Zeitschrift: Mitteilungen aus Lebensmitteluntersuchungen und Hygiene = Travaux

de chimie alimentaire et d'hygiène

Herausgeber: Bundesamt für Gesundheit

Band: 93 (2002)

Heft: 3

Artikel: Identification de composés monoterpéniques, sesquiterpéniques et

benzéniques dans un lait d'alpage très riche en ces substances

Autor: Buchin, Solange / Salmon, Jean-Christophe / Carnat, André-Paul

DOI: https://doi.org/10.5169/seals-981725

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 04.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Identification de composés monoterpéniques, sesquiterpéniques et benzéniques dans un lait d'alpage très riche en ces substances

Solange Buchin¹, Jean-Christophe Salmon¹, André-Paul Carnat², Thomas Berger³, Christophe Bugaud¹ et Jacques Olivier Bosset³

- ¹ Station de recherche en technologie et analyses laitières (SRTAL-INRA), F-39801 Poligny
- ² Laboratoire de pharmacognosie et phytothérapie, Faculté de pharmacie, 28 Place Henri Dunant, F-63000 Clermont-Ferrand
- ³ Station fédérale de recherches laitières de Liebefeld (FAM), CH-3003 Berne

Reçu 25 mars 2002, accepté 23 avril 2002

Introduction

Les terpènes, métabolites secondaires des plantes, sont réputés tant pour leurs activités biologiques, notamment leurs effets désinfectants et cicatrisants chez les plantes et répulsifs à l'égard de leurs prédateurs (1), que pour leurs propriétés odor(ifér)antes, en particulier chez les plantes médicinales et celles utilisées à des fins culinaires. Ce sont les composants dominants des huiles essentielles. Dans le domaine alimentaire, les terpènes sont présents surtout dans les produits d'origine végétale, mais peuvent avoir d'autres origines, notamment microbiologiques (levures (2), limonène par *Lb. acidophilus* (3), pinène (4)). Depuis quelques années, ils suscitent l'intérêt des chercheurs qui étudient les produits animaux, en particulier le lait et les produits laitiers (5–11). Présents dans les plantes consommées par les animaux, ils se retrouvent en nombre dans le fromage après un transfert dans le rumen puis dans le lait (11–13).

Leur intérêt dans ces produits est double. D'une part, ils peuvent servir de traceurs pour déterminer l'origine géographique (régions de montagne versus de plaine) et le type d'alimentation des animaux en ce qui concerne les produits carnés et laitiers. La composition tant qualitative que quantitative de ces composés varie en effet avec l'origine botanique de l'herbe consommée. Ils sont plus nombreux dans

les dicotylédones, avec pour conséquence une présence plus marquée dans les pâturages de montagne (8, 12–16). Ils sont également plus abondants dans l'herbe fraîche que dans le foin (17) en raison de leur forte volatilité (5). Enfin, l'apport de concentrés, par dilution de l'herbe dans la ration, diminue la concentration en terpènes du lait (18, 19).

D'autre part, ils pourraient être susceptibles d'influencer l'arôme des fromages. A l'état pur, ils présentent des odeurs caractéristiques décrites avec les termes «fruité, suave, frais, vert, d'herbe, de résine, de citron, de camphre, de conifère», selon les composés considérés, bien qu'ils semblent être présents dans ce type de produits en concentrations trop faibles pour avoir un rôle direct significatif (12). Cependant, il est possible qu'ils aient un effet indirect sur l'arôme des fromages, via une influence sur certaines activités microbiennes productrices d'arôme (12, 20).

La richesse de l'herbe en composés benzéniques varie également selon les zones de pâturage (21). Ces composés sont donc aussi susceptibles de jouer un rôle de traceurs d'origine dans les fromages s'ils ne sont pas dégradés en d'autres constituants. Peu de ces molécules ont fait l'objet d'une identification exacte dans les produits laitiers, en raison de leur faible concentration et de leur difficile extraction, leur origine même semblant parfois être problématique (33).

L'objectif du présent travail est donc d'établir une liste aussi exhaustive que possible des composés monoterpéniques, sesquiterpéniques et benzéniques que l'on peut rencontrer dans le lait afin de disposer de références pour des travaux d'identification ultérieurs. Ces composés ont en effet été identifiés dans un lait d'alpage particulièrement riche en ces substances en utilisant une technique de préconcentration des volatils par piégeage et désorption, l'espace de tête dynamique (DHS), couplée à une technique de séparation par chromatographie en phase gazeuse avec détection par spectrométrie de masse (GC/MS). Ce travail fait partie d'une étude plus vaste sur l'influence de la végétation des pâturages sur les caractéristiques sensorielles du fromage d'Abondance, dont certains résultats ont déjà été publiés (12, 13, 21–24). Ainsi, l'analyse d'un grand nombre d'échantillons de laits d'origines diverses a déjà fait l'objet d'une autre publication (13).

Matériel et méthodes

L'échantillon de lait étudié a été prélevé dans une zone d'alpage de la zone AOC Abondance (Haute-Savoie, Alpes françaises) dont la végétation était particulièrement riche en monoterpènes, sesquiterpènes et composés benzéniques (21, 22). Il a été conservé à –40°C pendant environ un an dans un flacon en verre fermé par un bouchon en téflon jusqu'au moment de l'analyse.

L'extraction des composés volatils a été réalisée par purge and trap (Tekmar, LSC 3000) sur une cartouche de tenax après décongélation de l'échantillon pendant une nuit à +4°C. Dix ml de lait ont alors été introduits dans une cellule en U (sparger) de 25 ml sans fritté (Agilent Technologies, art. no 5182-0849). La purge a été réalisée à 40°C pendant 40 min sous un courant d'hélium de 46 ml.min⁻¹. La désorption a été réalisée à 225°C pendant 2 min. La température du MCS (moisture control system)

a été maintenue à 225°C durant toute la durée de l'extraction. L'injection a été réalisée après cryoconcentration à -150°C.

La séparation des composés volatils sélectivement recherchés pour la présente étude – au détriment des plus légers perdus par saturation du piège dans de telles conditions – a été réalisée avec un chromatographe en phase gazeuse (Hewlett Packard 6890) équipé d'une colonne capillaire de silice fondue de type DB5 (60 m × 0,32 mm de diamètre intérieur, 1 µm d'épaisseur de film de phase, RTX5 Restek, Evry, France). Le débit d'hélium dans la colonne était de 2 ml.min⁻¹ à 40°C. Le four a été maintenu à 40°C pendant 5 min, puis la température du four a augmenté de 3°C.min⁻¹ jusqu'à 230°C où elle a été maintenue pendant 2 min.

Les composés volatils ont été détectés par un spectromètre de masse (MSD Hewlett Packard 5973) en impact électronique à 70 eV. La température de l'interface entre le chromatographe et le spectromètre de masse était de 280°C. L'acquisition des ions par le détecteur de masse a été faite entre 29 et 207 amu.

L'identification finale des composés détectés a été réalisée en utilisant i) le logiciel Masslib, ii) les données de la littérature (8, 10, 25–27), avec en particulier la consultation des spectres publiés par *Adams* (27) pour l'identification des sesquiterpènes, iii) la base de données constituée au laboratoire à partir d'analyses comparées de plus de 500 chromatogrammes de fourrages, de laits et de fromages de diverses origines et natures, sur la base des bibliothèques de spectres Wiley et NIST, ainsi que iv) l'injection de composés de référence. Le calcul des indices de Kovats (IK) a facilité la comparaison avec les données existantes.

Résultats et discussion

Le tableau 1 présente la liste des monoterpènes détectés, le tableau 2, celle des sesquiterpènes et le tableau 3, celle des composés benzéniques. L'identification par comparaison avec notre base de données interne est indiquée dans la quatrième colonne de chaque tableau. Une formule brute est proposée lorsque le composé ne peut pas être identifié avec certitude. L'identification par comparaison avec le logiciel Masslib®, par comparaison avec la littérature, et par injection de composés de référence purs, est donnée dans les 5°, 6° et 7° colonnes respectivement.

Les figures 1a et b présentent les portions du chromatogramme où sont localisés les pics significatifs pour cette étude. Les autres pics visibles sur ce chromatogramme, mais qui ne sont pas numérotés, correspondent à d'autres classes chimiques (alcools, composés carbonylés, esters etc.) sans intérêt pour ce travail. Un blanc (ou témoin) a encore confirmé que les composés trouvés dans ce lait ne sont pas des artéfacts qui pourraient être générés par exemple lors de la thermodésorption du piège utilisé (tenax).

La conservation de l'échantillon utilisé pendant une année à l'état surgelé n'ôte pourtant en rien à la validité des résultats présentés. Une étude complémentaire en cours de publication (Salmon et Buchin, INRA de Poligny, 2002) a en effet démontré que la présence des composés intéressants pour ce présent travail (analyse quali-

tative) n'est nullement influencée par de telles conditions de stockage. Seuls les aspects quantitatifs sont susceptibles de varier: la tendance générale observée est une diminution des concentrations des composés terpéniques et sesquiterpéniques et, inversement, une augmentation des concentrations des benzéniques. Cette augmentation est d'ailleurs accord avec les observations faites par Bosset et al. lors du stockage prolongé de fromages à l'état surgelé dans certains types d'emballage (33).

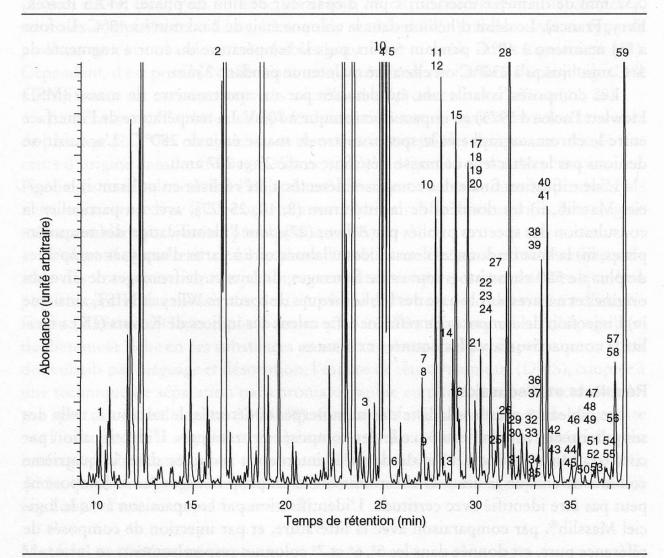


Figure 1A Première portion du chromatogramme GC-MS correspondant aux composés monoterpéniques, sesquiterpéniques et benzéniques dans le lait d'alpage étudié entre 10 et 38 min (début)

Légende: la numérotation des pics correspond à celle des tableaux 1 à 3

Monoterpènes

La plupart des 34 monoterpènes extraits ont été identifiés car présents et extractibles en quantité suffisante pour obtenir des spectres de masse interprétables (tableau 1). A l'exception des diméthyl octènes et octadiènes, la majorité sont des hydrocarbures cycliques, parmi lesquels se trouvent trois composés benzéniques (cymènes). Chacun de ces composés possède une fragmentation et un indice de

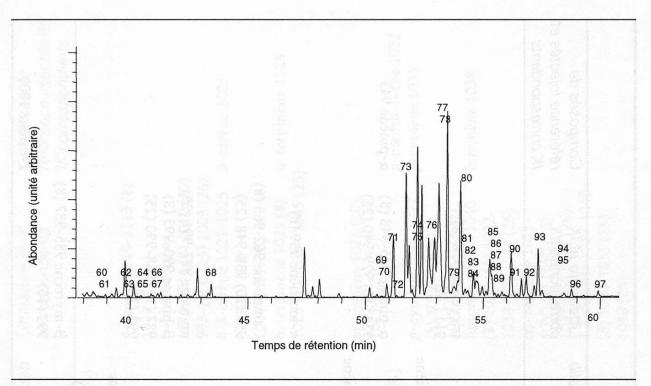


Figure 1B Seconde portion du chromatogramme GC-MS correspondant aux composés monoterpéniques, sesquiterpéniques et benzéniques dans le lait d'alpage étudié entre 38 et 60 min (suite et fin)

Légende: la numérotation des pics correspond à celle des tableaux 1 à 3

Kovats caractéristiques qui facilitent leur identification. Certains de ces composés ont déjà été décrits par différents auteurs non seulement dans les plantes pâturées par les animaux (8, 26), mais aussi dans des produits comme le lait (19) et différents types de fromages (7, 10, 14, 28). Ces composés seraient ainsi transférés du fourrage au lait, via l'animal, puis au fromage (11, 12). Il semble que quelques terpènes oxygénés soient également présents dans l'échantillon, dont trois ont fait l'objet d'une tentative d'identification indiquée par un (t) dans les tableaux 1 à 3. Les quantités extraites de ces composés sont très faibles, en raison soit d'une faible teneur naturelle dans l'échantillon, soit d'un taux d'extraction de la matrice trop bas. De ce fait, ils ont rarement été décrits dans le lait et les produits laitiers, bien qu'ils soient très présents dans les plantes pâturées (8, 22, 26). Par ailleurs, deux composés à treize carbones ont été mis en évidence (IK de 1359 et 1412).

Sesquiterpènes

Les sesquiterpènes (tableau 2) sont en général très peu présents tant en diversité qu'en quantités, voire absents dans le lait. Le lait analysé est donc particulièrement riche en sesquiterpènes, comparé aux laits habituellement analysés au laboratoire dans les mêmes conditions. Il faut pourtant remarquer que le fourrage donné au troupeau qui a produit ce lait est lui aussi exceptionnellement riche en ces composés, ce qui laisse supposer un transfert plus ou moins proportionnel de ces composés de l'herbe au lait par l'animal.

Tableau 1				
Monoterpènes	identifiés	dans	le	lait

No pic	IK	lons spécifiques utilisés	Identification par base de données du laboratoire	Identification par Masslib (% similitude)	Littérature et IK correspondants	Composés de référence injectés et IK correspondants
3	888	93-121-136	cyclofenchène		Maria Ma	
6	912	93-121-91-136	2,2,7-triméthyl bicyclo (2.2.1) hept-2-ène			
7	931	93-121-136	tricyclène		tricyclène 936 (8) 911 (26)	
9	933	67-55-95-68-82- 110-123	2,6-diméthyl 1,7-octadiène	2,6-diméthyl 1,7-octadiène (α-citronellène) (95 %)	The second secon	
10	943	93-77-79-121-136	α-pinène	α-pinène (98%)	α-pinène 945-948 (8) 933 (10) 929-940 (25)	α-pinène 943
11	947	55-67-69-82-95- 123-138	3,7-diméthyl 1,6-octadiène	3,7-diméthyl 1,6-octadiène (99%)		
12	948	136-121	β-fenchène			
14	958	93-79-95-121- 107-136	α-fenchène		α-fenchène 959 (8)	
15	960	93-121-79-107- 136	camphène	camphène (97%)	Camphène 962-965 (8) 959 (10) 938-948 (25)	
19	970	70-55-69-140-83	3,7-diméthyl 2-octène cis/trans	3,7-diméthyl 2-octène (96%)		
21	981	93-	α-myrcène	The second secon	myrcène 987-991 (25)	
23	989	93-121-107	β-pinène		β-pinène 990-993 (8) 987 (10) 968-990 (25) 992 (26)	
24	990	95-69 coélué avec 123-138	2,6-diméthyl 2,6-octadiène	triméthyl 1,5-heptadiène ou 2,6-diméthyl 2,6-octadiène (t) (78%)		
25	994	93-	β-myrcène		β-myrcène 985-987 (8) 992 (10)	
28	1006	93	δ-2-carène (t)		And standard (sed)	2-carène 1009

No pic	IK	lons spécifiques utilisés	Identification par base de données du laboratoire	Identification par Masslib (% similitude)	Littérature et IK correspondants	Composés de référence injectés et IK correspondants
29	1009	95-67-81-138-123	camphane ou p-menth- 2-ène	p-menth-2-ène (t) (83 %)	o preventación (a una complesada totas africada como	roference investas et ukummenen son leta
30	1010	93 coélué avec 121-136	δ-4-carène		4-carène 1010-1013 (8) 1001 (25)	
31	1013	93-77-91-136	l-phellandrène	carveol (t)	α-phellandrène 1011-1014 (8) 1012 (10) 997-1006 (25) 1003 (26)	
32	1020	93-77-79-121-136	δ-3-carène	δ-3-carène (94 %)	δ-3-carène 1021-1025 (8) 1019 (10) 1004-1014 (25)	3-carène 1023
34	1026	121-93-136-77- 79-105	α-terpinène	isoterpinolène (t) (80%)	α-terpinène 1025 (8) 1025 (10) 1009-1065 (25	α-terpinène 1025)
35	1028	95-67-138-82-109	3-méthyl butylène cyclopentane	scructure acaquirerpene (t)	Presidential and a section of the control of the co	
36	1030	119-134-91	<i>m</i> -cymène	<i>m</i> -cymène (t) (83 %)	<i>m</i> -cymène 1026 (10) 1023-1026 (25)	
37	1032	95-67-138-123	<i>p</i> -menth-1-ène	carvomenthène (t) (80 %)	C-o-castuascone 1304	<i>p</i> -menth-1-ène 1032
38	1034	119-134-91	<i>p</i> -cymène	<i>p</i> -cymène (t) (96%)	<i>p</i> -cymène 1024-1027 (8) 1032 (10) 1024- 1038 (25) 1022 (26)	p-cymène 1033
40	1039	68-93-67-79-121- 107-136	dl-limonène	limonène (98%)	limonène 1037-1040 (8) 1038 (10) 1022- 1038 (25) 1029 (26)	limonène 1038
41	1041	93-136	cis-ocimène		cis-ocimène 1025-	
					1030 (8) 1050 (10) 1037 (25) 1041 (26)	
42	1044	71-108-84-154-	1,8-cinéole		1,8-cinéole 1039-1045	
		139		Agentification par Massallo ello prohibbadel	(8) 1030-1033 (25) 1030 (26)	Composas de reference misores et

No pic	IK	lons spécifiques utilisés	Identification par base de données du laboratoire	Identification par Masslib (% similitude)	Littérature et IK correspondants	Composés de référence injectés et IK correspondants
49	1068	93-136-77-121	γ-terpinène	γ-terpinène (95 %)	γ-terpinène 1061- 1067 (8) 1067 (10)	γ-terpinène 1068
			ewokyłonowiene 23 2 wisponiny becycles		1055-1088 (25) 1060 (26)	
57	1099	121-93-136	α-terpinolène	α-terpinolène (97 %)	α-terpinolène 1094- 1096 (8) 1097 (10) 1082-1092 (25) 1089	
					(26) 1939 1934-1033	
70	1359	69-81-95-109-	mélange:	mélange de 2 (dont	Z-α-damascone 1354	
		191-163	Z - α -damascone (t) +	structure clovène ou	(27)	
			Z-β-damascenone (t)	longipinène) (t)	Z-β-damascenone 1359 (27)	
71	1365	81-95-69-93-	esters:	structure sesquiterpène (t)	Carvomenthyl acétate	
		109-163	carvomenthyl acétate (t) +	(4) (80 65)	1351 (27)	
		187-426139-33-	ester du citronellol (t)	risordabinospriso		
73	1376	81-135-95-	thymol acétate ou		thymol acétate 1354	
		123-191	citronellyl acétate (t)		(27)	
					citronellyl acétate 1355 (27)	
78	1412	69-81-95-163-	voisin de la E-epi-α-		E- <i>epi</i> -α-damascone	
	1013	123-109	damascone		1390 (27)	
79	1422	95-124-109	type isobornyl butyrate			

Légende: No pic: cf. figure 1; IK=indice de Kovats; lons spécifiques=ions majoritaires du pic; Composés de référence=composés purs injectés dans les mêmes conditions et présentant le même spectre de masse; (t)=Tentative d'identification

Tableau 2
Sesquiterpènes identifiés dans le lait

No pic	IK	lons spécifiques utilisés	Identification par base de données du laboratoire	Identification par Masslib (% similitude)	Littérature et IK correspondants	Composés de référence injectés et IK correspondants
69	1351	81-95-136-69-109	sesquiterpène (t)	structure longipinène ou néoclovène (t)	(a) (5)	
72	1367	161-189-91-105	C 15 H24	structure bicyclique (sesquiterpène?) (t)		
74	1395	81-95-109-67- 121-163	β-patchoulène + ester		β-patchoulène 1380 (27)	
75	1396	161-189-204	voisin du clovène			
76	1399	109-161-204	sesquiterpène (PM = 204) ou voisin du davanafurane (t)	ordered street (c		
77	1407	80-81-123-161	mélange avec β -bourbonène (PM = 204)		β-bourbonène 1431 (8) 1415 (10) 1385 (26) 1384 (27)	
80	1424	109-81-67-95- 121-163	voisin du <i>epi</i> -cédrane			
81	1432	93-161(coélué)	C 15 H24	sesquiterpène (t)		
82	1437	81-95-109-67- 123-206	composé sesquiterpénique à noyau cédrane (PM=206)	1 1 1		
83	1439	148-106-93-91- 79-189	voisin du italicène ou iso-italicène (PM=204)		italicène 1401 (27) iso-italicène 1397 (27)	
84	1441	119-93-91- 105-161	1,7-di- <i>epi</i> -α-cedrène (PM=204)		1,7-di- <i>epi</i> -α-cedrène 1397 (27)	
85	1448	94-91-105-93- 133-161	longifolène (PM=204)		longifolène 1402 (27)	longifolène (1447)
86	1451	93-133-106- 161-189	β-trans-caryophyllène ou α-cis-bergamotène	iso-caryophyllène ou caryophyllène VI (t)	β- <i>trans</i> -caryophyllène 1476-1479 (8) 1451	β-trans- caryophyllène (1455)
			(PM=204)	(80%)	(10) 1434-1440 (25) 1424 (26) 1418 (27)	Complication 12 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2

No pic	IK	lons spécifiques utilisés	Identification par base de données du laboratoire	Identification par Masslib (% similitude)	Littérature et IK correspondants	Composés de référence injectés et IK correspondants
		133-161	Manager Street Street Street Street		α-cis-bergamotène 1407 (26) 1415 (27)	Manual Programmer Co.
87	1452	119-93-161	mélange α-trans-berga- motène (PM=204)		α-trans-bergamotène 1438 (26) 1436 (27)	α -cedrène (1452)
			+α-guaiène (PM=204) +aromadendrène (PM=204) (t)		α -guaiène 1439 (27)	
88	1454	81-93-95-79-149- 107-163	mélange avec β-humulène (PM=204)	and the second state	β-humulène 1440 (27)	
89	1456	81-95-69-119-161	C 15 H24	mélange de 2 (dont 1sesquiterpène) (t)		
90	1471	163-107-81-93-121	voisin du <i>epi</i> -cedrane (PM=206)	Sangpele AL (4)	<i>epi</i> -cedrane 1441 (27)	
91	1481	125-83-95-196	mélange avec muuroladiène (PM=204) (t)		muuroladiène 1460 (27)	
92	1493	161-122-107-91- 133-204	7-epi-α-sélinène	α-panasinsène (t) (85%)	7 <i>-epi-</i> α-sélinène 1517 (27)	α -humulène (1490)
93	1497	191-161-189-135- 105-175	mélange avec α-néoclovène (PM=204)	sesquiterpène (t)	α-néoclovène 1454 (27)	
94	1499	119-105-91-132- 204	β-chamigrène (PM=204)		β-chamigrène 1478 (26) 1475 (27)	
95	1500	119-132-105- 145-202	ar-curcumène (PM=202)		<i>ar</i> -curcumène 1483 (26) (27)	
96	1530	105-161-93-94- 204	α-muurolène (PM=204)	α-muurolène (t)	α-muurolène 1493 (27)	
97	1557	159-202-128-144	cis- ou trans-calaménène (PM=202)	calaménène (t)	cis- ou trans-calaménène 1526 (26) 1532 (27)	Composes de exéférence injectes et

Légende: No pic: cf. figure 1; IK=indice de Kovats; lons spécifiques=ions majoritaires du pic ; Composés de référence=composés purs injectés dans les mêmes conditions et présentant le même spectre de masse; (t)=Tentative d'identification; PM=Poids moléculaire

Il est cependant probable que seule une faible quantité des sesquiterpènes ingérés se retrouve dans le lait, bien qu'il soit en fait difficile de comparer les quantités présentes dans les deux produits. L'extraction dynamique de ces composés à partir du lait est en effet rendue difficile en raison de leur faible volatilité et de leur grande solubilité dans la matière grasse. Cette dernière retient sans doute une grande partie des sesquiterpènes dans la matrice, alors que cette difficulté n'existe pas ou que dans une moindre mesure avec des fourrages à matrice cellulosique.

Dans la zone du chromatogramme correspondant aux temps de rétention des sesquiterpènes (fig. 1), plus de 60 pics sont présents, parmi lesquels 24 ont pu être identifiés avec plus ou moins d'exactitude comme sesquiterpènes. Afin d'en faciliter l'identification, les spectres ont été comparés à ceux obtenus dans le fourrage correspondant. Cependant, la plupart des spectres des composés du lait sont d'une qualité médiocre à cause des faibles quantités de produits extraits et de nombreuses coélutions, ce qui rend l'identification difficile. Par ailleurs, la comparaison avec les données de la littérature a fait apparaître des indices de Kovats sensiblement différents d'une référence à l'autre. La comparaison avec les spectres publiés par Adams (27), qui a servi de base à la plupart des identifications, a ainsi montré des différences pouvant atteindre près de 50 unités malgré l'utilisation du même type de colonne, une DB5. Les valeurs publiées par Cornu et al. (26) sur le même type de phase sont en accord avec cet auteur, peut-être pris comme référence pour leur interprétation de spectres. La comparaison de nos résultats avec ceux de Mariaca et al. (8) a montré des écarts plus faibles malgré l'utilisation par ces auteurs d'une phase différente, une DB1. Les indices de Kovats calculés dans la présente étude sont en revanche voisins de ceux de Viallon et al. (10) obtenus également sur une DB5.

Parmi les 24 composés sesquiterpéniques extraits du lait, douze seulement sont présents avec certitude dans le fourrage correspondant (29). Cela tendrait à montrer que le transfert des terpènes du fourrage vers le lait constaté par Viallon et al. (11) et par Bugaud et al. (12) concerne les quantités globales de ces composés, mais pas l'ensemble de ceux-ci. Pour certaines molécules, il semble qu'il puisse se produire des isomérisations, des dégradations ou des bioconversions (30–32) lors du passage dans l'animal, comme cela a été déjà évoqué par Bugaud et al. (12) dans le cas des monoterpènes oxygénés. De plus, l'hypothèse susmentionnée de la biosynthèse de terpénoïdes par des microorganismes ne doit pas être écartée (2–4).

Composés benzéniques

La diversité des composés benzéniques (tableau 3) de l'échantillon analysé est très grande, puisque 41 composés ont été détectés. La plupart (n=38) sont des hydrocarbures monocycliques possédant de 0 à 5 atomes de carbone substitués. Si l'identification des substituants est relativement aisée par comparaison de leur spectre de masse à des spectres de référence connus, les isomères de position sont en revanche difficiles à déterminer en raison d'une (trop) grande similitude de leur

Tableau 3
Composés benzéniques identifiés dans le lait

No pic	IK	lons spécifiques utilisés	Identification par base de données du laboratoire	Identification par Masslib (% similitude)	Littérature (25) et IK correspondants
1	662	78	benzène		
2	769	91	toluène (t)		
4	900	91-106-105	<i>m</i> -xylène		<i>m</i> -xylène 862-875
5	908	91-106-105	o-xylène		o-xylène 884-898
8	932	105-120	iso-propyl benzène	1-méthyl, éthyl benzène (98%)	iso-propyl benzène 917
13	953	117-118-91	2-propenyl benzène		
16	962	91-120	propyl benzène	propyl benzène (97%)	propyl benzène 965
17	969	105-120-91	éthyl, méthyl benzène	1-éthyl, x-méthyl benzène (t) (97%)	3éthyl, 1-méthyl benzène 954 ou 1-méthyl, 4-éthyl benzène 955
18	970	105-106-77	benzaldéhyde	[기념] 등 1일 (의 프로드 H. S. 프로드)	
20	976	105-120-119	1,2,4-triméthyl benzène		1,2,4-triméthyl benzène 984-990
22	989	105-120-91	éthyl, méthyl benzène	x-méthyl, x-éthyl benzène (t)	
26	1000	117-118	1-propenyl benzène		
27	1002	105-120-119	1,3,5(t)-triméthyl benzène	triméthyl benzène (t) (99%)	1,3,5-triméthyl benzène 961-1002
33	1022	132	méthyl, isopropenyl benzène		
36	1030	119-134-91	<i>m</i> -cymène	m-cymène (t) (83 %)	<i>m</i> -cymène 1023-1026
38	1034	119-134-91	<i>p</i> -cymène	<i>p</i> -cymène (t) (96%)	p-cymène 1024-1038
39	1034	105-120	1,2,3(t)-triméthyl benzène	triméthyl benzène (t) (87%)	1,2,3-triméthyl benzène 996-1012
43	1051	117-118	2,3-dihydro indène		
44	1060	115-116	indène		
45	1061	105-134	méthyl, propyl benzène	mélange propyl méthyl benzène, benzène acétaldé-	
16	1065	105 134	méthyl propyl benzène	hyde et autres (t)	2méthyl, propyl benzène 1065
46	1065	105-134	méthyl, propyl benzène		2methyl, propyl benzene 100

No oic	IK	lons spécifiques utilisés	Identification par base de données du laboratoire	Identification par Masslib (% similitude)	Littérature (25) et IK correspondants
47	1067	119-134	diéthyl benzène		
48	1068	91-105-134	butyľ benzène		butyl benzène 1067-1068
50	1073	119-134-105-91	diéthyl benzène	潜水基层 上发花 电电话	
51	1078	105-134	méthyl, propyl benzène		
52	1078	105-77-120	1-phényl éthanone		1-phényl éthanone 1065-1071
53	1081	120-119-91	méthyl benzaldéhyde		
54	1087	119-134	éthyl, diméthyl benzène		4-éthyl,1,2-diméthyl benzène 1094
55	1090	119-134	éthyl, diméthyl benzène	mélange de 2 (dont méthyl- (méthyl éthyl) benzène ?) (t)	
56	1096	119-134	éthyl, diméthyl benzène	意 基 年 日 古 田 斯 新 美 忠	
58	1099	132-117	méthyl, propenyl benzène (t)		
59	1106	105-77-136-51	benzoate de méthyle		
60	1129	119-134	éthyl, diméthyl benzène		
51	1134	119-134-91	éthyl, diméthyl benzène		
2	1157	117-132	éthyl, éthenyl benzène (t)		
3	1162	133-134-105-91	phényl propionaldéhyde		
4	1169	91-105	benzène+5C (t)		pentyl benzène 1168
5	1170	119-91-134	1-phényl 2-propanone (t)		
66	1179	134-133	benzaldéhyde+2 méthyl (t)		4-éthyl benzaldéhyde 1176
7	1180	105-77	benzoate d'éthyle		benzoate d'éthyle 1170
8	1209	128-	naphtalène		naphtalène 1196-1228

Légende: No pic: cf. figure 1; IK=indice de Kovats; lons spécifiques=ions majoritaires du pic; Composés de référence=composés purs injectés dans les mêmes conditions et présentant le même spectre de masse; (t)=Tentative d'identification

spectre de masse. L'outil de choix, mais non disponible pour la présente étude, pour élucider les positions de substitution serait la détection par FT-IR.

Dans certains cas (xylènes, cymènes), les indices de Kovats sont suffisamment différenciés pour reconnaître le composé en se référant aux données de la littérature. Mais dans d'autres cas (par ex. éthyl, méthyl benzène ou éthyl, diméthyl benzène), les indices de Kovats correspondants sont trop proches pour permettre l'identification de la molécule. Seule l'injection de composés de référence est alors informative à condition pourtant que la totalité des isomères soient présents (ou puissent être introduits par enrichissement) dans l'échantillon, car c'est alors l'ordre d'élution qui est déterminant. Plusieurs hydrocarbures polycycliques ont été mis en évidence: l'indène et le 2,3-dihydro indène à 9 atomes de carbone ainsi que le naphtalène (10 atomes de carbone). Les composés polycycliques plus lourds ne sont probablement ni extraits, ni désorbés par la technique de purge and trap.

Quelques composés benzéniques carbonylés (aldéhydes, cétones, esters), contenant jusqu'à 9 atomes de carbone, sont également détectés.

Si la présence de tels composés a déjà été décrite dans les laits (16) ou différents types de fromages (6, 14, 28), une telle diversité n'a jamais été mentionnée. Dans les laits et les fromages, les composés benzéniques sont en grande partie des composés carbonylés qui proviennent du catabolisme microbien des acides aminés aromatiques tyrosine et la phénylalanine. L'origine des hydrocarbures benzéniques dans ces produits est plus difficile à déterminer. D'après Bosset et al. (33), ils pourraient en partie provenir d'une contamination extérieure, en particulier pendant la conservation des échantillons à l'état surgelé si ces derniers ne sont pas conservés dans des récipients parfaitement étanches. Malgré la tendance à l'augmentation des quantités en composés benzéniques au cours de la conservation des laits, il semble cependant que la plupart des composés soient déjà présents avant le stockage de l'échantillon de lait à l'état surgelé (Salmon et Buchin, en préparation). Il faut par ailleurs remarquer que les plantes (essentiellement les Apiaceae) du pâturage dont le présent échantillon est issu étaient elles-mêmes exceptionnellement riches en hydrocarbures benzéniques (21), tant en quantités qu'en diversité. Cette constatation étaye donc l'hypothèse d'une probable origine végétale de ces composés.

Conclusion

Le présent travail a permis de repérer dans un lait d'alpage un grand nombre de composés monoterpéniques (n=34), sesquiterpéniques (n=34) et benzéniques (n=41) et d'en proposer une identification plus ou moins précise allant d'une identification certaine à une simple proposition de formule brute. Dans certains cas intermédiaires, une tentative d'identification, indiquée dans les tableaux 1 à 3 par (t), a été réalisée, qui demande une confirmation ultérieure. Cette liste de composés constitue une première approche dans la constitution d'une banque de données de référence tels qu'indices de rétention sur colonne de type DB-5 et spectres de masse en vue de futurs travaux d'analyse qualitative (identification) sur ce type de pro-

duits. Il est en effet des plus probables que ces composés, en complément d'autres grandeurs mesurables, soient toujours plus souvent recherchés comme traceurs ou marqueurs d'une origine géographique de produits laitiers et carnés de montagne.

Résumé

Le présent travail établit une liste aussi complète que possible des composés monoterpéniques (n=34), sesquiterpéniques (n=24) et benzéniques (n=41) trouvés dans un lait d'alpage de la région d'Abondance (Alpes françaises) particulièrement riche en ces substances. L'analyse de ces composés a été faite par chromatographie en phase gazeuse sur une colonne de type DB5 avec détection par spectrométrie de masse après une extraction dynamique des volatils avec un système de préconcentration de type Tekmar 3000. L'identification des composés a été effectuée en utilisant i) le logiciel Masslib, ii) les données de la littérature, en particulier les spectres des sesquiterpènes publiés par Adams, iii) la base de données constituée au laboratoire à partir de fourrages, de laits et de fromages ainsi que iv) l'injection des composés de référence disponibles. Cette liste constitue une précieuse banque de données pour de futurs travaux en vue de la traçabilité des produits laitiers et carnés de montagne.

Zusammenfassung

In der vorliegenden Arbeit wurde eine möglichst vollständige Liste von Monoterpenen (n=34), Sesquiterpenen (n=24) und Benzolderivaten (n=41) zusammengestellt, welche sich in einer Alpmilch aus dem Abondance-Tal fanden, die sehr reich an diesen Substanzen war. Die gaschromatografische Analyse wurde auf einer DB5-Säule durchgeführt mit massenspektrometrischer Identifikation. Für die dynamische Extraktion der flüchtigen Stoffe wurde ein Voranreicherungssystem Typ Tekmar 3000 eingesetzt. Zur Identifikation der Substanzen wurden eingesetzt i) die Software Masslib, ii) Literaturdaten, im speziellen die Sesquiterpenspektren von Adams, iii) eine eigene Datenbank aus Substanzspektren von Futtermitteln, Milchen und Käsen sowie iv) eingespritzte Referenzsubstanzen. Diese Liste ist eine wertvolle Datenbank für zukünftige Arbeiten im Bereich der Ursprungsbestimmung von Milch- und Fleischprodukten aus dem Berggebiet.

Summary "Identification of Monoterpene, Sesquiterpene and Benzene Derivatives in a Highland Milk very rich in these Compounds"

The present work lists as completely as possible monoterpene (n=34), sesquiterpene (n=24) and benzene derivatives (n=41) found in a milk from highlands of the Abondance area (French Alps) particularly rich in such substances. These compounds have been analyzed by gas chromatography on a DB5-like column, coupled to mass spectrometry after a dynamic headspace extraction with a preconcentration system Tekmar 3000. The identification of the compounds was made using i) Masslib software, ii) literature data, in particular sesquiterpene spectra

published by *Adams*, iii) the data base built in the author's laboratory on the basis of forage, milk and cheese analyses, and iv) the injection of reference compounds when available. This list forms a valuable data base for future works aimed at the traceability of milk and meat products from mountain regions.

Key words

Terpene, Sesquiterpene, Benzene derivative, Milk, Highland

References

- 1 Kaufman, P.B., Cseke, L.J., Warber, S., Duke, J.A. and Brielmann, H.L.: Natural products from plants, 1-90. CRC Press Boca Raton, Boston, London, New York, Washington D.C. 1999.
- 2 Heslot, H. et Vladescu, B.: La levure dans les industries alimentaires, 39-40. TEC & DOC Lavoisier, Paris 1994.
- 3 Imhof, R., Glättli, H. and Bosset, J.O.: Volatile organic compounds produced by thermophilic and mesophilic single strain dairy starter cultures. Lebensm.-Wiss. Technol. 28, 78–86 (1995).
- 4 Berger, C.: Composés d'arômes soufrés produits par la flore d'affinage des fromages à pâte molle: importance de Geotrichum candidum. Thèse de doctorat du 8 novembre 1999, Institut national agronomique de Paris-Grignon 1999.
- 5 Dumont, J.P. and Adda, J.: Occurrence of sesquiterpenes in mountain cheeses volatiles. J. Agric. Food Chem. 26, 364–367 (1978).
- 6 Dumont, J.P., Adda, J. et Rousseaux, P.: Exemple de variation de l'arôme à l'intérieur d'un même type de fromage: le Comté. Lebensm.-Wiss. Technol. 14, 198–202 (1981).
- 7 Bosset, J.O., Bütikofer, U., Gauch, R. et Sieber, R.: Caractérisation de fromages d'alpages subalpins suisses: mise en évidence par GC-MS de terpènes et d'hydrocarbures aliphatiques lors de l'analyse par «Purge and Trap» des arômes volatils de ces fromages. Schweiz. Milchw. Forschung 23, 37–41 (1994).
- 8 Mariaca, R.G., Berger, T., Gauch, R., Imhof, M., Jeangros, B. and Bosset, J.O.: Occurrence of volatile mono- and sesquiterpenoids in highland and lowland plant species as possible precursors for flavour compounds in milk and dairy products. J. Agric. Food Chem. 45, 4423–4434 (1997).
- 9 Bosset, J.O., Berger, T., Bühler-Moor, U., Bütikofer, U., Collomb, M., Dafflon, O., Gauch, R., Jeangros, B., Lavanchy, P., Mariaca, R., Scehovic, J., Sieber, R. and Troxler, J.: Comparison of some highland and lowland gruyere-type cheese of Switzerland: a study of their potential PDO/AOC/AOP characteristics. In: Amado, R and Battaglia, R, ed, Authenticity and adulteration of food The analytical approach. Proceedings of the Symposium Euro Food Chem IX, September 24–26, 1997, Interlaken (Switzerland), Vol. 2, 395–400, Swiss Society of Food and Environmental Chemistry, Druckerei Sailer, Wintherthur 1997. FECS-Event No 220.
- 10 Viallon, C., Verdier-Metz, I., Denoyer, C., Pradel, P., Coulon, J.B. and Berdagué, J.L.: Desorbed terpenes and sesquiterpenes from forages and cheeses. J. Dairy Res. 66, 319-326 (1999).
- 11 Viallon, C., Martin, B., Coulon, J.B., Berdagué, J.L., Pradel, P. and Garel, J.P.: Transfer of monoterpenes and sesquiterpenes from forages into milk fat. Lait 80, 635-641 (2000).

- 12 Bugaud, C., Buchin, S., Coulon, J.B. and Hauwuy, A.: Relationships between flavour and chemical composition of Abondance cheese derived from different types of pastures. Lait 81, 757–773 (2001).
- 13 Bugaud, C., Buchin, S., Coulon, J.B., Hauwuy, A. and Dupont, D.: Influence of the nature of alpine pastures on plasmin activity, fatty acid and volatile compound composition of milk. Lait 81, 401–414 (2001).
- 14 Buchin, S., Martin, B., Dupont, D., Bornard, A. and Achilleos, C.: Influence of composition of Alpine highland pasture on the chemical, rheological and sensory properties of cheese. J. Dairy Res. 66, 579-588 (1999).
- 15 Bosset, J.O., Jeangros, B., Berger, T., Bütikofer, U., Collomb, M., Gauch, R., Lavanchy, P., Scehovic, J. et Sieber, R.: Comparaison de fromages à pâte dure de type Gruyère produits en région de montagne et de plaine. Revue Suisse Agric. 31, 17–22 (1999).
- 16 Moio, L., Rillo, L., Ledda, A. and Addeo, F.: Odorous constituents of ovine milk in relationship to diet. J. Dairy Sci. 79, 1322-1331 (1996).
- 17 Bosset, J.O.: Communication personnelle, travaux non publiés.
- 18 Rubino, R. e Claps, S.: Relazione fra pascolo e qualità del formaggio. In: Formaggi d'alpeggio: il pascolo, l'animale, la razza, il prodotto, 43–56. Atti del V convivio «Formaggi sotto il cielo». Cavalese (TN) 15 settembre 2000, ANFOSC ONLUS, Potenza 2000.
- 19 Fedele, V., Signorelli, F., Brancaleoni, E., Ciccioli, P. and Claps, S.: Effect of concentrate grain source and herbage intake on physical-chemical features and milk aroma in grazing goats. Proceedings of the 7th International conference on goats, 167–170, 2000.
- 20 Martin, B., Buchin, S. et Hauwuy, A.: Effet de la nature botanique des pâturages sur les caractéristiques sensorielles du fromage de Beaufort. In: Mountain cheeses and their traceability. 3rd international meeting of highland cheeses. Potenza, Italie, 31 août, 228–235 (2001).
- 21 Buchin, S., Hauwuy, A., Bugaud, C. et Salmon, J.C.: La composition des plantes en composés volatils est liée à la famille botanique et à la zone de pâturage. In: Qualité et valorisation des productions animales de montagne. Colloque FAO/CIHEAM. Luz St-Sauveur, 13–17 septembre (2000).
- 22 Bugaud, C., Bornard, A., Hauwuy, A., Martin, B., Salmon, J.C., Tessier, L. et Buchin, S.: Relation entre la composition botanique de végétations de montagne et leur composition en composés volatils. Fourrages 162, 141–155 (2000).
- 23 Bugaud, C., Buchin, S., Noël, Y., Tessier, L., Pochet, S., Martin, B. and Chamba, J.F.: Relationships between Abondance cheese texture, its composition and that of milk produced by cows grazing different types of pastures. Lait 81, 593-607 (2001).
- 24 Bugaud, C., Buchin, S., Hauwuy, A. et Coulon, J.B.: Texture et flaveur du fromage selon la nature du pâturage: cas du fromage d'abondance. INRA Prod. Anim. 15, 31–36 (2002).
- 25 Kondjoyan, N. et Berdagué, J.L.: A compilation of relative retention indices for the analysis of aromatic compounds. Ed. Laboratoire Flaveur INRA Clermont-Ferrand 1996.
- 26 Cornu, A., Carnat, A.P., Martin, B., Coulon, J.B., Lamaison, J.L. and Berdagué, J.L.: Solid-Phase Microextraction of volatile components from natural grassland plants. J. Agric. Food Chem. 49, 203–209 (1999).
- 27 Adams, R.P.: Identification of essential oil components by gas chromatography/quadrupole mass spectrometry. Ed. Allured publishing corporation, Carol Stream 2001.
- 28 Guichard, E., Berdagué, J.L. et Grappin, R.: Affinage et qualité du Gruyère de Comté. V. Influence de l'affinage sur la teneur en composés volatils. Lait 67, 319–338 (1987).
- 29 Buchin, S.: Communication personnelle, travaux non publiés.
- 30 Tan, Q. and Day, D.F.: Organic co-solvent effects on the bioconversion of (R)-(+)-limonene to (R)-(+)-alpha-terpineol. Process Biochem. 33, 755–761 (1998).
- 31 Miyazawa, M. and Wada, T.: Biotransformation of γ-terpinene and (-)-α-phellandrene by the Larvae of common cutworm (Spodoptera litura). J. Agric. Food Chem. 48, 2893–2895 (2000).

- 32 Agrawal R. and Joseph R.: Bioconversion of alpha pinene to verbenone by resting cells of Aspergillus niger. Appl.Microbiol.Biotechnol. 53, 335-337 (2000).
- 33 Bosset, J.O., Gubler, M., Bütikofer, U. and Gauch, R: Mono-, di- and trimethyl benzene in frozen cheese samples: Natural metabolites or environmental pollutants? Trav. chim. aliment. hyg. 91, 287–299 (2000).

Adresse de la correspondante: Solange Buchin, Station de recherches en technologie et analyses laitières, INRA, b.p. 89, F-39801 Poligny-Cedex, E-mail: buchin@poligny.inra.fr