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IVr. 505 — SOU.

Ii. Schläfli.
Elementare Bestimmung der Beschleunigung

der elliptischen
Planetenbewegung. (Mit 1 Tafel.)

(Vorgetragen den 2. Nov. 1861.)

Wenn die Summe der zwei Strahlen r und K (Fig. 1)
die von den zwei festen Punkten F und G aus nach dem

beweglichen Punkt P hingehen, constant ist, so beschreibt
dieser Punkt P eine Curve, die Ellipse heisst.

Die zwei festen Punkte F, G heissen deren
Brennpunkte, ihr Abstand FG 2c heisst die ganze Ec-
centricität, dessen Mitte O das Centrum, OF c
die halbe Eccentricität. Es sei B. + r 2a, dann
igt klar, dass a ]> c sein muss. [Wenn a c ist, so
kann der Punkt P nur in der Geraden, welche F und G
verbindet, sich bewegen. — Wenn a < c ist, so ist das

Dreieck FGP nur dann möglich, wenn man B, —r 2a

setzt; die vom Punkt P in diesem Falle beschriebene
Curve heisst Hyperbel.]

Ohne die Gestalt des Dreiecks FGP zu verändern,
kann man es umkehren, so dass G nach F und F nach
G kömmt, und dass P oben bleibt, aber so weit nach
rechts zu liegen kömmt als es jetzt links liegt. Man
kann aber auch das Dreieck FGP und seine Basis FG
umlegen, so dass dann P ebensoweit unten ist, als jetzt
oben, aber nach links hin in derselben Lage. Wenn
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man daher durch F, G eine unbegrenzte Gerade, uud

auf diese senkrecht durch das Centrum O eine andere

unbegrenzte Gerade zieht, so theilt jede von diesen die

Curve in zwei symmetrische Hälften, durch beide wird
sie in vier congruente Quadranten zerschnitten. Diese

zwei Geraden heissen die Hauptaxen der Curve. Wir
wollen sehen, wie weit die Punkte vom Centrum entfernt
sind, in denen diese Hauptaxen von der Curve geschnitten

werden.

Wenn der bewegliche Punkt P (Fig. 2) links in die

Hauptaxe kömmt, welche durch die Brennpunkte F, G

geht, so ist GP R, FP r und R + r 2a; man
mache rechts GQ r, so ist PQ =¦ 2a. Da aber O die

Mitte von FG und die Ansätze PF, GQ links und rechts
einander gleich sind, so ist O auch die Mitte von PQ.

Folglich ist OP =¦ a. Da die Curve sowohl durch P als

durch Q geht, so ist 2a die Länge des horizontalen
Durchmessers.

Wenn der bewegliche Punkt P (Fig. 3) in die
senkrechte Hauptaxe kömmt, so ist er nach einem bekannten
Satze von beiden Brennpunkten F und G gleich weit
entfernt, d. h. es ist R r. Da aber R + r — 2a ist,
so folgt r a. Wenn wir nun OP b setzen, so folgt
aus dem pythagoreischen Satze a2 b2 + c2, also b2=a2—c2.
Daher ist b «<[ a. Man nennt a die grosse und b die

kleine Halbaxe der Ellipse; 2a und 2b heissen als

Längen des horizontalen und des verticalen Durchmessers

der Ellipse die grosse Axe und die kleine Axe
derselben.

Da c <: a ist, so ist, wenn wir c ea setzen, e ein
ächter Bruch (für die Ellipse); man hat dann c2 e2a2,

daher b2 (l—e2)a2, und endlich b a}/ï—e2.



— 67 —

Es sei (Fig. 4) FP + PG FQ + QG, man mache
HG GQ und FK FP, und ziehe PK, QH und PQ.
Es folgt FP + PH + HG FK + KQ + QG, und
wenn man hievon FP + HG FK + QG subtrahirt, so
bleibt PH KQ. Die Dreiecke FPK und GHQ sind

gleichschenklig; wenn man die Punkte P und Q nahe

genug zusammenrückt, so werden diese Dreiecke so

schmal als man nur will, und die Winkel an ihren Grundlinien

werden sich dann von Rechten so wenig
unterscheiden als man nur will. Die Dreiecke PQH und QPK
können daher als solche betrachtet werden, die bei H
und K rechte Winkel haben, mit einem Fehler, den man
so klein werden lassen kann als man nur will, und der
auf die endlich bleibenden Verhältnisse der Seiten eines

jeden dieser zwei Dreiecke einen ebenfalls verschwindenden

Einfluss ausübt. Sehen wir daher von diesem
Fehler ab, so haben die zwei Dreiecke die Hypotenuse
PQ gemein und die Katheten PH und QK gleich, sind
daher congruent und haben also die den gleichen
Katheten anliegenden Winkel gleich, d. h. es ist L. GPT

A FQU, wenn, die Strecke PQ verschwindet.
Nehmen wir jetzt F, G als Brennpunkte und FP+

PG 2a als Werth der grossen Axe einer Ellipse an,
so ist die verschwindend kleine Strecke PQ ein Bogen
der Ellipse und dessen Verlängerung UT ihre Tangente.
Wir haben daher den Satz :

Wenn durch einen Punkt P der Ellipse eine

Tangente an dieselbe gezogen wird, so bilden die aus den

Brennpunkten F und G nach diesem Punkte P gehenden
Strahlen mit der Tangente gleiche Winkel. Daher wird
Licht, das vom einen Brennpunkt ausgeht, an der Curve
so zurükgeworfen, dass es durch den andern Brennpunkt
geht und davon tragen diese Punkte ihren Namen.



Die Gerade, welche^ durch den Berührungspunkt
senkrecht auf die Tangente gezogen wird, heisst
Normale. Diese halbirt also den Winkel FPG, den di«
zwei Strahlen aus den Brennpunkten mit einander
bilden. Wir wollen den halben Winkel derselben fortan
mit % bezeichnen.

Es seien F, G, O (Fig. 5) die Brennpunkte und das

Centrum, P irgend ein Punkt der Ellipse, OM die Richtung

der kleinen Axe, PNM die Normale in P; PN n,
PM m, FP r, GP R. Durch die drei Punkte
P, F, G kann ein Kreis gelegt werden. Da die kleine
Axe mitten auf der Sehne FG senkrecht steht, so halbwt
sie den zu dieser Sehne gehörenden Kreisbogen, und die

Gerade, welche P mit der Mitte dieses Bogens verbindet,
muss dann auch den Peripheriewinkel FPG halbiren,
kann also keine andere als die Normale sein. Folglich
ist M die Mitte des Kreisbogens. Hiedurch ist bewiesen,
dass die vier Punkte F, G, P, M auf einem und demselben

Kreise liegen. Daher ist Z_ MFG Z. MPG Sr,

weil beide Peripheriewinkel auf demselben Bogen (der
zur Sehne MG gehört) stehen.

Man fälle aus M resp. MH und MK senkrecht auf
PF und auf PG; die rechtwinkligen Dreiecke MHP und
MKP sind dann congruent, weil sie die Winkel bei P
gleich und die Hypotenuse m gemein haben. Also ist
MH MK, PH PK. Nun sind aber auch die Dreiecke
FOM, GOM congruent, weil sie die Kathete OM gemein
und die Katheten OF, OG gleich haben; daher FM GM.
Die zwei Dreiecke FHM und GKM haben also bei H,
K rechte Winkel, die Hypotenusen FM, GM gleich und
die Katheten MH, MK auch gleich, sind daher congruent;
folglich ist auch FH KG, daher
PF + PG PF + FH + PG — KG PH + PK 2PH,



weil PH PK, wie schon bewiesen. Da nun PF4-PG
3^: 2a, so hat m*n 2PH =s= 2a, also PH a, d. h. (cos *).__.

r=a. Man inennt FM die grosse, PN die kleine Nor-
m*le, hat.also den Satz:

Die Projection der grossen Normale auf
«inen der zwei Brennstrahlen ist gleich der
grossen Halbaxe.

Die Dreiecke PFM und PNG sind einander ähnlich,
weil ihre Winkel bei P einander gleich sind (jeder -=&)
und ihre Winkel bei M und G als Peripberiewinkel, die
auf demselben (zur Sehne FP gehörenden) Bogen stehen»

so dass sie also zwei Winkel gleich haben. Daher
verhalten sich ihre den Winkeln bei M und G gegenüber
liegenden Seiten zu einander, wie die den Winkeln bei
F und N gegenüber liegenden, d. h. r;u m;B,
also mn rR, das Produkt der grossen und kleinen
Normale ist gleioh dem Produkt der zwei Brennstrahlen.

Nach einem bekannten Satz ist —- —tt-, also
r R '

FN + NG 2c c „ _._.auch ___ -—g- 2V - e ; folglich FN er,

NG eR, FN X NG e2rR Da aber FG und PM
Sehnen desselben Kreises sind, so ist FN X NG
PN X NM n (m—n) e2rR, mn — n2 e2rR, mn
n2 + e2rR, n2 — mn — e2rR ; es war aber mn rR ;

folglich ist n2 (1—e2)rR (1—e*)mn, und wenn man
beide Seiten dieser Gleichung durch n dividirt, n=(l—e2)m,
also mn (1—e2) m2, d. h. rR (1—e2) m2, (cos Sr)1 rR=
(1—ea) (cos Sr)2m2 (1—e2) ([cosSr] m)2 ; aber (cos Sr)m =a
und Cl—e2) a2 b2; also ist (cos SO2 rR ^= b2,

das Produkt der Projectionen beider
Brennstrahlen auf die Normale ist gleich dem Quadrat

der kleinen Halbaxe.
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Unter Winkel wollen wir diejenige reine Zahl
verstehen, welche anzeigt, wie viel Mal der entsprechende
Kreisbogen so gross ist als der Radius, mit andern Worten,

diejenige Zahl, welche die Länge des Bogens
ausdrückt, wenn der Radius des Kreises als Einheit des

Längenmaasses gewählt wird. Der Kreisbogen ist dann

(Mittelpunktwinkel) XRadius. Der dem Halbkreise
entsprechende Winkel, den man sonst mit 180 Graden
bezeichnet, ist dann gleich der Zahl n 3,1415927 ; also-

1 Grad -jgg- =0,0174533, (sin ^j =(sin0,0174533)

0,0174524, (cos 0,0174533) 0,9998477. Hier ist der

Winkel klein von der Ordnung sein Cosinus klei¬

ner als 1 um eine kleine Zahl von der Ordnung 10000
1 \2I

inn und sein Sinus kleiner als er selbst um eine

1 /i \ä
kleine Zahl von der Ordnung JöÖÖÖÖÜ= VÏOÔJ • Ueber"

haupt, wenn x einen sehr kleinen posit. Winkel bezeichnet,

so ist tang x > x > sin x, also 1 > >
sin x sin x _Aber da — cos x, so hat man 1 >tang x tangx

sm x ]>cosx. Da man nun das ganze Intervalli—cosx
x

so klein machen kann als man nur will, so muss um so
sm xmehr der erste Theil desselben 1 der Null sox

nahe gebracht werden können als man nur will. Wenn
man dann sin x x setzt, so ist der Fehler von einer

sin xböhern Ordnung als x. Da nämlich 1 <1—cosx,
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so ist x — sinx.<x(l—cosx), jener Fehler also von
derselben Ordnung mit x(l — cos x). Von welcher
Ordnung ist nun aber 1 — cos x? Aus (cos x)2 + (sinx)2=l
folgt 1 — (cos x)2 (sin x)2, d. h. (1 — cos x) (1 + cos x)

-, (sin x)2 /sin x\2 1 + 1 x2
(sin x)2, 1 — cos x =j =| • — -_-v Ji 1 + cosx V x 1+cosx 2

und da die zwei Brüche | und _-. der Ein-
V x 1+cosx

heit ohne Ende sich nähern, wenn x gegen Null zu
sinkt, so hat man 1 — cos x x2 mit einem Fehler
höherer Ordnung als x2 (er ist von der Ordnung x4).
Also ist nun x — sin x <<;

_
x3, d. h. wenn man sin x x

setzt, so begeht man einen'Fehler von der Ordnung x3,

und wenn man cos x 1 setzt, einen von der Ordnung x2.

Wenn(Fig.6) im obern Theil der Ellipse der bewegliche
Punkt P von links nach rechts eine sehr kleine Strecke
a zurücklegt, so dreht sich auch die Tangente um einen
sehr kleinen Winkel cp vorwärts, in demselben Sinn wie
auch die zwei Brennstrahlen um die sehr kleinen Winkel
f und g sich vorwärts drehen. Man nennt a das E1 e-

ment der Curve, cp den entsprechenden Contingenz-
winkel. Wir suchen jetzt ihr Verhältniss. Es ist klar,
dass auch die Normale sich um cp vorwärts gedreht hat.
Da nun die Normale den Winkel der zwei Brennstrahlen

f + S
halbirt, so folgt cp —ç-S Wenn nämlich die zwei

Brennstrahlen mit irgend einer festen Richtung, z. B.
der horizontalen nach links, die Winkel u, ß bilden, so

muss die Normale als mittlere Richtung mit jener festen

den Winkel —-„-- bilden ; und wenn a, ß im vorliegenden

Fall in a + f, ß + g übergehen, so geht —«-^ in
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(« + f + (/3 + g) « + ß f + g ,T
2 ~ ~T^ + ~lr u '

male hat sich um —^- vorwärts gedreht.

Oder auch so: Die Geraden PK, QK (Fig. 6) mögen
die Winkel FPG und FQG halbiren, und es sei Z- PFQ

f, Z. PGQ g, L. PKQ cp. Nun ist die doppelte
Summe aller Winkel des Dreiecks PKQ gleich der Summe
aller Winkel beider Dreiecke PFQ und PGQ zusammen ;

d. h. Icp + 2 L. KPQ + 2 Z. KQP f + g + Z. FPQ
+ Z- GPQ + Z_ FQP + Z. GQP; aber 2 Z. KPQ
L. FPQ + Z. GPQ, 2 Z. KQP Z_ FQP + Z. GQP;

folglich 2<p f+g; cp= Ì±È.

(Fig. 7.) Es sei F der eine Brennpunkt, Q ein Punkt
der Ellipse, PQ o das Element der Curve, QN die

Normale, FP r der Brennstrahl, Z. PFQ f. Man
mache FK FP, so hat das Dreieck PQK bei K einen
rechten Winkel und Z. QPK Z. FQN Sr; folglich
ist PK (cos Sr) • ff, aber zugleich ist PK f • r, folglich

f (cos Sr) ; ebenso g (cos St) -^- y Daher

<P — l ((cosSr) ~ + (cosSr) -|-)=.(co8Sr). a(^- + ~^j
r + R

.(cosSr).ff.—=—, und da r + R=2a ist, endlich

/- a.-A aff
cp (cos Sr). -p-g-,

welche Gleichung die gegenseitige Abhängigkeit zwischen
tCurvenlement und Contingenzwinkel ausdrückt.
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Ein sehr kleiner Körper P, den wir im Vergleich

mit seiner Entfernung von einem festen Punkte F als
Punkt betrachten dürfen, bewege sich in einer durch F
gelegten Ebene so, dass der Leitstrahl FP r in
gleichen Zeiten gleiche Flächenräume (Sectoren)
beschreibt; wenn t die verflossene Anzahl von Sekunden
bedeutet, so sei der von r durchlaufene Sector gleich
4 Ct; der während jeder Secunde durchlaufene stets an
Inhalt sich gleich bleibende Sector

_
C heisst dann die

Flächengeschwindigkeit. Bedeutet r einen sehr
kleinen Bruch, v die Geschwindigkeit des Körpers P, so

hat er während der sehr kurzen Zeit von r Secunden
das Curvenelement a vr, und sein Leitstrahl den
Sector 4 Cr durchlaufen. Aber dieser sehr schmale Sector

kann nun als Dreieck gefasst werden, das a zur
Basis und das aus F auf die Tangente gefällte Perpendikel

h zur Höhe hat, dessen Inhalt also 4 ho-beträgt.
Also ist nun Cr 4 ha ¦=. \ hvr, und wenn man mit
4 r dividirt, C hv.

Das Perpendikel h bildet aber mit dem Leitstrahl r
denselben Winkel, wie die Normale ihn mit r bildet;
diesen bezeichneten wir mit Sr; folglich ist h (cos Sr)r

C
v — (cos^)r

Es seien P, Q (Fig. 8) zwei nahe auf einander

folgende Punkte der Bahn des Körpers, in beiden ziehen

wir die Tangenten der Bahn, und setzen wieder PQ=a
(Element der Curve). Wenn nun a sehr klein ist, so

wird P nur um eine Grösse zweiter Ordnung (von der

Ordnung ff2) von der zweiten Tangente abstehen. Denn

wenn man in P nnd Q die Normalen zieht, ihren Durchschnitt

K nennt, KQ ç setzt und aus dem Centrum K
mit dem Radius q einen Kreis beschreibt, so wird dieser
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die zweite Tangente in Q berühren und die Normale
KP äusserst nahe bei P schneiden (in P Ist dann x
der sehr kleine Winkel PKQ, so ist a nahe px und
P' steht um q(1 — cos x) 4 px2 von der zweiten
Tangente ab. Da aber •? endlich ist, so ist px2 von
derselben Ordnung mit ff2. Also steht P um eine Grösse

von der Ordnung <r2 von der zweiten Tangente ab; wir
wollen sie mit 17 bezeichnen. Die aus F auf die erste
und zweite Tangente gefällten Perpendikel seien h, h',
die entsprechenden Geschwindigkeiten in P und Q seien

v, v'. Zieht man durch P eine Parallele mit der zweiten

Tangente, so ist das aus F auf diese Parallele gefällte
Perpendikel h'—17; und da C hv hV ist, so hat
man (h'—j;)v' C — jfv'.

Man trage nun von P an (Fig. 9) die Strecken PT,
PT' auf, welche die Geschwindigkeiten v, v' nach Richtung
und Grösse darstellen. Dann wird die kleine Strecke
TT' (erster Ordnung) in der Richtung von T nach T'
dasjenige darstellen, was zur Geschwindigkeit v
hinzukommen müsste, um die in Q stattfindende Geschwindigkeit

v' hervorzubringen; und wenn w die Beschleunigung
bedeutet, so ist TT'=w-r. Zieht man FT, FT', so

entstehen zwei Dreiecke PFT und PFT', deren Inhalte
nach dem vorigen 4 C, 4(C—17V') sind, sich also nur um
eine Grösse zweiter Ordnung unterscheiden. Sie haben
aber PF r zur gemeinschaftlichen Seite, und wenn
man nun diese als Basis betrachtet, so werden ihre auf
diese aus den Spitzen T, T' senkrecht gezogenen Höhen

v'sich auch nur um y —, eine Grösse zweiter Ordnung

voneinander unterscheiden, und wenn man TU parallel
mit PF, und TU senkrecht auf TU zieht, so ist T'U
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v'
»7 —eine Grösse zweiter Ordnung; folglich Z. UTT1

TlU v' n
rppT" • — eine Grösse erster Ordnung. (Nämlich

wegen a vr sind a, r von der gleichen Ordnung
der ersten, y war von der Ordnung o2, ist also auch von

f) X
der Ordnung r2; daher ist — von der Ordnung—-=r.)

Das heisst aber: die Richtung der Beschleunigung w
weicht von der Richtung PF nur um einen Winkel ab

der zugleich mit dem Zeitelement r verschwindet. Daher
der Satz:

Wenn ein materieller Punkt P sich in einer ebenen
Curve bewegt, ein fester Pol sich in der Ebene dieser
Curve auf ihrer hohlen Seite befindet und der von ihm
nach jenem P entsendete Leitstrahl in gleichen Zeiten
gleiche Flächenräume durchläuft, so ist der materielle
Punkt P stets nach dem festen Pol F hin beschleunigt;
er bewegt sich also so, als ob er von F angezogen
würde.

Läge F auf der erhabenen Seite der Bahn, so

wäre P in der geraden Richtung von F weg beschleunigt,

bewegte sich also so, als ob er von F abgestossen
würde.

Also auch umgekehrt: wenn ein materieller Punkt
von einem festen Pol angezogen oder abgestossen wird,
ohne dass irgend eine andere Kraft auf ihn wirkt, so

durchläuft er eine ebene Curve, deren Ebene durch den

Pol geht, und der von diesem nach jenem entsendete
Leitstrahl durchläuft in gleichen Zeiten gleiche Flächenräume;

mit andern Worten, die Flächengeschwindigkeit
des materiellen Punkts in Bezug auf den Kraftpol

ist constant; daher die wirkliche Geschwindigkeit stets
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mit dem Abstand des Pols von der Tangente der Bahn
verkehrt proportional. Die Bahn ist gegen den Pol zu
hohl, so lange Anziehung, erhaben, so lange Abstos-

sung stattfindet, endlich gerade, wenn die Kraft aufgehört

hat.
Für den Fall, wo die Bahn eine Ellipse ist, wollen

wir jetzt die Beschleunigung w berechnen. Es sei F
(Fig. 10) derjenige Brennpunkt, um den der Leitstrahl
FP r in gleichen Zeiten gleiche Sectoren durchläuft,
PN die Normale, also FPN Sr; PT v, PT1 =z v' die

zu Anfang und Ende des Zeitelements r statthabenden
Geschwindigkeiten, also Z_ TPT1 cp der Contingenz-
winkel, TT1 =; wr parallel mit dem Leitstrahl PF. Man
verlängere PT1 nach L und ziehe TL senkrecht auf PT,
also mit der Normale parallel. Im A TLT1 ist dann
_L T Sr, und Z_ L darf als Rechter betrachtet werden.
Folglich ist TL (cos Sr) wr ; aber zugleich darf TL als

Kreisbogen betrachtet werden, der aus dem Centrum P
mit dem Radius v beschrieben ist; also ist TL=v<y, und

aer
(cos Sr) wr vcp. Nun war aber cp (cos Sr) rR

av __ „ __ ctv2

(cos Sr) -^r- r, also ist (cos Sr) wr (cos Sr)—^- r, und

wenn man mit (cos Sr) r dividirt, w -p • Ferner war

_ C ._ C2 __a02 1

V~(cos»)r' a °V — (cosSr)2r2,W— r2
* (cosSr)2rß*

aC2
Da nun (cos $)2rR b2 war, so haben wir w ,.,,,>
d. h. die Beschleunigung ist mit dem Quadrat des

Leitstrahls verkehrt proportional. Setzt man r2w M, so

ist M constant und darf als die Zahl betrachtet werden,
welche die Masse des in F befindlichen anziehenden
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Körpers ausdrückt, wofern diejenige des angezogenen
Körperchens P dagegen verschwindend gering ist. Man

b2
hat dann C2 M=Ma(l—e2), also Flächengeschwin-

et

M
digkeit G y Ma(l—e2), Anziehung w —_-•

Wenn T die Anzahl der Secunden bezeichnet, welche
der materielle Punkt P braucht, um die ganze Bahn z.u

durchlaufen, so ist 4 CT der Inhalt der ganzen von der
Ellipse umschlossenen Fläche. Wir müssen also zuerst
diesen Inhalt kennen, wenn wir die Flächengeschwindigkeit

C oder auch die Masse M des anziehenden grossen
Körpers mittelst der Umlaufzeit T und der Bestimmungsstücke

a, e der Ellipse ausdrücken wollen. Um diesen
Zweck zu erreichen, wollen wir die Beziehung zwischen
den rechtwinkligen Coordinaten des materiellen Punktes P
aufsuchen.

Es sei F (Fig. 11) der Ort des grossen anziehenden

Körpers (der Kraftpol), G der andere Brennpunkt, O
das Centrum, P der materielle Punkt; aus diesem fälle

man auf die Richtung der grossen Axe die Senkrechte
PM und setze OF OG ea c, OM x, MP y,
FP r, GP R, r+ R 2a. Dann ist FM x —c,
GM=x+c, also FM!=x2-2cx+c2, GM2=rx2+2cx+c2,
GM2 — FM2=4cx=4eax, und nach dem pythagoreischen

Satze r2 FM2 + y2, R2 GM2+y2, daher R2 — r2

GM2 —FM2 4eax. Aber R2 - r2 (R+ r) (R — r)
2a(R—r) ; also 2a(R—r) 4eax, und wenn man mit 2a

dividirt, so hat man das System der zwei Gleichungen
l R + r 2a, /

|R— r=r2ex,t
aus denen sich durch Addition und Subtraction R=a-(-ex,
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r a — ex ergibt. Aber aus R2 GM2 + y2 folgt
y2 R2-GM2, y2 (a+ex)2 — (x+ea)2
a2+2eax+e2x2 — x2 — 2eax — e2a2 1—e2)a2— (l—e2)x2=
(1 — e2) (a2 — x2) ; also y2 (1 — e2) (a2 — x2), und, wenn
man diese Gleichung durch b2 a2(l—e2) dividirt,
y2 J_2 J_2 y2
-P=1— -^i alS0 aUCh -&-+ b2_ 1'
in welcher Form man gewöhnlich die Gleichung der

Ellipse darstellt. Setzt man darin y z= — z, so bekömmt
aH>

x2 z2
sie die Gestalt -j-+ -5-=l, also x2 + z2 a2, und dieses

a-* s,1

ist die Gleichung eines Kreises, der aus dem Centrum O

mit dem Radius a (der grossen Halbaxe der Ellipse)
beschrieben ist; z ist die Ordinate des Kreises, die zur
Abscisse x gehört, und daher der Richtung nach mit
der Ordinate y der Ellipse zusammenfällt; nur ist y

kürzer als z, nämlich — mal so gross. Man denke die

zahllosen Ordinaten z des obern Halbkreises alle gezogen

und verkürze sie nun in dem Verhältniss —, so wird
a

man alle Ordinaten y der obern Hälfte der Ellipse
erhalten. Die Ellipse ist ein bloss in einer Richtung

überall gleichmässig verkürzter Kreis.
Man überziehe die' Fläche des Kreises mit einem Netz
oder Gewebe, dessen Faden die Coordinatenrichtungen
haben, so wird dieses Netz aus lauter sehr kleinen Rechtecken

bestehen, und beim Uebergang vom Kreis zur
Ellipse werden die mit der grossen Axe parallelen Grundlinien

dieser Rechtecke (gleichsam der Zettel des

Gewebes) ungeändert bleiben, aber die mit der kleinen Axe
parallelen Höhen (der Eintrag) sich sämmtlich auf ihre
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t.
— fachen Werthe verkürzen ; also sind dann diese Recht-
a

ecke auch ihrem Inhalte nach sämmtlich das — fache
a

geworden dessen, was sie früher waren. Daher muss
auch jedes aus der Fläche des Kreises beliebig
herausgeschnittene Stück (das eine ungeheure Menge von jenen
Rechtecken enthält) beim Uebergang zur Ellipse im

selben Verhältniss I — kleiner werden. Die ganze vom

Kreise umschlossene Fläche ist bekanntlich ;za2; folglich
ist die ganze von der Ellipse umschlossene Fläche nah.
Also ist

_
CT nah, CT 2*ab, C2T2 (2^)2a2b2

(2;t)2a4(l—e2). Oben war C2 Ma(l— e2); also ist

Ma(l-e2)T2=r(2^)2a*(l-e2), daher M (2jiy~.
Wenn verschiedene materielle Punkte P, P', P",....

einen einzigen grossen Centralkörper F umkreisen, und
man die grossen Halbaxen ihrer Bahnen und ihre
Umlaufszeiten durch Accente unterscheidet, so muss der
vorliegende Ausdruck für jeden einzelnen materiellen Punkt
die Masse des einen und selben Centralkörpers darstellen.

Man wird daher

a'
rp2 rp/2 nP//2 rrv//2

haben, d. h. die Curven der grossen Halbaxen
werden sich wie die Quadrate der Umlaufszeiten

verhalten. Für die Planeten (und Kometen)
unsers Sonnensystems ist dieser Satz zuerst von Keppler
auf erfahrungsmässigem Wege aus den Beobachtungen
abgeleitet worden und führt daher den Namen des dritten

K eppler'schen Gesetzes. (Die zwei andern Kepp-
ler'schen Gesetze sagen aus, dass jeder Planet eine Ellipse



durchläuft, in deren einem Brennpunkt sich die Sonne
befindet, und dass der von dieser nach dem Planet
gehende Lichtstrahl in gleichen Zeiten gleiche Sectoren

beschreibt.)
Es sei O (Fig. 12) das Centrum, F derjenige Brennpunkt

der Ellipse, in dem sich der grosse anziehende

Körper befindet, A das Ende der grossen Halbaxe (das

Perihel), P der materielle Punkt, PM=y dessen

Ordinate, AQ der dem elliptischen Bogen AP entsprechende
Kreisbogen, also QM=:z, der entsprechende
Mittelpunktswinkel jL AOQ=u (eccentrische Anomalie),
der Winkel um den sich in der Ellipse der Leitstrahl
FP (=r) von der Richtung nach dem Scheitel (oder
Perihel) A entfernt hàt, A AFP cp (wahre Anomalie),

endlich t die Zeit (in Secunden), welche der Lichtstrahl

r gebraucht hat, um den elliptischen Sector AFP

zu beschreiben. Dann ist dieser — mal so gross als

das Stück AFQ der Kreisfläche, und dieses gleich dem
Kreissector AOQ weniger das Dreieck FOQ. Aber
Sector AOQ ia2u, AFOQ 4ea,z. und,da z (sinu)-a,
A FOQ — 4 a2» e sin u. Also Kreisstück
AFQ 4 a2 (u—e sin u); daher elliptischer Sector AFP
— 4 ab (u — e sin u) — \ a2[/l — e2 (u—e'sin u); dieser

Sector ist zugleich \ Ct; also Ct a2 |/l—e2(u—e sin u).
Nun war aber C — l/Ma(l—e2) [ZW |/ä |/i=ë^
Folglich ist u — e sin u !/-_- • t •

Der mit der Zeit proportionale Ausdruck rechts heisst
die mittlere Anomalie; sie würde den Centriwinkel
des Kreises AQ darstellen, wenn dieser vom Planet mit
gleichförmiger Geschwindigkeit in derselben Zeit T
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durchlaufen würde, wie die ganze Ellipse. Der Factor

V— wird gewöhnlich mit n bezeichnet und heisst die

mittlere Geschwindigkeit des Planeten (es ist eine

Winkelgeschwindigkeit gemeint). Man hat also

In
T~ *

Da die Form der Gleichung u—e sin u nt transscen-
dent ist, so ist ihre Auflösung, wenn die Zeit t gegeben
ist und die eccentrische Anomalie u gesucht werden soll,
schwierig; sie führt den Namen der Keppler'sehen
Aufgabe. Weil jedoch e bei den Planeten ein kleiner
Bruch ist, so hat man in erster roher Annäherung u nt
als nächste Verbesserung folgt dann aus u=nt+e sinu
der corrigirte Werth ux nt -+• e sin (nt), dann u2

nt+esinuj, u3 =.nt + e sin u2, u. s. f., bis in der
Reihe nt, uu u2, u3, die letzten Glieder sich um
weniger von einander unterscheiden, als der Fehler
beträgt, den man zulassen will.

Da z — (sin u) a ist, so hat man auch y (sin u)h.
Sobald also u berechnet ist, findet man die Coordinaten
des Planeten P mittelst der Gleichungen x a cos u,
yrzbsinu. Aus r=a — ex folgtdann r=:a(l—ecosu).
Für die Anwendung ist es auch wünschbar, eine

bequeme Formel für die Berechnung der wahren Anomalie

cp zu haben.

Im A FPM ist FM x — ea a (cos u — e) und

zugleich r cos cp ; MP b sin u r sin cp ; also

r + r cos cp a, (1—e cos u) + a (cos u — e)
a (1 — e + cos u — e cos u) a (1 — e) (1 + cos u); also

r '1 + cos cp) a (1 — e)(l+cosu), und, wenn man

mit dieser Gleichung in die andere rsm.y=:a!/l—e2»sinu
Bein. Mitthcil. 507 nnd 508.



82

r sin cp al/1—e2 sin u
dividirt, erhalt man: ~T.~l -¦=-*--: =- • q— :' r(l + cos«y) a(l—e) 1 + cosu1

aber I—e2 (1+e) (1—e), j/ï^e2 |/ï+ê • \/\~—<ì

1 - e ,/!=;. Vì=ì, a,hert^ ££ j/|±+ e

e

Die Gleichung reducirt sich hierdurch auf
sin cp i/T+e sin u=m-1+cos ço ' 1—e 1+cosu

(Fig. 13.) Es seien OA OB OP 1 Radien
eines Kreises, A AOP cy, so ist AB 2, AABP=4r/D
als Peripheriewinkel, der auf den Bogen AP steht,
MP sincjc, OM-=cos#>, BM l + cos<y, also

—— —— .„-, tang -n- da im Dreieck BMP in
li-cos<y BM 8 2 '

Bezug auf A B =: —- die Seite MP gegenüberliegende

und BM anliegende Kathete ist. Die Gleichung, mittelst
welcher die wahre Anomalie aus der eccentrischen
gefunden werden kann, reducirt sich hiedurch auf

<r l/l+ e u
tang-|—^j—.tang^

Wenn M eine der Sonnenmasse entsprechende für
alle Planeten und Kometen gleiche Zahl, a die grosse
Halbaxe der Bahn eines Planeten oder Kometen, e das
Eccentricitätsverhältniss, r die Entfernung von der Sonne,
t die seit dem Durchgang durchs Perihel verflossene Zeit,
u die eccentrische, cp die wahre Anomalie, T die
Umlaufszeit bedeutet, so ist die elliptische Bewegung durch
folgendes System von Gleichungen ausgedrückt:

:nt, r a (1—e cos u),n In.
T =n, u — e sin u

tang 2
:|/I+i' 1—e tang

u

T *
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