifen.

§ 4. Krümmungsmittelpunkte und Evolute

der Conchoide.

13) Wenn wir in einem zum Grundkreise C Coll¬
ie

centrischen Kreise vom Radius -&- einen Radius C J

parallel und in gleicher Richtung wie XP ziehen, so

ist PJ die Normale der Conchoide im Punkte P, und
ferner ist JP JO (Nr. 8).
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Betrachten wir zuerst einen Punkt P der äussern
Schleife (Fig. 21 a), so ist A CJO JOP, und A CJY

JPO, also A CJY CJO.
Wenn aber P ein Punkt der innern Schleife (Fig.

21b), so ist, wenn C auf der Verlängerung des Radius
CJ liegt, A CJY CJO.

Denken wir uns daher den Punkt 0 als Lichtquell
und den Ortskreis von J als reflektirende Curve, so ist
JP die nach rückwärts gehende Fortsetzung des von
diesem Kreise reflektirten Strahles OJ. Die Einhüllungskurve

der Strahlen PJ ist daher einerseits die Evolute
der Conchoide und anderseits die dem Lichtquell 0
entsprechende Reflexionsbrennlinie des Kreises J. Die Evolute

der Conchoide ist also die Brennlinie, welche durch Reflexion

der vom Pole 0 ausgehenden Strahlen an einem zum Grundkreise

concentrischen Kreise von halb so grossem Radius erzeugt wird. ')

14) Um nun das Krümmungscentrum für irgend einen
Punkt der Conchoide zu erhalten, denken wir uns die
letztere wieder als Fusspunktenkurve des Leitkreises A
(Fig. 22). Seien T und T' zwei benachbarte Punkte
dieses Kreises, OP und OP' die von 0 auf die
Tangenten an T und T' gefällten Perpendikel und J und J'
die Mitten der Strahlen OT und OT', so sind PJ und P'J'
zwei benachbarte Normalen der Conchoide, die sich im
Krümmungsmittelpunkt M des Bogens PP' schneiden.
Dies vorausgesetzt, ziehen wir TS und T'S parallel zu
PM und P'M, so ist TST' ein zu JM.I' ähnliches und
ähnlich liegendes Dreieck von doppelten Dimensionen

') Vergleiche : Emil Weyr. Ueber die Identität der Brennlinien mit
den Evoluten der Fusspunktenkurven. Zeitschrift für Mathematik
von Schlömilch. Jahrgang 1869, pag. 376.
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und 0 der Aehnlichkeitspunkt beider Dreiecke; es

liegen daher 0, M, S in einer Geraden, und M ist die
Mitte von OS.

Da C die Mitte von OA, so ist AT || CJ. Es
gehöre nun P der äussern Conchoidenschleife an, oder

es liege T auf dem in Bezug auf 0 concaven Theile
des Leitkreises, so halbirt CJ den Winkel OJM, und
somit halbirt auch AT den Winkel OTS, und analog
AT' den Winkel OT'S. Nehmen wir von S in Bezug
auf die Tangente TP den symmetrischen Punkt Sn so

erscheint die Summe OT + TS 0Sl5 wenn man 0 und
S festhält und T auf dem Leitkreise bewegt, als ein

Minimum, und daher unterscheidet sich OT'+T'S von
OT + TS nur um ein unendlich Kleines der zweiten
Ordnung. Man kann somit O und S als die Brennpunkte
einer Ellipse ansehen, die durch T und T' geht, und
alsdann sind TA und T'A Normalen dieser Ellipse, und
somit der Kreis A der Krümmungskreis derselben im
Bogen TT'. — Würde aber T auf dem in Bezug auf O

convexen Theile des Kreises A liegen, oder P der
innern Conchoidenschleife angehören, so wären 0 und S

die Brennpunkte einer durch T gehenden Hyperbel, die in
diesem Punkte den Leitkreis A zum Krümmungskreise
hätte. — Beschreiben wir daher um 0 als Brennpunkt einen

Kegelschnitt, der durch einen Punkt T des Leitkreises geht, und hier
diesen Kreis zum Krümmungskreise hat, so ist der Mittelpunkt M

des Kegelschnittes das Krümmungscentrum des jenem Punkt T

entsprechenden Conchoidenpunktes P.1) — Es ist PJ rr 7a OT und
JM Va TS, also ist der Krümmungsradius PM im Punkte P der

Conchoide gleich der halben Hauptaxe des obigen Kegelschnittes.

') Vergleiche : Emil Weyr, Construktion des Krümmungskreises
für Fusspunktenkurven, Sitzungsberichte der Wiener Akademie für
1869, zweite Abtheilung, pag. 169.
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Da die Figur OJM und der Ortskreis von J der

Figur OTS und dem Ortskreis von T ähnlich sind im
Verhältniss 1 : 2, so kann man den obigen Satz auch
wie folgt aussprachen (Fig. 12): Man beschreibe um 0 als

Brennpunkt einen Kegelschnitt, der den zum Grundkreis G con-

centrischen Kreis vom Radius—in irgend einem Punkte J oskulirt

so ist der andere Brennpunkt M dieses Kegelschnitts das Krümmungscentrum

desjenigen Punktes P der Conchoide, dessen vom Grundkreis

ausgehender Fahrstrahl XP parallel und gleichgerichtet mit dem

Radius CJ jenes Hülfskreises ist. Der Krümmungsradius PM der

Conchoide ist gleich der Hauptaxe dieses Kegelschnitts.

Da wir für irgend einen Punkt P der Conchoide die
Normale von vornherein kennen, so haben wir, um M

zu erhalten, nach dem erstem der obigen Sätze die

Richtung der Hauptaxe eines Kegelschnitts zu bestimmen,

von dem uns der eine Brennpunkt 0, ein
Peripheriepunkt T und das Krümmungscentrum A von T
gegeben ist. Aus der bekannten Construktion des

Krümmungscentrums eines Kegelschnitts (v. Nr. 23) ergibt
sich hiernach das folgende Verfahren (Fig. 23) : Man
konstruire die Conchoide als Fusspunktenkurve des

Punktes 0 in Bezug auf den Leitkreis A. Sei nun AT
irgend ein Radius des Leitkreises, so fälle man von A
ein Perpendikel A D auf den Strahl O T, und von D
wieder ein Perpendikel DE auf AT; dann geht die
Normale der Conchoide in dem zu T gehörigen Punkt
P der Conchoide durch die Mitte J von OT, und der

Strahl OE schneidet diese Normale im Krümmungscentrum M.

Der Ort des Punktes D ist der um OA als
Durchmesser beschriebene Kreis. Construirt man daher die
Conchoide mittelst des Grundkreises C (Fig. 24), so

ziehe man durch A den Strahl AT rr und gleichgerichtet
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mit XP, und fälle von D, wo der Strahl OT den Grundkreis

zum zweitenmal trifft, ein Perpendikel DE auf
AT, so schneidet der Strahl OE die Normale PT im Krümmungscentrum

M des Punktes P.

15) Für die Scheitel G und C, sowie für den Doppelpunkt

0 wird die obige Konstruktion des Krümmungscentrums

illusorisch.
Für die Scheitel nehmen wir den Satz zu Hülfe, dass

der Krümmungsradius eines Hauptscheitels einer Ellipse
oder Hyperbel von den beiden Brennpunkten 0 und S

harmonisch getheilt wird : Man lege daher durch 0
irgend eine Gerade (Fig. 25) und nehme auf derselben
zwei willkürliche Punkte U und V. Wenn nun die
Strahlen VA und UA von den Geraden UG und VG
respective in u und v, und von den Geraden UC und VC
in u' und v' geschnitten werden, so bestimmen die
Geraden uv und u'v' auf OA die Punkte S und S', so dass

die Mitte M von OS das Krümmungscentrum des Scheitels G, und die

Mitte M' von OS' dasjenige des Scheitels C ist.
Seien q und q' die Krümmungsradien der beiden

Scheitel. Die harmonische Relation

oïï=v*Gtâ + m)gibt m=k + m> worausrer

den Scheitel G der äussern Schleife :

OM «/, R g OG - OM rr % R.

Analog ^rr-^ + ^^^+i-, woraus für den

Scheitel der innern Schleife:

OM' rr 2/3 R <?' rr OC — OM' rr V, R.

Die Krümmungsradien der beiden Scheitel erhält
man auch direkt durch folgende Betrachtung (Fig. 26):
Ziehen wir durch O einen Radius Vektor OCG' der
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Conchoide der mit der Axe OCG einen unendlichkleinen

Winkel co bilde und den Grundkreis zum
zweiten Mal in A' treffe, und sei Y der Gegenpunkt von
A', so sind nach Nr. 9 G'Y und C'Y die Normalen von
G' und C, die die Axe in den Krümmungsmittelpunkten
M und M' der Scheitel G und C treffen. Nun ist CC

R«, GG' rr 3 R« und OY AA' 2 Reo, und wir
haben

GM_ GG' _ 3g _ aIsoGM_9/RGO-GG'+OY-3c + 2ct,- '5' alsot*M- /•«"•

CÖ^CC + OY^tY+Ic^ Vs, alsoCM'rrVsR-

16) Den Doppelpunkt der Conchoide erhalten wir,
wenn wir von 0 aus Tangenten an den Leitkreis legen,
indem die Schnittpunkte derselben mit dem von O auf
dieselben gefällten Perpendikel in den Punkt 0 selber

hineinfallen, und diese Tangenten an den Leitkreis sind
zugleich die Normalen der beiden sich in 0
schneidenden Zweige der Conchoide (Nr. 8), und sind auch

R
Tangenten an den um C mit dem Radius-^-beschriebenen

Kreis; der Berührungspunkt J dieses letzteren
Kreises ist die Mitte von OT.

Ziehen wir nun (Fig. 27) durch 0 einen Strahl, der
im Leitkreise eine sehr kleine Sehne T'T" bildet, so

bildet derselbe im Ortskreise von J eine Sehne J'J"
V2 T'T", und wenn wir von 0 die Perpendikel OP' und
OP" auf die Tangenten an T' und T" fällen, so sind

P'J' und P"J" die Normalen in den Punkten P' und P"
unserer Curve. Sei n der Schnittpunkt dieser Normalen,
so ist J'nJ" ein gleichschenkliges Dreieck, denn die

Winkel bei J' und J" sind doppelt so gross als die
Bern. Mittheil. 1873. Nr. 818.
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Winkel, die die Tangeten an T' und T" mit der Sehne

T'T" bilden. Wenn nun die Sekante OT'T" zur gemeinsamen

Tangente OJT an die beiden Kreise wird, so

fällt n in den Berührungspunkt J hinein, und somit ist
J das Krümmungscentrum des einen Conchoidenzweigs
im Punkte 0. Beschreibt man daher um C einen Kreis mit dem

Radius - so sind die Normalen im Doppelpunkte 0 der Con-

choide die von 0 aus an diesen Kreis gehenden Tangenten, und

die entsprechenden Krümmungscentra sind die Berührungspunkte
J dieser Tangenten. Aus dem rechtwinkligen Dreieck OCJ
erhält man für die Grösse dieser Krümmungsradien

q MA. 0,86603 R.
2

17) Auch für die Punkte B unserer Curve (Fig. 28),
die vertikal oberhalb oder unterhalb 0 liegen (OB=R),
ergeben sich einfache Werthe des Krümmungsradius.
Die Normale eines solchen Punktes B geht durch A.
Sei nun 00' rr 2« ein sehr kleiner Bogen des
Grundkreises B' der zu 0' gehörige Punkt unserer Curve,
u der Schnittpunkt von OB' mit BA, und ON rr OB,
so ist

BN «, NB' 00'rr 2 w, uN ^y-=y, also uB'=^
Wenn ferner A' im Grundkreise der Gegenpunkt von
0', so ist B'A' die Normale in B', und der Schnittpunkt
M von BA und B'A' das Krütnmungscentrum des Bo-

gens BB'. Aber AA' || 00', d. h. || uB', also
uM uB' bo uM
KFT — -nr. — -77- • ho —5/, woraus —- rr 5/„.MA AA' 2 /4 ' uA /9

Lassen wir nun B' unenülichnahe an B rücken, so
erhalten wir für den Krümmungsradius des Punktes B

BM rr V9BA rr ^ïl R — 1,2423 R.
*7
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lS) Jetzt haben wir eine klare Anschauung von der

Evolute unserer Curve.

Betrachten wir zuerst (Fig. 29) die eine Hälfte
CDOEFG der Conchoide, die einem ganzen Umlauf des

erzeugenden Punktes X des Grundkreises im recht-
läufigen Sinn entspricht. — Dem innern Scheitel C der
Conchoide als dem Krümmungsmaximum ist ein Ruck-

TJ

kehrpunkt c der Evolute zugeordnet, Cc —. Das

Krümmungscentrum d des höchsten Punktes D der
innern Schleife ist der äusserste Punkt links in der Evolute.
Im Punkte o, wo die Normale des Punktes 0 den um

T>

C mit dem Radius-~-beschriebenen Kreis berührt, wird

dieser Kreis selber von der Evolute berührt. Das Krümmungscentrum

e des äussersten Punktes links in der
Conchoide ist der tiefste Punkt der Evolute. Das Krümmungscentrum

f des tiefsten Punktes F der äussern Schleife
ist der äusserste Punkt rechts in der Evolute. Das Krüm-
mungscentrum g endlich des äussern Scheitels G ist

wiederum ein Rückkehrpunkt der Evolute, Cg =—£-¦ —

Der zweiten Hälfte GF'E'OD'C der Conchoide entspricht
eine symmetrische Hälfte gf'e'o'd'c der Evolute. —Die
genannten ausgezeichneten Punkte der Evolute, sowie
alle Zwischenpunkte können wir mittelst des

Vorhergehenden construiren.
Die beiden Punkte o und o', wo die Evolute den

um C mit dem Radius -^- beschriebenen Kreis berührt,

theilen die Evolute in zwei ungleiche Hälften, wovon
die links liegende oder gegen O convexe Hälfte odcd'o,
der innern Schleife und die gegen O concave Hälfte

o'e'f'gfeo der äussern Schleife der Conchoide zugehört.
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Die Bogenlänge der Evolute zwischen irgend zwei Punkten

ist gleich der Differenz der diesen Punkten
entsprechenden Krümmungsradien der Stammkurve. Die

obigen Werthe p„ rr V3, (¦>« rr Va fô > Cg Y ergeben
daher für die Evolutenbogen, die der halben innern
Schleife CDO, und der halben äussern Schleife OFG
der Stammkurve entsprechen,

Bogen cdo O/a^iT— i/, R.

Bogen oefg (9/6 - Va^Y) R-

Die ganze in sich zurückkehrende Evolute hat die

Bogenlänge rr U/15R,

19) Die Polargleichung der Conchoide, auf den

Punkt 0 als Pol und die Axe OCG als Anfangsrichtung
bezogen, ist

a) r R (r cos cp zp 1),

wo das obere Zeichen für die innere und das untere für
die äussere Schleife gilt. Nach der bekannten Formel

dr2Y7a / 0dr2 d2r\

erhält man hieraus für den Krümmungsradius irgend
eines Punktes der innern Schleife

hi _ (5 — 4 cos cpf;2 rDJ 0 rr -f- IX' * 9 — 6 cos cp

und für die äussere Schleife hat man cos cp mit
entgegengesetztem Zeichen zu nehmen.

Setzen wir den Radius R des Grundkreises rr 1, so

ist für den höchsten Punkt D der innern Schleife (Nr. 10)

— 3+1/33 1+V33, _„-_,r =r —'¦—, woraus cos cp rr —-'— d.h. <-/>—32°32',

und Qd =r \I2]/^ZWK= 0,52686.
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Seien x und y die auf 0 bezogenen rechtwinkligen
Coordinaten von D (v Nr. 12), so sind die auf das Centrum
C des Grundkreises bezogenen Coordinaten des

entsprechenden Punktes d der Evolute, X r= x — 1, ï
y - p, oder

X, — 0,42154 Yd rr —0,15786.

Für den äussersten Punkt links in der Conchoide
ist r rr OE r= 1/,i, woraus cos cp. — — x/4, und

o. 16/I5 =r 1,0667,

und mit derselben Bezeichnung wie vorhin sind die auf
C bezogenen Coordinaten des Evolutenpunktes e,

X rr x + (j — l.Yrry, woraus

X rr — 7m0 rr -- 0,06833 Yc — V8j/Ï5 rr -0,48412.
Für den tiefsten Punkt F der äussern Schleife ist
[/33 + 3 1/33 - 1

0r =r i— woraus cos cp -— d. h. cp — — od" 37
4 ö

Und rr y2ym±g}^K rr 1,5939,

und die auf C bezogenen Coordinaten des Evolutenpunktes

f sind Xrrx — 1, Yrry — p, woraus
Xfrr 0,2965 Yfr= —0,1663.

Nehmen wir wieder den Punkt C zum Anfangspunkte

rechtwinkliger Coordinaten so ergibt sich als

Gleichung der Evolute, oder der durch Reflexion er-

zeugten Brennlinie eines Kreises vom Radius -~-, wo

der Lichtquell O auf der x Axe in der Distanz rr — R

vom Centrum C dieses Kreises liegt (v. Salmon, higher
plane curves, pag. 116),

116 (x2 + y2)-(x - R)2 - y2 3rr 108. y2(x2 + y2 -R2)2.
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§ 5. Flächeninhalt und Bogenlänge der Kreisconchoide.

T-)) Für irgend eine Lage TP der den Leitkreis A

umgleitenden Tangente (Fig. 30) ist AX gleich und
parallel TP, und das von zwei benachbarten Radien
Vektoren AX und AX' des Gruudkreises begrenzte Flächen-
element dieses letztem ist bis auf Unendlichkleines der
zweiten Ordnung gleich dem von den entsprechenden
Tangenten TP undT'P'desLeitkreises begrenzten Flächen-
element der Fusspunktenkurve. Daher ist auch

Fläche TLCP rr Kreissegment AKX.

Während TP den halben Leitkruis CTG umgleitet,
überfährt AX die ganze Fläche des Gruudkreises. Sei

daher ' '2F die von der halben Fusspunktenkurve CPOFG
und der Axe CG begrenzte Fläche, so hat man

Va F — Va Leitkreisfläche rr Grund kreis fläche.
In unserm Falle, wo der Leitkreis gleich dem Grund-
kreise, ist also

F rr 3*R2, d. h.:
Die Gesammtfläche der Kreisconchoide, d. h. die Summe der innern

und der äussern Schleife, ist das Dreifache von der Fläche des

Grundkreises.

Wenn TP durch den Doppelpunkt O geht | Fig. 31),

so nimmt AX die Lage AV an, wo Bogen AU rr UVrr

VO rr Yi una die obige Betrachtung gibt :

V2 Schleife OC + OTLC — Kreissegment AUV.
Aber

\Segm. AUV rr A AUV + Segm. AU 4- Segm. UV,
/Fläche OTLCrrAOCT—Segm.CTrrAAUV-Sgm.VO,
woraus durch Subtraction
Va Schleife OC rr Segm. AU + Segm. UV + Segm. VO,
d. h. : Die Fläche der innern Schleife ist gleich der Differenz
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zwischen der Fläche des Grundkreises und der Fläche des

demselben eingeschriebenen regelmässigen Sechsecks. Daher:

[ Innere Schleife rr *R2 — Ç-R2,

f Aeussere Schleife=r2,7R2 + ?^R2.

Der von der innern Schleife und dem Grundkreise umgrenzte

Mond hat gleichen Flächeninhalt wie das dem Grundkreise

eingeschriebene regelmässige Sechseck.

Aeuss. Schleife - inn. Schleife — ?iR2 r=3[/Y. R2, d. h. :

Die beiden krummlinigen Dreiecke (Fig. 32), welche der Leitkreis
CG von der mondförmigen Fläche zwischen beiden Schleifen

ausschneidet, haben zusammen gleichen Flächeninhalt wie das dem

Leitkreis umschriebene gleichseitige Dreieck.

21) Gemäss der Formel F rr 3.^R2 ist die Gesammtfläche

der Conchoide gleich der Fläche einer Ellipse,
deren halbe Axen 3R und R, d. h. gleich der Axe OG

der Conchoide und dem dazu senkrechten Radius Vektor
OB derselben sind.

Auch in Bezug auf die Bogenlängen steht diese
Ellipse in einer merkwürdigen Beziehung zur
Conchoide. In der That, wenn wir 0 zum Pol und OG zur
Anfangsrichtung von Polarcoordinaten nehmen, so ist
die Gleichung unserer Conchoide

r rr R (2cos<p — 1).

Von cp rr o bis Y5 w0 (f iu rechtläufigem Sinn von der
ô

Anfangsrichtung OC aus gezählt wird, durchläuft der
Endpunkt P des Radius Vektors, OP =r r, die halbe

71

innere Schleife CDU. Von <p ^-bis ti nehmen wir den

absoluten Werth von r, zählen aber cp, in rechtläufigein
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Sinne von der Richtung OC aus, so durchläuft dann P
die halbe äussere Schleife OFG (Fig. 33). Für das

Bogenelement ds erhalten wir nun
d s2 rr r2 dtp2 + dr2 =r R2 j (2cos cp — l)2 + 4sinr/>21 dtp2 rr

rr R2 (5 — 4 cos cp) dcp2.

Der vom innern Scheitel C aus gezählte Conchoiden-
bogen CP ist also

ß p 4cosy • dcp,

oder, wenn wir cpfe v setzen,

a) Conchoidenbogen CPrr6R^ }/l — 8/g (cos v)2 • dv.
•>0

Bezeichnet aber v die excentrische Anomalie eines
Punktes E der obigen Ellipse, so sind die auf 0
bezogenen rechtwinkligen Coordinaten dieses Punktes

X rr 3R COS V y rr R sin V,

woraus für das Bogenelement da der Ellipse
do2 rr dx2 + dy2 rr R2 (9 sin v2 + cos v2) dv2.

Somit haben wir

Ellipt. Bogen GE 3R Ç |/l —
»'o

Wir erhalten also

Conchoidenbogen CP rr 2 • Elliptische Bogen GE,
d. h.: Ein Bogen CP der Conchoide ist doppelt so gross als ein

Bogen GE der obigen Ellipse, wenn der Polarwinkel des Punktes P

doppelt so gross ist als die excentrische Anomalie des Punktes E.

Wenn P auf der innern Schleife CDO liegt, so ist
cp rr COP, und wenn P auf der äussern Schleife OFG,
so ist cp rr COP. Construiren wir die Conchoide als

Fusspunktencurve von 0 in Bezug auf den Leitkreis
CTG, so wird in beiden Fällen y rr CAT, also
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v -!£- CGT und somit, wenn K in dem um die

grosse Axe der Ellipse als Durchmesser beschriebenen
Kreise dem Punkte E entspricht, o ist OK|| GT.

Wenn P den halben Umfang COG der Conchoide

beschreibt, so durchläuft OK den Kreisquadranten; es

ist daher der Bogen COG doppelt so gross als der
Ellipsenquadrant GB, und somit die Gesammtlänge der
Conchoide gleich dem Umfang der Ellipse.

Construiren wir also eine Ellipse, deren halbe Âxen die Sym-

metrieaxe OG und der hiezu senkrechte Radius Vektor OB der

Conchoide sind, so hat die Conchoide mit dieser Ellipse gleichen Flächeninhalt

und gleichen Umfang.

Da Bogen COG 2 Bogen GB, so hat man auch

i Conchoidenbogen CP rr 2 • Ellipsenbogen GE,
X Conchoidenbogen GP 2 • Ellipsenbogen BE.

22) Bekanntlich hat Steiner Bogenlänge und Flächeninhalt

der Fusspunktencurven mit Bogenlänge u. Flächeninhalt

von Rollcurven in Verbindung gebracht1) : Der
Kreis A (Fig. 34) rolle auf einer festen Geraden g, und
0 sei ein mit diesem Kreise starr verbundener Punkt,
so betrachten wir die von 0 beschriebene Rolllinie.
Sei T der irgend einer Lage von 0 entsprechende
Berührungspunkt des Kreises A mit der Basis g, und T'
ein unendlich nahe liegender Punkt des Kreises. Wenn
T' mit g zur Berührung kommt, so nehme 0 die Lage
0' an ; dann hat sich T um den frühern Abstand des

Punktes T' von g vertikal gehoben. Der Strahl OT
nimmt also mit Vernachlässigung eines Unendlichkleinen

') Steiner: Von dem Krümmungsschwerpunkt ebener Curven.
Grelles Journal für Mathematik. Band 21, pag. 33 und 36.

Bern. Mittheil. 1873. Nr. 819.
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der zweiten Ordnung die Lage O'T an ; somit ist OTO'
ein gleichschenkliges Dreieck, und OO'J_ OT, d. h.:
Die Normale der von 0 beschriebenen Rolllinie geht in jedem
Momente durch den entsprechenden Berührungspunkt T des rollenden

Kreises mit der Basis.

Sei g' die Tangente von T', so geht mit derselben
Annäherung die Figur OTg' in O'Tg über, also ist der
Winkel von OP mit g' gleich dem Winkel von O'T mit
g, und daher A O'TO gleich dem Winkel t zwischen
den Tangenten g und g', also

OO' rr g - OT.
Fällen wir aber von 0 die Perpendikel OP und OP'

auf die Tangenten g und g', so liegen P und P' auf dem

um OT als Durchmesser beschriebenen Kreis; wenn
also J die Mitte von OT, und Winkel PJP' rr co, so ist

PP' rr o PJ.
Aber co —2 t, und PJ rr V2OT ; daher

a) PP' rr OO'.
Da ferner A JPO JOP, und PP' und OO' respektive

zu PJ und zu OJ senkrecht stehen, so sind die gleich
langen Strecken PP' und OO' gegen OP gleich geneigt,
und somit ist O'P' || OP. Also Fläche POP' rr V2POO'P' ;

oder wenn P und Q die Endpunkte der von O und 0'
auf die Basis g gefällten Senkrechten sind, so haben
wir mit Weglassung von Unendlichkleinem der zweiten
Ordnung

b) Fläche POP' V2POO'Q.
Halten wir also einmal den Kreis A und den Punkt

0 fest, lassen die Tangente g den Kreis umgleiten, und
nehmen den Ort der Fusspunkte P der von 0 auf diese
variable Tangente gefällten Perpendikel ; oder halten
wir zweitens die Tangente g fest, lassen den Kreis A,
mit dem der Punkt 0 in starrer Verbindung gedacht
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wird, auf der Geraden g rollen, und betrachten die

von 0 beschriebene Rollcurve, so ist jedem Punkte P
der Fusspunktencurve ein Punkt 0 der Rolllinie
zugeordnet, und umgekehrt (Fig. 35), und zwar so, dass

wenn T im ersten Fall den Berührungspunkt des festen
Kreises mit der vertikalen Tangente, und im zweiten
Fall den Berührungspunkt des rollenden Kreises mit
der festen Tangente bezeichnet, A OAT rr T AO ist.° ' p p p
Dies vorausgesetzt, ist das von irgend zwei benachbarten Punkten

PP' begrenzte Bogenelement der Fusspunktencurve gleich dem von

den entsprechenden Punkten 0 und 0 begrenzten Bogenelement der

Rollcurve. Und das von den Radien Vektoren OP, OP' begrenzte

Fläehenelement der Fusspunktencurve ist halb so gross, als das

Flächenelement der Rollcurve, das von den znr Basis g senkrechten

Ordinaten der Punkte 0 0^, begrenzt ist.

Wenn AOrr2R, so ist die Fusspunktencurve
unsere Conchoide. Dem Scheitel C der innern Schleife
entspricht der tiefste Punkt Oc der Rolllinie. Für den

Doppelpunkt 0 der Fusspunktenlinie geht die Tangente
g durch den Punkt 0; diesem Punkt entspricht also
der Durchschnittspunkt 00 der Rollcurve mit der Basis,
und hier steht die Tangente der Rolllinie senkrecht zur
Basis. Dem Scheitel G der äussern Schleife entspricht
der höchste Punkt 0 der Rollcurve.

Lassen wir also den Leitkreis A auf einer festen Geraden rollen,
und den mit ersterm starr verbundenen Punkt 0, dessen Distanz vom

Centrum des Kreises gleich dem Durchmesser desselben ist, eine

cykloidische Linie beschreiben, so ist irgend ein Bogen GDOP unserer
Kreisconchoide gleich dem entsprechenden Bogen 0 0 0 dieser cy-

kloidischen Linie, und die vom Radius Vektor OP überfahrene Fläche

OCDP der Conchoide halb so gross als die von der Ordinate 0 P des

entsprechenden Punktes 0 jener Rolllinie überfahrene Fläche

10 OOP.
c c o p
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§ 6. Elementare Ableitung der oben benutzten Construction
der Krümmungsradien einer Ellipse.

23) Seien 0 und S die Brennpunkte, T irgend ein

Peripheriepunkt einer Ellipse, und x und xp die Winkel,
welche die Brennstrahlen TS und TO dieses Punktes
mit der grossen Axe bilden (Fig. 36). Die Normale TA
halbirt den Winkel STO, und wenn wir mit u die beiden
gleichgrossen Winkel STA und OTA bezeichnen, so
erhalten wir für den Winkel cp, den die Normale mit
der Hauptaxe bildet, cp rr % — u i/> + u, woraus

<P 7j ix + VO-

Sei nun T' ein benachbarter Punkt der Ellipse und
a ß die Winkel TST' TOT', so ergibt sich für den
Winkel cp', den die Normale T'A mit der Hauptaxe
macht, cp' 1/2 \ (x + «) 4- {4> + ß) j und somit für
den Winkel TAT' rr 7, den die Normalen. TA und T'A
mit einander bilden,

y 7* O + 0),
Sei endlich q der Krümmungsradius TA, und s der

g
Bogen TT', so ist s rr cy, also — Va (a + ß)-

Denken wir uns aber von T Perpendikel auf die
Strahlen T'S und T'O gefällt, so bilden diese Perpendikel,

s unendlich klein vorausgesetzt, mit s ebenfalls
Winkel rr u, und wenn r, r' die Brennstrahlen ST, OT'
darstellen so erhalten wir für diese Perpendikel die
Werthe r« r= s cos u, r1(3 rr scosu. Die Relation
g

— 1/2 {a + ß) gibt somit

|-Y(| + -|)cosu,
d.h.: Wenn man in den Brennpunkten S und 0 Senkrechte zu den

Brennstrahlen ST nnd OT zieht, welche Senkrechten die Normale des
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Punktes T in N und Nt treffen, so wird der Krümmungsradius TA

von den Punkten N und Nt harmonisch getheilt.

Aber, wenn e die Excentricität, so dass OS rr 2ae

rr e (r + rj), so sind die Abschnitte, in welche die
Normale TA die Brenndistanz theilt (Fig. 37), SE er und
OE rr er^ In der That, es ist einerseits SE + OE rr
e (r-i-rj), und anderseits, da TE den Winkel STO hal-

SE rbirt, 7=r— rr —. Sei ferner n die von der Hauptaxe be-' OE r, y

grenzte Strecke TE der Normalen, so geben die Dreiecke

STE und OTE
e2r2 — r2 — 2rn cos u + n2,

e2Y rr,! — 2rj n cos u 4- n2.

Es sind demnach r und rt die beiden Wurzeln der
Gleichung fl — e2) r2 —¦ 2rn cos u 4- n2 rr 0, und somit
ist (1 — e2)rrj rr n2 (1 — e2) (r 4- i\) 2n cos u.

Führen wir diese Werthe in den obigen Ausdruck
2rr< n

0 rr 7 -! ein, so erhalten wir p ——5.s (r + rj cos u cos u1*

Wenn daher die Halbirungsgerade des Winkels STO dio Hauptaxe

in E schneidet, so ziehe man durch E einen Strahl ED senkrecht

zn ET, und durch D, wo dieser Strahl den Brennstrahl OT trifft,
eine Gerade DA senkrecht zu OT ; dann schneidet diese letztere die

Normale TE im Krümmungscentrum A des Punktes T.

Für die Scheitel der Hauptaxe versagt diese
Construction. Die Perpendikel aber, die man in den
Brennpunkten 0 und S auf den Brennstrahlen eines solchen
Scheitels errichtet, treffen die Normale dieses Scheitels
in den Punkten 0 und S selber. In diesem Falle gibt
also der frühere Satz : Der Krümmungsradius eines

Hauptscheitels einer Ellipse wird von den Brennpunkten 0 und S

harmonisch getheilt.
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Resumé.

Zum Schlüsse wollen wir die wesentlichsten
Resultate der vorangehenden Untersuchung zusammenfassen

:

Von einem festen Punkte 0 auf der Peripherie eines Kreises

werden Strahlen nach einem variabeln Punkte X dieses Kreises

gezogen, und auf diesen Strahlen je von X aus die Strecken XP und XP,

gleich dem Radius des Grundkreises nach beiden Seiten aufgetragen.

— Die Ortscurve der Punkte P und Px ist auch die Fusspunktencurve

des Punktes 0 in Bezug auf einen mit dem obigen gleich grossen Kreis,

der den andern Endpunkt des durch 0 gehenden Durchmessers jenes

znm Centrum hat (Nr. 5). — Die nämliche Curve entsteht beim

Rollen eines Kreises vom Radius — auf einem mit dem rollenden
u

gleich grossen Kreise; ein mit dem Rollkreise fest verbundener

Punkt im Abstand R vom Centrum dieses beschreibt die Curve

(Nro. 7).
Diese Curve kann in verschiedener Weise zur Dreitheilung

eines Winkels verwerthet werden (Nr. 3 und 6).
Die Normalen der beiden Punkte P und Pt der Curve, die irgend

einem gegebenen Punkte X des Grundkreises entsprechen, gehen

durch den andern Endpunkt T des durch X gehenden Durchmessers

des Grundkreises (Nr. 9).
Ein Kreis, den wir um irgend einen Punkt Z des Grundkreises

mit einem Radius rr '/j ZO schlagen, berührt sowohl die äussere

als die innere Schleife der Curve. Die Berührungspunkte P und P(

dieses Kreises sind die Schnittpunkte desselben mit einem nenen

Kreise, den wir durch 0 und Z orthogonal zum Grundkreise legeu. Die

Radien-Vektoren OP und 0Pt dieser Berührungspunkte bilden gleiche

Winkel mit dem Radius-Vektor des Centrums Z des berührenden

Kreises, und zwischen den Polarwinkeln cp und cpx jener Punkte

besteht die Relation tg ~ 3 tg ^ (Nr. 10).
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Die Evolute unserer Curve ist die durch Reflexion entstehende

Brennlinie eines mit dem Grundkreise concentrischen Kreises von

halb so grossem Radius, wenn die Strahlen vom Punkte 0 ausgehen

(Nr. 13). — Diese Evolute wird auch von dem einen Brennpunkt
eines Kegelschnitts beschrieben, der den obigen Hülfskreis in einem

variabeln Punkte oskulirt und den festen Punkt 0 zum anderen

Brennpunkt hat (Nr. 14).
Die Gesammtfläche der Curve, d. h. die Summe der beiden

Schleifen, ist das Dreifachevon der Fläche des Grundkreises (Nr. 20).
— Die Curve hat mit einer Ellipse, deren halbe Axen die Symmetrie-

axe und der hiezu senkrechte Radius-Vektor der Curve sind,
gleichen Flächeninhalt und gleichen Umfang (Nr. 21). — Wenn ein

mit dem Grundkreise gleich grosser Kreis auf einer festen Geraden

rollt, und ein mit diesem festverbnndener Punkt, in einer Distanz

vom Centrum gleich dem Kreisdurchmesser, eine verkürzte Cykloide

beschreibt, so hat die obige Curve mit dieser Rollcurve gleiche

Bogenlänge und halb so grossen Flächeninhalt (Nr. 22).

Prof. »r. H. Dor.
Notiz über drei Schädel

aus den Schweiz Pfahlbauten

Greng bei Murten, Lüscherz und Mörigen am Bielersee.

Vorgetragen in der Sitzung vom 28. Februar 1873.

Die Seltenheit der menschlichen Ueberreste in den

schweizerischen, wie ausländischen Pfahlbauten hat
bekanntlich die Archäologen zur Ansicht gebracht,
welche durch die zahlreichen Funde von Aschenurnen
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