Zeitschrift: Mitteilungen der Naturforschenden Gesellschaft Bern

Herausgeber: Naturforschende Gesellschaft Bern

**Band:** - (1864) **Heft:** 557-558

**Artikel:** Die Aufhängung der Kirchenglocken

Autor: Schinz, E.

**DOI:** https://doi.org/10.5169/seals-318746

## Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 03.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

## Em. Schinz.

# Die Aufhängung der Kirchenglocken.

(Vorgetragen den 26. Dezember 1863.)

- 1. Die neuen 4 Glocken im Thurm der heil. Geistkirche, deren Gewichte resp. 47.5, 24.0, 13.8 und 6.0 Ctr. betragen, und welche einen guten Des dur Akkord geben, zeigen, beim Läuten derselben, Uebelstände, denen abgeholfen werden muss, wenn man nicht Gefahr laufen will, die Glocken selbst unbrauchbar zu machen.
- 1) Sie erfordern zum Läuten einen Kraftaufwand, der in keinem Verhältniss steht zu deren Gewichten. So erfordert die grösste derselben, die grosse Des Glocke von 47.5 Ctr., 2 Mann zum läuten, während die Betglocke im Münster von 45 Ctr. so leicht von Einem Mann geläutet werden kann, dass selbst der Zug Eines Armes vollständig genügt.
- 2) Es ist schwierig diese Glocken so zu läuten, dass der Kallen (Schwengel od. Klöppel) regelmässig anschlägt.
- 3) Die Abnutzung des Schlagringes der Glocken an den Stellen, wo er vom Kallen getroffen wird, zeigt sich bereits ziemlich stark; ja an 2 Stellen sind sogar kleinere Stücke des Glockenmetalls abgesplittert.
- 2. Die normale Schwingung des Kallens und der Glocke muss nun in folgender Weise geschehen: Sie beide, die wir als Pendel zu betrachten haben, sollen ihre Schwingungen in der Weise nahe gleichzeitig vollenden, dass sie im gleichen Augenblick durch ihren tiefsten Punkt gehen, und nahe gleichzeitig ihre respective höchsten Stellungen erreichen. Dabei wird die Geschwindigkeit

557.

von Kallen und Glocke im Moment des Anschlages nahezu gleich Null; Die Differenz der, etwas weniges grösseren, Geschwindigkeit des Kallens und derjenigen der Glocke wird also jedenfalls nur sehr klein, und dadurch das Aufschlagen des schweren Kallens auf die Glocke gemässigt.

Bei einer grösseren Differenz dieser 2 Geschwindigkeiten würde der Anschlag zu stark; die Gefahr der Absplitterung oder gar des Berstens der Glocke tritt daher ein, wenn die Schwingungen von Kallen und Glocke nicht derart ausgeglichen sind, dass sie den geforderten gegenseitigen Isochronismus zeigen.

- 3. Um aber die Veränderungen angeben zu können, welche diesen gegenseitigen Isochronismus herbeiführen, war es nöthig, die Schwingungsdauer für den Kallen wie namentlich für die Glocke theoretisch zu bestimmen. Ihre Vergleichung mit den direckt beobachteten konnte zur Prüfung der Rechnung und der ihr zu Grunde gelegten Annahmen, Maasse und spec. Gewichte dienen.
- 4. Für den Glockenrumpf ward folgende Constructionsregel der Schablone zu Grunde gelegt, wie sie in Prechtl's Encyclopädie gegeben wird und sich im Allgemeinen mit den meisten der untersuchten Glocken in Uebereinstimmung fand:

Der untere Rand-Diameter bildet die Grund-Dimension, durch welche alle übrigen ausgedrückt werden. Man theilt ihn in 15 gleiche Theile, die man Schläge, oder in 90, die man Punkte nennt, so dass seine Hälfte oa = 45 Punkten. Durch die Mitte o geht die Symmetrieaxe der Glocke. — In der Mitte c von oa errichte eine Senkrechte cb = 12 Schlägen = 72 Punkten; dann bezeichnet b den obern Glockenrand. Mit einem Radius von 8 Schlägen = 48 Punkten beschreibe von a aus einen Bogen, der

die Symmetrieaxe über o im Punkte p schneidet, und ziehe mit dem Radius  $\overline{p_b}$  aus p den Kreisbogen  $\overline{bq}$ , der die Symmetrieaxe in q schneidet. — Mit dem Radius  $= (\overline{p_b} - 2 \text{ Punkte})$  ziehe  $b_1 q_1$ . Mit dem Radius  $= (\overline{p_b} + 2 \text{ Punkte})$  ziehe  $b_2 q_2$  parallel mit bq zur Begränzung der Glockenhaube, auf deren oberer Fläche (für die  $b_2 q_2$  um circa 6 Punkte kleiner ist als bq) die Krone aufgesetzt wird. b u.  $b_2$  werden durch eine Gerade verbunden. Man ziehe jetzt die Gerade  $\overline{ab}$ , die man in d halbirt; darauf senkrecht gegen die Symmetrieaxe hin:  $\overline{dk} = 9$  Punkten und  $\overline{dk_1} = 11$  Punkten. — Durch b und k ziehe man einen, gegen die Symmetrieaxe convexen Kreisbogen vom Radius = 30 Schlägen = 180 Punkten und damit concentrisch  $\overline{k_1b_1}$ .

Aus a ziehe man einen Kreisbogen vom Radius = 9 Punkten, der ab in e scheidet. Seine von e aus nach der Symmetrieaxe hin gezogene Sehne, ef mache = 1 Schlag = 6 Punkten, und ziehe die Gerade af. Jetzt verbinde e und k durch einen, gegen o convexen, Kreisbogen vom Radius = 8 Schlägen, ebenso verbinde f und k, durch einen, gegen o convexen, Kreisbogen vom Radius = 12 Schlägen.

So erhält man die Form der Schablone (aekbb<sub>2</sub>q<sub>2</sub>qq<sub>1</sub>b<sub>1</sub>k<sub>1</sub>fa), durch deren Umdrehung um die Symmetrieaxe, q<sub>2</sub>qq<sub>1</sub>po, die Gestalt des Glockenrumpfes entsteht.

- 5. Der Kallen besteht nun aus folgenden 6 Theilen.
- 1) der unterste Theil oder der Knopf, ein Sseitiges Prisma bildend, mit einer Sseitigen Pyramide nach unten endigend; nach oben zu verengt sich das Prisma und wird dann weiter bis zum Ansatz an:
- 2) die Kugel, die zum Anschlag mit dem Schlagring der Glocke bestimmt ist. Diese ist ein Rotationskörper, dessen unterster grösster Radius = 10, cm5 nach

oben auf 4,<sup>cm</sup> oontinuirlich abnimmt. — Seine Höhe beträgt 21<sup>cm</sup>, diejenige des Knopfes bis zum Ansatz an der Kugel 29<sup>cm</sup>.

- 3) Der Stab, der, von einem mittleren Radius von 4, cm5 auf 3cm abnehmend, eine Höhe von 60cm hat.
- 4) An diesen schliesst sich der Ring mit einer Höhe von etwa 16<sup>cm</sup>.

Diese 4 Theile sind aus Einem Stücke Eisen geschmiedet.

- 5) Der Lederriem, der eine Schleife bildend das sub 1 bis 4 aufgezählte verbindet mit
- 6) der gekröpften Drehungsaxe, dem Krummzapfen. Dieser bewegt sich in Lagern, die an einem eisernen Ringe (mit Stellschrauben versehen, und unter der Haube der Glocke befestigt) angebracht sind Die Krummzapfenhöhe beträgt etwa 15<sup>cm</sup>, diejenige der Schleife 17,<sup>cm</sup>5 von den Mitten der durch sie verbundenen Traversen aus gerechnet. Die ganze Länge des Kallens von der Spitze des Knopfes bis zur Drehungsaxe beträgt also 158,<sup>cm</sup>5.

Das Gewicht des eigentlichen Klöppels (1 bis und mit 4) wird zu 72,5<sup>kgr</sup> angegeben, der Krummzapfen zu 2,8<sup>kgr</sup> und die Schleife zu 0,7<sup>kgr</sup> geschätzt, so dass das Gewicht des ganzen Systems des schwingenden Kallens zu 76<sup>kgr</sup> bestimmt wird.

- 6. Das Pendel, welches die gr. Des Glocke und die mit ihr fest verbundenen Theile (bei festgestemmtem Kallen) bildet, besteht aus folgenden 6 Stücken:
- 1) Der Glockenrumpf, dessen unterer Rand-Diameter für die grosse Des Glocke = 157,5cm
- 2) Die Krone, deren 3 Doppelhenkel bei einer Höhe von circa 28<sup>cm</sup>, um die sie sich über den Punkt q (Vgl. § 4) erheben, ein Gewicht von circa 251 Pfd. haben.

Die ganze eherne Glocke wiegt genau 4752 Pfd.

- 3) Der untere Jochbalken, dessen (horiz.) Länge = 169<sup>cm</sup>, Breite = 35,5<sup>cm</sup> und Höhe = 34<sup>cm</sup> beträgt, berührt mit seiner untern Basis den Scheitel der Krone und hat auf gleicher Höhe die beiden Zapfen, welche die Drehungsaxe bilden.
- 4) Der obere Jochbalken, dessen (horiz.) Länge = 82<sup>cm</sup>, Breite = 35,5<sup>cm</sup> und dessen Höhe = 50<sup>cm</sup> ist.

Diese 2 Stücke bilden das Joch, und bestehen aus Eichenholz, dessen spec. Gewicht  $\sigma_1 = 1,170$  auf die Gewichte von 238, kgr66 für den untern, und 170, kgr3 für den obern Jochbalken führt.

- 5) Die beiden Jochbalken sind mit einander durch mehrere eiserne Bolzen und mit der Krone durch 4 doppelte (iserne Tragbänder (mittelst Schrauben und deren Muttern) verbunden, deren Gewicht auf circa 95<sup>kgr</sup> geschätzt worden ist.
- 6) Der festgestemmte Kallen, dessen Gewicht zu 76<sup>kgr</sup> angegeben wurde (§ 5).

## Berechnung der Schwingungsdauer.

7. Für ein einfaches, oder mathematisches, Pendel ist die Dauer, z<sub>o</sub>, Einer ganzen Schwingung für sehr kleine Amplituden, gegeben durch die Gleichung:

$$z_o = \pi \sqrt{\frac{r}{g}}$$

wo  $\pi=3,14159$ ,  $\frac{r}{g}$  aber das Verhältniss zweier, durch dieselben Einheiten auszudrückenden Längen ist, von denen die erste r die Länge des einfachen Pendels bedeutet, (d. h. die Entfernung des schweren Punktes vom Aufhängepunkt, mit welchem der schwere Punkt durch einen gewichtlosen Faden verbunden gedacht wird); die zweite g ist die Acceleration der Schwerkraft (d. h. die Geschwinkedigit, die sie einem im Vacuum fallenden Körper wäh-

rend Einer Secunde mittheilt. Diese Geschwindigkeit misst der in 1 Secunde von einem mit ihr behafteten Körper zurückgelegte Weg. Er beträgt 981<sup>cm</sup>.)

Für das einfache Pendel oder ein ihm nahe kommendes, kann man die Grösse von runmitteibar messen. Sie ist nahe gleich der Länge des sehr dünnen und leichten Fadens, der die sehr kleine und sehr dichte Kugel mit dem Aufhängepunkt verbindet.

8. Für die hier betrachteten physischen Pende muss die Länge r des mit ihnen gleiche Schwingsdauer zeigenden mathem. Pendels erst berechnet werden.

Besteht ein physikalisches Pendel aus n Massentheilchen, deren  $k^{tes}$   $m_k$  in der Entfernung  $r_k$  von der Drehungsaxe C sich befindet, und wirkt im Schwerpunkte G (centrum gravitatis) der um s von C entfernt ist, die Schwerkrafts-Componente P in der Richtung der Bewegung, d. h. senkrecht zu dem von G auf C gefällten Perpendikel; so können wir das Moment dieser, ein Couple bildenden Kraft P, welches durch P.s gemessen wird, zerlegen in n Couples wie  $P_k$ .  $r_k$  (wo die Kraft  $P_k$  im Punkt  $m_k$  in der Richtung der Bewegung angreift), die sämmtlich in Ebenen liegen, die zu derjenigen des resultierenden Couples vom Momente P.s parallel sind. — Man hat daher  $P.s = \Sigma P_k r_k$ .

Zugleich aber wählen wir die Werthe der einzelnen Kräfte  $P_k$  so, dass sie je dem entsprechenden Massentheilchen  $m_k$  gerade diejenige Acceleration ertheilen, die ihm — gemäss der allen gemeinsamen Winkel-Acceleration  $\theta$  — zukommen muss, so dass kein Theil dieser Kräfte  $P_k$  (durch die Verbindung der Massentheile unter sich) verloren geht.

Die Kraft P<sub>k</sub> ertheilt, dieser Annahme gemäss, der Masse m<sub>k</sub> die Acceleration r<sub>k</sub> 0, und wird sonach durch das Produkt der beiden gemessen, so dass  $P_k = m_k r_k \theta$ .

Man hat daher  $P. s. = \Sigma P_k r_k = \Sigma m_k r_k^2 \theta$  oder:  $\theta = \frac{P. s}{\Sigma m_k r_k^2}.$  Ist die Summe aller Massentheilehen  $\Sigma m_k = m$ , so ist: m. g das Gewicht des Pendels.

Die Winkelacceleration 0 ist die wirkliche Acceleration (Geschwindigkeitsvermehrung per 1 Secunde) eines Punktes von unserm Pendel, der um die Längen-Einheit von der Axe C absteht, ausgedrückt durch ebendiese Längen-Einheit. Würde in diesem Punkt die Masse m concentrirt sein, und auf diese die Kraft P in der Richder Bewegung wirken, so wäre seine Acceleration durch die Gleichung  $\theta = \frac{P}{m}$  gegeben, d. h. sie wäre gleich dem Verhältniss der Kraft zur Masse, durch deren Trägheit der Wirkung der Kraft (die eben darin besteht, die Geschwindigkeit von m zu vermehren) entgegen getreten wird.

Diesem analog heisst bei der gegebenen Massenvertheilung des Pendels die entsprechende Grösse  $\theta = \frac{P. s}{\sum m_k r_k^2}$  das Verhältniss des Kraftmomentes (P. s) zum Massenmoment oder zum Moment der Trägheit ( $\sum m_k r_k^2$ ).

Vollständiger bezeichnet man diese Summe  $\Sigma$  m<sub>k</sub> r<sub>k</sub><sup>2</sup> als das Trägheitsmoment unsers Pendels in Bezug auf die Drehungsaxe C (Tghmom pro C).

Wir pflegen abkürzend:  $\Sigma m_k r_k^2 = m$ .  $t^2$  zu setzen, wo m die Gesammtmasse des Pendels ist; die physikalische Bedeutung von t geht aus folgender Betrachtung hervor: Man kann sich alle Masse, m, concentrirt denken in Einem Punkte, J (centrum inertiae), der von der Axe C um die Grösse t absteht, oder aber beliebig vertheilt auf einer Cylinderfläche, deren sämmtliche Punkte

von der Axe C die Entfernung t haben. Im letzteren Fall ist (wie im Allgemeinen) der Schwerpunkt G der Masse m nicht mit J zusammenfallend. — In G wirkt die Componente, P, der ganzen Schwerkraft m. g. — G ist um die Länge s von der Axe C entfernt.

Während also die bewegende Kraft P in der Entfernung s von der Axe C angreift, befindet sich die widerstehende träge Masse m in der Entfernung t von der Axe C.

Die auf den Punkt G wirkende Kraft P kann nun durch eine Kraft P' ersetzt werden, welche direkt auf die Masse m im Punkte J wirkt, wenn: P'. t = P. s. — Die Kraft P', direct auf die Masse m in J und in der Bewegungsrichtung wirkend, ertheilt derselben die Acceleration: t.  $0 = \frac{P'}{m}$ , wenn 0 die Winkelacceleration bedeu-

tet. — Man hat sonach  $\theta = \frac{P. s}{m t^2}$ . Die Länge t ist also diejenige Entfernung des Punktes J von der Axe C, in der man die Masse m concentrirt denken kann, ohne dass dadurch ihr Träghmom pro C verändert würde.

Die Componente P der Schwerkraft mg, welche als bewegende Kraft die Winkel-Acceleration erzeugt, hängt nun von der jeweiligen Elongation  $\varphi$  ab, d. h. von dem Winkel, den das von G auf die Axe C gefällte Perpendikel im betrachteten Momente mit der Vertikal-Ebene durch C bildet. Es ist nämlich P = m. g.  $Sin\varphi$ , woraus folgt:

$$0 = \frac{m. g. s \sin \varphi}{m t^2}$$

Für das einfache, mathematische Pendel fällt der Punkt J, in dem in Wirklichkeit die Masse m concentrirt ist, mit ihrem Schwerpunkte G zusammen. Die Distanzen s und t sind also der Länge r des mathem. Pendels gleich. Für dasselbe hat man daher die Winkelacceleration

$$\theta_{\rm o} = \frac{{
m m} \ {
m g} \ {
m r} \ {
m Sin} \ {
m \varphi}}{{
m m} \ {
m r}^2} = \frac{{
m g} \ . \ {
m Sin} \ {
m \varphi}}{{
m r}}$$

Wenn nun für jeden Werth der Elongation  $\varphi$  der ihr entsprechende Werth von  $\theta$  fürs physikalische Pendel demjenigen  $0_o$  fürs mathematische von der Länge r gleich kommt, so ist auch die ganze Reihe der, für gleiche Amplitude mit Null anfangenden Geschwindigkeiten für beide Pendel dieselbe, und das physische Pendel (das durch sund t gegeben ist) hat mit dem mathematischen von der Länge r gleiche Schwingungsdauer, wenn:  $\mathbf{r} = \frac{\mathbf{m} \cdot \mathbf{t}^2}{\mathbf{m} \cdot \mathbf{s}} = \frac{\mathbf{t}^2}{\mathbf{s}}$ , so dass die Schwingungsdauer  $\mathbf{z}_o$ , für ganz kleine Amplituden, beim physischen Pendel (s, t) aus der Formel  $\mathbf{z}_o = \pi \sqrt{\frac{\mathbf{r}}{g}} = \pi \sqrt{\frac{\mathbf{t}^2}{g_s}}$  bekannt wird.

Denkt man sich die n Massentheilchen eines physischen Pendels von ihrer festen Verbindung mit einander befreit, und jedes nur mit der Axe C durch einen auf sie senkrechten, gewichtlosen Faden verbunden, so würde auch jedes Massentheilchen m<sub>k</sub> seine besondere Schwin-

gungsdauer  $z_{o,k} = \pi \sqrt{\frac{r_k}{g}}$  annehmen, die mit  $\sqrt{r_k}$  proportional ist. Nur die Massentheilchen in denjenigen Punkten, O, deren Entfernung von der Axe C gleich r ist, würden für sich allein wie in ihrer starren Verbindung mit der übrigen Pendelmasse dieselbe Schwingungsdauer  $z_o$  haben. Ein solcher Puukt O heisst der Schwingungspunkt des Pendels (centrum oscillationis) und zwar wird darunter gewöhnlich speciell derjenige dieser Punkte verstanden, der (in der Entfernung r von der C Axe) auf der Symmetricaxe des Pendels liegt. — Würde die ganze Masse des Pendels, m, im Punkte O in der Weise concentrirt gedacht, dass dadurch auch sein Schwer-

punkt G in denselben Punkt O gelangte, so würde dadurch die Schwingungsdauer des Pendels nicht geändert.

Nennt man die Entfernungen der n Massentheilchen von der zu C parallelen Axe durch der Schwerpunkt G resp.  $\lambda_1, \lambda_2, ..., \lambda_k, ..., \lambda_n$ , so ist  $\Sigma$   $m_k \lambda_k^2$  das Träghmom. in Bezug auf die Axe durch G. (Tghmom pro G). Man schreibt auch zur Abkürzung

$$\Sigma m_k \lambda_k^2 = \lambda^2$$
.  $\Sigma m_k = m \cdot \lambda^2$ 

λ bedeutet diejenige Entfernung von der Axe durch G, in der man die ganze Masse concentrirt denken kann, um ihre Gegenwirkung gegen irgend eine Kraft zu beurtheilen, die den Körper um die feste Axe durch G zu drehen bestimmt wäre. (Die Schwerkraft liefert keine solche Kraft, da ihr Moment in Bezug auf die durch den Schwerpunkt gelegte Axe = Null ist.)

Zwischen dem Tghmom pro C,  $= \Sigma m_k r_k^2 = m t^2$  und dem Tghmom pro G,  $= \Sigma m_k \lambda_k^2 = m \lambda^2$  besteht nun die einfache Relation:  $\Sigma m_k r_k^2 = \Sigma m_k \lambda_k^2 + s^2$ .  $\Sigma m_k$  oder: m.  $t^2 = m (\lambda^2 + s^2)$ 

oder: 
$$m. t^2 = m (\lambda^2 + s^2)$$
Man hat daher: 
$$r = \frac{m. (\lambda^2 + s^2)}{m.s} = s + \frac{\lambda^2}{s}$$

Da λ für keinen wirklichen Körper, der stets eine gewisse Ausdehnung im Raume haben muss = Null sein kann, so ist also auch stets r grösser als s.

- 9. 1) Besteht das Pendel aus einer Kugel vom Radius  $\rho$ , und der Masse m und einem gewichtlosen Faden, dessen Länge: s— $\rho$ , so dass s die Entfernung des Schwerpunkts, G, vom Aufhängepunkt (Axe C), so hat man das Tghmom. pro G, für die Kugel, =  $\frac{1}{5} \frac{2}{9^2}$  also  $\lambda^2 = \frac{2}{5} \frac{2}{9^2}$  daher:  $r = s \left(1 + \frac{2}{5} \frac{\rho^2}{5}\right)$  und  $t = s \sqrt{1 + \frac{2}{5} \frac{\rho^2}{5}}$  Ist z. B.  $s = 100^{cm}$ ,  $\rho = 5^{cm}$ , so wird:  $r s = 0.1^{cm}$ ,  $t s = 0.05^{cm}$ .
- 2) Besteht dagegen das Pendel aus einem homogenen Stab von gleichförmigem und kleinem Querschnitt und

von der Länge 2s, durch dessen oberes Ende die Drehungsaxe C gehe, so ist wieder s die Entfernung des Schwerpunkts G von der C Axe; hier ist das Tghmom. pro G = m.  $\frac{s^2}{3}$ ; daher  $\lambda^2 = \frac{s^2}{3}$ ; folglich r-s =  $\frac{s}{3}$  = s. 0,3333 ein Sechstel der ganzen Stablänge, und: t = 2s.  $\frac{\sqrt{3}}{3}$  = 2s.0,57735, also t-s = s.0,1547.

10. Für den Kallen der grossen DesGlocke fand ich auf eine Weise, die ich hier nicht näher erörtern will, die Entfernung von Schwerpunkt und Schwingungspunkt: von seiner Drehungsaxe respective

s = 111<sup>cm</sup> und r = 120<sup>cm</sup>, also r—s = 9<sup>cm</sup>. Daraus ergibt sich eine Schwingungsdauer  $z_o = \pi \sqrt{\frac{r}{g}}$  = 1.0988, daher die Zahl der in 1 Minute od. 60 Secunden vollendeten ganzen Schwingungen (von ganz kleiner Amplitude)  $n_o = \frac{60}{z_o} = 54.9$ .

Dieses Resultat der Rechnung stimmt nahe genug mit der durch direkte Beobachtung (bei einer Amplitude von circa 20°) erhaltenen Schwingungszahl von 55.

Der Schwerpunkt des ganzen Kallens fällt in denjenigen Theil desselben, den wir die Kugel genannt haben. — Die starke Anhäufung der Masse um den Punkt G herum bewirkt, dass λ nur klein (= 32cm), daher r—s =  $\frac{\lambda^2}{s}$  = 9,2cm auch nur klein wird. — Es nähert sich demnach der Kallen in seinen Schwingungsverhältnissen einem einfachen Pendel; wie bei diesem wird durch Senkung, d. h. Entfernung der Kugel des Kallens von dem Krummzapfen, sowohl r als zo vergrössert, no aber verkleinert.

11. Aus der Kenntniss von  $\lambda$  und s, woraus  $r = s + \frac{\lambda^2}{s}$  kann man den Werth s' bestimmen, auf den man – durch

Verlängern der Schleife, also Herunterlassen der Kugel—s erhöhen muss, damit die Schwingungszahl von n<sub>o</sub> = 55, z. B. auf n<sub>o</sub>' = 53 heruntergehe.

Man hat nämlich: laut  $z'_o = \pi \sqrt{\frac{s'^2 + \lambda^2}{g \cdot s'}}$  die Gleichung  $\frac{z_o'^2}{\pi^2}$  g s' = s'^2 + \lambda^2, woraus: s' = + p +  $\sqrt{p^2 - \lambda^2}$ , wo das obere Zeichen gilt, und p =  $\frac{gz'_o^2}{2\pi^2} = \frac{g \cdot 60^2}{2\pi^2 n'_o^2}$ gesetzt ist. Es geht daraus für g =  $981^{cm}$ ,  $n'_o = 53$  hervor: p = 63,7 und daraus: s' =  $118.8^{cm}$ , während für  $n_o = 55$  s =  $111^{cm}$  war. Eine Senkung des Kallens um  $8^{cm}$  würde also seine Schwingungszahl von 55 auf 53 herabsetzen.

12. Der Herleitung der Schwingungsdauer für die Glocke (mit festgestemmtem Kallen) will ich einige nähere Angaben widmen,

Da die Drehungsaxe C hier wie beim Kallen im Verhältniss zum schwingenden Körper keine feste Lage hat, vielmehr gerade der Einfluss ihrer Verschiebung auf die Schwingungsdauer oder die Schwingungszahl untersucht werden soll, so beziehen wir, um Verwechslungen zu vermeiden, zunächst die Lage des Schwerpunkts wie das Trägheitsmoment auf eine zu C paralle Axe, D, welche ein Diameter des untern Glockenrandes ist.

Nennen wir allgemein die Entfernung der verschiedenen in Betracht zu ziehenden Massentheilchen wie  $m_k$  von der Axe D entsprechend  $u_k$ , so ist das Tghmom. pro D:...  $\Sigma$   $m_k u_k^2$ . Die Entfernung des Schwerpunkts G von der Axe D heisse v. Man findet sie aus der Gleichung m.  $v = \Sigma$   $m_k u_k$ , wenn nämlich die in Betracht gezogenen Massentheile (d. h. ihre Schwerpunkte) sämmtlich auf der Symmetrieaxe liegen. m ist die Summe  $\Sigma m_k$  der in Betracht gezogenen Massentheilchen.

Aus dem Tghmom., pro D findet man das Tghmom. pro G durch die Gleichung:

$$m. \lambda^2 = \Sigma m_k u_k^2 - m. v^2$$

oder wenn man  $\Sigma m_k u_k^2 = m \cdot w^2 \text{ setzt} : \lambda^2 = w^2 - v^2$ 

Da hieraus  $\lambda$  bekannt wird, so kann nun das Tghmom. pro C, welche Axe um eine beliebig zu modificirende Grösse s von G entternt ist, leicht bestimmt werden.

Das Tghmom. pro C ist  $\Sigma$   $m_k r_k^2 = m$ . ( $\lambda^2 + s^2$ ), wo  $\lambda$  für jede Lage von C denselben constanten Werth hat, und nur s mit der Lage von C variabel ist. Hieraus folgt  $r = \frac{\lambda^2 + s^2}{s}$ 

13. Minimumswerth von z<sub>0</sub> oder Maximumswerth von n<sub>0</sub> bei einem zusammengesetzten physischen Pendel (wie namentlich bei der Glocke). Da die Schwingungsdauer z<sub>0</sub> den Ausdruck hat:

$$z_o=\pi$$
  $\sqrt{\frac{r}{g}}$ , wo  $r=rac{\lambda^2\,+\,s^2}{s}$ 

und die Schwingungszahl:  $n_o = \frac{60}{z_o}$ ,

so sieht man, dass zo ein Minimum, no ein Maximum wird, wenn r ein Minimum wird durch Variation von s.

Differenzirt man daher r nach s, so wird der erste Differential-Quotient r'  $=\frac{s^2-\lambda^2}{s^2}$ 

und der zweite 
$$r'' = \frac{2 \lambda^2}{s^3}$$

Da r" stets positiv ist, so wird für r' = 0, d. h. für  $s^2 = \lambda^2$  der Werth von  $r = 2\lambda$  ein Minimum, so dass  $z_0 = \pi \sqrt{\frac{2\lambda}{g}}$  das Minimum und  $n_0 = \frac{60}{\pi} \sqrt{\frac{g}{2\lambda}}$  das Maximum ist.

In der Nähe dieses Maximums kann man s ziemlich stark über diesen Werth  $s = \lambda$  vermehren, oder unter

denselben vermindern, ohne eine namhafte Veränderung von zo oder no hervorzubringen.

Wir werden sehen, dass alle untersuchten Glocken so aufgehängt sind, dass s nahezu den Werth von λ hat, und dass man daher durch Versetzung der Drehungsaxe C, also namentlich durch Verkleinerung von s, d. h. Tiefersetzen der Axe C oder Höherhängen der Glocken, die Schwingungsdauer z<sub>o</sub> nicht merklich verkleinern, die Schwingungszahl n<sub>o</sub> nicht merklich vergrössern kann, wie man das ohne vorherige Untersuchung zu glauben geneigt sein könnte.

Macht man, den Werth  $s=\lambda$  überschreitend, s fortwährend kleiner, so wird r und  $z_o$  fortwährend grösser, dermassen, dass für s=o (in welchem Falle die Drehungsaxe C durch den Schwerpunkt G hindurchgeht)  $z_o=\infty$ ,  $n_o=o$  wird, d. h. die Glocke hat gar kein Bestreben mehr, — durch ihre eigene Schwere — eine Schwingung zu vollenden, sondern bleibt in jeder Lage im Gleichgewicht. Die Zugkraft der Läutenden, die dann auf beiden Seiten, im Vor- und Rückschwunge thätig sein müsste, könnte zwar an die Stelle der eigenen Schwere der Glocke treten, allein es fehlte ihr das diese Schwingungen regulirende Princip.

Will man dieses nicht aufgeben, so muss die Schwingungsdauer der Glocke so gewählt werden, dass sie ein Minimum wird oder doch diesem nahe kommt, weil diejenige des Kallens, welche mit ihr übereinstimmen muss, nur mit Mühe gross genug gemacht werden kann. (Vgl. §34.)

14. Um nun für die grosse Des-Glocke der heil. Geistkirche die Werthe von  $\Sigma m_k$  u. von  $\Sigma m_k$  u²<sub>k</sub> (Tghmom pro D) zu bestimmen, wurden diese Summen in 6 Stücke — den oben aufgeführten Theilen der Glocke (Rumpf, Krone, unterer, oberer Jochbalken, Tragbänder und Kallen) entsprechend — zerlegt. Den Glockenrumpf selbst zerlegte ich in 20 Ringstücke, für deren  $k^{tes}$  der Querschnitt,  $F_k$ , die Entfernung seines Schwerpunktes von der Symmetrieaxe,  $R_k$ , und die Entfernung  $x_k$  bestimmt wurde, um welche dieser Schwerpunkt von der Ebene des untern Glockenrandes absteht.

Die Guldinsche Regel gab nun die Volumina dieser Ringstücke =  $2\pi R_k$ .  $F_k$ , woraus (wenn  $\sigma$  das spec. Gewicht des Glockenmetalls) die Gewichte =  $\sigma$ .  $2\pi$ .  $R_k$ .  $F_k$  =  $m_k$  und daraus  $\Sigma$   $m_k x_k$  bestimmt wurden.

Das Trägheitsmoment eines Ringes mit Bezug auf eine zu D parallele Axe durch seinen eigenen Schwerpunkt, konnte wegen der Kleinheit der Querschnitte ohne erheblichen Fehler so angenommen werden, als ob die ganze Masse im Umfang des Kreises durch die Schwerpunkte der Querschnitte gleich vertheilt sei; dann ist dasselbe — a 22R E. R. und sein Tehmom, pro D. ist

selbe = 
$$\sigma.2\pi R_k F_k$$
.  $\frac{R_k^2}{2}$ , und sein Tghmom. pro D ist

$$= \sigma.2\pi. R_k F_k \left[ \frac{R_k^2}{2} + x^2 \right]$$

Die nach obiger Vorschrift gezeichnete Schablone des Glockenrumpfes gab die Werthe von F<sub>k</sub>, R<sub>k</sub> und x<sub>k</sub> durch eine Einheit ausgedrückt, welche gleich war dem 180<sup>ten</sup> Theil des Randdiameters, also der Hälfte eines Punktes, dessen Länge p heissen möge.

Für die grosse Des-Glocke der heil. Geistkirche ist: 90. p = 157,5 cm. Die Rechnung gab für die 20 Ringstücke des Rumpfes  $\Sigma$  m<sub>k</sub>x<sub>k</sub> =  $\sigma$ .  $2\pi$ . 204803. p<sup>4</sup>, was man für  $\Sigma$  m<sub>k</sub>u<sub>k</sub> setzen kann, und  $\Sigma$  m<sub>k</sub>u<sub>k</sub>  $^2 = \Sigma_1 \sigma 2\pi$  R<sub>k</sub> F<sub>k</sub>  $\left(\frac{R^{k^2}}{2} + x_k^2\right)$  =  $\sigma$ .  $2\pi$  13480897. p<sup>5</sup> und für das Gewicht des Rumpfes  $\Sigma$  m<sub>k</sub> =  $\sigma$ .  $2\pi$ . 7041,5 p<sup>3</sup>.

Setzt man hier den Werth von p für die grosse Des Glocke p =  $1.75^{\rm cm}$  ein, so kommt  $\Sigma$  m<sub>k</sub> =  $\sigma$ . 237116, wo jetzt  $\sigma$  das Gewicht von 1 Cubik centimeter des Glocken-

metalls darstellt — Das aus  $76\,^{\circ}/_{0}$  Kupfer und  $23,5\,^{\circ}/_{0}$  Zinn bestehende Metall dieser Glocken hat ein spec. Gewicht, welches dem Werthe  $\sigma = 8,81$  wohl sehr nahe kommt. Statt aber dieses in die Rechnung einzuführen, war es richtiger,  $\sigma$  aus dem bekannten Gewicht der Glocke abzuleiten, wodurch zugleich einer verhältnissmässigen Vermehrung der Metalldicke Rechnung getragen wurde, welche die Glocken im Vergleich mit der vorschriftgemässen Schablone zeigen.

Da die grosse Des-Glocke ein Gewicht hat von 4752  $\pi$ , wovon auf die Krone 251  $\pi$  gerechnet worden sind, so bleibt für den Rumpf das Gewicht von 4501  $\pi = 2250^{\text{kgr.}},500^{\text{gr.}}$  woraus sich ergibt:  $\sigma = 9,^{\text{gr.}}491$ 

Hiernach ist also für den Glockenrumpf: das Gewicht (Masse)  $M_1 = 2250,5^{\text{Kgr.}}$ das Moment desselben pro D:  $M_1V_1 = 114551^{\text{cm}}$ ,  $^{\text{Kgr.}}$ das Tghmom pro D:  $\Sigma m_{\text{k}}u_{\text{k}}^2 = M_1W_1^2 = 13195500^{\text{cm}}$ ,  $^{\text{Kgr.}}$ 

Für die Krone wurde die Entfernung ihres Schwerpunkts von D od.: V<sub>2</sub> = 153<sup>cm</sup> angenommen.

Daher für ihr Gewicht:  $M_2 = 125,5^{\text{Kgr.}},$  dessen Moment  $M_2 V_2 = 19211^{\text{cm}}, ^{\text{Kgr.}}$  und ihr Tghmom pro D:  $M_2 W_2^2 = 2939860^{\text{cm}}, ^{\text{Kgr.}}$ 

Die beiden Jochbalken wurden als Orthoeder (rechtwinklige Parallelepipeda) betrachtet, und hienach ihre Trägheitsmomente pro D berechnet: für den untern ist die Entfernung seines Schwerpunkts von D oder:  $V_3 = 180,5^{cm}$  für den obern:  $V_4 = 222,5^{cm}$ .

Der untere Jochbalken gab (laut § 6) M<sub>3</sub> = 238,7<sup>kgr</sup>.

folglich  $M_3V_3 = 43079^{cm}$ ,  $K_{gr}$  und  $M_3W_3^2 = 7823600^{cm}$ ,  $K_{gr}$ 

Der obere gab:  $M_4 = 170,3^{\text{Kgr.}}$ , daher:  $M_4V_4 = 37898^{\text{cm}}$ ,  $^{\text{Kgr.}}$  $M_4W_4^2 = 8431000^{\text{cm}}$ ,  $^{\text{Kgr.}}$ 

Für die eisernen Bolzen und Tragbänder gab die Schätzung: