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Nr. 5305 — 508.

L. Schiifli.
Elementare Bestimmung der Beschleu-
nigung der elliptischen Planeten-
bewegung. (Mit 1 Tafel.)

(Vorgetragen den 2. Nov. 1861.)

Wenn die Summe der zwei Strahlen rund R (Fig. 1),
die von den zwei festen Punkten F und G aus nach dem
beweglichen Punkt P hingehen, constant ist, so beschreibt
dieser Punkt P eine Curve, die Ellipse heisst.

Die zwei festen Punkte F, G heissen deren Brenn-
punkte, ihr Abstand FG = 2c heisst die ganze Ec-
centricitit, dessen Mitte O das Centrum, OF = ¢
die halbe Eccentricitit. Es sei R + r — 2a, dann
ist klar, dass a > ¢ sein muss. [Wenn a — c ist, so
kann der Punkt P nur in der Geraden, welche F und G
verbindet, sich bewegen. — Wenn a < ¢ ist, so ist das
Dreieck FGP nur dann méglich, wenn man R —r—2a
setzt; die vom Punkt P in diesem Falle beschriebene
Curve heisst Hyperbel.]

Ohne die Gestalt des Dreiecks FGP zu verindern,
kann man es umkehren, so dass G nach F und F nach
G kommt, und dass P oben bleibt, aber so weit nach
rechts zu liegen kommt als es jetzt links liegt. Man
kann aber auch das Dreieck FGP und seine Basis FG
umlegen, so dass dann P ebensoweit unten ist, als jetzt
oben, aber nach links hin in derselben Lage. Wenn
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man daher durch F, G eine unbegrenzte Gerade, und
auf diese senkrecht durch das Centrum O eine andere
unbegrenzte Gerade zieht, so theilt jede von diesen die
Curve in zwei symmetrische Hilften, durch beide wird
sie in vier congruente Quadranten zerschnitten. Diese
zweil Geraden heissen die Hauptaxen der Curve. Wir
wollen sehen, wie weit die Punkte vom Centrum entfernt
sind, in denen diese Hauptaxen von der Curve geschnit-
ten werden.

Wenn der bewegliche Punkt P (Fig. 2) links in die
Hauptaxe kéommt, welche durch die Brennpunkte F, G
geht, so ist GP = R, FP = r und R + r = 2a; man
mache rechts GQ = r, so ist PQ = 2a. Da aber O die
Mitte von FG und die Ansiitze PF, GQ links und rechts
einander gleich sind, so ist O auch die Mitte von PQ.
Folglich ist OP == a. Da die Curve sowohl durch P als
durch Q geht, so ist 2a die Linge des horizontalen
Durchmessers.

Wenn der bewegliche Punkt P (Fig. 3) in die senk-
rechte Hauptaxe kommt, so ist er nach einem bekannten
Satze von beiden Brennpunkten F und G gleich weit
entfernt, d. h. es ist R —= r. Da aber R 4+ r = 2a ist,
so folgt r —=a. Wenn wir nun OP — b setzen, so folgt
aus dem pythagoreischen Satze a?—hb?+4c?, also b?=—=a*—c?.
Daher ist b <C a. Man nennt a die grosse und b die
kleine Halbaxe der Ellipse; 2a und 2b heissen als
Lingen des horizontalen und des verticalen Durchmes-
sers der Ellipse die grosse Axe und die kleine Axe
derselben.

Da ¢ « a ist, so 1st, wenn wir ¢ — ea setzen, ¢ ein
dchter Bruch (fiir die Ellipse); man hat dann c¢?=e?a?,
daher b*=(1—c?)a? und endlich b—=a}/1—e?
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Es sei (Fig. 4) FP + PG = FQ + QG, man mache
HG = GQ und FK = FP, und ziehe PK, QH und PQ.
Es folgt FP 4+ PH + HG = FK 4 KQ 4 QG, und
wenn man hievon FP + HG =FK 4 QG subtrahirt, so
bleibt PH —= KQ. Die Dreiecke FPK und GHQ sind
gleichschenklig; wenn man die Punkte P und Q nahe
genug zusammenriickt, so werden diese Dreiecke so
schmal als man nur will, und die Winkel an ihren Grund-
linien werden sich dann von Rechten so wenig unter-
scheiden als man nur will. Die Dreiecke PQH und QPK
konnen daher als solche betrachtet werden, die bei H
und K rechte Winkel haben, mit einem Fehler, den man
so klein werden lassen kann als man nur will, und der
auf die endlich bleibenden Verhiltnisse der Seiten eines
jeden dieser zwei Dreiecke einen ebenfalls verschwin-
denden Einfluss ausiibt. Sehen wir daher von diesem
Fehler ab, so haben die zwei Dreiecke die Hypotenuse
PQ gemein und die Katheten PH und QK gleich, sind
daher congruent und haben also die den gleichen Ka-
theten anliegenden Winkel gleich, d. h. es ist 2. GPT
= /. FQU, wenn.die Strecke PQ verschwindet.

Nehmen wit jetzt F, & als Brennpunkte und FP+
PG = 2a als Werth der grossen Axe einer Ellipse an,
so ist die verschwindend kleine Strecke PQ ein Bogen
der Ellipse und dessen Verlingerung UT ihre Tangente.
Wir haben daher den Satz:

Wenn durch einen Punkt P der Ellipse eine Tan-
gente an dieselbe gezogen wird, so bilden die aus den
Brennpunkten F' und G nach diesem Punkte P gehenden
Strahlen mit der Tangente gleiche Winkel. Daher wird
Licht, das vom einen Brennpunkt ausgeht, an der Curve
so zurilkgeworfen, dass es durch den andern Brennpunkt
geht und davon tragen diese Punkte ihren Namen,
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Die Gerade, welche- durch den Berithrungspunkt
senkrecht auf die Tangente gezogen wird, heisst Nor-
male. Diese halbirt also: den Winkel FPG, den die
zwei Strahlen aus-den Brennpunkten mit einander bil:
den. Wir wollen den halben Winkel dersetben fortan
mit & bezeichnen.

Es seien F, G, O (Fig. 5) die Brennpunkte und das
Centrum, P irgend ein Punkt der Ellipse, OM die Rich-
tung der kleinen Axe, PNM die Normale in P; PN=n,
PM = m, FP = r, GP = R. Durch die drei Punkte
P, F, G kann ein Kreis gelegt werden. Da die kleine
Axe mitten auf der Sehne FG senkrecht steht, so halbirt
sie den zu dieser Sehne gehérenden Kreisbogen, und die
Gerade, welche P mit der Mitte dieses Bogens verbindet,
muss dann auch den Peripheriewinkel FPG halbiren,
kann also keine andere als die Neormale sein. Folglich
ist M die Mitte des Kreisbogens. Hiedurch ist bewiesen,
dass die vier Punkte F, G, P, M auf einem und demsel-
ben Kreise liegen. Daher ist 2 MFG = £ MPG =3,
weil beide Peripheriewinkel auf demselben Bogen (der
zur Sehne MG gehort) stehen. -

Man fille aus M resp. MH und MK senkrecht auf
PF und auf PG; die rechtwinkligen Dreiecke MHP und
MKP sind dann congruent, weil sie die Winkel bei P
gleich und die Hypotenuse m gemein haben. Alsé ist
MH — MK, PH — PK. Nun sind aber auch die Dreiecke
FOM, GOM congruent, weil sie die Kathete OM gemein
und die Katheten OF, OG gleich haben; daher FM —=GM.
Die zwei Dreiecke FHM und GKM haben also bei H,
K rechte Winkel, die Hypotenusen FM, GM gleich und
die Katheten MH, MK auch gleich, sind daher congruent;
folglich ist auch FH — K G, daher
PF 4+ PG=PF+FH + PG — KG =PH + PK =2PH,
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weil PH = PK, wie.schon bewiesen. Da nun PF4PG
z=2a, 50 hat man 2PH == 2a, also PH=4, d. h. (cos ). m
==a. Man mennt PM die gresse, PN die kteme Nor-
male, hat also den Satz:

Die Pro;ectmn der grossen Normale auf
einen der zwel Brennstrahlen ist gleich der
grossen Halbaxe.

Die Dreiecke PEFM und PNG sind emander dhnlich,
weil thre Winkel bei P einander gleich sind (jeder =%)
und ihre Winkel bei M und G als Peripheriewinkel, die
auf demselben (zur Sehne F'P gehérenden) Bogen stehens
80 dass sid also zwei Winkel gleich haben. Daher ver-
halten sich ihre den Winkeln bei M und G gegeniiber
liegenden Seiten zu einander, wie die den Winkeln bei
F und N gegeniiber liegenden, d. h. r i n=m R,
also mn —=rR, das Produkt der grossen und kleinen
Normale ist gleich- dem Produkt der zwei Brennstrahlen.

FN NG

Nach einem bekannten Satz ist — =

auch = BN_:-RNG_ 3: :::% =e; folglich FN —=er,
NG =eR, FN X NG =erR. Da aber FG und PM
Sehnen desselben Kreises sind, so ist FN > NG —
PN % NM = n (m—n) = ¢’rR, mn — n? = ¢*rR, mn =
n? 4 erR, n? == mn — e’rR; es war aber mn = rR;
folglich ist n? = (1—e*)rR = (1—e*)mn, und wenn man
beide Seiten dieser Gleichung durch n dividirt, n—(1—e?)m,
also mn = (1—e?) m?, d.h. rR =(1—e?)m?, (cos ¥} rR=
(1—e?) (cos 9)’m? = (1—e?) {[cosS] m)?; aber (cos ¥m —a
und (1—e?) a2 = b?; also ist (ecos $)?rR =b?,

das Produkt der Projectionen beider Brenn-
strahlen auf die Normale ist gleich dem Qua-
drat der kleinen Halbaxe.

also




W | | J—

 Unter Winkel wollen wir diejenige reine Zahl ver-
stehen, welche anzeigt, wie viel Mal der entsprechende
Kreisbogen so gross ist als der Radius, mit andern Wor-
ten, diejenige Zahl, welche die Linge des Bogens aus-
driickt, wenn der Radius des Kreises als Einheit des
Lingenmaasses gewihlt wird. Der Kreisbogen ist dann
(Mittelpunktwinkel) > Radius. Der dem Halbkreise ent-
sprechende Winkel, den man sonst mit 180 Graden be-
zeichnet, ist dann gleich der Zahl z» — 3,1415927; also
1 Grad = %> =0,0174533, (sin 1_"8%) —(8in 0,0174533)
== 0,0174524, (cos 0,0174533) — 0,9998477. Hier ist der

‘Winkel klein von der Ordnung -—3%-6- , sein Cosinus klei-

ner als 1 um eine kleine Zahl von der Ordnung I—Dl K

2
= (——13—0) , und sein Sinus kleiner als er selbst um eine

. ' 1 1
kleine Zahl von der Ordnung 1000000 — (100) . Ueber-
haupt, wenn x einen sehr kleinen posit. Winkel bezeich-

>

sin X

net, so ist tang x > x > sin x, also 1 >

SMX | Aber do ——m X — cos X, 80 hat man 1 >
tang x tang x
sinx

—>cosx. Damannundas ganze Intervall 1—cosx

so klein machen kann als man nur will, 80 muss um so

‘“2 X der Null so

nahe gebracht werden konnen als man nur will. Wenn
man dann sin x == x setzt, so ist der Fehler von einer
sin X

X

mehr der erste Theil desselben 1 —

hohern Ordnung als x. Da némlich 1— <1 —cosXx,
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80 i8t X —sinX < x (1 —cosx), jener Fehler also von

derselben Ordnung mit x (1 — cos x). Von welcher Ord-

nung ist nun aber 1 — cos x? Aus (cos x)? 4 (sinx)?=

folgt 1 — (cos x)2 =(8in x)?, . d. h. (1 — cos x) (1 4 cos X)

__(8in x)? ____(sin X)z. 141 x?
X

— iy 2 e *—_

= (sinx),, 1 —cos x ~1+cosx 14cosx 2
- 2

und da die zwel DBriiche (8—1—?) und 1-11-:)31:: der Ein-

heit ohne kEnde sich nihern, wenn x gegen Null zu
sinkt, so hat man 1 — cosx =} x? mit einem Fehler
héherer Ordnung als x? (er ist von der Ordnung x%).
Also 1st nun X —sinx < {x3% d. h. wenn man sinx=x
setzt, so begeht man einen "Fehler von der Ordnung x3,
und wenn man cos x =1 setzt, einen von der Ordnung x2.

Wenn(Fig.6)imobern Theil der Ellipse der bewegliche
Punkt P von links nach rechts cine sehr kleine Strecke
¢ zuriicklegt, so dreht sich auch die Tangente um einen
sehr kleinen Winkel ¢ vorwirts, in demselben Sinn wie
auch die zwei Brennstrahlen um die sehr kleinen Winkel
f und g sich vorwirts drehen. Man nennt ¢ das Ele-
ment der Curve, ¢ den entsprechenden Contingenz-
winkel. Wir suchen jetzt ihr Verhiltniss. Es ist klar,
dass auch die Normale sich um ¢ vorwirts gedreht hat.
Da nun die Normale den Winkel der zwei Brennstrahlen

halbirt, so folgt ¢ =i—.—%§ . Wenn nimlich die zwei

Brennstrahlen mit irgend einer festen Richtung, z. B.
der horizontalen nach links, die Winkel «, 8 bilden, so
muss die Normale als mittlere Richtung mit jener festen

den Winkel T8 bilden; und wenn ¢, 3 im vorliegen-

2+8 i

den Fall in « + f, 3 + g iibergehen, so geht 5
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DB+ o) oty 14 8iper, a b die Nor-
f+g
2

Oder auch so: Die Geraden PK, QK (Fig.6) mégen
die Winkel FPG und FQG halbiren, und es sei 2. PFQ
=f, L. PGQ =g, 2. PKQ =¢. Nun ist die doppelte
Summe aller Winkel des Dreiecks PKQ gleich der Summe
aller Winkel beider Dreiecke PFQ und PGQ zusammen;
d. h. 29 + 2 L KPQ + 2 L KQP = f + g + L FPQ
+ L GPQ + £ FQP + 4. GQP; aber 2 L KPQ =
L. FPQ + 4 GPQ, 2 L - KQP = £ FQP 4+ 4 GQP;
f+g

5

(Fig. 7.) Es sei I der eine Brennpunkt, Q ein Punkt
der Ellipse, PQ = ¢ das Element der Curve, QN die
Normale, FP — r der Brennstrahl, /. PFQ —={f Man
mache FK — FP, so hat das Dreieck PQK bei K einen
rechten Winkel und £ QPK = 4 FQN = %; folglich
ist PK = (cos )+ ¢, aber zugleich ist PK = f. r, folg-

male hat sich um vorwiirts gedreht.

folglich 20 = f+ g; o=

lich f= (cos ®) %-; ebenso g = (cos ) —E—— ;. Daher

p=1 ((cos %) —— + (c0s) - )=i(con®)- a(':_""%:") |

= i(cos %)-o-r:BR, und da r + R = 2a ist, endlich
¢ = (cos 3) -_-?-%-,

welche Gleichung die gegenseitige Abhiingigkeit zwischen
,Curvenlement und Contingenzwinkel ausdriickt.






Ein sehr kleiner Kérper P, den wir im Vergleich
mit seiner Entfernung von einem festen Punkte F als
Punkt betrachten diirfen, bewege sich in einer durch F
gelegten Ebene so, dass der Leitstrahl FP—=r in
gleichen Zeiten gleiche I lichenriume (Sectoren) be-
schreibt; wenn t die verflossene Anzahl won Sekunden
bedeutet, so sei der von r durchlaufene Sector gleich
; Ct; der wihrend jeder Secunde durchlaufene stets an
Inhalt sich gleich bleibende Sector : C heisst dann die
Fldachengeschwindigkeit. Bedeutet ¢ einen schr
kleinen Bruch,v die Geschwindigkeit des Korpers P, so
hat er wihrend der sehr kurzen Zeit von z Secunden
das Curvenelement ¢ = vz, und sein Leitstrahl den
Sector i Cr durchlaufen. Aber dieser sehr schmale Sec-
tor kann nun als Dreieck gefasst werden, das o zur
Basis und das aus F auf die Tangente gefiillte Perpen-
dikel h zur Hohe hat, dessen Inhalt also : he betriigt.
Algo 1st nun : Cr—=1:ho =1!hvs, und wenn man mit
£ ¢ dividirt, C = hv.

Das Perpendikel h bildet aber mit dem Leitstrahl r
denselben Winkel, wie die Normale ihn mit r bildet;
diesen bezeichneten wir mit ¥; folglich 1st h = (cos ¥)r
 C
(cos®)r’

Es seien P, Q (Fig.8) zwei nahe auf einander fol-
gende Punkte der Bahn des Korpers, in beiden ziehen
wir die Tangenten der Bahn, und setzen wieder PQ—0¢
(Element der Curve). Wenn nun ¢ sehr klein ist, so
wird P nur um eine Grosse zweiter Ordnung (von der
Ordnung ¢%) von der zweiten Tangente abstehen. Denn
wenn man in P nnd Q die Normalen zieht, ihren Durch-
gchiitt K nennt, KQ = ¢ setzt und aus dem Centrum K
mit dem Radius ¢ einen Kreis beschreibt, so wird dieser




die zweite Tangente in Q berithren und die Normale
KP susserst nahe bei P schneiden (in P ). Ist dann x
der sehr kleine Winkel PKQ, so ist ¢ nahe — ox und
P’ steht um o(1—cos x) =— { px? von der zweiten Tan-
gente ab. Da aber ¢ endlich ist, so ist ox* von der-
selben Ordnung mit ¢2. Also steht P um eine Grisse
von der Ordnung ¢? von der zweiten Tangente ab; wir
wollen sie mit » bezeichnen. Die aus F auf die erste
und zweite Tangente gefillten Perpendikel seien h, h’,
- die entsprechenden Geschwindigkeiten in P und Q seien
v,v'. Zieht man durch P eine Parallele mit der zweiten
Tangente, so ist das aus F auf diese Parallele gefillte
Perpendikel h'—4; und da C=hv="h'v’ ist, so hat
" man (h'—pv'=C—qyv'.

Man trage nun von P an (Fig. 9) die Strecken PT,
PT' auf, welche die Geschwindigkeiten v, v/ nach Richtung
und Grosse darstellen. Dann wird die kleine Strecke
TT' (erster Ordnung) in der Richtung von T nach T
dasjenige darstellen, was zur Geschwindigkeit v hinzu-
kommen musste, um die in Q stattfindende Geschwindig-
keit v/ hervorzubringen; und wenn w die Beschleunigung
bedeutet, so ist TT'=w.z. Zieht man FT, FT', so
entstehen zwei Dreiecke PFT und PFT’, deren Inhilte
nach dem vorigen ! C, :(C—#v’) sind, sich also nur um
eine Grosse zweiter Ordnung unterscheiden. Sie haben
aber PF —r zur gemeinschaftlichen Seite, und wenn
man nun diese als Basis betrachtet, so werden ihre auf

diese aus den Spitzen T, T’ senkrecht gezogenen Hihen
. v/ s e .
sich auch nur um » —» eine Grosse zweiter Ordnung

voneinander unterscheiden, und wenn man TU parallel

mit PF, und T'U senkrecht auf TU zieht, so ist T'U
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/ ' ; _
=y -} eine Grosse zweiter Ordnung; folglich £ UTT!
_ T _ v ]
—TT — wr
lich wegen ¢ = vz sind o, z von der gleichen Ordnung
der ersten,  war von der Ordnung o¢? ist also auch von

eine Grosse erster Ordnung, (Nim-

2
der Ordnung %?; daher ist %’i— von der Ordnung—%—:r.)

Das heisst aber: die Richtung der Beschleunigung w
weicht von der Richtung PF nur um einen Winkel ab
der zugleich mit dem Zeitelement z verschwindet. Daher
der Satz:

Wenn ein materieller Punkt P sich in einer ebenen
Curve bewegt, ein fester Pol sich in der Ebene dieser
Curve auf ihrer hohlen Seite befindet und der von ihm
nach jenem P entsendete Leitstrahl in gleichen Zeiten
gleiche Flichenriume durchliuft, so ist der materielle
‘Punkt P stets nach dem festen Pol F hin beschleunigt;
er bewegt sich also so, als ob er von ¥ angezogen
wiirde.

Lige F auf der erhabenen Seite der Bahn, so
wire P in der geraden Richtung von F weg beschleu-
nigt, bewegte sich also so, als ober von I abgestossen
wiirde.

Also auch umgekehrt: wenn ein materieller Punkt
von einem festen Pol angezogen oder abgestossen wird,
ohne dass irgend eine andere Kraft auf ihn wirkt, so
durchlduft er eine ebene Curve, deren Ebene durch den
Pol geht, und der von diesem nach jenem entsendete
Leitstrahl durchliuft in gleichen Zeiten gleiche Flichen-
rdume; mit andern Worten, die Flichengeschwindig-
keit des materiellen Punkts in Bezug auf den Kraftpol
ist constant; daher die wirkliche Geschwindigkeit stets
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mit dem Abstand des Pols von der Tangente der Bahn
verkehrt proportional. Die Bahn ist gegen den Pol zu
hohl, so lange Anziehung, erhaben, so lange Abstos-
sung stattfindet, endlich gerade, wenn die Kraft aufge-
hort hat.

Fiir den Fall, wo die Bahn eine Ellipse ist, wollen
wir jetzt die Beschleunigung w berechnen. Es sei F
(Fig. 10) derjenige Brennpunkt, um den der Leitstrahl
FP =r in gleichen -Zeiten gleiche Sectoren durchliuft,
PN die Normale, also FPN =9%; PT =v, PT' = v’ die
zu Anfang und Ende des Zeitelements z statthabenden
Geschwindigkeiten, also £ TPT! — ¢ der Contingenz-
winkel, TT! = wr parallel mit dem Leitstrahl PF. Man
verlingere PT! nach L und ziehe TL senkrecht auf PT,
also mit der Normale parallel. Im A TLT! ist dann
L. T =29, und £ L darf als Rechter betrachtet werden.
Folglich ist TL = (cos %) wr; aber zugleich darf TL als
Kreisbogen betrachtet werden, der aus dem Centrum P
mit dem Radius v beschrieben ist; also ist TL—=v¢g, und

(cos ¥) wr =ve. Nun war aber ¢ = (cos ) :E —
av 2 av?
{cos ) R also ist (cos &) wr = (cos &) o und
. T av? /
wenn man mit (cos ¥)r dividirt, w = R Ferner war
= —0—, alsov?= R w= L% L .
V= (cosd)r’ T (cos )’ T r2 (coad)irR

2
Da nun (cos 9)rR = b? war, so haben wir w = —;:-2%2—:
d. h. die Beschleunigung ist mit dem Quadrat des Leit-
strahls verkehrt proportional. Setzt man r’w = M, so
ist M constant und darf als die Zahl betrachtet werden,
welche die Masse des in F befindhichen anziehenden
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Kérpers ausdriickt, wofern diejenige des angezogenen

Korperchens P dagegen verschwirdend gering ist. Man
2

hat dann C? = b

a

M—=Ma(1—e?),alsoFlichengeschwin-

digkeit C =/ Ma(1—e?), Anziehung w = %-

Wenn T die Anzahl dér Secunden bezeichnet, welche
der materielle Punkt P braucht, um die ganze Bahn zu
durchlaufen, so ist ¢ CT der Inhalt der ganzen von der
Ellipse umschlossenen Fliche. Wir miissen also zuerst
diesen Inhalt kennen, wenn wir die Flichengeschwindig-
keit C oder auch die Masse M des anziehenden grossen
Korpers mittelst der Umlaufzeit T und der Bestimmungs-
sticke a, e der Ellipge ausdriicken wollen. Um diesen
Zweck zu erreichen, wollen wir die Beziehung zwischen
den rechtwinkligen Coordinaten des materiellen Punktes P
aufsuchen. '

Es sei F (Fig. 11) der Ort des grossen anziehenden
Korpers (der Kraftpol), G der andere Brennpunkt, O
das Centrum, P der materielle Punkt; aus diesem fille
man auf die Richtung der grossen Axe die Senkrechte
PM und setze OF = 0G —mea=¢, OM =x, MP =y,
FP—=r, GP=R, r+ R —=2a. Dann ist FM =x—¢,
GM—=—x+c¢, also FM2—=x2—2cx+c?, @2zx2+2cx+c’,
GM? — FM? —4cx—=4eax, und nach dem pythagoreischen
Satze r? — FM? 4 ¥2, HP e GTﬁ2+y2, daher R2 —r?* =
GM2—FM?2 =4eax. Aber RZ -’ =R+ R—r)=
2a(R—r) ; also 2a(R—r) == 4eax, und wenn man mit 2a
dividirt, so hat man das System der zwei Gleichungen

R+4r=—2a |
R — r = 2ex,

aus denen sich durch Addition und Subtraction R—a4-ex,
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r=a—ex ergibt. Aber aus R?’=GM:? 4 y? folgt
y'=R?— GM?, y’=(a+tex)?—(x+ea)’=
a’4+2eax+e6’x?—x? — 2eax —e’a’ =(1—eMa?— (l—e¥)x*=
(1—e?) (a®>—x?); also y?=(1—e?)(a’—x?), und, wenn
man diese Gleichung durch b?=a?(1—e?) "dividirt,
%::1—-;%; also auch §—+—%z—:1,

in welcher Form man gewdhnlich die Gleichung der

Ellipse darstellt. Setzt man darin y = —2— z, 80 bekommt

2 2
- x?  z :
sie die Gestalt o a?—_—-i, also x? + z2—a?, und dieses

ist die Gleichung eines Kreises, der aus dem Centrum O
mit dem Radius a (der grossen Halbaxe der Ellipse)
beschrieben ist; z ist die Ordinate des Kreises, die zur
Abscisse x gehort, und daher der Richtung nach mit
der Ordinate y der Ellipse zusammenfillt; nur st y

kiirzer als z, nidmlich —2— mal so gross. Man denke die
zahllosen Ordinaten z des obern Halbkreises alle gezogen
und verkiirze sie nun in dem Verhiltniss 2—, so wird

man alle Ordinaten y der obern Hilfte der Ellipse er-
halten. Die Ellipse ist ein bloss in einer Rich-
tung iberall gleichmissig verkiirzter Kreis.
Man iiberziehe die’ Fliche des Kreises mit einem Netz
oder Gewebe, dessen Faden die Coordinatenrichtungen
haben, so wird dieses Netz aus lauter sehr kleinen Recht-
ecken bestehen, und beim Uebergang vom Kreis zur
Ellipse werden die mit der grossen Axe parallelen Grund-
Jinien dieser Rechtecke (gleichsam der Zettel des Ge-
webes) ungeindert bleiben, aber die mit der kleinen Axe
parallelen Héhen (der Eintrag) sich simmtlich auf ihre



—_ 79 —

—:— fachen Werthe verkiirzen; also sind dann diese Recht-

ecke auch ihrem Inhalte nach simmtlich das —l;— fache

geworden desgen, was sie frither waren. Daher muss
auch jedes aus der Fliche des Kreises beliebig heraus-
geschnittene Stiick (das eine ungeheure Menge von jenen
Rechtecken enthiilt) beim Uebergang zur Ellipse im sel-

ben Verhiltniss (%) kleiner werden. Die ganze vom

Kreise umschlossene Fliche ist bekanntlich za?; folglich
ist die ganze von der Ellipse umschlossene Fliche zab.
Also ist I CT = nab, CT =2zab, C2T?=(22)%%?=
(27)%a*(1—e?). Oben war C?=Ma(1—e?); also ist
Ma(1— e/ T*=(x)a(1—e?), daher M= (21" 1y -

Wenn verschiedene materielle Punkte P, P/, P//, ....
einen einzigen grossen Centralkorper F' umkreisen, und
man die grossen Halbaxen ihrer Bahnen und ihre Um-
laufszeiten durch Accente unterscheidet, so muss der vor-
liegende Ausdruck fiir jeden einzelnen materiellen Punkt
die Masse des einen und selben Centralkorpers darstel-
len. Man wird daher

3.3 aiB all3 aNl3

T2 — iz — e i —
haben, d. h. die Curven der grossen Halbaxen
werden sich wie die Quadrate der Umlaufszei-
ten verhalten. Fiir die Planeten (und Kometen) un-
sers Sonnensystems ist dieser Satz zuerst von Keppler
auf erfahrungsmissigem Wege aus den Beobachtungen
abgeleitet worden und fiithrt daher den Namen des drit-
ten Keppler’schen Gesetzes. (Die zwei andern Kepp-
ler'schen Gesetze sagen aus, dass jeder Planet eine Ellipse
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durchliuft, in deren' einem Brennpunkt sich die Sonne
befindet, und dass der von dieser nach dem Planet ge-
hende Lichtstrahl in gleichen Zeiten gleiche Sectoren
beschreibt.)

Es sei O (Fig.12) das Centrum, F de;jenige Brenn-
punkt der Ellipse, in dem sich der grosse anziehende
Korper befindet, A das Ende der grossen Halbaxe (das
Perihel), P der materielle Punkt, PM —y dessen Or-
dinate, AQ der dem elliptischen Bogen AP entsprechende
Kreisbogen, also QM =— 1z, der entsprechende Mittel-
punktswinkel Z. AOQ =u (eccentrische Anomalie),
der Winkel um den sich in der Ellipse der Leitstrahl
FP (=r) von der Richtung nach dem Scheitel (oder
Perihel) A entfernt hat, L AFP — ¢ (wahre Anoma-
lie), endlich t die Zeit (in Secunden), welche der Licht-
strahl r gebraucht hat, um den elliptischen Sector AFP

L] - . b
zu beschreiben. Dann ist dieser — mal so gross als

das Stiick AFQ der Kreisfliche, und dieses gleich dem
Kreissector AOQ weniger das Dreieck FOQ. Aber
Sector AOQ =1a’u, AFOQ=}ea.z, und,da z=(sinu)-a,
AFOQ=1!a% esinu. Also Kreisstiick

AFQ =1 a? (u—e sin u); daher elliptischer Sector AFP
—1lab(u—esinu)=1!a?}/1 — e? (u—e sin u); dieser
Sector ist zugleich I Ct; also Ct = a? /' 1—e2(u—e sin u).
Nun war aber C =/ Ma(T—e?) = /M |/a |/ 1—e=

M

a'3

Der mit der Zeit proportionale Ausdruck rechts heisst
die mittlere Anomalie; sie wiirde den Centriwinkel
des Kreises AQ darstellen, wenn dieser vom Planet mit
gleichformiger Geschwindigkeit in derselben Zeit T

et

Folghch 1st u—esinu= V
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L]

durchlaufen wiirde, wie die ganze Ellipse. ' Der Factor

V%— wird gewthnlich mit n bezeichnet und heisst die

mittlere Geschwindigkeit des Planeten (es ist eine
Winkelgeschwindigkeit gemeint). Man hat also

n-—-l/a'3 —’i.‘ .

Da die Form der Gleichung u-—e sin u = nt transscen-
dent ist, so ist ihre Auflésung, wenn die Zeit t gegeben
ist und die eccentrische Anomalie u gesucht werden soll,
schwierig; sie fiihrt den Namen der Keppler’schen
Aufgabe. Weil jedoch e bei den Planeten ein kleiner
Bruch ist, so hat manin erster roher Anniherung u = nt
als nichste Verbesserung folgt dann aus u—nt+esinu
der corrigirte Werth u, — nt + e sin (nt), dann u,=
nt + esinu;, u;—=nt4 esinu,, u. s. f., bis in der
Reihe nt, u,, u,, u,, .... die letzten Glieder sich um
weniger von einander unterscheiden, als der Fehler be-
trigt, den man zulassen will.

Da z —=(sin u) a ist, so hat man auch y = (sin u}b.
Sobald also u berechnet ist, findet man die Coordinaten
des Planeten P mittelst der Gleichungen x = a cos u,
y=Db sin u. Aus r—a—ex folgtdann r—a(l—e cosu).
Fiir die Anwendung ist es auch wiinschbar, eine be-
queme Formel fiir die Berechnung der wabren Anomalie
¢ zu haben.

Im A FPM ist FM—X——ea—'a(cos u—e) und
zugleich =rcosg; MP =Db sinu=r sin ¢; also

r+rcosg=—a(l—ecosu)+ a(cosu—e)=
a(l—e 4 cosu—ecosu)=a(1—e)(1+ cosu); also
r’1+4cosgp)=a(l—e) @+ cosu), und, wenn man
mit dieser Gleichung in die andere rsin gp—=a}/1—e?-sinu

Bein. Mittheil. 507 und 508.
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rsing _ a/1—e? sinu

r(14cos¢)” a(l—e) 14cosu’
aber 1—e* = (14-¢) (1—e), yY1—e? =} 1+e - 1 —c,
Y P Vi—et _[1+e _y/1+e
_1-—e_|/1~—e-[/1—e,daher-—i—:_?—._vi____;_ —

Die Gleichung reducirt sich hierdurch auf

sin ¢ _Vﬁ?_ sin u__
14cosgp  Fil—e 14cos u
(Fig.18.) Es seien OA — OB = OP —= 1 Radien
cines Kreises, Z. AOP =g, so ist AB=2, £ ABP=!¢
als Peripheriewinkel, der auf den Bogen AP steht,
MP=sing, OM=—cosg, BM =14 cosg, also

sin ¢ _ MP _ @ . 2 .
Troosg — BM = tang 5 da im Dreieck BMP in

Bezug auf L B :% die Seite MP gegeniiberliegende

dividirt, erhilt man:

und BM anliegende Kathete ist. Die Gleichung, mittelst
welcher die wahre Anomalie aus der eccentrischen ge-
funden werden kann, reducirt sich hiedurch auf '

g __Y/1+e u
tang ) Vi—e - tang 5

Wenn M eine der Sonnenmasse entsprechende fiir
alle Planeten und Kometen gleiche Zahl, a die grosse
Halbaxe der Bahn eines Planeten oder Kometen, e das
Eccentricititsverhiltniss, r die Entfernung von der Sonne,
t die seit dem Durchgang durchs Perihel verflossene Zeit,
u die eccentrische, ¢ die wahre Anomalie, T die Um-
laufszeit bedeutet, so ist die elliptische Bewegung durch
folgendes System von Gleichungen ausgedriickt:

N L
= =0 u—esmmu=nt, r=a(l—e cos u),
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