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. Nr. 419 und 420. |
(NB. Auf pag. 57 lese man Nr. 415 und 416, statt blos
Nr. 415).

Hermann Kinkelin.

Ueher einige unendliche Reihen.
(Vorgetragen den 6. November 1858.)

Bekanntlich convergirt die Reihe
1 | .ils_q- 721?-1- 3—134- esein inf,
wo s eine positive Zahl bedeutet, nur dann, wenn s>1
ist; sonst aber ist sie divergent. Man kann sich nun
die Aufgabe stellen, ilren Grenzwerth anzugeben fiir

81, wenn sie blos bis zu einem gewissen Glied—lig, wo-
bei k in's Unendliche wachsend gedacht ist, fortgefiihrt
wird. Um zu diesem Ziele zu gelangen, diene die Formel
fiir die angeniherte Berechnung bestimmter Integrale

(Raabe Integralrechnung Bd. I. Nr. 233).
b
1
ﬁ(x)dx:.v ) %qr(a)+¢(a+ 7) K SR qa(a+(n—l)v)+_2—¢(b)

—Y; {gi(b)~91(a)} v4+Y, j@a(b)—gs(a)} vi

+(—1)"Yzn {@ym1(b) — @pgu—4(a)} v*7,

welche gilt, wenn der 2mte Differenzialquotient ¢gm(x)
der Funktion ¢ (x) von x = a bis x = b bestiindig
mit dem gleichen Vorzeichen behaftet ist; v ist ein belie-
biges positives Increment. Der Fehler, der hiebei auf
der rechten Seite begangen wird, ist kleiner, als das
letzte Glied der Entwicklung. Y,, Y3, *** Yja sind

bestimmte konstante Grossen.
Bern. Mittheil. 1
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Setzt man hierin ¢ (x) = —E;, 8o erhilt man:

k

dx 1 1 1 [ K N N ._.l_._
fx‘ Sgpte te T o

4

1 1
“+ YQS (-}—m—' 1) — Y4 S(S-l-l) (B+2)(F*+—3 — 1)

+ Y¢s(84+1)ece(s+4) ( f}ﬁ _..1) —Ygs(841)0ee

(+8) (icerr—1))

wobei der Fehler kleiner ist als das letzte Glied, und
Y,=0,083 3333, Y,=0,00L 3889, Yq;=—0,0000331 ,
Y 4 =0,0000008 .
Hieraus, weun man die Integration ausfiithrt und k
in’s Unendliche wachsen ldsst

1-9

L1 1 _k S
NP Al T e wrL b e

—B(8+1) (S+2)Y4+B(S+1) oo (S+4)Yg = 3(8-}-1)00.(3 +6)Yg,
wenn s von 1 verschieden, und -

143 %+...+-ll{—_—_lgk+-%-+Y2—6Y‘+l20 Y,—4320Y,,
wenn 8 = 1 ist. In beiden Entwicklungen sind die

Fehler jeweilen kleiner als das letzte Glied auf der
rechten Seite.

Setzt man der Kiirze wegen

—%— —-—1—_1_—8+8Y2—5(5+1) (5+2)Y44 e =ua,

2) oy
?-J-YQ—GY‘*-oooo =,
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80 kommt endlich
1 1 1 1__kt!-*
+33+ 3s+ll.0. k 1 +c,

3) A. { 1
i+-§+—3—+ .ooo*—k—zlgk +c

Der numerische Werth von ¢, kann fiir ein gege-
benes s aus den Gleichungen 2) bis auf 3 Dezimalstellen

genau bestimmt werden, wenn s < 1. Ist 8>>1, so con-
—8

vergirt die Reihe links, das Glied 11{__

verschwindet,

<, 18t alsdann direkt bestimmbar und soll mit S, bezeich-
net werden.

In allen Fiéllen kann c, auf folgende Weise mit belie-
biger Genauigkeit berechnet werden. Es ist
1 1

1
1+—2F+-§+.ocoom =

s+ocooo

1, 1 1 1
3 I+ | — |
15(“‘1.‘2) 28(14_2.2 ke <1+1—{_—2)

Entwickelt man die Nenner nach dem binomischen
Satz und ordnet die Glieder nach den Binomialcoeffi-
cienten, so crgiebt sich

'—"1 1
1+2“ ( )2 sll s+ )z s+2+
s4+2
( 3 )75 el

oder, wenn die ersten Glieder in den S besonders ge-
nommen werden, und mit Zuziehung von 3)

l+zs‘kt s ( )2 <s+l> L <S+2>23+....+...‘

oder endlich, wenn nun 3 vollstindig geschrieben wird,
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fpbp e _—
4) +3a+ f)’+“" (2k-|-l)’_
N HJH““ 28 =x(-1)y/s4r—1 :
i+ 23( l— 1+ 5s+ -‘:l 9r ( T )(S""r—l)f
worin die X sehr rasch convergirt. Ferner aus 3) durch
Multiplication mit -%;- -

1 1 1 3k1**

9) T ET Ok o 0

Addirt man diese zu 4), so kommt, da das Glied 0 Zk vy

als unendlich klein weggelassen werden darf -

1 1 1 2k-*
14+ 25+ 3s+ ...(Zk) =45 95 z +2CS 1+55 +Ez

{—s
Z———(_l )+Cs
und sonach durch Verg]elchung dieser beiden Werthe,
6) (2—2)es =2 —14 o 5 L S+"“1>(s —1)

38 r—| Zr r str

Ist s >1, so ist fiir ¢, einfach S, zu setzen und dann
kann diese Gleichung dazu dienen, solche S, zu rechnen,
deren unmittelbarer Ausdruck nur sehr langsam conver-
girt; so wenn s < 3 ist. |

Multiplicirt man aber 5) mit 2 und subtrahirt sie
von der folgenden, die sich aus 3) ergiebt, wenn 2k fiir
k gesetzt wird:

aber wegen 3) ist dieses auch gleich

Ll 1 1 2k-e
+5: + 35+.“.(2k)3_2"(1-—8) +Cs »

80 erhilt man
1-—--1—--{-—-1-——-'.00.'——-—-—'—1 ""‘(}---—-——-2(:s
.20 30 Ck—1y— as
oder, da die Reihe links convergirt,

1 1 1
7) B. 1-—-2—8-[--:3;—2-5-{--000:(1—21"8)05
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Aus dieser Bestimmung ist weiter ersichtlich, dass die
¢, , wenn 8 < 1, alle negativ sind, was daraus erhellt,
dass die Reile links positiv, dagegen 1—21-% negativ ist.
Addirt man endlich 7) zu 5), so ergiebt sich, wenn
. . . 1
das unendlich kleine Glied @k
1 1 1 k-8 251
8) 1+'3§+‘5§+""(2k__1)s “—25(1_3)'}' Os  Cs

weggelassen wird,

Fassen wir den Gegenstand von allgemeinerm Stand-
punkt auf, so lassen sich alle Reihen von der Form

1 1 1 1 1

R - P

Py T @py  Bprar T (Zkpp i)
summiren, wobei p und A beliebige ganze positive Zah-

Ien sind. Es erhellt nimlich aus der Kontinuitit der
Funktion

Kt 11 1
90 ookt hehpr el

oder entwickelt

o) =(] )5 i—D— ("§1 )2 B+

842 1 1
< ; )1{3(8”3——1)—““-{-1—?-—@ y <1,

die fiir ganze Werthe von x vermoge der Gleichung 3)
folgende Form annimmt

10) D. G(X’S):1+%‘+_}3_ﬂ+”“(x—.iT)5—
und somit endlich ist, dass ¢(x,s) fiir jeden Werth von
x, der von o verschieden ist, immer eine endliche Grosse
bleibt und von k unabhingig ist. Diese Funktion geht
ferner die Relation ein |



1) E. a(x+1,s)=—]—t;+o(x,s)
12) ¥. ¢(2,8)=1, ¢(1,8)=0, o (0,8)=—00
Setzt man in 9) x:—.—%—, so kommt

1+ 1 1 . 1
A (p+A) t@prrt T kpray

)

Lisst man hier k in 2k iibergehen, so wird, wenn noch
1
(2kp+p+2)°
..1_+ 1 + 1 + oo e 1 —
M (pRS (2p+l)“ (Zkp+p+A)

(2k)1 ; A ).
P s % — (i)“f S)r
Lisst man in 13) p in 2p ubergehen, 80 ist:

1 1 : 1 1 —_—
14) T Cp+ VT (dp+ 1) m o

(zlp)“ II(H“S (2 ‘ )f

Wird diese Gleichung von der vorigen subtrahirt, so
erhdlt man

15)

13)

addirt wird

1 1 1
(p+1)" Gp+iy T Ckprpray

D)

und endlich durch Subtractlon von 15) von 14)

1 1 1
16) o @y

(2?);)(2 les+2% -—-,s) 20(2 ,s)t
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wobei zu bemerken ist, dass wegen der Convergenw
dieser Reihe die Fortsetzung derselben so weit man will,
geschehen kann.

Aus der letzt hergeleiteten Gleichung ergiebt sich
unter anderm fir A =1, p =1:

1 1 1 1 . 1 '
19) 1— gt =g | 22 )Ca—-2a(§,s)£,
woraus durch Vergleichung mit 7) die Bestimmung
20) G. @—2)=of 4 )

erhalten wird.

Fir p=2, A =1 ergeben sich resp. aus 14), 15)
und 16) die Bestimmungen

oy 141ty Lk ,,<_1_s)
teteE T Okl £ ) T—s T\ 4 ‘

1 1 1 1
2 - §T+"7?+-‘1F TS

o 3 +(2’°-— 25— l)cs+a(——-, a)‘
23) iyl Lo

1 1 |
—4—; ) (2+2’_.4a)0'—'20(z‘, B) ‘
fir p=2, » = 3 ist aus 14)

| 1 1 1 1
24’) ‘3?+'F+ﬁ;’+' °* (4k+ 3)5 —

L o (3]

Diese mit 22) verglichen, giebt die Bestimmung
29) H. 0(—:}-, 8 +o(——§—, s) =242 —4)ca,
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die in 23) substituirt, noch folgende giebt

. ' 1 1 1
26) I- l'—"3'?+ 73+

rs}a(%s (3 )N

von der in der Nummer V. cine Verallgemeinerung mit-
getheilt werden soll.

Auch die Gleichung 25) kann allgemeiner ausge-
driickt werden. Werden nimlich in 9) fiir x nach und
n—1

n

nach die Grossen x, x + —ili— , x+—121— goree X+

gubstituirt, und alle resultirenden Gleichungen addirt,
go kommt, wobei n eine ganze positive Zahl bedeutet:

ZHr=CE i

s+@_§j’+. e
n— 1) g—n(l = +°“ 3(n;)ﬂ+(nx+1)é+"'

1

x+k+

+(nx+nk+n —1)® £

Setzt man aber in 9) nx fiir x und nk fir k, so ist
leicht zu sehen, dass die vorige Bestimmnng in folgende
tibergeht

l
c(x,s)+a(x+ﬁl i s)+a(x+_§., s)+ Ve aitd (
27 K. =nn%6(nx, s) + (n—n)c,
Diese Relation ist analog mit der bekannten fiir die

Funktion 1g I'(x); in der That ist auch fiir ganze Werthe

von s, o (X, s) fast identisch mit (yld—-gf-;gl
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1V,

Das Vorhergehende bezog sich auf beliebige positive
Werthe der Grosse s. Im Folgenden sollen noch einige
Siitze .entwickelt werden, die nur fiir solche Werthe von
8 Geltung haben, welche kleiner als 1 sind. Sie sind
ganz geeignet, die Fruchtbarkeit der hier gebrauchten
Methoden in’s Licht zu setzen.

Fir jede Funktion f(x) besteht nach Fourier die

Gleichung f(x)-- A+ 2 P A Cos2rax 423 1B Sin2rax

r—

fir alle Werthe von - P dle zwischen 0 und 1 liegen,
wobei die Konstanten A; A, , B, folgenderweise bestimmt
sind

i i

A—[f{x)dx, A, = ﬁ(x)Cos2rnxdx, B, =/ {(x)Sin2r axdx
0 0 0

Wenden wir diese auf die Funktion o (x, s) an, so ist

vorerst
[ ]

dx _ (r+1)t*—rts
E+oF 1—s

und daher, wenn an 9) die Integration zwischen den
Grinzen 0 und 1 vollzogen wird |

28) fo(x,s)dx:c?;

ferner bestehen, wenn s<C1 die Integralbestimmungen

1n2r’zx I'(1—s)
fs o gy oy

Cos?nx I‘(t-—s) . sx

29)

und



1 ]
ﬁin2rnxdx=0,ﬁos2r::xdx::0.
0 0

Multiplicirt man daher die Gleichungen 9) mit Sin2rzxdx
uud integrirt von O bis 1, so kommt

i
ﬁ(x,s)Sin?m xdx= —L’"k Dinirag dx=
[

A
=0 (xR
41 ‘ k+1
l_kf&n?rnxd Sm2rnx
X—=-- X,

oder, da oo fur k 4- 1 gesetzt werden kann:
. 1

30) L. ﬁ({:,s)81n2r.7xdx- (21755—3:?_5 Cos

0

und ebenso
1

ﬁ(X;B)COS2rnxdx= (2‘['()11 Brl)—s Qin 57 ;:z

Substituirt man hierin 1 — s fiir 8, so kommt auch

1
/:;(x, 1—8)Sin2raxdx —— -2 I'(s) Sin
0

31) (2 aprs

ﬁ(x, 1- 8)Cos2raxdx—- @J)?—,C -

Multiplicirt man die Gleichungen 30) und 31) resp.
mit einander, so ergeben sich mit Hiilfe von

') r(t—s) = =

Sins a
noch folgende Relationen

32) j;(x, 5)Sin 2ra x dx. fo(x, 1—8)Sin2raxdx=
o

0
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| 4

ﬁ(x, 8)Cos2rn xdxfr(x,l-—-—s)Cos 2rnxdx_—.:~£—l;

0 0

Nimmt man endlich in der Eingangs dieser Nr. ange-
fihrten Funktionsgleichung f (x) als ¢ (x, 8) an und
beniitzt die in 28) und 30) gefundenen Bestimmungen,
80 kommt

) M. o(x,8)=¢s

21(1-—3) sn Cos2ax Cos4nx Cosﬁmx

b

__2r(1--8)~ sa{Sin27x  Sindzx = Sinbax
(2 )1 —8 C 2 ? 148 + 91— . 31— +Oco.£

und durch Umsetzen von x in 1 — x
o(1—x,8)=cs

_at 1—s)S sz | Cos22x =~ Co%42x  Cosbrx
@) g ) e tars tgis T ‘

21‘(1———3) svz Sin22x | Sindax | Sinbzx )
tegrs % g it g toges oy

Diese mit 33) durch Addition und Subtraction verbun-
den, giebt

C(;:f:zx + Cg&:, f:rx b o(%,8)+o(1- x,s)s-—2c, @ 7)1
4I( 1f-s)Sin—‘§
w |
Sin22x | Sindax a(x,8 —X,8 .
11-0 + 21— +oo= ®8) = o(] )(2 n) -

4I‘(1-—s)Cos——
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In diesen Resultaten sind die Grossen x und s ein-
zig an die Bedingung gebunden, dass sie zwischen 0
und 1 liegen, von diesen Grenzwerthen selbst aber, so-
wie von allen iibrigen, ausgeschlossen sind.

Giebt man dem x den Werth %— , 80 wird aus 33)

2I(1—s8),. s’ 1 1 1
(2 ,s)_..c, TI}‘)TTS 1:1—2:-15-§1——24_ai +31_5 41_'+..‘

oder mit Zuziehung von 7) und 20)

2—2%c, + 2(1‘;(1)1 Ss)b 5 (1 —29¢1

oder
27r(1—s)Sin -5
Cls (2 a)t—
oder auch
5 (2a)
39) Cie

’
21'(s)Cos —?;

oder mit Zuziechung von 7)
1

o At =t ' .

36) N. I R

1 1 1 T 1 8%
1 2l—s + 31-——-3_41 —8 + S 2P(S) 003‘22"

Eine andere dhnliche, schon von Schlomilch angegebene

‘Relation kann aus 34) unter der Amiahme, dass X =1

gewonnen werden. Es wird nimlich alsdann

1 ( 4 ’S) ( %’ )(2,,)1--

1_31-—4+51——s = 71-s
: 4I‘(1—s)bos-—-

oder wegen 26), in der s in 1 — 3 umgesetzt ist
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o(—g—, i—s)—— o (—2},1 —-s)
922 —
((38) - (L)or

oder 4I'(1—s) Cos.—%j-z
(o)=() _ .

| 3 1 T S
¢ (Z ,1— s) —G (:4 y1— s) 2% 1‘(:5)Sm-%—z
oder wegen 26)

1 1 1
I=gt+ts ot

1 1 1 - .8
1— 31-—-s+ 51—5"'”71ms+”' 2I'(s) Sln—-‘;—

Dividirt man endlich 36) durch 38), so kommt:

1 1
39) P. g: 1 1-—-;2’ . (1—'§?+—:§';—~ ogo)
y @ (1 211;5‘1-311_’_. . )

()
(it i)

eine merkwiirdige Bestimmung fiir die Tangente.

7"

38) O.

V.

Die in Nr. IIL. angekiindigte Verallgemeinerung
von Gleichung 26) wird auf folgende Art erhalten. Aus
Gleichung 34) ist
o(x,8)—0c(1—x,8)=

(2a) Sin22x  Sin4ax, Sin6ax ‘

—

e A T T e G
sz [ 177 2T
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Lisst man hier x nach und nach folgende Werthe an-
nehmen:

1 3 5 211

g g

addirt dann alle geraden Gleichungen und subtrahirt
alle ungeraden, und ordnet nach den Nummern, so
kommt

)2 )

(2-7')’ A—0c0o
s |= 1 . Dk
( am ) 871 21 = 3581 o= San;-
5 n—1
oS

Die Summe der Reihe in der Klammer rechter Hand ist
aber gleich
Sin A 2

2 Cosz—if—l
Dieser Ausdruck ist Null fiir alle 1, ausgenommen, wenn

A von der Form (2m+ 1)2"1, fiir welche er die Form %

annimmt, wenn m eine ganze positive Zahl vorstellt. Ver-
fihrt man in diesem Fall nach den bekannten Regeln
der Differenzialrechnung, so findet sich dafiir der Werth

2-2Co8(2m + 1)2+ 27

. 2m<41
Sin —g 7

=(—1)m 2=

In der Summe rechter Hand verschwinden demnach alle
Glieder, mit Ausnahme derjenigen, wo A =(2m+1)2"2,
oder also, wo 1 gleich ist

1,901 3. 22 5,202, .,
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und dieselbe geht iiber in
2 n-2 2 n—2 2 o—3%
(1 R 2.1-—2)1-—4"“ (3. 2 n-—-2) 1—s+ (5.2::-2) 1——
oder

TSP I .
~ oder wegen 38)

2’(“"1’ 1,1 1
I'(8) Sin ’ 3,—+“5;“-—.—77+"':r

80 dass nun schliesslich

(2,,,3) (2n'3)+ = 2n:1'8 =
10) Q. ._____2..,21__5;_4_?_7_54_'_,"

welches die angekiindigte Relation ist.

Substituirt man in 27) — fiir x und 2° fiir n, so

kommt’ wegen 12)

(2'“3) +"(2n’3)+ """ 3_2-_-“1__3)
+o (g ) +o(grwe)+ e (Fgmros

=(2"—=2")cs
oder, da 27) bei der Annahme n—1 statt n,

(2n-—l___2(n—-—l)s)c’
gibt, so wird

41) a(—,};,s)+o(%,s) +o-(-22“3 s o s

o (2 8 ) = (2 4 20— 2%,
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und durch Addition dieser letztern mit 40)

(2°’“)+"(2ﬂ’3)+ (2"’3)"' ( = ’s)'_"

1
12) —2 1%1—3,+55—75—+ ----- £+

___2_(2 n—1 + 2(n-—1)s —— 2 ns) C, .
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