Zeitschrift: Mitteilungen aus Lebensmitteluntersuchungen und Hygiene = Travaux

de chimie alimentaire et d'hygiène

Herausgeber: Bundesamt für Gesundheit

Band: 99 (2010)

Heft: 1

Artikel: Hygienic Design im Anlagenbau

Autor: Dyck, Burghard

DOI: https://doi.org/10.5169/seals-982056

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Hygienic Design im Anlagenbau*

Burghard Dyck

Tetra Pak Processing GmbH, Senefelder Ring 27, DE-21465 Reinbek

E-Mail: burghard.dyck@tetrapak.com

Zusammenfassung

Ständig zunehmender Wettbewerbsdruck und steigende Produktionsanforderungen in der Lebensmittelindustrie, ins stellen eine spezielle Herausforderung für den Anlagenbauer dar, durch innovative Ideen wirtschaftlichere Produktionsverfahren zu entwickeln.

Gleichzeitig werden die Anforderungen an die Lebensmittelsicherheit und an die Maschinensicherheit erhöht. Der Anlagenbauer für den Lebensmittelbereich bezieht sich bei der Ausführung der Maschinen und Anlagen auf die allgemein gültigen Normen, Richtlinien und Verordnungen, wie EN 1672-2, ISO 14159, EHEDG oder auf die FDA, 3-A etc.

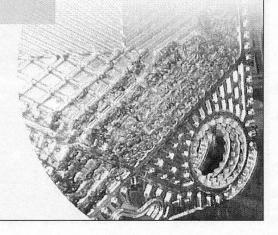
Für die Umsetzung der Richtlinien und für die Sicherstellung der Lebensmittelsicherheit sorgt ein "Food safety core team & network" mit konkreten Vorschlägen für die hygienische Anlagenausführung, einschließlich Empfehlungen für den Anlagenbetrieb und die Reinigung.

Hygienische Risiko Analysen (HRA) unterstützen die Weiterentwicklung innovativer Technologien. So basiert unter anderem die Weiterentwicklung der Homogenisiervorrichtung HD 100 für eine effizientere Homogenisierung auf einer HRA. Hygienische Risikoanalysen und Food Safety Charts werden für alle Markenprodukte erstellt.

Bei der Planung und Ausführung von Anlagen sind die Auswahl der Komponenten, die Installationsausführung sowie die Reinigung der Anlage entscheidend. Gute Ingenieurtätigkeit sowie Checklisten zur Überprüfung der Inbetriebnahmeaktivitäten sind ein wichtiger Meilenstein zur Sicherung der hygienischen Produktion.

Unterstützende Computerprogramme für die Produktionsrückverfolgbarkeit oder für die Optimierung der Reinigung sind Bestandteile des Hygienic Designs im Anlagenbau. Am Beispiel der ESL-Technologie für Milch wird der Einfluss vom hygienischen und aseptischen Anlagenbau aufgezeigt. Ingenieurkompetenz, anlagenspezifisches Knowhow sowie langjährige Erfahrung in der Lebensmittelindustrie sind die Voraussetzung für hohe Lebensmittelsicherheit durch einen hygienischen Anlagenbau.

^{*} Vortrag gehalten an der Fachtagung "Hygienic Design" vom 11.-12. September 2008 in Zürich

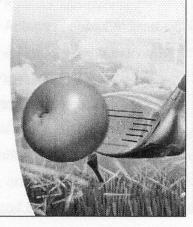

Food Safety

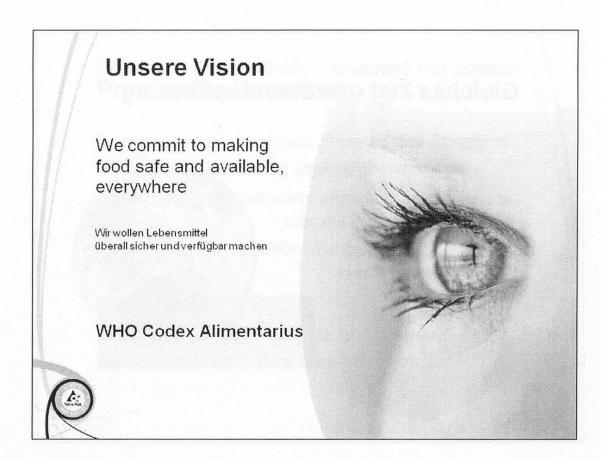
Hygienic Design im Anlagenbau

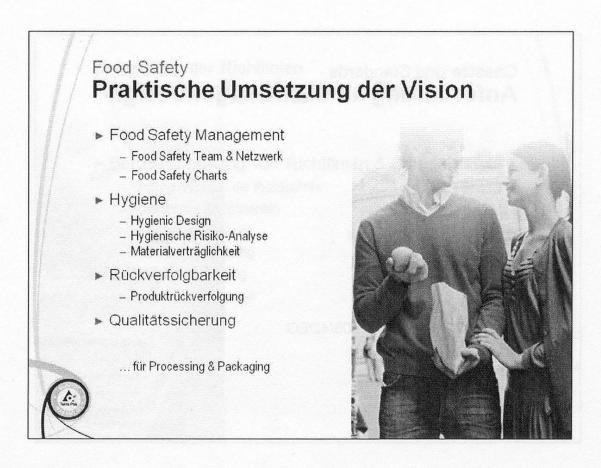
Der Zweck von Hygienic Design ist die Vermeidung von Risiken und Gefahren für die Gesundheit der Verbraucher. Dies hat Einfluss auf die Verarbeitung und Verpackung von Lebensmitteln.

Zielsetzung

- ➤ Minimierung von Verschmutzungen
- Vorbeugung vor Rekontaminationen
- Reinigung und falls erforderlich Desinfektion oder Sterilisation




Food Safety


Treibende Kräfte für hygienischen Anlagenbau

- ▶ Verbraucher
 - Verbraucherorganisationen
 - Medien
- ▶ Handel
 - Globale Initiativen für Lebensmittelsicherheit
 - Lebensmittelüberwachung
- ▶ Gesetzgebung & Standards
 - FDA, Codex, ISO, EU Hygienerichtlinie, etc
- ▶ Lebensmittelindustrie
 - IDF, BRC, EHEDG, GMP, etc.

Gesetze und Standards

Gleiches Ziel - andere Ausführung

EU

- ▶ Verordungen und Richtlinien
- ► EN, ISO, EHEDG

USA

- ► FDA Verordnung
- ▶ 3A Hygiene Standard

Andere Staaten

- > Teils keine nationalen Standards
- Ausführung in Anlehnung an EU / USA Standards

Gesetze und Standards

Anforderung an das Anlagendesign

- ► EHEDG
- ► EN 1672-2
- ▶ ISO 14159
- ▶ 3 A Sanitary Standards
- ► FDA / CFR title 21
- ► GMP
- ► EU-Hygienerichtlinie
- ► Maschinenrichtlinie 2006/42/EG
- ▶ etc.

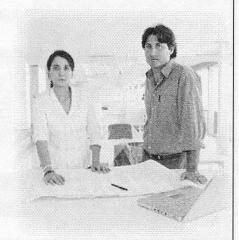
Umsetzung der Richtlinien

Praxisnahe Umsetzung

- ▶ Internationale / regionale Gesetze und Standards
- Tetra Pak Processing Standard
- ▶ Interne Richtlinien teils angepaßt an die Märkte - teils mit Zusatzinformationen
- ► Spezielle Kundenanforderungen

Beispiel: Pflichtenhefte

- Verbindung nach DIN 11864
- Weniger Verschraubungen



Umsetzung der Richtlinien

Konsequentes Hygienic Design

- ▶ Berücksichtigung von Richtlinien & Standards in:
 - Planung & Design der Prozesslinie
 - Auswahl von Komponenten
 - Installationsanweisung
 - Bedienungsanweisung
 - Wartungsempfehlung
 - In allen Risikoanlaysen

Hygienic Design

Food Safety Chart

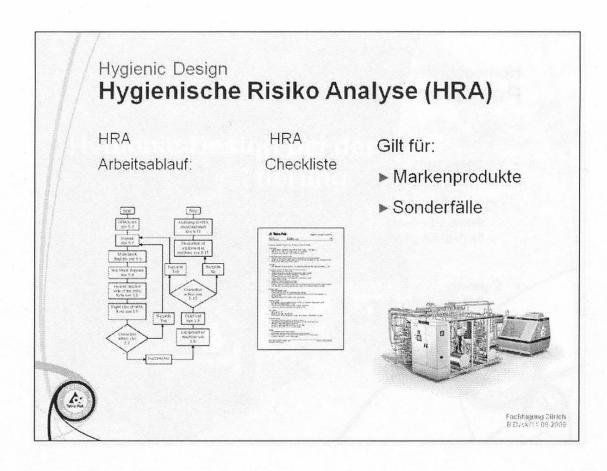
- ▶ Vorwiegend für Markenprodukte
- ► Kann aber auch für eine komplette und kundenspezifische Prozesslinie verwendet werden

FOOD SAFETY CHART FINAL SYRUP TANKS: PROCESS STEP PRODUCTION

Date:

Process step		Front Sately Contacts	Control Parameter	CARSone .		Morshoong Procedure	Etequency	System response	Requirement.	Reference Document
wax Kinegong	Problems	Separation or	Caret tow	e 2 mm	4 2.5 tmx	the seventary	Develop kines monto ambi habito	Dearelox recuest continua- pre-mile houses	Trainest exercises	Committees
		Nesch he rops sowne	Check volume	tax moving Astrumen	nes comit	NORTH NEEDS	Carthhyala		7-37-42/04/4/07	operator transa
		districtly and there.	Seed enotying on Ta Sing or Talkassia			English phi surviving parts yellow late- separation of differ production	d-eccloder	Presentation colonial states	- extension	Opencia Value
		Stop enables with	Cestin Curve.			operation value	Every becar	Delection to You in come	itskez városa	Oseraur Manue

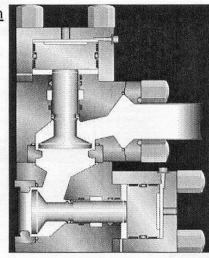
nebtaging Zürich


Hygienic Design Food Safety Chart

- ► Liste mit "critical control points" als Voraussetzung für kontrollierbare CCP's im HACCP Konzept
- ▶ Unterstützende Informationen für ein HACCP Programm
- ▶ Unterstützende CCP Aktivitäten für das Qualitätssystem

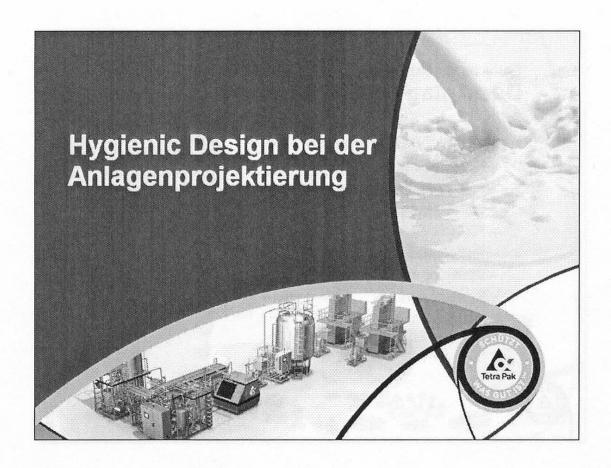
Process step	Food Safety Concern	Control Parameter	Critical limit	Target value	Monitoring Procedure	Frequency	Systemiesponse	Requirement	Reference Document
Production	Untight system	Tightness of connection	No leakage aseptio section		visual inspection	Continously		Trained operator	
	Unstanitty due to have file and hast treatment.	Теприпание	a G below production set point	Product dependant	TSL-42 / PLG	Continously	Processors about		P.C (production consperation

Fachragung Zerich Bitlyck/11.09.2008



Homogenisiervorrichtung HD 100

Positiver Nebeneffekt von HRA

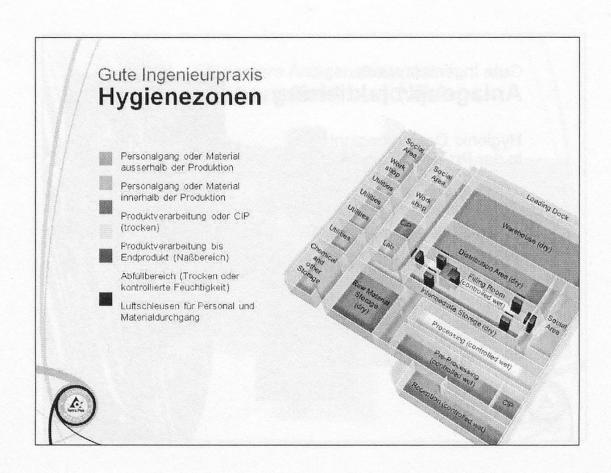

- ▶ Verbesserung vom Hygienic Design
- ▶ HD 100 Design
 - Geänderte Position der O-Ringe
 - Sanfte Winkel, größere Räume
- ▶ Ergebnis
 - Geringerer Energieeinsatz
 - Höhere Homogenisiereffizienz

Gute Ingenieurpraxis Anlagenprojektierung

Hygienic Design beginnt in der Pre-Projektphase:

- Art und Vielzahl der Produkte
- Art und Menge eingesetzter Rohstoffe
- Produktionsumfeld
- Vor- und nachgeschaltete Anlagen
- Reinigung, Desinfektion, Sterilisation
- Definition der Produkt-Endqualität
 - Haltbarkeit?
 - Definition des Hygiene-Standards

Gute Ingenieurpraxis


Das Anlagendesign

Konkret zu berücksichtigen sind:

- Hygienezonen
- Auswahl von Komponenten
- Prozessbewertung
- Fließschema
- Risiko Bewertung
- Verrohrung vor Ort
- Reinigungskonzepte
- Automation
 - · Automationsniveau / funktion
 - Rückverfolgbarkeit

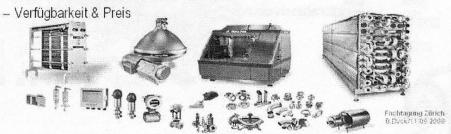
Gute Ingenieurpraxis

Auswahl der Komponenten

Auswahlkriterien:

- Hygienisches Design
 - z.B. hygienische oder aseptische Verbindungen
 Leckagebohrung, hygienische Barriere

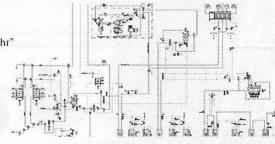
 - · Temperaturbestän digkeit


- Materialbeständigkeit

- Verantwortung liegt beim Anlagenbauer
 Produktrezeptur nicht immer Verfügbar

- Aufstellungsort

- z.B. Trocken-/ Nassbereich, Innen- / Aussen aufstellung
 Wartungszuganglichkeit, Aussenreinigung


Gute Ingenieurpraxis Prozessbewertung ▶ Prozessparameter: - Temperatur, Drücke, Mengen Standzeiten - etc.

Gute Ingenieurpraxis

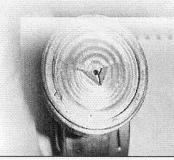
Fließschema

➤ Detailengineering:

- Blockdiagramm
- R & I Schema
- Layout
- Reinigungs- & Desinfektionskonzept
 - z.B.nach DIN 11843
 - CIP Kreise
- Design Review
 - · "Mit dem Auge durchs Rohr"
- Funktionsbeschreibung

Gute Ingenieurpraxis

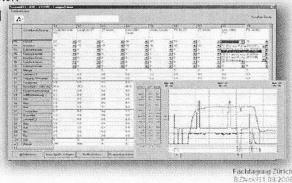
Risiko-Bewertung

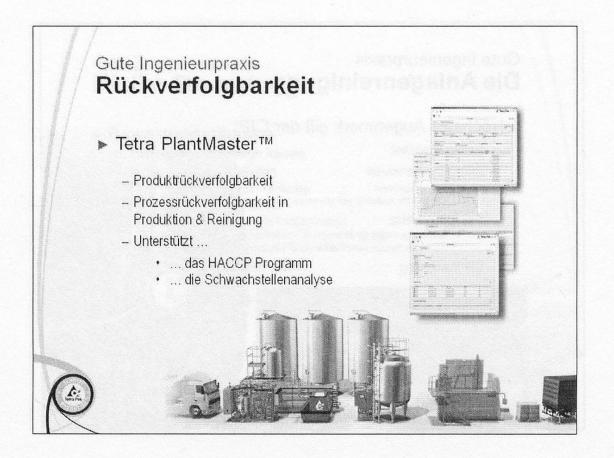

▶ Bewertungsphasen

- Im Rahmen vom Design Review
- Im Rahmen der Installation
 - · nach CE, UVV, etc Kriterien
 - · nach Hygiene-Kriterien

 - Mikrobiologische Kontamination
 Chemische Einflüsse / Aussenreinigung
 Leckagesicherheit / Gullyabläufe
- Im Rahmen der Inbetriebnahme
 - · Kalibrierung der M&R Technik
 - · Prozeßparameter und Zeiten

... die hygienische Risiko-Bewertung setzt sich auf der Baustelle fort, vor und nach der Inbetriebnahme





Gute Ingenieurpraxis Softwaretool für CIP Optimierung ► Tetra CipFlex[™]

- Frei parametrierbare CIP-Abläufe
- Optimierung von CIP-Zeiten
- Optimierung von CIP-Kosten
- Kein CIP-Validierungstool

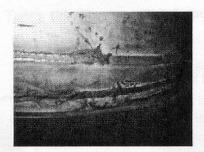
Hygienische Risiken

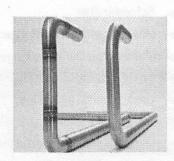
Potentielle Kontaminationsquellen

- ▶ Rohrverbindungen, Ventile, Pumpen, Armaturen
- Filter, Dichtungen
- ▶ Schweißnähte
- Mikroskopische Vertiefungen und Spalte
- Makroskopische Vertiefungen und Spalte
- Unvollständige Entleerung
- Unsachgemäße Wartung
- ▶ Nicht zugelassene Ersatzteile (Produktpiraterie)
- Ungünstige Strömungsbereiche (Totenden, Schatten)
- Funktionsfehler im Programmablauf

Hygienische Risiken

Designfehlern


- ▶ Fehler die nach Jahren auffallen
- ▶ Designfehler erst im Aseptikprozess erkannt
 - 1000 fach bewährte Komponente! (?)
 ... ersetzt manchmal die hygienische Risiko-Analyse
 - Fehler viskositätsabhängig
 - Unzureichende CIP an Ecken / Totenden
 - Kein erkennbares Problem im Hygieneprozess



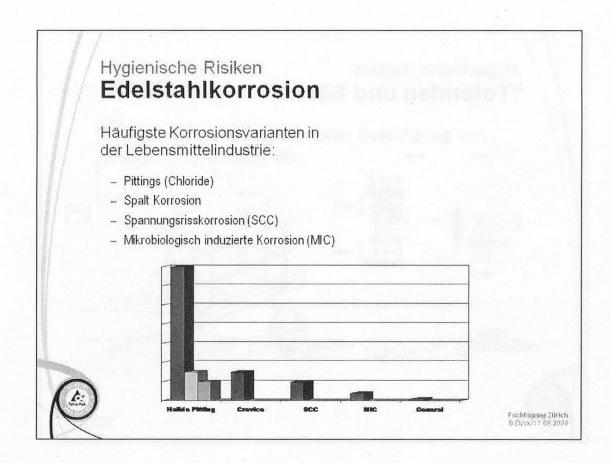
Fachtaging Zirich B Uyck / 1.09,2008

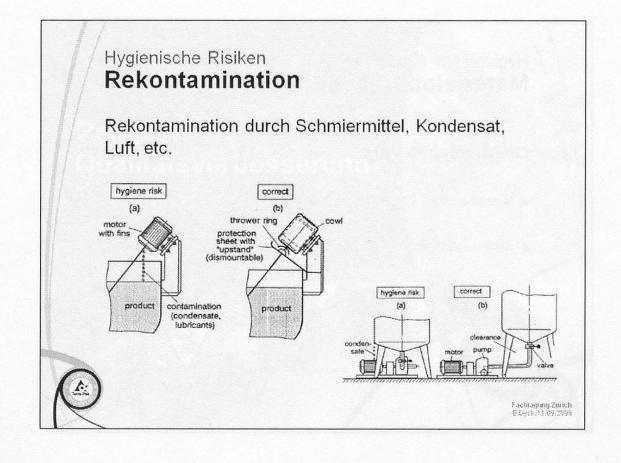
Hygienische Risiken Schweißfehler

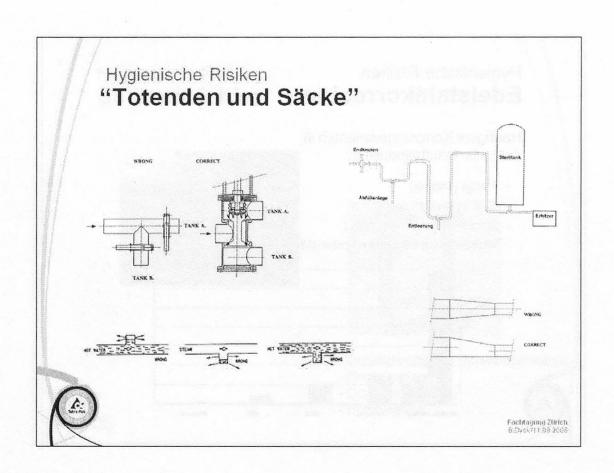
- Qualifizierung des Schweißpersonals
- Endoskopie
- Orbitalschweißung
- Rohrbiegung

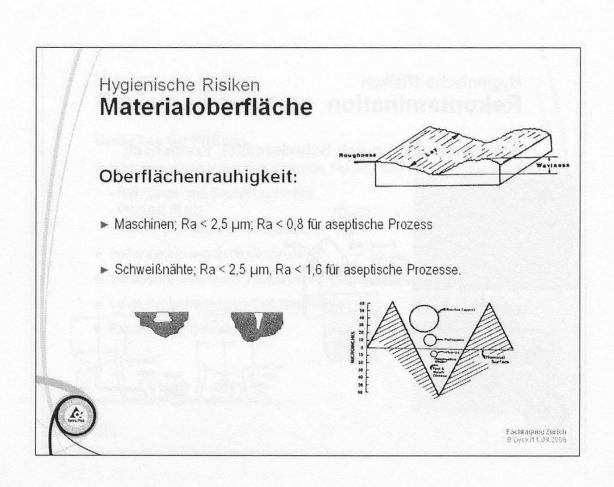
Hygienische Risiken Edelstahlkorrosion

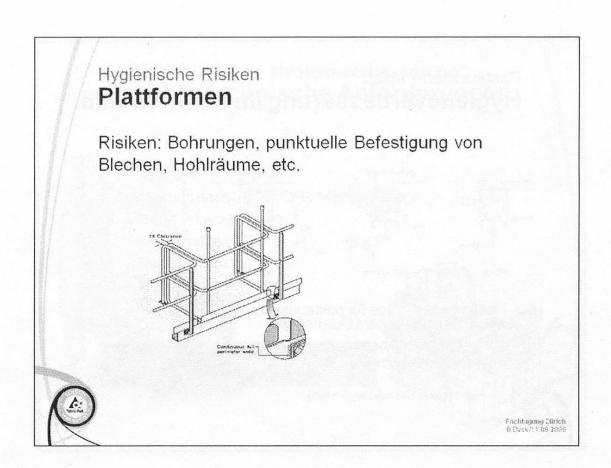
Ursachen für Pitting

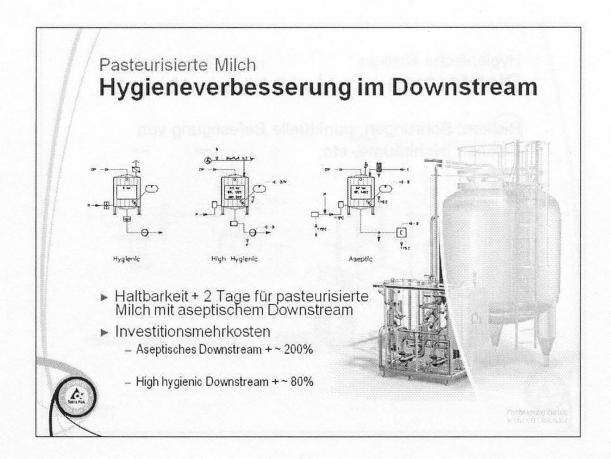

- Anwesenheit von Halogenide (Chloride, Fluoride, etc).
 - Reinigungs- und Desinfektionsmittel
 - Produkte (Salz)
 - Wasser (mit hohem Chloridgehalte)
- ➤ Aufkonzentrierung durch Verdampfung
- Verstärkung durch hohe Temperaturen / niedriger pH
- ➤ Lange Kontaktzeiten zwischen zwei Reinigungen
- Falsche Materialauswahl

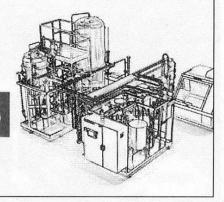











Mehrkosten "ohne Hygieneverbesserung" Erhöhte technische Anforderungen

▶ Beispiel: UHT-Anlage

Ausführung nach "FDA / CFR 113" für Europa

- Spezielles Layout
- Heißhaltung nach FDA
- Spezielle M&R
- Temperaturschreiber
- etc.

Investitionsmehrkosten ~ 10%

Hygienic Design im Anlagenbau

Hygienischer Anlagenbau erfordert viel Fachkenntnis, und ist mehr als nur die in Reihe Schaltung von hygienisch geprüften Komponenten.

