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Knöspchen ein Laubbl. ; alle folgenden waren zur
Niederblattknospe geschlossen. — In der Enge bei Bern finden
sich 2 ungefähr gleich alte Buchen neben einander,
die eine mit glatter Rinde, die andere mit rissiger, wie
bei der Eiche.

Dr. Cherbuliez.

Geschichtliche Mitteilungen
aus dem Gebiete der mechanischen

Wärmetheorie.
(Vorgetragen den 4. und den 18. November 1871.)

4. Es ist allgemein bekannt, dass die Anschauungsweise,

nach welcher die Wärme in Bewegungen, sei es

der kleinsten Theile der Körper, sei es der Moleküle des

sogenannten Aethers besteht, nichts weniger als neu ist:
sie wurde zu allen Zeiten, wo man sich überhaupt mit
Hypothesen zur Erklärung der physikalischen Erscheinungen

abgab, vertreten; namentlich bei den Physikern,
welche in der zweiten Hälfte des 4 7. und der ersten Hälfte
des 48. Jahrhunderts sich zu den kartesianischen Ideen
bekannten, findet man dieselbe mehr oder weniger
systematisch ausgebildet; erst in der zweiten Hälfte des 18.

Jahrhunderts wurde sie, je länger je mehr, durch die
Annahme eines Wärmestoffs verdrängt, wenn sie gleich
noch immer vereinzelte Anhänger zählte.

Nach dem glänzenden Aufschwung, welchen in
unserer Zeit die mechanische Wärmetheorie durch die

Arbeiten englischer und deutscher Physiker, namentlich
durch die genialen Leistungen Clausius, genommen, ist
es nicht ohne Interesse auf die ersten Anfänge derselben

zurückzugehen, und zu untersuchen, in welcher Weise
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einige Gelehrten des 18. Jahrhunderts diesen Gegenstand
physikalisch-mathematisch auffassten und behandelten.

Die folgenden Mittheilungen sind der Betrachtung
der Arbeiten dreier Männer gewidmet, welche nicht nur
eine bestimmte dynamische Hypothese über das Wesen
der Wärme und der luftförmigen Körper aufstellten, sondern

auch die Folgerungen derselben auf mathematischem
Wege, mehr oder weniger vollständig ableiteten und den
Grund zu einer dynamischen Theorie der Gaze legten.
Diese Männer sind die Basler Jakob Hermann, Daniel
Bernoulli und Euler.

2) Hermann, Jakob (geb. 4678-gest. 4733 Basel),
ein Schüler Jakob Bernoulli's L, hat uns seine Ansichten
über die Wärme in seinem berühmten, 4746 zu Amsterdam

herausgegebenen Werke, Phoronomia, sive de Viribus
et Motibus corporum solidorum et fluidorum libri duo.
Amstel. 4716. 4°, hinterlassen. Das 24. Kapitel des 2.
Buches dieses Werkes (Seite 376), betitelt „Ueber die
innere Bewegung der Fluida" (De motu intestino fluidorum),
enthält folgende Definition : «Unter diesem Namen (innere
«Bewegung) wird hier nicht die innere Bewegung der
»Moleküle jeder Flüssigkeit im natürlichen Zustande, son-
»dern diejenige Bewegung verstanden, welche in den

»flüssigen Körpern durch äussere und zufällige Ursachen

»angeregt zu werden pflegt, und auf welche die Wärme
»hauptsächlich zurückzuführen ist (quo calor praesertim
»est referendus), die ohne Zweifel durch eine lebhaftere

»Bewegung der Theilchen in dem warmen Körper in Folge
»äusserer Ursachen erzeugt wird. So sehr unregelmässig
»auch eine innere Bewegung dieser Art sein mag, so
»kann nichts destoweniger eine genügend genaue physi-
»kalische Regel zur Bestimmung ihres mittleren Masses

»angegeben werden.«
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3. Was Hermann unter der inneren Bewegung der
Moleküle jeder Flüssigkeit im natürlichen Zustande versteht,
scheint nicht ganz klar zu sein, lässt sich jedoch mit
Hülfe einer anderen Stelle vielleicht begreifen, die uns

zugleich über den Geist, in welchem der Basler seine

mathematisch-physikalischen Untersuchungen führte, eine
interessante Auskunft giebt. Diese Stelle befindet sich im
4. Kapitel des gleichen Buches; (lib. IL, Nr. 239 u. 240)
und lautet wie folgt: »Indem wir uns vornehmen, über
„die Kräfte der Flüssigkeiten zu reden, haben wir nicht
„die Meinung, als ob wir die Figuren der Theilchen oder

„der Elemente definiren und, so zu sagen, mit dem Fin-
„ger zeigen könnten, und daher werde ich nicht zu

„fleissig diese Figuren der Elemente der Körper
untersuchen weil dieselben zu sehr verschieden zu sein

„pflegen, um bequem unter mathematische Begriffe
gebracht werden zu können; denn nichts hindert, glaube
„ich, dass die Theilchen einer und derselben Flüssigkeit,
„in Beziehung auf ihre Grösse sowohl als auf ihre Ge-

„stalt, von einander in unendlichen Weisen verschieden

„sein können. Die Untersuchung der Figuren, unter
„welchen die Theilchen jeder Flüssigkeit begrenzt sein

„müssen, werde ich daher den Physikern überlassen ;

„mir genügt es zu wissen, dass diese Gestalten der
Theilchen einer jeden Flüssigkeit, wie sie auch beschaffen

„sein mögen, der Beweglichkeit derselben nichts entgegensetzen,

weil sie eben, nach Voraussetzung, Theilchen

„einer Flüssigkeit, daher äusserst beweglich sind."

„Ebenso gehört es nicht in unsere Aufgabe, ängstlich

zu untersuchen, ob die Meinung derjenigen wahr

„sei, welche allen Flüssigkeiten eine gewisse Bewegung,
„die sie innere nennen, zuschreiben, wodurch die Theil-

„chen der Flüssigkeit, in verschiedenen unregelmässi-
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„-gen Bewegungen, hin und her geworfen zu werden

„gedacht werden zur Unterscheidung von der
fortschreitenden Bewegung der Flüssigkeit, wobei ihre ganze
„Masse von einem Orte in einen andern übergeführt
„wird. Zum Beispiel, die Bewegung, welche, bei dem

„Fliessen eines Stromes, das Wasser im Strombette nach

„den unteren Theilen führt, ist eine fortschreitende ; die

„Bewegung hingegen des warmen Wassers, das heisst

„die innere Bewegung seiner Moleküle, wird innere

Belegung genannt; das Beispiel des-warmen Was-
„sers führe ich an, weil es sicher ist, dass
„seine Theilchen durch eine innere Bewegung
„dieser Art erschüttert sind, wenngleich dieselbe

„in die Augen nicht fällt und also die ganze Masse des

„Wassers zu ruhen scheint. Ob nun alle Flüssigkeiten
„durch eine solche innere Bewegung afficirt sind, will
„ich ebenso den Philosophen zu erforschen überlassen,
„denn es ist nicht meine Absicht, mich in irgend einer
„Weise in philosophischen Kontroversen zu verwickeln."

Diese innere Bewegung der Theilchen jeder Flüssigkeit,

deren Vorhandensein oder Nichtvorhandensein
Hermann den Philosophen zu untersuchen anheimstellt, ist
also, denken wir, diejenige die er von der von ihm als
Wärme erkannten, in der zuerst angeführten Stelle,
unterscheidet. Wir sehen zugleich von welchem nüchternen,
wahrhaft modernen Standpunkte aus, der Basler
Mathematiker seine wissenschaftliche Aufgabe betrachtet.

4) Nachdem nun die Wärme als Bewegung definirt
worden ist, geht Hermann zu folgendem Satz über :

Die Wärme in homogenen Körpern (in cor-
poribus similis texturae) ist in zusammengesetztem

Verhältniss der Dichtigkeit des warmen
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Körpers und des Quadrates der Bewegung
(Agitatio) seiner Theilchen.

Geben wir noch den Beweis dieses Satzes in möglichst

treuer Uebersetzung.
„Die Bewegung der Theilchen ist die mittlere

Geschwindigkeit der einzelnen Geschwindigkeiten, womit
„die Theilchen des warmen Körpers sich bewegen. Es

„sei V diese mittlere Geschwindigkeit, und D die
Dichtigkeit des Körpers. Da nun die Wärme in einer
lebhafteren Bewegung der Theilchen besteht, wird sie den

„Stössen (impressiones) der Theilchen des warmen Kör-
„pers auf irgend einen entgegengehaltenen, Wärme
aufnehmenden Körper proportional sein; diese Stösse aber

„sind dem Produkte des Quadrats der Geschwindigkeiten
„in die Densitäten, d. h. DV2 proportional. Also ist die

„Wärme ebenfalls DV2 proportional."
Zur Bestimmung dieser Geschwindigkeit schlägt

Hermann einen Versuch vor, der ungefähr in Folgendem
besteht: man konstruire ein Heberbarometer, dessen
kürzerer Schenkel die Gestalt eines Cylinders habe, mit
einem im Verhältniss zu demjenigen des 2. Schenkels
bedeutenden Durchmesser ; ist das Barometer mit Quecksilber

gefüllt, so beobachte man, bei kalter Witterung,
die Höhe der Quecksilbersäule, verschliesse dann den
offenen Schenkel, so dass die in demselben abgeschlossene

Luft mit der äusseren durchaus keine Verbindung
mehr habe. Es werde nun diese Luft erwärmt, sie wird
sich ausdehnen, und, in Folge dessen, die Quecksilbersäule

im Barometer zunehmen. — Nach Hermann wird
der Quecksilberdruck dem Luftdruck auf die Quecksilberoberfläche

im kürzeren Barometerschenkel gleich, und
dieser letztere, nach seinem Satze, dem Produkte V2D
proportional sein. Kennt man daher die Durchmesser



c und b des längeren und des kürzeren Schenkels, die
ursprüngliche Höhe a der Quecksilbersäule, die Steigung
x derselben im längeren Schenkel und die ursprüngliche
Höhe e der Luftsäule vor der Erwärmung im kürzeren
Schenkel, so lässt sich eine Zahl berechnen, mit welcher
V proportional sein müsste. — Die Formel, welche
Hermann findet, führen wir hier nicht an; denn die ganze
Sache ist an und für sich werthlos und hat nur geschichtliches

Interesse. —
5) Clausius, in seinen berühmten Abhandlungen

über die Wärme, (2. Abth., Abhandlung XIV., S. 231)
führt eine Stelle von Lesage an, in welchem dieser
Gelehrte das Werk Hermann's unter denjenigen aufzählt,
worin dynamische Meinungen über das Wesen der Luft
ausgesprochen werden. Lesage führt aber dabei nicht das

soeben besprochene Kapitel der Phoronomia über die
innere Bewegung der Flüssigkeiten, sondern ein ganz
anderes, das 6e an, welches den Titel führt: Ueber die
elastische Kraft der Luft. In diesem Kapitel, in
welchem Hermann vorzüglich die Wirkung der Luftpumpe
auf mathematischem Wege untersucht, berührt derselbe

allerdings die Hypothesen über die Beschaffenheit der
Luft; er bespricht namentlich diejenige von Parent; in
derselben wäre die elastische Kraft der Luft durch die

Wirkung der aetherischen Materie verursacht, welche mit

grosser Geschwindigkeit durch alle Zwischenräume
zwischen den Luftmolekülen hindurchströmt. — Hermann

(S. 482) sagt: er habe sich vor mehreren Jahren eine
ähnliche Hypothesis erdacht, dieselbe hingegen aufgegeben,
weil sie auf den Schluss führen würde, dass nicht nur
die Gaze, sondern auch alle flüssigen Körper elastische
Kraft besitzen. — Seine Betrachtungen über dieses Thema
schliesst Herrmann mit folgender Bemerkung (Seite 483):
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„Was auch die physische Ursache der Elastici-
tät der Luft sein möge, so genügt es für
unseren Zweck, dass dieselbe in der Luft
vorhanden sei etc." Indem folgenden Kapitel VIL, über
die elastische Kraft der Luft, mit den Densi-
täten derselben verglich en, treffen wir (Seite 189,

Nr. 339) eine Bemerkung, aus der einige Einsicht in die
Anschauungsweise Hermann's gewonnen werden kann :-
„Da die Elasticität der Luft, sagt er, in denjenigen
Wirkungen besteht, welche in den Luftmolekülen das

Bestreben sich von einander zu entfernen erzeugen, so
„ist es klar, dass der Druck, den irgend eine Ebene, wo-
,.durch die Ausdehnung der Luft verhindert wird, von den

„an derselben anliegenden Lufttheilchen erleidet, gleich
„ist der Gesammtkraft der einzelnen drückenden
Molekülen." —

So viel über Hermann's Leistungen auf dem Gebiete
der mechanischen Wärmetheorie; freilich sind sie von
geringem Umfang; zeigen uns jedoch, dass dieser Gelehrte

ganz klare Begriffe über das Wesen der Wärme hatte

und dass er, namentlich, mit voller Sicherheit ein mechanisches

Maass derselben erfasst hatte.

6) E u 1 e r ' s Ansichten über das Wesen der Wärme,
sowie einen Versuch einer mechanischen Theorie der Gaze»

resp. der athmosphärischen Luft, finden wir schon in einer
seiner allerersten Abhandlungen, in der dritten nämlich,
welche er in den Memoiren der Petersburger Akademie
veröffentlichte. Diese Abhandlung trägt die Ueberschrift:

Versuch einer Erklärung der Erscheinungen
der Luft;*) sie wurde der Akademie im September 1727

mitgetheilt und ist daher von Euler wahrscheinlich am

*) Comment, academiae scient, imper, petropol. Bd. II. Pag. 347.
Tentamen explications plaenomenorunt aeris.

Bern. Mittheil. 1871. Nr. 782.
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Schlüsse seines 20. Lebensjahres (geboren in Basel 1707,

gest. in Petersburg 1783) verfasst worden ; diese Thatsache

ist erwähnenswerth, weil sie uns einen Beweis geben wird
von der Beständigkeit, mit welcher Euler, während seines

ganzen Lebens, die physikalischen Theorien Kartesianischer

Ahstammung vertheidigte.
Nach Euler besteht die Luft aus einer Menge unendlich

kleiner Kügelchen, in welchen die sogenannte dünne
Materie (materia subtilis) in einer Drehungsbewegung
begriffen ist; die aus dieser Drehungsbewegung entstehende

Centrifugalkraft, hat das Bestreben, die Kügelchen
auszudehnen, und dehnt sie auch wenn die einer solchen

Ausdehnung entgegenwirkenden Hindernisse beseitigt werden

wirklich aus. Ausserdem denkt sich Euler jedes
Kügelchen mit einem dünnen wässerigen Häutchen
(Pellicula) überzogen, das sich aus den in der Luft vorhandenen

Dämpfen bildet.
„Auf diese Art, sagt Euler (Seite 349), besteht die

„Luft aus einer unendlichen Anzahl sehr kleiner Blasen,
„deren äussere Kruste von Wasser gebildet wird, und, je
„nach dem Stande der Athmosphäre, mehr oder weniger
„dick ist; innerhalb dieser Kruste rotirt die subtile Ma-
„terie mit einer gewissen Geschwindigkeit, welche äusserndem

von einer anderen noch feineren Materie, die alle

„Poren durchdringt, Beschleunigungen erhält, damit die
„Bewegung nicht schliesslich verbraucht werde und
verschwinde. — Es ist in der That sicher, dass die Luft
„die einmal aufgenommene Wärme nach und nach ver-
„liert ; da aber die Luft durch die Wärme verdünnt wird,
„so folgt daraus, dass die subtile Materie durch die Wärme
„in einen heftigeren Bewegungszustand versetzt wird;
„nimmt also die Wärme ab, so ist es ein Zeichen, dass

„die Bewegung der Materie verzögert wird."
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Diese Stelle zeigt uns, dass, für Euler, zwischen dem

Bewegungszustand der Materie in den Luftkügelchen und
der denselben innewohnenden Wärme ein inniger
Zusammenhang vorhanden ist, ja, dass Wärme und Bewegung
identisch sind.

Aus der soeben angedeuteten Beschaffenheit der Luft,
folgt ihre in's Unendliche gehende Ausdehnbarkeit, wenn
keine Widerstände vorhanden sind ; ein solcher aber
entsteht aus der Gravität. Andererseits wird man die Luft nicht
über eine gewisse Grenze hinaus zusammendrücken kön->

nen; denn bei der Ausdehnung bilden sich im Inneren
der Kügelchen leere Räume; werden nun dieselben durch
Zusammendrücken schliesslich auf Null reducirt, so hat
man die Grenze erreicht, über welche hinaus keine weitere

Volumenverminderung möglich ist. — Die Geschwindigkeit

der rotirenden Theilchen der subtilen Materie ist,
nach Euler, für alle Theilchen dieselbe.

7) Im Zustande der höchsten Zusammendrückung
besteht also jedes Luftkügelchen aus einem Kerne von subtiler

Materie mit dem Badius h, und aus einer
kugelförmigen Schale von Wasser; ist hj der äussere Badius
dieser Schale, so ist h^h ihre Dicke ; im Ausdehnungszustand

findet man in jedem dieser Luftkügelchen:

1. einen inneren leeren Raum vom Badius c;

2. eine Kugelschale, die durch die subtile Materie

gebildet wird ; ihr innerer Radius ist c, während
der äussere mit b bezeichnet werden mag;

3. eine äussere Kugelschale, welche aus Wasser

besteht, ihr innerer Radius ist b, während der

äussere Badius mit a bezeichnet wird.
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Wenn nun unter

m das specifische Gewicht des Wassers;
n „ „ der subtilen Materie;
i „ „ „ der Luft, d. h. das Verhältniss
des ganzen Gewichts des Kügelchens zum Gewicht des
gleichen Wasservolumens

v die Geschwindigkeit der Theilchen der subtilen Materie,
g die Besehleunigung der Schwerkraft,
verstanden werden, so erhält Euler für den Ausdruck
der Centrifugalkraft auf die äussere Oberfläche der Kugelschale

von subtiler Materie:

^•[b>-c>]
g

Diese Centrifugalkraft ist nun die Kraft, welche die
Ausdehnung des Theilchens bewirkt, d. h. sie ist die
elastische Kraft der Luft. —

Durch eine Beihe von sinnreichen Transformationen
wird dieser Ausdruck auf die Form gebracht,

2^nv2a2
]/[m — i + pi — pm + pn]2

;|/[m — pm + pn

— |/[m — pm + pn — i]2>

k • h
wobei p -r-

Auf die Flächeneinheit vertheilt, erhält man also für
die elastische Kraft E :

p
nv2a2
Ijl» i/rm-i + pi-pm + pn-i

» » L m — pm + pn J
3

m—pm+pn — 11»

m—pm + pn
Diese Kraft ist demnach proportional dem Quadrate

der Geschwindigkeit der rottenden Theilchen, ein Resul-
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tat, welches Clausius z. B. in den mathematischen
Zusätzen zu seiner Abhandlung XIV. (Bd. IL, Seite 251) 430

Jahre später ebenfalls findet.
Euler betrachtet nun den Fall, wo der Wasserdampf-

antheil null ist, wo daher

m o h ht und p 4 ist,
a b

die Formel geht dann über in :

E
nv2

2g {/r-l/p^T! oder:

3

E ^ jfc _ yçr=7?\

Ist nun die Luft beinahe im Zustande der grössten
Kondensation, d. h. ist beinahe i n, so wird

V D
E -W— beinahe, d. h. in einer schon bedeutend

2g

komprimirten Luft wird die elastische Kraft nicht mehr
bedeutend geändert werden können ; (freilich könnte dabei
durch Zunahme von v ein anderes Ergebniss
herauskommen).

Ist hingegen i gegen n sehr klein, d. h. ist die Luft
vom Zustand der Maximalkondensation bedeutend ent-

g

fernt, so lässt sich ,/rn Hg wie folgt schreiben :

1 2 H

J/[n-i]2 n 3—Tn .i + [ J n i2 +
und bei Vernachlässigung der Glieder, welche die höheren
Potenzen von i enthalten:

3

_ v2l/T 12 i _ v»
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Das heisst, für den vorausgesetzten Luftzustand ist
die elastische Kraft der Dichtigkeit der Luft proportional,
was nichts anders als das von Boyle und von Mariotte
entdeckte, und nach dem letzteren (4679) genannte Gesetz

ist : eben weil dieses Gesetz für die Luft im gewöhnlichen
Zustande stattfindet, schliesst daraus Euler, dass unsere
Luft von dem Zustande höchster Kondensation weit
entfernt sei.

Will man das Glied noch berücksichtigen, welches
die 2. Potenz von i enthält, so erhält man:

v2l/"n~ r-2 i,4 i2
ü —äz— -g TT + ~ä~*

" —ï7~f 00-er
2g L3 n'/3 9 n4/3\

E
v2 ^6ni -f i2

V »fr
Euler sucht dann durch Benutzung der Versuche

Boyle's über die Zunahme der elastischen Kraft der Luft
mit der Kompression, aus dieser Gleichung das Verhältniss

von -r- zu berechnen. —
i

8) Im Weiteren berechnet Euler die Höhe f der
Quecksilbersäule, die eine Luftblase im gegebenen
Zustande tragen kann : wenn v das specifisehe Gewicht des

Quecksilbers ist, so ist der Druck der Säule f auf die
halbe Oberfläche des Luftkügelchens vom Badius a,

P 2*a2»' f.

Die elastische Kraft auf der gleichen Fläche ist:

E= *nva=s=i j f'[m-i-rpi-pm-rpnj2-l/[m-pm-rpn-i]2
gl/(m-pm+pnY(
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und also ergibt sich die Gleichung ;

3 3

nv2 r-"/(m-i + pi-pm + pn)' — */[m - pm + pn - i]2

yim - pm + pn]2 1

Ist i klein gegen n, d. h. betrachtet man die Luft
in einem von demjenigen der Maximalkondensation
bedeutend abweichenden Zustande, so findet man durch
Entwicklung des ersten Wurzelausdrucks im Zähler
annähernd:

f n.v'.p.i
3*[m -pm + pn]g

Ist die Luft frei von Wasserdämpfen, so ist p 1,

m o und

f .,-VI
3-".g

Ist Wasserdampf vorhanden, so ist p < 4 und zwar
um so mehr von 1 verschieden, als der Wasserdampfgehalt

bedeutender ist; man setze daher p 4 — q,
so ist

f=^- 1- qm
3v.g qm + n [4 — q]

Der Bruch 3—^ _ nimmt mit q zugleich
qm + n [1 — qj no

zu und ab; es wird daher, sagt Euler, die Quecksilbersäule,

resp. die Barometersäule steigen, wenn q abnimmt,
und fallen, wenn q, d. h. wenn der Feuchtigkeitsgehalt
der Luft zunimmt.

„Und das ist, denke ich, fährt er (Seite 366) fort, der

„Grund, -warum das Steigen des Quecksilbers im Baro,

„meter meistens einen reinen Himmel, (resp. schön Wet-
,,ter), das Fallen desselben hingegen Regen und eine un-
„günstige Witterung anzeigt."
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i.v*
Bei trockener Luft hat man gefunden : f -^-

Daraus ergiebt sich v2 3f. Z- oder 0= l/ f jg. }/T

Da —, g und f Beobachtungsgrössen sind, so lässt

sich aus dieser Formel die Geschwindigkeit v berechnen,
dieses führt auch Euler aus, und findet:

v 4518', 5 Rhein,

unseres Wissens die erste nummerische Bestimmung dieser

Art.

Setzt man in diese Formel

f=o-\760 g 9-,8l 4- 40470

so ergibt sich

v 484- 4542' Rhein.

In der schon angeführten Abhandlung hat
Clausius, im Jahre 1857, für die Geschwindigkeit der
fortschreitenden Bewegung der Moleküle von Sauerstoff
und Stickstoff gefunden (Seite 256):

für Stickstoff 492 mct-*

für Sauerstoff 461 •*«"•

Das arithmetische Mittel beider Zahlen, wenn man
dieselben proportional der chemischen Zusammensetzuag
der athmosphärischen Luft nach dem Gewichte [N=0,77
0 0,23] berücksichtigt, ergibt : 484-, 87=1545' Rheinl.
eine Zahl, welche mit der vorhin aus der Euler'schen
Formel berechneten beinahe übereinstimmt.

Nimmt man einfach das arithmetische Mittel beider
Zahlen, so ergibt sich 476,5m oder 4518',2 Rhein., eine
Zahl, welche mit der Euler'schen wiederum fast ganz
genau zusammenfällt. —

Seine Arbeit schliesst Euler mit den Worten: „Hier
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„schliesse ich diese Abhandlung, da genaue Versuche

„fehlen, woraus die noch wünschbaren Bestimmungen ge-
„macht werden könnten und welche diese Theorie voll-
Ständiger bestätigten. Das Verhältniss von n :i ist noch

„unsicher. Ich werde zur Erforschung desselben durch
„Veranstaltung geeigneter, genauer Versuche mit Ffeiss

„arbeiten. Hätte man nämlich die Grösse n, so Hessen

„sich die von uns gefundenen Formeln auf die Praxis

„leicht anwenden, und mit Hülfe anderer geeigneter
Instrumente zu jeder Zeit die Menge des in der Luft
enthaltenen Wassers angeben."

Diese Versuche scheint Euler nicht ausgeführt zu
haben, was man leicht begreift, wenn man an die kolossale

Arbeit denkt, welcher er sich von nun an auf dem

Gebiete der reinen Mathematik, der Mechanik und der

physischen Astronomie hingab.

9) Auf die Euler'scheArbeit folgt in
chronologischer Reihenfolge das klassische Werk Daniel
Bernoulli's L, die berühmte Hydrodynamik.*)

Daniel Bernoulli I. (1700. Groningen — 1782. Basel)
hatte seine Hydrodynamik von 1730 bis 1734 ausgearbeitet

;**) der Druck rückte hingegen so langsam vorwärts,
dass das Werk erst 1738 in den Buchhandel kam. —

In der 40. Section dieses Buches***), welche von

*) Danielis Bernoulli etc. hydrodynamica sive de viribus et
motibus fluidorum commentarli. Argentorati. 1738. 4°.

**} Hierüber vide unter anderen : Wolfs Biographien zur
Kulturgeschichte der Schweiz. Bd. III., Seite 168 u. ff. —

***) Hydrodynamica. Sectio decima, pag. 200. De affectionibus
atque motibus fluidorum elasticorum, prœcipue autem aëris. — Im
Band ,107 (Seite 490—494) von Poggendorf's Annalen findet man eine
Oebersetzung der 6 ersten Paragraphen dieser Section der
Hydrodynamica.

Bern. Mittheil. 1871. Nr. 783.
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den Eigenschaften und den Bewegungen der Gaze, namentlich

der Luft, handelt, finden wir die sehr deutlich
ausgesprochene Ansicht Daniel Bernoulli's über das Wesen
dieser Körper. Man denke sich, sagt er, (Seite 200, § 2)
einen verticalen, von einem mit dem Gewichte P

belasteten Kolben geschlossenen Cylinder; es befinden sich

im Innern desselben sehr kleine, mit einer sehr grossen
Geschwindigkeit hin und her gehende Körperchen; diese

Körperchen, indem sie gegen den Kolben stossen, und
denselben durch ihre fortwährend wiederholten Stesse

unterstützen, bilden ein elastisches Fluidum, das sich, bei

Verminderung oder Entfernung des Gewichts P, ausdehnen,
und das, bei Vermehrung desselben, zusammengedrückt
wird : dieses Fluidum gravitirt gegen den Boden des

Cylinders, nicht anders, als wenn es keine elastische Kraft
hätte: denn, mögen die Körperchen ruhen oder in

Bewegung begriffen sein, ihre Schwere wird nicht geändert,
so dass der Boden sowohl das Gewicht, als die Elastici-
tät des Fluidums zu tragen hat. Ein solches Fluidum,
da es mit den Haupteigenschaften der elastischen Fluida
im Einklang steht, denken wir uns an der Stelle der Luft
(subsituemus aeri) und werden auf diese Weise schon

bekannte Eigenschaften derselben erklären, sowie andere
noch nicht genügend erforschte Erscheinungen beleuchten.

Es bezeichnet nun Bernoulli mit P den athmosphä-
rischen Druck, mit 1 die diesem Druck entsprechende
Höhe des Luftcylinders ; die Luft werde so comprimirt,
dass die Höhe der nunmehrigen Luftsäule s sei ; es sei
endlich n die Anzahl der Theilchen, deren* Geschwindigkeit,

vor und nach der Kondensation, als gleich
angenommen wird. Nach der Kondensation wird der Druck
gegen den Kolben zugenommen haben, weil mehr Theilchen

als vorher gegen denselben stossen, und weil, die
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Stösse der einzelnen Theilchen häufiger geworden sind :

\
es sei endlich -3— das Verhältniss der mittleren Entfer-

]/m

nung der Mittelpunkte der als Kugeln gedachten Körperchen

zum Durchmesser derselben ; Bernoulli leitet auf
höchst einfachem Wege für die elastische Kraft n der
Luft nach der Kondensation, die Formel ab:

s — j/ms*

Es bemerkt aber Bernoulli weiter, dass „die Elastici-
„tät der Luft nicht allein durch Kondensation vermehrt
,werde, sondern auch durch Zunahme der Wärme, und

„weil es feststeht, dass die Wärme überall durch Zu-
„nahme der innern Bewegung der Theilchen vermehrt
„wird, so folgt daraus, dass, wenn die Elasticität der Luft
„bei unverändertem Volumen zunimmt, dieses ein Zeichen

„einer intensiveren Bewegung der Lufttheilchen ist, was

„mit unserer Hypothese übereinstimmt;" Bernoulli weist
nach, dass der Druck, für den er den obigen Ausdruck
gefunden hat, ausserdem noch dem Quadrate der
Geschwindigkeit v der Lufttheilchen proportional sein muss,

so dass schliesslich:

s — j/m.s2

10) Die Erscheinungen zeigen, dass man die natürliche
Luft beinahe auf ein unendlich kleines Volumen
zusammendrücken kann; man darf daher, sagt Bernoulli, die
Grösse m annähernd gleich null setzen, und somit für



natürliche, sowie für dünnere als die natürliche Luft setzen :

P.v2
n

s
Ob diese letztere Formel für komprimirte Luft noch

gültig sei, halte er(D. Bernoulli) für nicht genügend untersucht;

Versuche mit der hier zu verlangenden Genauigkeit

seien noch nicht angestellt worden ; ein einziger
wäre zur Bestimmung von m nöthig; er sollte aber sehr

genau und mit stark komprimirter Luft ausgeführt werden;

den Grad der Wärme in der komprimirten Luft
müsse man aber dabei sorgfältig unveränderlich
unterhalten.

Diese Formel nun, bei konstant bleibendem v, drückt
einfach das Mariott'sche Gesetz aus ; sie schliesst auch
durch die Proportionalität des Drucks n mit dem
Quadrate v2 das Gay-Lussac'sche Gesetz in sich ; in der That,'

man denke sich Luft unter dem Volumen s, dem Druck P
und dem Wärmezustand, den die Geschwindigkeit v cha-

Pv2
rakterisirt; es ist also n

s

Es werde, ohne Volumenveränderung, v um J\
vermehrt; die elastische Kraft nimmt um du zu und man hat

Ati=z —\lAv + dv2\

Es werde nun das gleiche Luftquantum bei der durch

v definirten Temperatur auf das Volumen —

zusammengedrückt; die elastische Kraft wird:
Pv2

71, ¦=. .V
S

Bei unverändertem Volumen nehme nun v wieder
um dv zu, so ist die Zunahme der elastischen Kraft

P
é*i — —v. 2z/v + z*v2l
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s

Woraus folgt — _ J_ __ JL
à*\ v s

Oder die Zunahmen der Elasticitäten, welche gleiche
Wärme-Zunahmen erzeugen, sind den Volumina umgekehrt,

also auch den Dichtigkeiten direkt proportional. —
Dieses ist aber eine direkte Folge des Gay-Lussac'schen
Gesetzes. *) Das gleiche Besultat hätte sich auch aus der
schon behandelten Euler'schen Formel ergeben. Der
Unterschied ist aber, dass, während Euler diesen Umstand
nicht beachtet hatte, Daniel Bernoulli den Satz aufstellte
und sich nach experimenteller Bestätigung desselben umsah

; ausserdem schlug er vor, den Wärmegrad der Luft
(Seite 204, § 8) der Elasticität desselben proportional
zu setzen, was soviel hiess, als die Temperatur durch
die Grösse [Konstante .V v2] zu messen.

„Dieses Theorem, sagt B. (§7, Seite 203), durch
welches angezeigt wird, dass in jeder Luft von irgend

„welcher Densität, aber von gleichem Wärmegrade, die

„Elasticitäten sich wie die Dichtigkeiten verhalten, und,
„dass selbst die Zunahmen der Elasticitäten, die aus
gleichen Wärmezunahmen entstehen, den Dichtigkeiten
proportional sind, ist durch Amontons auf dem Wege der

*) Es sei nämlich ein Volumen V von Luft unter dem Druck P
und bei der Temperatur t; es ist also P.V Const. [1 -f at] der
Ausdruck des Mariotte-Gay-Lussac'schen Gesetzes ; nehmen bei
konstantem Volumen die Temperatur um At nnd der Druck um AP zu,
so ist: AP.V — Const. a.At;

Es sei unter dem Druck P,, das Luftvolumen V,, bei der
Temperatur t ; es ist wieder P(V, Const. [1 + at], es nehme wieder
t um At, also Pi um 4P, zu; man hat: ^P^V, Const. a.At; und
folglich :

ÄP.V AP V,__ _ \ oder -^ _ wie oben.
f
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„Erfahrung gelehrt und von ihm in den Mémoires de

„l'Acad. de Paris pour l'année 1702 berichtet worden."

11) Ohne uns bei den Betrachtungen aufzuhalten,
welche D. Bernoulli über den Zustand der Athmosphäre
und die Aenderungen derselben anstellte, wollen wir noch
eines Versuches der Ableitung einer FoMnel zur Bestimmung

des athmosphärischen Drucks in einer gegebenen
Höhe erwähnen (Hydrodyn. Sectio 10 — Seite 213 u. ff.)
der, wenngleich verfehlt, immerhin von der genialen
Auffassung D. Bernoulli's zeugt, und als erste Anwendung
der dynamischen Theorie der Gaze auf die barometrische

Höhenmessung von geschichtlichem Interesse ist.

Schon Mariotte *) hatte eine Begel gesucht zur
Bestimmung der Höhen durch Barometerbeobachtungen
obgleich er aber das richtige Princip, welches zu Grunde
zu legen war, kannte, liess er sich zu einer ganz falschen

Berechnüngsregel verleiten, so dass der Engländer Halley
(1656-1724) es war, welcher 1686**) die erste richtige
Theorie der hypsometrischen Barometerformel zuerst
lieferte. Die Formel, zu welcher er gelangt, ist:

900 30
x log -r- engl. Fuss.

0,0144765

wobei x die zu berechnende Höhe und h die Barometerhöhe

am betreffenden Ort, in engl. Zoll ausgedrückt, sind.
Daniel Bernoulli nahm 4 Barometer-Beobachtungen an
Orten von bekannten Höhen über dem Meeresspiegel, und
berechnete aus denselben die jedesmalige Elasticität E

*) Fischer. Geschichte der Physik. Göttingen 1802. Bd. IL,
Seite 589 u. ff.

**) Philosoph. Transactions für 1686, Discourse of
the Rule of the decrease of the heigt of the Mercury in the
Barometer, according as places are elevated above the surface of the
Earth, etc.
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der Luft, diejenige am Meeresspiegel 1 gesetzt; dann,
1

für die Annahme x Const, log. -p- [welche also der

Halley'schen' Theorie entspricht], suchte er für diese 4

Beobachtungen" E aus der Formel zu ermitteln.

Nach der 4. Beobachtung war in einer Höhe von
1070' Pariser Fuss über dem Meeresspiegel die

Barometersäule von28",4'"4 [Stand am Meeresspiegel] um 16"'-|

gefallen; nimmt man die Elasticität der Luft am Meeresspiegel

als 4 an, so ist dann für diesen Fall, nach dem

Mariotte'schen Gesetze, E 0,9520; diese Werthe für
x und E in die vorige Formel eingesetzt, geben:

4070
Const. 50494

1

log 4 — log 0,9520

Diese Formel wird nun x 50194 log th- [1]

wendet man sie auf die übrigen 3 Beobachtungen an, so

ergibt sich Folgendes: fi
Höh« über

den

Meeresspiegel.

Höhe dei
Barometers am Barometrische

Depression.

Werthe roi B

ids den

Beobachtungen.

Werth rei K

ans der Formel:

or8 -^.
Different.

Pariser Fuss

1542'

13158'.

65'

28", 2."'

27",10"

28".

24/'4

10",5"'

E 0,9364

E 0,6257

E 0,9970

E=0,9317.
E 0,5469

E 0,9973

+0,0047

+ 0,0788

-0,0003.

Biese Abweichungen zwischen den Ergebnissen der
Beobachtungen und denjenigen der Becbnung veranlassen

D. Bernoulli die Formel [4], d. h. das Gesetz der
Proportionalität der Elasticität der Luft in verschiedenen
Höhen mit den Dichtigkeiten zu verwerfen, und anzu-



- 342 —

nehmen, dass, in verschiedenen Höhen der mittlere Wärmezustand

auch verschieden sei. —
„Das wirkliche Gesetz, sagt er Seite 216, welches die

„Natur befolgt, zu finden, ist, glaube ich, kaum zn hof-
„fen: denn wer wird anders als mit Hülfe von schwachen

„Muthmassungen zu dem Gesetze der mittleren
Geschwindigkeiten der Theilchen der Luft gelangen; ich bin je-
„doch vielleicht auf eine gewisse Hypothesis gefallen,
„welche den Erscheinungen nicht übel entspricht; zuerst
„werde ich die Gleichung (eigentlich die Came) für jedes
„beliebige Gesetz der Geschwindigkeiten geben, und dann

„zu dieser speziellen Hypothesis übergehen.«

Es seien:
a die mittlere Geschwindigkeit der Lufttheilchen ; 1" ' f am
b „ „ Dichtigkeit der Luft; J Meeres-

c „ Elasticität der Luft; spiegc1'

v „ mittlere Geschwindigkeit der Lufttheilchen; j in der
• i r.. i ¦ • • i r <<

f Höhe X
z „ mittlere Dichtigkeit der Luft; aber dem

y „ Elasticität der Luft; \ g£3;
Nach dem weiter oben angeführten Satze hat man:

y __
yfr.z

"c~ a^.b

Und man gelangt bald zu der Differential-Gleichung:

y n.«. v*

wobei n ejne Konstante ist.

Kennt man v als Funktion von x, so ergibt die
Integration y als Funktion von x, also auch x als Funktion
von y; nimmt man v a= Const ss a, so kommt:

C b :' 'i ¦ .'¦ ¦'. ¦ ¦

log X° y n.c
d. h. man fällt auf das Halley'sche Gesetz wieder, welches
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D. Bernoulli verwirft. Er versucht nun für v die
Beziehung v2 a2 + mx; wobei m eine Konstante
bezeichnet.

Es ist dann

a'b a2+mx
-log

dv a2b dx c—*- —f-r.—- r woraus log- —
y ne [a'' + mx] e y mne " a*

Bernoulli setzt nun, wegen der Willkürlilchkeit von
a2b

m und n:
rane

1 so dass schliesslich:

c a< + mx

d. h. die Elasticitäten verhalten sich umgekehrt wie die
Quadrate der Geschwindigkeiten der Lufttheilchen. Den
erwähnten Beobachtungen zu befriedigen, muss man

m
22000 nehmen; es ist dann:

X _c

22000
22000 + x

und z

"b"
22000

L22000 + TÏ
Die Höhe x wäre demnach ausgedrückt durch die

Formel :

x 22000.

Die Formel -^- auf die 4 vorigen Beobachtungen
o

angewendet, gibt :

Höhen über

itm leere. — ans den Beohaehtnngen — neh der Formel
+ i

Diffère»«.

1070'

1.542'
43158'

65'

0,9520
0,9364

0,6257

0,9970

0,9536

0,9345

0,6257

0,99705

— 0,0016

+ 0,0019
0.0000

— 0,00005

Bern. Mittheil. 1871. Nr. 784.
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Diese Formel genügte also, wie man sieht, besser
als die vorige, den angegebenen Beobachtungen ; mit
derselben betrachtete übrigens D. Bernoulli die Frage durchaus

nicht als erledigt; sagt er ja (Seite 217): „unterdessen
„betrachte ich selbst diese Sache nicht anders als wie

„eine precäre Hypothese, und die Bechnung habe ich

„aus keiner andern Ursache vorausgeschickt, als um einen

„Grund anzugeben, wie es geschehen kann, dass die

„verticalen Höhen den Logarithmen der barometrischen
„Höhen nicht entsprechen, wie es der Fall sein müsste,

„wenn die Wärme durch die ganze Athmosphäre gleich—

„massig wäre." D. Bernoulli hatte dabei die Haupteinwendung

gegen das Gesetz v2 al + mx nicht übersehen,
die nämlich, dass, nach demselben, die Wärme mit der
Höhe über der Oberfläche des Meeres zunehmen müsse,
während alle Erfahrungen das Gegentheil zeigen. Er
meint, da er bloss von der mittleren Wärme in der freien
Athmosphäre rede, so könne wohl für dieselbe das

erwähnte Gesetz wahr sein, während aus anderen Ursachen
die reelle Wärme (calor realis) in den Bergen nicht
zunehme.

Aus dieser Auseinandersetzung der Bernoulli'schen
Anschauungsweise über die Wärme und die Beschaffenheit

der Gaze sieht man, dass er in den Besultaten eigentlich

nicht weiter als Euler gegangen war: seine Hypothese
hat aber vor der Euler'schen den Vorzug, weit allgemeiner

und einfacher zu sein, sowie seine Ableitung der
Formel für die elastische Kraft der Luft viel natürlicher
ist. Im Ganzen vertritt Bernoulli mehr den nüchternen

Standpunkt des eigentlichen Physikers, (abgesehen von
der Barometerformel) der sich der Mathematik als eines
Hülfsmittels bedient, während Euler eher der Mathematiker
ist, welcher in seinen physikalischen Betrachtungen ein
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Thema zu seinen mathematischen Ableitungen erblickt,
und daher, auf dem Gebiete der physikalischen
Hypothesen, weniger bedenklich ist. —

12) Zum Schluss nun gehen wir zur Betrachtung einer
der letzten Abhandlungen Euler's über; sie befindet sich
in den Memoiren der Petersburger Académie für 1779*)
und ist eigentlich eine Bearbeitung der Abhandlung von
1727. — In dieser Arbeit bezieht sich Euler auf die vor
50 Jahren veröffentlichte Theorie, deren Mängel er der
damals lückenhaften Theorie der Flüssigkeiten zuschreibt;
die Grundideen hält er indessen fest, ohne sie desshalb
als in Uebereinstimmung mit der Natur zu halten;
es kann jedoch geschehen, sagt er, dass eine gewisse

Hypothese zur Erklärung mehrerer Naturerscheinungen
»ebenso gut genügt, als wenn uns die wahre Ursache

»derselben bekannt wäre; auf diese Art, zum Beispiel
»pflegen fast alle Bewegungen der Himmelskörper mi
»dem glücklichsten Erfolge aus der Hypothese der all-

»gemeinen Anziehung bestimmt zu werden, obgleich
»diese Hypothese selbst aus der Physik gänz-
»lich verworfen werden sollte.« Diese letzten
Worte zeigen uns auch, wie sehr Euler bis zu seinem
Lebensende Cartesianer geblieben oder Wenigstens, wie
wenig er Newtonianer geworden war.

Die Luft besteht also wieder, in dieser neuen Arbeit
Euler's, aus kleinen Kügelchen, in welchen 3 Theile zu
unterscheiden sind: 1. ein innerer Baum mit Gewichtslosem

Aether gefüllt; 2. eine aus dem eigentlichen,
in heftiger Drehungs-Bewegung begriffenen Luftstoff

*) Acta Academies scientiarium imper. Petrop. Bd. III.. Para
prior. Petrop. 1783, 4°. Conjectura circa natnram aeris pro expli-
candis phœnomenis in athmosphœra observatis. (Seite 162—187).



- 316

bestehende Kugelschale, um welche herum 3. eine durch
den in der Luft vorhandenen Wasserdampf gebildete
dünne kugelschale von Wasser liegt.

Die durch die drehende Bewegung der Luftstoffmoleküle

erzeugte Centrifugalkraft dehnt die Kügelchen aus
und darin liegt die Ursache der Elasticität der Luft. —
Unter den Gründen zur Annahme einer solchen drehenden

Bewegung führt Euler folgendes Argument an :

»Ausserdem, sagt er, da man schon zur Genüge die

»Ueberzeugung hat, dass die Wärme in einer gewissen
»Bewegung des Aethers besteht, so muss dieser Luftstoff
»in den Kügelchen davon (d. h. in Folge der Bewegung des

»im inneren Kerne befindlichen Aethers) schon eine gewisse
»Bewegung erhalten, welche, in einem so engen Räume

»eingeschlossen, nicht anders als in Form einer wirbeln-
»den Bewegung fortgesetzt werden kann ; dieses ist um
»so wahrscheinlicher, als, bei zunehmender Wärme und
»daher auch vermehrter wirbelnder Bewegung, die Elas-
»ticität der Luft zunimmt; woher es klar ist, dass die
»drehende Bewegung in den Luftkügelchen
»mit der Ursache der Wärme auf das Engste
»zusammenhängt.«

Die Ableitung des durch die Centrifugalkraft
hervorgebrachten Drucks findet in anderer Weise, als bei der
4. Abhandlung, statt, und führt unter der Annahme, dass

der Luftstoff gleiche Dichtigkeit wie Wasser [alsol] hat,
für den Druck in der Entfernung x vom Mittelpunkt des

Luftkügelchens, auf den Ausdruck :

c2'i p =s — log x + Const.

wobei c die allen Theilchen des Luftstoffes gemeinsame
Geschwindigkeit, g die Beschleunigung der Schwerkraft
und p die Höhe einer Wassersäule bezeichnen, deren



— 347 —

Gewicht dem Druck an der betreffenden Stelle gleich

wäre; (p ist also die Höhe des Waöserbarometers an

der betreffenden Stelle); ist t der innere, s der äussere

Radius der Kugelschale von Luftstoff, so muss an der
inneren Oberfläche derselben, oder für x t, der Druck

c2
null sein, woraus C — log t; und folglich an der

äussern Oberfläche, oder für x s, hat man :

c2 s
p — log —•H

g
8 t

Dieser Ausdruck lässt sich leicht auf die Form bringen:
cJ 1— la

p g— log -. -1

r dg ° 1 — q
wobei X den Bruchtheil der Masse des ganzen Luft-
kügelchens, den die Kugelschale von Wasser bildet' oder
den hygrometrischen Bruch bezeichnet, und q die mittlere
Dichtigkeit der Luft (nicht des Luftstoffs) in Beziehung
auf Wasser, also bei gewöhnlicher Luft ungefähr ^ ist.

Wegen der Kleinheit von q kann man den Log. in eine
Reihe entwickeln, und erhält mit genügender Genauigkeit;

43. Diese Formel zeigt zunächst, dass, unter gleichen
Umständen, p, bei zunehmendem hygrometrischen Bruch,
abnimmt; beschränkt man sich auf das erste Glied in der
Klammer, so wird sie

[A] p £ [1 - X] q,

worin der Ausdruck des Mariotte'schen und des Gay-
Lussac'schen Gesetzes enthalten ist; aus derselben hat

man

-KrA"[l-ijq
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Letzteren Ausdruck*) wendet Euler sofort auf die

Bestimmung von c, für den höchsten und den geringsten
in der freien Luft beobachteten Wärmegrad, an ; diese
beiden Wärmegrade sind am Delisle'schen Thermemeter**)
mit den Zahlen 100° und 200° bezeichnet ; [diese Temperaturen

wären ungefähr gleich -f- 33° Celsius und — 34°

Celsius].
Für die erste Temperatur findet Euler c 1790 Rh. F.

wobei X o p 34' und q -^ angenommen werden.

Für die zweite Temperatur findet Euler c 1430 Rh. Fuss,

wobei X o p=31'q ^jj angenommen werden.

Es wäre also ein Leichtes, sagt Euler, für die
verschiedenen Grade dieses Thermometers die entsprechenden

Geschwindigkeiten, und überhaupt die irgend einem
Wärmezustand der Luft entsprechende Geschwindigkeit
zu berechnen ; »diese Geschwindigkeit, fährt er fort, soll
»nicht nur als bloss für die Luft geltend betrachtet wer-
»den, deren kleinste Theile wirklich mit einer so grossen
»Geschwindigkeit bewegt werden müssen, sondern auch
»sie scheint ebenfalls fast in allen Körpern stattzufinden.
»Alle Naturforscher sind auch in dem Punkte einig, dass

»die Ursache der Wärme in einer gewissen sehr schnellen

»Bewegung der kleinsten Theilchen besteht. Diese Mei-

»nung ist also nicht nur mit unserer Theorie sehr über-
»einstimmend, sondern auch vermögen wir die Geschwin-

»digkeit selbst, die irgend einem Grade von Wärme ent-
»spricht, anzugeben. Obgleich diese Geschwindigkeit

*) Dieser Ausdruck ist für i. o mit demjenigen der ersten
Abhandlung Euler's [Seite 304] identisch, denD die in dieser letzteren
vorkommende Grösse f, die Höhe der Quecksilbersäule, ist gleich

—, und was darin i war, ist hier q.

**) Ueber das Delisle'sche Thermometer, vide die vortreffliche
Schrift von Dr. F. Burkhardt : Die wichtigsten Thermometer

des XVIII. Jahrhunderts. Basel. 1871. 4.
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»ungeheuer erscheint, muss man jedoch bedenken, dass

»in der Natur noch unvergleichlich grössere Geschwindig-
»keiten gegeben sind; eine solche ist z. B. die Geschwin-

»digkeit der Lichtstrahlen; da nun in denselben die
»Ursache aller Wärme zu suchen ist, so ist es nicht
»merkwürdig, dass daraus ein so grosser Grad von
»Geschwindigkeit erzeugt werden könne.«

Im Weiteren löst Euler die Gleichung
c2 4 — q X

P H ,og T^T
nach, den verschiedenen in derselben vorkommenden

c
Grössen, X, q, und ?r— auf, wobei wir nur hervorheben

og
c2

wollen, dass er g— den Wärme-Grad nennt und somit,'
dë

wie D. Bernoulli, die mechanische Definition der Temperatur

festsetzt. Ein anderer Abschnitt ist einer Untersuchung
über die Zusammendrückung der Luft und die
Abweichungen vom Mariott'schen Gesetze gewidmet ; wir treten
auf dieselbe nicht ein, da sie für unsern Zweck ohne

Interesse ist, und gehen zum letzten Abschnitt der
Abhandlung über; welcher die Ueberschrift trägt : De varia-
tione status aeris per universam Aihmosphaeram.

44. In diesem Abschnitt sucht Euler eine Beziehung
zwischen dem Zustand der Athmosphäre in einer Höhe z

über der Erdoberfläche und demselben an der Erdoberfläche

abzuleiten.
Es seien nun :

dit Geschwindigkeit

der Drebungsbewegiuig ii
dea Luftkügelehet,

Cl

die Höhe des die Dichtigkeit der der Hygrometriiehe

Wuserbuometers, Loft, Brach,

auf der Erdoberfläche :

Pi qi *i
in der Höhe z über der Erdoberfläche

P q *
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Die Formel [A] (Seite 317) giebt:

c2
p [1 — X] q. g^

Es ist ferner d p — q d z, also hat man :

do-- 3S-P d zaP— c^[4— X]az'
dieselbe Differentialgleichung, die schon Bernoulli gefunden;

und endlich:

log p=%Îf%-'
Würde man X und c als Funktionen von z haben,

so ergäbe sich das Integra,!.
Nimmt man X Xj und c q Constante, so

findet man :

z [1-Xl]3^logEl
Die Geschwindigkeit wird aber kaum eine konstante

sein dürfen, da alle Beobachtungen eine Abnahme der
Temperatur mit zunehmender Höhe über der Erdoberfläche

nachweisen ; Euler versucht daher das Gesetz

c 2
"2 — *

—, so dass f die Höhe wäre, in welcher die
1 +7

Temperatur um die Hälfte ihres Betrages an der
Erdoberfläche abgenommen hätte ; bleibt X, unveränderlich,
so hat man nach ausgeführter Integration ;

lo 0 + rr][T^fc m" p
Wäre f bekannt, so könnte man durch eine einfache

Barometerbeobachtung in der Höhe z, wenn ausserdem

pt Xj und Ci an der Erdoberfläche beobachtet worden sind,
die Altitude z aus dieser Formel berechnen. — Da man
für jeden Grad des Thermometers c berechnen kann, so
lässt sich auch z ermitteln, ohne dass man f gerade
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kennen muss. In der That aus der hypothetischen Formel

c/ „ ¦ „ z c;
I +

findet man f

und dieser Werth in [B] eingesetzt gibt:

rei z - 2-[1~^ca-c'a ine EllLJ Z

-tc'-rc,2]3g l0§
p

Hat man also an der Erdoberfläche und in der Höhe
z, px und p durch Barometer- Cj und c aus
Thermometerbeobachtungen ermittelt, so wird man, wenn noch ).t

bekannt ist, aus der Formel [C] die Altitude z berechnen
können.

Euler hat nicht versucht seine Formel auf bestimmte
Fälle anzuwenden; da es nicht ganz ohne Interesse sein

mag, dieselbe mit den gegenwärtig bestehenden zu

vergleichen, ersetzen wir c2 und c(2 durch ihre Werthe,

nach der Formel c —— wobei also X o angenom-
q

men wird; ausserdem ist zu berücksichtigen, dass in der

Formel [C] der log — ein hyperbolischer ist und die
H

Barometerhöhen sich auf das Wasserbarometer beziehen;
mit Berücksichtigung aller dieser Umstände findet man ;

ohne Mühe :

1 '

q0 2 + a [t + t(] ' a h
wobei :

u der Ausdehnungscoefficient für atmosphärische Luft,

h0 der Druck einer Atmosphäre 0,760,

—, das Verhältniss der Dichtigkeiten des Quecksilbers

und der Luft für den Druck h0 und bei der Temperatur

0" C,
Bern. Mittheil. 1871. 785.
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tt die Lufttemperatur an der unteren Station; nach Celsius,

t „ „ „ „ „ oberen „ „ „
h, Quecksilber-Barometerstand an der unteren Station,
h „ „ „ „ oberen „
Für h o,""760 ^ 10470. [nach Eisenlohr] erhält

qo
man [für Metermaass] :

M » 366«, '+^1^^« 0,003666.
45. Wenden wir nun diese Formel auf einige

Beispiele an, welche wir aus dem bekannten Werke Ramond's
über die Laplace'sche Barometerformel entnehmen:

4. Höhe des Chimboraço:
Barometerstand. Lufttemperatur.

Par. L.

I£KmL h^337'79 t.=25o,3R. 3lo,625C.

Alf dem Chimboraço h =167,2 t — 1«,6R. — 2,<»C.

Hohe des Chimboraço:
m

nach der Euler'schen Formel 5879,7
Dl

„ „ La place'sehen „ 5876,65
ohne Berücksichtigung der Schwere und der
geographischen Breite,

2. Höhe des »Pic du midi" in den Pyrenäen
über Tarbes :

Barometerstand. Lufttemperatur.
Par. L.

h hrbw hx 327,66 tx 20°,3 R. 250,375 C.

Inf Jem Berge h 241,05 t 8°,3 R. - 10°,375 C.

Höhe des „Pic du midi":
m

nach der Euler'schen Formel 2600,97
m

„ „ Laplace'schen „ 2614,27
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3. Höhe über Paris, welche Gay-Lussac bei

seiner bekannten Luftfahrt [1804] erreichte;
Barometerstand. Lufttemperatur.

In Pam ht — 622^4 tx 30,8 R. 38»,5 C.
mm

Im Aeroitat h 328,80 t - 9.5 R. — I0°,872 C.

Höhe, welche das Luftschiff erreichte:
mm

nach der Euler'schen Formel 6999,40
m

„ Laplace'schen „ 6979,35

Diese Beispiele mögen genügen, um den Werth der
Euler'schen Ableitung zu würdigen; zu einer Zeit, wo
das Werk de Luc's*) das beste über die barometrischen
Höhenmessungen war, hatte Euler von seiner dynamischen
Anschauung über die Natur der Gaze und das Wesen
der Wärme ausgehend, freilich unter der nicht näher
begründeten Vorausaussetzung des durch die Formel

c 2

c2 \_
z ausgedrückten Gesetzes der Abnahme der

~T

Temperatur mit zunehmender Höhe, eine Formel abgeleitet
welche, wie man soeben gesehen, Resultate liefert, die,

wenn gleich ungenügend, doch eine nicht unbedeutende

Annäherung an der Wahrheit darbieten; es ist kaum

nöthig hervorzuheben, wie sehr diese Formel der Ber-
noulli'schen überlegen ist, und sie ist, unseres Wissens,
nach dieser letzteren, im 48. Jahrhundert der einzige Versuch

einer, auf dem mechanischen Begriff der Wärme

begründeten, barometrischen Höhenmessung.

Hiemit schliessen wir diese Mittheilungen; aus dem

Gesagten geht hervor, dass wir Hermann, D. Bernoulli und

*) De Luc. Recherches sur les modifications de
Tat h mo sph ère. Genève. Tom. I. etil. 1772. 4°.
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Euler mit Recht als die Vorläufer derjenigen Mathe-
matico-Physiker bezeichnen dürfen, welche, in unserem
Jahrhundert, die mechanische Wärmetheorie gegründet
haben; wir betrachten diese drei Basler blos als

Vorläufer, nicht als Erfinder oder als Begründer dieser
Theorie ; in der That, den grossen Grundsatz der Aequi-
valenz von Wärme und mechanischer Arbeit, das eigentliche

Grundprincip, stellten sie nicht auf, und daher
mussten ihre Leistungen auf diesem Gebiete, Zwar geniale,
aber unfruchtbare, nur auf Einzelnheiten, nicht auf
allgemeine Resultate führende Versuche bleiben.

NB. In diesen Mittheilungen hätten auch die Arbeiten
von Lesage [1724—1803] einen Platz finden sollen;
aber abgesehen davon, dass ich mir seine Arbeit
[in: deux traités de mécanique, publiés par P. Prewost,
comme simple éditeur du premier et comme auteur
du second] nicht verschaffen konnte, kommt er chronologisch,

[den Zeitpunkt der Reife seiner theoretischen
Ansichten über die Gaze verlegter auf den I.Dez. 4 759]
nach unseren drei Baslern, und so muss diese Betrachtung

auf eine spätere Arbeit verschoben werden.
Ueber Lesage siehe übrigens die vortreffliche
Darstellung seines Lebens und Wirkens in WTol f's
Biographien zur Kulturgeschichte der Schweiz.
Bd. IV. Seite 173.
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