Zeitschrift: Mitteilungen aus Lebensmitteluntersuchungen und Hygiene = Travaux

de chimie alimentaire et d'hygiène

Herausgeber: Bundesamt für Gesundheit

Band: 92 (2001)

Heft: 5

Artikel: Caractérisation microbiologique, chimique et sensorielle de laits, de

caillés et de fromages de chèvre tessinois de types formaggini

(büscion, robiola) et formaggella

Autor: Bosset, Jacques Olivier / Albrecht, Bruno / Badertscher, René

DOI: https://doi.org/10.5169/seals-981923

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Caractérisation microbiologique, chimique et sensorielle de laits, de caillés et de fromages de chèvre tessinois de types Formaggini (Büscion, Robiola) et Formaggella*

Jacques Olivier Bosset, Bruno Albrecht, René Badertscher, Marc Dalla Torre, Roland Gauch, René Imhof, Dino Isolini, Pierre Lavanchy, Jacques Meyer, Urs Spahr et Maurice Wismer, Station fédérale de recherches laitières (FAM) de Liebefeld, Berne

Mario Burger, AC-Laboratorium Spiez, Zentrale Analytik/Radiochemie, Gruppe Rüstung, Spiez

Renato Bontognali et Enrico Rezzonico, Centre d'inspection et de consultation en matière d'économie laitière (SICL), Sant' Antonino

Giulia Quadroni, Associazione Capra Ticino, Ponte Capriasca

Présenté le 25 juin 2001, accepté le 9 juillet 2001

Introduction

La chèvre et ses fromages ont joué depuis fort longtemps et jouent toujours un rôle important non seulement dans l'économie régionale du Tessin et du nord de l'Italie en général (1), mais constituent aussi un bien social, culturel et historique de valeur de ces régions montagneuses. On recense actuellement au Tessin quelque 12 000 chèvres élevées pour moitié pour la production de viande et pour moitié pour celle de lait et de produits laitiers. Selon le syndicat d'élevage, la répartition des races est la suivante: Verzasca: 21 %, Saanen: 4 %, Camosciata: 4 %, Toggenburg: env. 1 %, le solde (env. 70 %) n'étant pas recensé. Les systèmes de traite sont presque exclusivement manuels (97,5 %), rarement mécanisés (2,5 %).

^{*} Travail présenté au 3° Colloque international sur les fromages d'alpages à Bella (PZ/I) le 31 août 2001

Dans le cadre du programme de recherches transfrontalier italo-suisse «INTER-REG II» (1997–1999) intitulé: «Valorizzazione e tipicizzazione delle produzioni agricole» mené en parallèle avec la Comunità Montana Valli del Luinese (2, 3), une étude de laits, de caillés et de fromages de chèvre du Tessin des appellations Büscion et Robiola, regroupés sous le nom générique de Formaggini, ainsi que de type Formaggella a été entreprise du côté suisse à l'aide de méthodes d'analyses microbiologiques, chimiques, radiochimiques et sensorielles. A leur nombre, il faut mentionner la recherche de certains radio-isotopes et composés volatils, ayant pour but de caractériser ces fromages en vue de l'obtention d'une future Appellation d'origine contrôlée (AOC) ou Appellation d'origine protégée (AOP). Ces fromages n'ont, semble-t-il, jamais fait l'objet d'une étude ou d'une publication scientifique, ce qui explique le présent travail.

Il existe deux formes de formaggini: ceux de forme haute («alt») et ceux de forme basse («bass»). Le terme de «büscion» désigne ceux de forme cylindrique haute. Ce néologisme est assez récent. On ne le trouve pas encore dans les archives des patois tessinois entre 1910–1920. Il dérive du mot français «bouchon» en raison de la ressemblance (forme et couleur) de ce fromage, après affinage dans de l'huile, avec le bouchon de liège (fig. 1). Ce terme est utilisé aujourd'hui dans tout le Tessin où il est produit. Les termes de Formaggini et de Formaggella proviennent du mot «caseus formaticus», ce qui signifie en bas latin «fromage fabriqué dans une forme».

Figure 1 Photo des trois sortes de fromages étudiés: Büscion, Robiola et Formaggella

La figure 1 montre une photographie des trois sortes de fromage étudiées. Les deux premières sortes (Büscion et Robiola, appelées aussi Formaggini selon les régions) sont des fromages frais (teneurs en eau d'env. 630 g/kg et de 690 g/kg respectivement) et gras (teneur en matière grasse MG d'env. 170–220 g/kg et 180–190 g/kg respectivement) consommables après 24 heures déjà. La troisième

Tableau 1 Schéma de fabrication et d'affinage du Büscion, de la Robiola et de la Formaggella

Produit/étape	Büscion	Robiola	Formaggella
Lait	cru ou thermisé à 65°C/15 min	thermisé à 65°C/15 min	cru ou thermisé à 65° C/15 min
Refroidissement	à 20–26°C	à 32–34° C	à 34–38°C
Ajout de ferments	mésophiles	thermophiles (par ex. yoghourt)	mésophiles ou thermophiles
Maturation du lait	0-180 min	10 min	30-40 min
Emprésurage	2-4 ml/100 l force 1:9000	12-13 ml/100 l force 1:9000	15-25 ml/100 l force 1:9000
Coagulation	lactique/enzymatique: 4-8 h	enzymatique: 35–40 min	enzymatique: 35–40 min
Acidification	12 h	maturation: 30 min	maturation: 30-45 min
Découpage caillé	orthogonalement, en forme de croix 12 h après l'emprésurage (facultatif)	à la taille d'une noix	en cube de 1 cm de côté
Attente	12 h	5-10 min/brassage	5 min/brassage
Chauffage	_		5-10 min à 35-38° C
Egouttage	24 h après l'emprésurage (critère: pH 4,3-4,5) suspendre pâte en sachets (20-22°C) pendant 12-24 h	6-8 h	20-24 h (critère: pH 5,20-5,30 après 6-8 h)
Mise en forme Portionnement	pétrissage	découpage	moulage, retournement: 2-3 fois
Salage	8–10 g/kg	à la main	bain de sel 1,5-5 h à 14° C
Emballage	sous papier	sous papier	meules 0,5-2,0 kg
Stockage	4–5°C (max. 20 j.)	4–5°C (max. 7 j.)	affinage 12°C, 90% rH, 3-4 semaines

sorte (Formaggella) est un fromage mi-dur (teneur en eau de 510 g/kg) et gras (teneur en MG d'env. 220–260 g/kg) affiné pendant un mois environ. Leur poids avoisine 50 à 60 g, 80 à 100 g et 1000 à 1500 g respectivement. Le tableau 1 résume les procédés de fabrication et d'affinage correspondants.

La littérature concernant les fromages de chèvre est assez abondante. On peut citer l'étude très complète de *Buchin* et al. (4) qui ont procédé par échanges de la matière grasse et du lait écrémé de laits de vache et de chèvre ainsi que les diverses investigations de chercheurs français pour tenter d'isoler les composés responsables du goût des fromages de chèvre (5–7) mais aucune étude ne semble avoir été consacré aux trois sortes de fromages tessinois considérés dans ce travail.

Partie expérimentale

Choix des échantillons

Sans avoir pu opérer un véritable suivi de fabrication en raison de problèmes logistiques de prélèvement et d'expédition des échantillons depuis les divers alpages, 20 échantillons de lait, 24 échantillons de caillés (10 de Büscion, 7 de Robiola et 7 de Formaggella) et 32 échantillons de fromages prêts à la consommation (14 Büscion, 11 Robiola et 7 Formaggella) ont été prélevés pendant la période d'estivage chez cinq producteurs codés A à E et envoyés par exprès aux divers laboratoires. Il s'agissait du Laboratoire d'essais des radionucléides du Groupement de l'armement de Spiez pour les mesures de la radioactivité et de divers laboratoires de la FAM pour les autres grandeurs mesurées. Les laits ont été analysés pour leur composition microbiologique, leur aptitude à la coagulation et leur radioactivité; les caillés pour leur composition microbiologique; les fromages mûrs pour leurs compositions microbiologique et chimique ainsi que leur appréciation sensorielle. Les échantillons ont été analysés à l'état frais pour les examens microbiologiques, les tests de coagulation et l'appréciation sensorielle et après congélation à –18° C puis décongélation pour toutes les analyses de la composition chimique et la radioactivité.

Méthodes d'analyse

Staphylocoques coagulase positifs (S. aureus) (méthode de la FAM)

Principe: Le comptage et l'identification s'effectuent après étalement en surface sur agar Baird Parker avec adjonction de RPF (Rabbit Plasma Fibrinogen) et incubation en aérobiose pendant 24–48 h à 37°C, suivis d'un test de thermonucléase au bleu de toluidine. On dénombre les staphylocoques positifs à la fois à la coagulase et au bleu de toluidine. La production de coagulase et de thermonucléase est dans une large mesure liée à la pathogénicité de ces germes.

Aérobies mésophiles (30°C)

Principe: Comptage et identification par étalement en profondeur sur agar Standard Methods selon Robert Koch. Incubation en aérobiose pendant trois jours à 30°C (8).

Escherichia coli (E. coli)

Principe: Comptage et identification par étalement en surface sur agar *Escherichia coli* direct (ECD-Agar plus MUG). Incubation pendant 24 h à 42±1°C. Les colonies de *E. coli* émettent de la lumière sous l'effet des ultraviolets (9).

Coliformes (méthode de la FAM)

Principe: Comptage et identification par étalement en profondeur sur agar au lactose Violet red bile (VRB-Agar), étalement en double couche. Incubation en aérobiose pendant 1 jour à 37°C.

Streptocoques D (entérocoques)

Principe: Comptage et identification par étalement en profondeur sur agar à la kanamycine-esculine-azide. Incubation en aérobiose pendant 18–24 h à 37°C. La kanamycine et l'azide inhibent dans une large mesure la flore accompagnatrice, en particulier les germes gram-négatifs mais aussi les staphylocoques, alors que les streptocoques D sont peu sensibles à ces substances. Ils hydrolysent le glucoside esculine en glucose et en esculétinine, qui forme avec le fer (III) un complexe vert olive à noir (10).

Bactéries lactiques (méthode de la FAM)

Principe: Comptage et identification par étalement en surface sur agar MRS (Man, Rogosa et Sharpe). Incubation en anaérobiose pendant deux jours à 37°C. Les lactobacilles forment de grandes colonies, les lactocoques (streptocoques), de petites. La méthode n'est sélective que par l'anaérobiose d'où une confirmation nécessaire au microscope.

Lactocoques (méthode de la FAM)

Principe: Comptage et identification par étalement en surface sur agar M17 selon *Terzaghi et Sandine* (10). Incubation en conditions anaérobies pendant deux jours à 30°C. Les lactocoques (streptocoques du lait) forment des colonies bien visibles comparativement à d'autres germes qui peuvent former des microcolonies.

Listeria monocytogenes AccuProbe (méthode de la FAM)

Principe: Ensemencement en deux phases dans un milieu liquide et sélection sur le milieu solide ALOA-Agar. Identification au moyen d'une sonde génétique (AccuProbeTM) (12). Cette méthode d'analyse est un procédé de détection qualitatif qui permet de constater s'il y a présence ou non de *L. monocytogenes*. Elle est vali-

dée pour le lait, les produits laitiers, les substances auxiliaires et possède un seuil de détection de 1–10 ufc/g d'échantillon.

Salmonella

Principe: Ensemencement en deux phases dans un milieu liquide et sélection sur deux milieux, suivi d'une identification biochimique. Cette méthode d'analyse est un procédé de détection qualitatif et permet de constater s'il y a présence ou non de salmonelles. La méthode est utilisée au niveau international pour le lait et les produits laitiers de même que pour toutes les autres denrées alimentaires. Le seuil de détection pour le lait et les produits laitiers se situe entre 1–10 ufc/10 g d'échantillon (13).

Dénombrement des cellules somatiques du lait

Principe: dénombrement optique par fluorescence (46).

Mesure de la coagulation enzymatique du lait

Equipement: Formagraphe, type 11700, Foss Electric, Danemark. Les mesures sont effectuées à 32°C.

Principe: Un bloc de métal contenant les échantillons de lait et la solution de présure est soumis à une oscillation horizontale. Accouplés à de petits miroirs oscillants, des balanciers en forme d'anneaux plongent dans les échantillons (un par échantillon). Le mouvement du couple balancier-miroir est enregistré sur papier en tant que «formagramme»: tant que les échantillons sont liquides, l'oscillation du bloc de métal n'est pas transmise au balancier: le tracé enregistré («formagramme») est alors rectiligne. Dès que les échantillons coagulent, la viscosité de ceux-ci augmente et l'oscillation du bloc de métal est donc mieux transmise au balancier. Le tracé généré par le couple balancier-miroir se traduit par une fourchette toujours plus évasée à partir de laquelle on peut déterminer: i) la durée de coagulation R (en min) depuis l'emprésurage et ii) la fermeté du coagulum 10 minutes après le début de la coagulation, grandeur mesurée par l'écartement des branches de la «fourchette» ainsi dessinée (valeur A₁₀, mesurée en mm) (14, 15).

Détermination butyrométrique de la teneur en matière grasse du fromage selon Gerber-van Gulik

Principe: L'échantillon de fromage est décomposé dans le butyromètre à l'aide d'acide sulfurique. La couche de matière grasse surnageante est séparée par centrifugation. La teneur en matière grasse de l'échantillon peut alors être directement lue sur l'échelle du butyromètre (16).

Détermination argentométrique de la teneur en chlorure du fromage

Principe: Une fois mis en suspension dans l'eau, l'échantillon est acidifié avec de l'acide sulfurique. Les chlorures sont titrés avec du nitrate d'argent. Le point final de la titration est enregistré potentiométriquement (17).

Détermination butyrométrique de la teneur en matière grasse du lait selon Gerber

Principe: Le même que celui de la détermination butyrométrique de la teneur en matière grasse du fromage selon Gerber-van Gulik, décrit ci-dessus (18).

Détermination de l'azote total (TN) dans le lait et les produits laitiers selon Kieldahl

Principe: L'échantillon est minéralisé au moyen d'acide sulfurique et de perhydrol en présence d'un catalyseur (sulfate de cuivre & oxyde de titane). Après l'addition de soude caustique concentrée, l'ammoniac libéré est distillé à la vapeur d'eau dans une solution d'acide borique. Le borate formé est titré potentiométriquement avec de l'acide chlorhydrique. La teneur en protéines totales est égale à celle en $TN \times 6,38$ (19).

Détermination de la teneur en azote hydrosoluble (WLN=Wasserlöslicher N) du fromage selon Kjeldahl

Principe: L'échantillon de fromage est mis en suspension dans de l'eau (pH non ajusté). Après centrifugation des particules non solubles, on détermine la teneur en azote selon Kjeldahl sur une part aliquote de cet extrait aqueux (20).

Détermination de la teneur en azote non protéique (NPN) du fromage selon Kjeldahl

Principe: Une partie aliquote de l'extrait obtenu précédemment pour le dosage du WLN est additionnée d'acide trichloracétique pour précipiter les protéines solubles. Après filtration, on détermine selon Kjeldahl la teneur en azote résiduel (petits peptides, acides aminés libres, ammoniaque, urée) dans le filtrat (20).

Détermination de la teneur en acides gras volatils du fromage par chromatographie en phase gazeuse après estérification dans l'espace de tête statique

Principe: Les acides gras volatils (C1 à C6) sont entraînés en milieu sulfurique par distillation à la vapeur d'eau. Le distillat est titré au moyen de soude caustique (somme des acides gras volatils), puis réacidifié avec de l'acide chlorhydrique et estérifié avec du propanol dans l'espace de tête du flacon. Une partie de l'espace de tête statique est injectée dans un chromatographe en phase gazeuse avec détection par ionisation de flamme (21).

Dosage de l'urée

Principe: En présence de l'enzyme uréase, l'urée est décomposée en ammoniaque et en dioxyde de carbone. L'ammoniaque (en solution aqueuse) et l'α-céto-glutarate réagissent en présence de glutamate-deshydrogénase et de NADH pour former du L-glutamate, réaction où le NADH est oxydé en NAD+. La quantité de NADH oxydé est équivalente à la quantité d'ammoniaque. La différence de la teneur en ammoniaque avant et après la réaction de l'uréase correspond à la moitié de la quantité d'urée. Le NADH sert de grandeur de mesure et est déterminé, en raison de son absorption, à 340 nm selon le schéma réactionnel suivant (22, 23):

Dosage du lactate

En présence de L(+)-lactate-deshydrogénase, l'acide lactique L (L-lactate) est oxydé en pyruvate par le NAD. L'acide lactique D (D-lactate) est oxydé en pyruvate par le NAD en présence de D(-)-lactate deshydrogénase. L'équilibre de cette réaction est déplacé vers la droite par un excès de NAD, le milieu alcalin et en piégeant le pyruvate au moyen d'hydrazine (il se forme du pyruvate-hydrazone). La quantité de NADH formé est équivalente à la quantité de lactate et sert de grandeur de mesure en raison de son absorption dans l'UV selon le schéma réactionnel suivant (24, 25):

Dosage du lactose

En présence de L(+)-lactate-deshydrogénase, le lactose est hydrolysé en galactose et en glucose. On procède à la détermination du glucose dans la fraction hydrolysée (=«glucose total») et dans la fraction non hydrolysée (=«glucose libre»). Le glucose est oxydé par la glucose-oxidase en acide gluconique. Le peroxyde qui en résulte oxyde l'ABTS (azino-2,2'-di-[éthyl-3-benzothiazoline-sulfonate-(6)] de diammonium) en présence de la peroxidase en un colorant bleu vert. La teneur en lactose se calcule à partir de la différence entre le «glucose total» et le «glucose libre» selon le schéma réactionnel suivant (26–28):

Analyses sensorielles

Le jury de dégustation accrédité de la FAM a caractérisé ces trois sortes de fromages en utilisant sa terminologie usuelle (choix des descripteurs) (29, 30)

Mesure de la radioactivité (méthode accréditée)

Principe de la mesure: par spectrométrie Gamma/quantitative, selon la norme EN45001 du laboratoire d'essai STS02, avec un détecteur coaxial Ge; Zone d'énergie 60–2700 keV; Volume de mesure 200 ml.

Evaluation du spectre: Avec le programme GENIE, sans correction de la densité, avec compensation du bruit de fond, sans correction de la somme des cascades. Date de référence pour le calcul de l'activité: date du prélèvement de l'échantillon.

Analyse semi-quantitative des composés volatils

Principe: L'analyse dynamique d'effluves (ou d'espace de tête) est effectuée à l'aide d'un Purge & Trap série 3100 (Tekmar, Cincinnati, OH, USA) couplé à un chromatographe en phase gazeuse (Agilent/Hewlett-Packard 5890, Series II) avec détections i) par spectrométrie de masse (MSD modèle HP 5972) pour l'analyse qualitative et ii) par ionisation de flamme (FID) pour l'analyse semi-quantitative. La méthode est la même que celle décrite précédemment (31) à l'exception des points suivants:

Système d'extraction et de concentration: 10 g d'échantillons ont été rapés (et non dispersés dans de l'eau); cap cool-down: –140°C au lieu de –125°C; désorption: 240°C au lieu de 220°C; MCS line temp.: 150°C; MCS bake temp.: 300°C.

Détection MS: mode TIC de 26 à 250 amu avec 1,1 scan/s (au lieu de 19 à 250 amu avec 2,9 scan/s).

Résultats et discussion

Laits

Analyses microbiologiques

Le tableau 2 présente les résultats des analyses microbiologiques des laits crus utilisés par les cinq producteurs pour la fabrication de leurs fromages. On remarque de grandes différences tant entre les jours de prélèvement des échantillons qu'entre les producteurs, et cela aux mêmes dates. Les producteurs A et E ont en moyenne des teneurs plus basses que B et surtout que C et D. Les valeurs parfois (plus) élevées mesurées concernent surtout les bactéries mésophiles et lactiques, non pathogènes. *E. coli* est en général < 10 ufc/g sauf chez le producteur C qui dépasse chaque fois cette valeur et atteint même la valeur de 1000 ufc/g (le 29.5.1999). *S. aureus*, connu comme assez problématique chez la chèvre, est toujours inférieur ou égal à 10000 ufc/g sauf une fois où il atteint la valeur de 28000 ufc/g chez le producteur A (le 14.8.1999). Le nombre des cellules somatiques fluctue proportionnellement

Tableau 2
Analyses microbiologiques (n=20) des laits de chèvre crus de divers producteurs

Producteur	Date de production	Bactéries mésophiles aérobies (ufc/g)	Bactéries lactiques (ufc/g)	Coliformes (ufc/g)	Escherichia coli (ufc/g)	S. aureus (ufc/g)	Dénombrement des cellules (× 1000/ml)
A	29.05.1999	560	<100	<10	<10	<10	119
	27.06.1999	810	1300	<10	<10	250	458
	18.07.1999	510	<100	<10	<10	<10	296
	14.08.1999	16000	22 000	440	20	28000	592
В	29.05.1999	100000	20000	1100	10	180	717
	27.06.1999	18000	15000	<10	<10	240	727
	18.07.1999	11000	5600	<100	<10	110	1085
	14.08.1999	34000	26000	26000	<10	<10	1084
С	29.05.1999	100000000	700 000 000	14000	1 000	3300	1516
	27.06.1999	630000	1000000	5 900	600	10000	1122
	18.07.1999	170 000	730000	650	90	2000	2306
	14.08.1999	110000	100000	160	81	1600	1784
D	29.05.1999	420000	220 000	210	<10	1200	618
	27.06.1999	540000	20000	4700	<10	390	533
	18.07.1999	130000	160000	400	<10	<10	470
	14.08.1999	1800000	4900000	6700	<10	<10	590
E	29.05.1999	12000	5300	<100	<10	3600	2468
	27.06.1999	1500	<100	<10	<10	4100	3 176
	18.07.1999	1100	1500	<10	<10	150	3 2 3 4
	14.08.1999	16000	6100	<100	<10	9300	1256
Minimum		510	<100	<10	<10	<10	119
Quartile infér	ieur	8625	4350	<10	<10	85	576
Médiane		26000	20000	185	<10	320	906
Quartile supé	rieur	232500	175 000	2000	13	3375	1583
Maximum		100000000	700000000	26000	1000	28000	3234

Tableau 3 Analyses chimiques, de la radioactivité et de l'aptitude à la coagulation des laits de chèvre (n=20) crus de divers producteurs

Producteur	Date de production	Durée de la coagulation (min)	Fermeté coagulum à 10 min (mm)	Urée (mg/kg)	Lactose (mmol/kg)	Lactose anhydre (g/kg)	Matière grasse (g/kg)	Azote total (g/kg)	Cs-137 (Bq/kg)
A	29.05.1999 27.06.1999 18.07.1999	3,6 7,4	19,0 35,5	610 418 428	126 133 137	43,1 45,5 46,9	30,3 30,0 33,3	4,20 5,12 4,75	17,4 14,0
	14.08.1999	5,9	30,6	404	123	42,1	35,3	4,85	24,4
В	29.05.1999 27.06.1999 18.07.1999 14.08.1999	8,2 8,0 8,3	19,2 24,8 27,5	530 505 420 535	128 128 125 122	43,8 43,8 42,8 41,8	34,8 33,8 36,5 35,3	4,72 4,67 4,55 4,48	43,5 45,3 51,0
C	29.05.1999 27.06.1999 18.07.1999 14.08.1999	6,5 7,8	23,2 29,8 32,3	401 331 426 367	111 126 124 123	38,0 43,1 42,4 42,1	29,8 34,8 35,0 33,8	3,95 4,67 4,64 4,66	33,1 43,9 35,6
D	29.05.1999 27.06.1999 18.07.1999 14.08.1999	6,0 7,2 6,8	25,5 31,8 35,8	501 375 459 450	128 130 129 121	43,8 44,5 44,2 41,4	31,0 29,0 34,0	4,97 4,87 4,97 4,73	n.d. n.d. n.d.
E	29.05.1999 27.06.1999 18.07.1999 14.08.1999	7,7 7,0 6,1	18,5 29,5 32,0	531 436 496 444	120 120 117 114	41,1 41,1 40,0 39,0	29,3 35,5 34,5 33,0	4,48 4,68 4,38 4,41	16,6 22,6 22,9
Minimum Quartile infér Médiane	rieur	3,6 6,2 7,1	18,5 24,0 29,5	331 415 440	111 121 125	38,0 41,3 42,6	27,0 30,2 33,8	3,95 4,48 4,67	n.d. 15,3 22,9
Quartile supé Maximum	rieur	7,8 8,3	31,9 35,8	502 610	128 137	43,8 46,9	34,9 36,5	4,78 5,12	39,6 51,0

n.d.=non détecté (imite de détermination: <1 Bq/kg)

moins que celui des germes entre producteurs et dates de prélèvements. La répartition est normale et sans valeur aberrante. Le dénombrement des germes totaux reste problématique dans les laits de chèvre (32).

Aptitudes à la coagulation et radioactivité

Le tableau 3 présente les résultats des mesures de l'aptitude à la coagulation et de la radioactivité ainsi que des analyses de la composition chimique globale de ces mêmes laits. On y constate que la fermeté du coagulum croît légèrement au cours de l'estivage, mais pas la durée de la coagulation. Pour ces deux grandeurs, la valeur minimale correspond à peu près à la moitié de la valeur maximale mesurée.

En ce qui concerne la matière grasse, *Grappin* et al. (33) ont trouvé des valeurs comparables, légèrement plus faibles pour l'urée et comparables pour l'azote total. Les laits provenaient de chèvres des races Alpine chamoisée, Saanen et Croisées. Cependant, ils ont mis en évidence la fluctuation saisonnière importante de ces valeurs. *Anifantakis* et al. (34) ont démontré pour les races Saanen et indigène (Grèce) qu'il pouvait y avoir de grandes variations des teneurs en matière grasse, en lactose et en azote total du lait de chèvre.

Toutes les grandeurs du tableau 3 présentent à peu près des distributions normales et sans valeurs aberrantes à l'exception du Cs-137. La radioactivité de cet isotope est comprise entre 14 et 51 Bq/kg pour tous les prélèvements et producteurs sauf pour le producteur D. On constate que tous les échantillons de laits mesurés dépassent la limite de tolérance de 10 Bq/kg pour ce radioisotope sauf ceux de ce producteur. L'explication la plus plausible de cette différence hautement significative est que les chèvres du producteur D ont reçu un fourrage provenant d'une autre région, non contaminée par l'accident de Tschernobyl, et non un fourrage indigène (on peut en l'occurence exclure un transfert de laits à partir d'une autre région). Les résultats de ces mesures de radioactivité démontrent par conséquent que les chèvres des autres producteurs ont toutes effectivement pâturé au Tessin.

Les mesures de la radioactivité du Cs-134 (valeurs non reportées ici) sont en revanche toutes inférieures à la limite de détermination de la méthode (<1 Bq/kg). Le rapport de ces deux isotopes (Cs-134/Cs-137) est de l'ordre de 1/100, comme escompté, leurs périodes de demi-vie étant de 2,06 et 30,17 ans respectivement. Le tableau 3 montre enfin que la teneur en Cs-137 peut varier du simple au double selon le degré de contamination du sol.

Caillés

Analyses microbiologiques

Le tableau 4 montre les résultats des analyses microbiologiques effectuées sur les caillés des trois sortes de fromages chez les cinq producteurs.

Tableau 4

Analyses microbiologiques de divers caillés de chèvre produits par divers producteurs

Produit I	Producteur	Date de production	Entérocoques (ufc/g)	Bactéries lactiques (MRS) (ufc/g×10 ⁶)	Lactocoques (M17) (ufc/g×10 ⁶)
Büscion	A	27.06.1999	390	610	750
(n=10)		18.07.1999	<10	980	1600
		14.08.1999	<10	740	1700
	В	18.07.1999	<10	2300	6800
		14.08.1999	<10	1700	1300
	Constant	27.06.1999	<100	2800	1300
		14.08.1999	<100	1800	2600
	D	27.06.1999	<100	3 000	3700
		18.07.1999	<100	280	1600
		14.08.1999	1500	1400	1100
Minimum			<10	280	750
Quartile inférie	eur		<10	800	1300
Médiane			100	1550	1600
Quartile supéri	eur		100	2175	2375
Maximum			1 500	3 000	6800
Robiola	С	27.06.1999	<10	77	1200
(n=7)		14.08.1999	<10	1	1
	D	18.07.1999	<100		5
		14.08.1999	<100	ommoles <mark>1</mark> h saim	3
	E	27.06.1999	<10	48	74
		18.07.1999	2000	1800	2300
		14.08.1999	<100	62	93
Minimum			<10	osa regronansia 1	
Quartile inférie	eur		<10	1	4
Médiane			100	48	74
Quartile supéri	eur		100	70	647
Maximum			2000	1800	2300
Formaggella	hor Carel	29.05.1999	<10	32	64
(n=7)		27.06.1999	1800000	11	25
		18.07.1999	2000	68	350
	D	29.05.1999	<10	10	8
	micEro 19	29.05.1999	<10	40	41
		27.06.1999	<10	330	320
		18.07.1999	1 200	1700	2300
Minimum			<10	10	8
Quartile inférie	eur		<10	22	33
Médiane			<10	40	64
Quartile supéri	eur		605	199	335
Maximum			1800000	1700	2300

Les teneurs en entérocoques sont toujours inférieures à 2000 ufc/g, quelle que soit la sorte de fabrication concernée, sauf une fois où elle atteint 1800000 ufc/g chez le producteur C (Formaggella, le 27.6.99).

Les bactéries lactiques et les lactocoques sont beaucoup plus abondants en général dans le caillé du type Büscion (médiane, respectivement de 1550 et 1600×106 ufc/g) que dans les caillés des sortes Robiola (médiane, respectivement de 48 et 74×106 ufc/g) et Formaggella (médiane, respectivement de 40 et 64×106 ufc/g).

Fromages

Analyses microbiologiques

Le tableau 5 rapporte les résultats des analyses microbiologiques effectuées sur les trois sortes de fromages finis et pour les 5 producteurs (tous ne fabriquent pas toutes les sortes considérées).

Les teneurs en coliformes sont en général inférieures à 11000 ufc/g sauf une fois où elle atteint 46000 ufc/g chez le producteur C (Formaggella, le 24.6.99). Celles en entérocoques sont toujours inférieures à 44000 ufc/g, voire à 11000 ufc/g, quelle que soit la sorte de fabrication concernée, sauf à nouveau chez le producteur C où elle atteint une fois 120×10⁶ ufc/g (Formaggella, le 24.6.99) et 52000 ufc/g chez le producteur E (Formagella, le 02.6.99). Les teneurs en bactéries indésirables telles que *E. coli* sont très faibles (pratiquement toujours <10 ufc/g) sauf une fois chez le producteur A où elle atteint env. 800 ufc/g (Büscion, le 02.6.99) et une fois chez le producteur C où elle atteint 210 ufc/g (Formagella, le 21.7.99). Pour ce germe, l'Ordonnance correspondante en matière d'hygiène ne prévoit pas de valeur de tolérance pour les pâtes fraîches, mais une valeur de 1000 ufc/g pour les pâtes mi-dures. Cette valeur de tolérance est respectée pour tous les échantillons de Formaggella analysés.

Pour le Büscion et la Robiola (pâtes fraîches), les teneurs en *S. aureus* sont presque toujours inférieures à la valeur de 100 ufc/g, sauf deux exceptions où elle atteint 1000 ufc/g chez le producteur E (Robiola, le 21.7.99) et 130 ufc/g chez le producteur A (Büscion, le 02.6.99). Pour ce microorganisme, les valeurs de tolérance et limite sont de 100 ufc/g et de 10000 ufc/g respectivement. La première n'est pratiquement dépassée que deux fois, mais le maximum mesuré reste néanmoins largement en dessous de la valeur limite.

Pour la Formaggella (pâte mi-dure), les teneurs en *S. aureus* sont presque toujours inférieures à la valeur de 10 ufc/g, sauf une exception où elle atteint 5550 ufc/g chez le producteur E (le 02.6.99). Pour ce microorganisme, les valeurs de tolérance et limite sont de 1000 ufc/g et de 10000 ufc/g respectivement. La première n'est dépassée qu'une seule fois, mais la valeur maximale reste cependant en dessous de la valeur limite. On ne trouve en revanche ni *Listeria monocytogenes*, ni salmonelles dans les échantillons analysés.

Les bactéries lactiques et les lactocoques présentent des distributions normales. Elles sont peu abondantes dans la Robiola comme dans son caillé, mais plus pré-

Tableau 5

Analyses microbiologiques de divers fromages de chèvre produits et affinés par divers producteurs

Produit I	Producteur	Date de produc- tion	Bactéries lactiques (10 ⁶ ×ufc/g)	Lactocoques (M17) (10 ⁶ ×ufc/g)	Coliformes (ufc/g)	Escherichia coli (ufc/g)	Entéro- coques (ufc/g)	S. aureus (ufc/g)	Salmonella spp. par 10 g	Listeria monocyto- genes par 10 g
Büscion	Α	02.06.1999	1600	4800	750	800	44 000	130	n.d.	n.d.
(n=12)		24.06.1999	980	1700	<10	<10	<100	100	n.d.	n.d.
夏 \$P 11. 11. 11. 11. 11. 11. 11. 11. 11. 11		21.07.1999	470	940	<10	<10	<10	<10	n.d.	n.d.
	В	02.06.1999	65	210	<10	<10	210	<10	n.d.	n.d.
		24.06.1999	2	8	<10	<10	140	<10	n.d.	n.d.
		21.07.1999	29	75	<10	<10	<100	<10	n.d.	n.d.
	С	02.06.1999	1600	3 800	<10	<10	<100	<100	n.d.	n.d.
		24.06.1999	740	2100	<10	<10	1100	<10	n.d.	n.d.
		21.07.1999	860	1100	<100	<10	700	<10	n.d.	n.d.
	D	02.06.1999	4100	5100	<10	<10	150	<10	n.d.	n.d.
		24.06.1999	150	530	<10	<10	2000	<100	n.d.	n.d.
		21.07.1999	700	6000	<10	<10	11000	<10	n.d.	n.d.
Minimum			2	8	<10	<10	<10	<10	n.d.	n.d.
Quartile infé	rieur		129	450	<10	<10	<100	<10	n.d.	n.d.
Médiane			720	1400	<10	<10	180	<10	n.d.	n.d.
Quartile supe	érieur		1135	4050	<10	<10	1325	<100	n.d.	n.d.
Maximum			4100	6000	750	800	44 000	130	n.d.	n.d.

Produit	Producteur	Date de produc- tion	Bactéries lactiques (10 ⁶ ×ufc/g)	Lactocoques (M17) (10 ⁶ ×ufc/g)	Coliformes (ufc/g)	Escherichia coli (ufc/g)	Entéro- coques (ufc/g)	S. aureus (ufc/g)	Salmonella spp. par 10 g	Listeria monocyto- genes par 10 g
Robiola	D	02.06.1999	1	34	<10	<10	<100	<10	n.d.	n.d.
(n=6)		24.06.1999	17	30	4100	<10	1600	<10	n.d.	n.d.
		21.07.1999	13	48	<10	<10	840	<10	n.d.	n.d.
	Е	02.06.1999	36	220	<10	<10	<10	<10	n.d.	n.d.
		24.06.1999	750	690	<100	<10	<100	<10	n.d.	n.d.
		21.07.1999	2200	420	<10	<10	1700	1000	n.d.	n.d.
Minimum			1	30	<10	<10	<10	<10	n.d.	n.d.
Quartile inf	érieur		14	38	<10	<10	<100	<10	n.d.	n.d.
Médiane			27	134	<10	<10	470	<10	n.d.	n.d.
Quartile su	périeur		572	370	78	<10	1410	<10	n.d.	n.d.
Maximum			2200	690	4100	<10	1700	1000	n.d.	n.d.
Formaggella	a C	02.06.1999	86	680	<100	<10	1500	<10	n.d.	n.d.
(n=7)		24.06.1999	6400	6900	46000	<10	120000000	<10	n.d.	n.d.
		21.07.1999	1100	940	11000	210	39000	<10	n.d.	n.d.
	D	02.06.1999	2300	2800	<10	<10	6000	<10	n.d.	n.d.
	E	02.06.1999	1500	2600	<100	<10	52000	5500	n.d.	n.d.
		24.06.1999	4900	6200	<10	<10	<100	<10	n.d.	n.d.
		21.07.1999	2400	2300	<10	<10	220	<10	n.d.	n.d.
Minimum			86	680	<10	<10	<100	<10	n.d.	n.d.
Quartile inf	érieur		1300	1620	<10	<10	860	<10	n.d.	n.d.
Médiane			2300	2600	<100	<10	6000	<10	n.d.	n.d.
Quartile su	périeur		3650	4500	5550	<10	45 500	<10	n.d.	n.d.
Maximum	1333		6400	6900	46000		120000000	5500	n.d.	n.d.

n.d.= non détecté (< limite de détermination)

sentes dans le Büscion comme dans leur caillé respectif (tableau 3). L'effet de l'affinage pendant un mois se fait tout particulièrement sentir dans la Formaggella.

Analyses de la composition chimique globale

Le tableau 6 indique les résultats des analyses de la composition chimique des mêmes fromages finis.

La teneur en matière grasse avoisine 180–210 g/kg pour les Formaggini (Büscion et Robiola) et 230–260 g/kg pour la Formaggella, ce qui correspond à des fromages gras. Ces valeurs correspondent aux valeurs publiées par *Favier* (35):

- le Büscion est un fromage situé entre un frais moulé et un mi-sec avec des teneurs en matière grasse comprises entre 175 et 282 g/kg, en azote total comprises entre 17,4 et 28,7 g/kg et en glucides comprises entre 10 et 120 g/kg.
- la Robiola est un fromage frais moulé avec des teneur en matière grasse légèrement plus élevées (189 g/kg) que 175 g/kg (33, 35), en azote total plus élevées (22,0 g/kg) que 17,4 g/kg (33, 35) et en glucides plus faibles (66 g/kg) que 120 g/kg (33, 35).
- la Formaggella est un fromage mi-sec avec des teneur en matière grasse légèrement plus basses (236 g/kg) que 282 g/kg (33, 35), en azote total légèrement plus élevées (32,5 g/kg) que 28,7 g/kg (33, 35) et en glucides plus basses (0,0 g/kg) que 10 g/kg (33, 35).

La teneur en sel (chlorure de sodium) de ces fromages se situe vers 12, 6 et 15 g/kg respectivement. Celle en azote total TN (×6,38=protéines) est de l'ordre de 22 g/kg pour les deux premières sortes (les Formaggini) et de 33 g/kg pour la troisième, la Formaggella. La protéolyse des Formaggini est très faible: 1,2 et 1,5 g/kg respectivement d'azote soluble et 0,9 et 0,4 g/kg respectivement d'azote non protéique pour le Büscion et la Robiola respectivement, contre 6,8 g/kg d'azote soluble et 2,3 g/kg d'azote non protéique dans la Formaggella affinée pendant un mois.

La teneur en eau n'a pas été déterminée expérimentalement mais peut néanmoins être calculée par un bilan massique, les autres composants ayant été dosés. On obtient les valeurs moyennes suivantes: Büscion env. 625 g/kg, Robiola env. 641 g/kg et Formaggella env. 530 g/kg. Ces valeurs moyennes calculées correspondent assez bien aux valeurs moyennes attendues, communiquées par les producteurs. On peut ainsi calculer la teneur médiane en matière grasse de l'extrait sec (MG/ES), soit: Büscion env. 522 g/kg, Robiola env. 526 g/kg et Formaggella env. 502 g/kg, ce qui correspond à des fromages gras selon l'article 85 de l'Ordonnance fédérale suisse sur les denrées alimentaires.

On remarque encore que la Robiola contient exclusivement la forme L de l'acide lactique et seulement en faible concentration (médiane: 15 mmol/kg) bien que la culture utilisée soit du type yoghourt. Les sortes Formaggella et Büscion comportent en revanche les deux enantiomères en plus fortes concentrations, mais dans des proportions (L:D) différentes soit 3:1 et env. >9:1 respectivement. Ce dernier résultat doit s'expliquer par l'utilisation de lactocoques mésophiles.

Tableau 6
Analyses chimiques de divers fromages de chèvre produits par divers producteurs

Produit	Matière grasse (g/kg)	Azote total (g/kg)	WLN (g/kg)	NPN (g/kg)	NaCl (g/kg)	Lactose anhydre (g/kg)	Acide lactique L (mmol/kg)	Acide lactique D (mmol/kg)	Acide lactique total (mmol/kg)	% forme L de l'acide lactique total
Büscion $(n=14)$	A Section									
Minimum	155	18,0	0,90	0,70	6,7	16,5	45	n.d.	64	63
Quartile inférieur	178	21,0	1,00	0,82	9,5	18,5	54	n.d.	71	74
Médiane	196	22,1	1,20	0,89	11,5	20,1	68	. 5	73	94
Quartile supérieur	213	23,0	1,40	1,00	13,3	22,2	77	19	77	100
Maximum	231	28,2	2,00	1,30	24,9	24,1	82	27	82	100
Robiola $(n=11)$										
Minimum	177	19,6	1,20	0,35	2,1	20,3	4	n.d.	4	100
Quartile inférieur	182	20,1	1,33	0,36	3,0	20,8	10	n.d.	10	100
Médiane	189	22,0	1,55	0,38	5,8	22,6	15	n.d.	15	100
Quartile supérieur	191	25,2	1,78	0,39	8,8	25,6	18	n.d.	18	100
Maximum	198	25,8	1,90	0,46	11,0	29,5	21	n.d.	21	100
Formaggella $(n=7)$										
Minimum	205	27,6	4,50	1,30	11,0	0,0	29	8	40	55
Quartile inférieur	231	31,4	6,05	1,80	14,7	0,0	60	9	75	70
Médiane	236	32,5	6,80	2,30	15,4	0,0	72	11	113	76
Quartile supérieur	264	34,6	10,60	3,30	34,2	0,1	92	29	123	88
Maximum	265	36,7	15,90	3,90	41,0	0,4	130	60	138	94

n.d.=non détecté (< limite de détermination)

MIITE.	
Lebensm. Hyg.	
нуg	
76	2
72 (2001)	200

	Acide formique (mmol/kg)	Acide acétique (mmol/kg)	Acide propionique (mmol/kg)	Acide butyrique (mmol/kg)	Acide iso- butyrique (mmol/kg)	Acide iso- valérique (mmol/kg)	Acide caproïque (mmol/kg)	Acide iso- caproïque (mmol/kg)	Total acides gras volatils (mmol/kg)
Büscion $(n=14)$		4 5 8 5			产 2 包 3	是我 电影			
Minimum	0,2	1,2	n.d.	0,1	n.d.	n.d.	n.d.	n.d.	2,2
Quartile inférieur	0,7	4,9	n.d.	0,1	n.d.	n.d.	0,1	n.d.	6,7
Médiane	1,1	6,0	0,1	0,1	n.d.	n.d.	0,1	n.d.	7,3
Quartile supérieur	1,8	6,4	0,1	0,1	n.d.	n.d.	0,1	n.d.	8,2
Maximum 1	2,3	13,1	0,9	0,4	0,1	0,1	0,2	n.d.	14,5
Robiola $(n=11)$									
Minimum	0,1	0,3	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0,6
Quartile inférieur	0,1	0,6	n.d.	0,1	n.d.	n.d.	n.d.	n.d.	0,9
Médiane	0,3	0,7	0,1	0,1	n.d.	n.d.	n.d.	n.d.	1,2
Quartile supérieur	0,3	1,0	0,4	0,1	n.d.	n.d.	0,1	n.d.	1,5
Maximum 1	0,5	1,1	0,5	0,1	n.d.	n.d.	0,1	n.d.	2,2
Formaggella $(n=7)$									
Minimum	1,2	3,2	0,1	0,4	n.d.	n.d.	0,2	n.d.	5,8
Quartile inférieur	2,9	7,1	0,1	0,5	n.d.	n.d.	0,2	n.d.	11,6
Médiane	4,4	7,7	0,1	0,6	n.d.	n.d.	0,3	n.d.	15,0
Quartile supérieur	4,8	11,0	0,3	1,2	0,1	0,3	0,4	n.d.	17,0
Maximum	5,9	11,8	0,3	1,3	0,4	0,4	0,6	n.d.	17,2

n.d.=non détecté (limite de détermination)

On ne trouve plus de lactose dans la Formaggella. Ce composé a été transformé en acides lactiques (L et D) pendant la fabrication ou/et l'affinage d'un mois environ de cette sorte de fromage. Ce disaccharide est en revanche relativement présent dans les deux autres sortes de fromages (Robiola et Büscion): env. 60–65 mmol/kg.

Ces trois sortes de fromages se distinguent enfin très clairement par leur teneur en acides gras volatils (AGV) totaux: 1,2 mmol/kg dans la Robiola, 7,3 mmol/kg dans le Büscion contre 15,0 mmol/kg dans la Formaggella affinée un mois. L'acide dominant est toujours l'acide acétique qui constitue près de la moitié des AGV pour la Formaggella et la Robiola et la quasi-totalité des AGV pour le Büscion. Le deuxième AGV est l'acide formique. Suivent par ordre d'importance décroissante les acides butyrique et caproïque. Ces derniers acides ne sont d'ailleurs présents qu'en trace, surtout dans les Formaggini qui se caractérisent en définitive par une très faible production d'acides (tant lactique que des AGV).

Analyses des autres composés volatils

Les tableaux 7 à 11 rapportent la composition relative de ces trois sortes de fromages en autres composés volatils, sans distinction de producteurs cette fois. Le tableau 7 montre les hydrocarbures aliphatiques, aromatiques et terpéniques; le tableau 8, les alcools (primaires et secondaires); le tableau 9, les composants carbonylés (aldéhydes et cétones); le tableau 10, les esters; le tableau 11, des composés divers dont deux soufrés et quelques composants non chromatographiquement résolus avec la colonne utilisée.

On retrouve dans le tableau 7 les composés terpéniques (α -pinène, camphène, β -myrcène, β -pinène et limonène) déjà identifiés dans des fromages de montagne de type L'Etivaz (36) comme dans d'autres sortes étrangères produites en altitude, telles que Abondance et Saint-Nectaire (37, 38). L'origine de tels composés doit être recherchée dans les plantes d'altitude que paissent les chèvres au pâturage (39). On retrouve aussi certains composés benzéniques qui pourraient être attribués à l'environnement (31).

Certains composés volatils ne se rencontrent pas ou que rarement dans les fromages frais (Formaggini) alors qu'ils sont pratiquement toujours présents dans la Formaggella affinée pendant 1 mois. A leur nombre, on peut citer deux alcools primaires (1-butanol; 1-hexanol) et surtout deux alcools secondaires (2-butanol; 2-pentanol) (tableau 8) ainsi que quatre méthylcétones (2-butanone, 3-méthyl; 2-pentanone, 3-méthyl; 2-hexanone et 2 nonanone) (tableau 9). Ces divers composants se forment donc pendant le mois d'affinage de la Formaggella. Ils sont présents en quantités significatives dans tous les types de fromages affinés, par ex. dans le Gruyère (40, 41) et l'Emmental (42), mais aussi dans des pâtes molle et mi-dure (43).

Analyses sensorielles des fromages

Le tableau 12 indique encore la caractérisation sensorielle de ces trois sortes de fromages telle qu'elle a été faite par le jury de dégustation accrédité de la FAM.

Mitt. Lebensm. Hyg. 92 (2001)

Tableau 7

Hydrocarbures aliphatiques et aromatiques et terpènes identifiés par MS et quantifiés par FID (unité arbitraire) dans des Büscion, des Robiola et des Formaggella (fromages de chèvres) de divers producteurs

Produit	Composé	n total	n> l.d.	Moyenne	Ecart- type	Coefficient de variation (%)	Minimum	Quartile inférieur	Médiane	Quartile supérieur	Maximum
Büscion	Pentane	14	10	5860	8500	145	90	259	3000	5380	27300
	Heptane	14	8	1910	4740	249	90	90	501	965	18200
	Octane	14	10	824	945	115	90	153	630	973	3 6 4 0
	Benzène	14	11	361	261	72	90	180	272	440	872
	Toluène	14	14	3650	2390	66	1170	2260	3180	4290	10900
	Benzène, 1,3-diméthyl-										
	et/ou 1,4-diméthyl- Benzène,	14	13	698	482	69	90	384	548	898	1790
	1,2-diméthyl- Benzène,	14	13	1520	1370	91	90	655	1080	1780	4520
	1,2,4-triméthyl-	14	9	582	611	105	90	90	405	795	2240
	alpha-Pinène	14	12	4220	5090	121	90	601	1500	6940	15700
	Camphène	14	5	275	277	101	90	90	90	426	827
	beta-Myrcène	14	1	105	57	54	90	90	90	90	303
	beta-Pinène	14	6	310	326	105	90	90	90	467	1090
	Limonène	14	5	207	203	98	90	90	90	240	743
Robiola	Pentane	11	8	1690	1850	109	90	344	1060	2610	6160
	Heptane	11	3	231	280	121	90	90	90	247	971
	Octane	11	3	272	327	120	90	90	90	295	901
	Benzène	11	4	222	225	101	90	90	90	284	774
	Toluène	11	11	2180	1090	50	577	1180	2160	3280	3430
	Benzène, 1,3-diméthyl-										
	et/ou 1,4-diméthyl- Benzène,	11	10	419	273	65	90	296	356	429	1150
	1,2-diméthyl-	11	11	1160	707	61	302	697	1030	1330	2850

Produit	Composé	n total		Moyenne	Ecart- type	Coefficient de variation (%)	Minimum	Quartile inférieur	Médiane	Quartile supérieur	Maximum
Robiola	Benzène,			7 47 200	26.1 %		107.104	6157.6	5 723.088	770068	901 860
(suite)	1,2,4-triméthyl-	11	7	430	346	80	90	90	411	580	1030
	alpha-Pinène	11	9	3300	2970	90	90	772	3690	5340	9310
	Camphène	11	7	515	636	123	90	90	189	660	2020
	beta-Myrcène	11	1	114	78	69	90	90	90	90	350
	beta-Pinène	11	4	344	383	111	90	90	90	584	1160
	Limonène	11	6	256	224	88	90	90	228	319	836
Formaggella	Pentane	7	7	10800	6370	59	5080	6730	8840	12300	23 500
	Heptane	7	7	1210	550	45	485	814	1210	1680	1810
	Octane	7	7	1980	647	33	1190	1560	1820	2350	3040
	Benzène	7	3	275	236	86	90	90	90	497	571
	Toluène	7	7	5180	2520	49	2090	3070	6000	6560	8920
	Benzène,										
	1,3-diméthyl-										
	et/ou 1,4-diméthyl-	7	6	892	431	48	90	741	936	1160	1420
	Benzène,										
	1,2-diméthyl-	7	7	2130	1200	56	422	1220	2550	2870	3780
	Benzène,										
	1,2,4-triméthyl-	7	6	679	419	62	90	356	835	933	1250
	alpha-Pinène	7	7	5510	3830	70	373	2620	5960	8090	10800
	Camphène	7	6	738	584	79	90	310	436	1250	1520
	beta-Myrcène	7	1	145	145	100	90	90	90	90	474
	beta-Pinène	7	3	518	584	113	90	90	90	862	1540
	Limonène	7	1	161	187	117	90	90	90	90	586

Légende

MS=spectrométrie de masse

FID=détection par ionisation de flamme

n total = nombre total d'échantillons analysés

n > l.d. = nombre d'échantillons dont la hauteur du pic chromatographique est supérieure à la limite de détection (l.d.)

*=Composé confirmé par l'indice de rétention de la littérature

Mitt. Lebensm. Hyg. 92 (2001)

Tableau 8

Alcools primaires et secondaires identifiés par MS et quantifiés par FID (unité arbitraire) dans des Büscion, des Robiola et des Formaggella (fromages de chèvres) de divers producteurs

Produit	Composé	n total	n> l.d.	Moyenne	Ecart- type	Coefficient de variation (%)	Minimum	Quartile inférieur	Médiane	Quartile supérieur	Maximum
Büscion	Ethanol	14	14	728000	740 000	102	72 800	190000	303 000	1430000	1980000
	1-Propanol	14	14	6700	8140	122	286	572	2430	12300	25800
	1-Propanol, 2-méthyl-	14	14	16700	17800	107	280	1700	9070	29400	54500
	1-Butanol	14	2	124	87	70	90	90	90	90	354
	3-Butèn-1-ol, 3-méthyl-	14	8	291	275	94	90	90	220	382	1080
	1-Butanol, 3-méthyl-	14	12	47100	63 800	135	90	3180	20500	51500	188000
	1-Butanol, 2-méthyl-	14	12	8730	12500	143	90	488	2140	12900	37300
	1-Pentanol	14	13	1180	749	64	90	535	1080	1810	2540
	1-Hexanol	14	3	154	139	90	90	90	90	90	551
	1-Hexanol, 2-éthyl-	14	3	305	493	161	90	90	90	90	1810
	2-Propanol	14	10	7290	11300	155	90	401	3 0 5 0	8890	42600
	2-Butanol	14	0	90	0	0	90	90	90	90	90
	2-Pentanol	14	0	90	0	0	90	90	90	90	90
Robiola	Ethanol	11	11	409000	550000	134	11700	50200	172 000	513000	1560000
	1-Propanol	11	7	4400	7460	169	90	90	1130	3370	20500
	1-Propanol, 2-méthyl-	11	10	10400	23600	227	90	286	1830	4190	79400
	1-Butanol	11	0	90	0	0	90	90	90	90	90
	3-Butèn-1-ol, 3-méthyl-	11	4	180	127	70	90	90	90	310	383
	1-Butanol, 3-méthyl-	11	10	24600	36000	146	90	1330	7720	34900	107000
	1-Butanol, 2-méthyl-	11	7	3260	7070	217	90	90	322	1690	23600
	1-Pentanol	11	6	518	674	130	90	90	331	534	2230
	1-Hexanol	11	3	234	319	136	90	90	90	218	1140
	1-Hexanol, 2-éthyl-	11	2	2000	4290	214	90	90	90	90	11800
	2-Propanol	11	11	20500	17500	85	1960	8970	14600	31300	52600
	2-Butanol	11	1	159	228	144	90	90	90	90	847
	2-Pentanol	11	1	342	835	244	90	90	90	90	2860

Produit	Composé	n total	n> l.d.	Moyenne	Ecart- type	Coefficient de variation (%)	Minimum	Quartile inférieur	Médiane	Quartile supérieur	Maximum
Formaggella	Ethanol	7	7	642 000	261 000	41	97300	615 000	723 000	770000	901 000
etailel	1-Propanol	7	7	5890	2850	48	2210	4360	4680	7790	10000
	1-Propanol, 2-méthyl-	7	7	7600	4180	55	1940	4640	7070	11300	12400
	1-Butanol	7	7	2540	4230	167	297	546	1060	1650	12000
	3-Butèn-1-ol, 3-méthyl-	7	5	392	231	59	90	223	397	584	642
	1-Butanol, 3-méthyl-	7	7	26900	16600	62	8280	14000	25500	38000	50500
	1-Butanol, 2-méthyl-	7	7	3190	1830	57	1350	2100	2710	3610	6830
	1-Pentanol	7	5	550	513	93	90	212	354	734	1520
	1-Hexanol	7	6	403	195	48	90	334	345	511	698
	1-Hexanol, 2-éthyl-	7	0	90	0	0	90	90	90	90	90
	2-Propanol	7	7	47300	46100	97	6030	9560	16900	95300	98600
	2-Butanol	7	7	13400	22500	168	545	1710	5930	10100	63300
	2-Pentanol	7	7	7800	5680	73	2240	3360	4570	12700	15700

Mitt. Lebensm. Hyg. 92 (2001)

Tableau 9
Aldéhydes et cétones identifiées par MS et quantifiées par FID (unité arbitraire) dans des Büscion, des Robiola et des Formaggella (fromages de chèvres) de divers producteurs

Produit	Composé	n total		Moyenne	Ecart- type	Coefficient de variation (%)	Minimum	Quartile inférieur	Médiane	Quartile supérieur	Maximum
Büscion	Propanal, 2-méthyl-	14	11	1550	1650	106	90	380	1140	2350	6090
	Butanal, 3-méthyl-	14	13	3250	3490	107	90	868	2550	4010	13400
	Butanal, 2-méthyl-	14	10	643	579	90	90	128	342	1030	1760
	Pentanal	14	14	1170	505	43	407	886	1120	1490	2060
	Hexanal	14	14	2430	2200	91	443	927	1470	3790	7820
	Nonanal	14	5	183	140	76	90	90	90	282	500
	2-Propanone	14	10	39900	28400	71	90	10800	45 800	58100	84700
	2,3-Butanedione	14	13	76800	52100	68	90	27900	83 000	105000	192000
	2-Butanone	14	12	1830	984	54	90	1400	1950	2570	3200
	2-Butanone, 3-méthyl-	14	0	90	0	0	90	90	90	90	90
	2-Pentanone	14	14	1920	1180	61	503	1170	1640	2250	5320
	2,3-Pentanedione	14	13	610	412	68	90	319	457	905	1430
	2-Pentanone, 3-méthyl-	14	0	90	0	0	90	90	90	90	90
	2-Hexanone	14	1	99	32	32	90	90	90	90	209
	2-Heptanone	14	14	1100	377	34	394	833	1100	1270	1700
	3-Octanone	14	0	90	0	0	90	90	90	90	90
	2-Nonanone	14	3	144	118	82	90	90	90	90	433
Robiola	Propanal, 2-méthyl-	11	8	2040	2850	139	90	238	1050	2390	9400
	Butanal, 3-méthyl-	11	8	3 2 2 0	3510	109	90	239	1630	5810	10100
	Butanal, 2-méthyl-	11	6	570	599	105	90	90	421	817	1800
	Pentanal	11	4	468	651	139	90	90	90	619	1880
	Hexanal	11	4	1600	2690	169	90	90	90	1690	7470
	Nonanal	11	0	90	0	0	90	90	90	90	90
	2-Propanone	11	11	206000	428000	208	44800	60800	75 000	101000	1490000
	2,3-Butanedione	11	11	23500	31800	135	2420	4500	8640	24200	97000
	2-Butanone	11	11	3510	4520	129	1270	1820	2210	2350	17000
	2-Butanone, 3-méthyl-	11	0	90	0	0	90	90	90	90	90

Produit	Composé	n total	n> l.d.	Moyenne	Ecart- type	Coefficient de variation (%)	Minimum	Quartile inférieur	Médiane	Quartile supérieur	Maximum
Robiola	2-Pentanone	11	11	4230	6170	146	543	1370	1660	3 820	22000
(suite)	2,3-Pentanedione	11	7	627	730	117	90	90	322	872	2130
	2-Pentanone, 3-méthyl-	11	1	157	222	141	90	90	90	90	826
	2-Hexanone	11	0	90	0	0	90	90	90	90	90
	2-Heptanone	11	11	937	613	65	472	576	751	1030	2590
	3-Octanone	11	0	90	0	0	90	90	90	90	90
	2-Nonanone	11	5	266	246	93	90	90	90	387	798
Formaggella	Propanal, 2-méthyl-	7	7	631	272	43	365	451	561	710	1170
	Butanal, 3-méthyl-	7	7	5 900	9050	153	757	1540	2070	4650	26100
	Butanal, 2-méthyl-	7	5	674	852	126	90	169	286	770	2460
	Pentanal	7	7	611	294	48	366	419	487	692	1210
	Hexanal	7	7	680	304	45	368	457	544	901	1130
	Nonanal	7	3	183	122	67	90	90	90	268	384
	2-Propanone	7	7	66300	24500	37	30100	48500	69800	86800	93300
	2,3-Butanedione	7	7	30000	20500	68	5840	23500	26100	29400	72600
	2-Butanone	7	7	13800	8240	60	5990	6780	13700	18100	27300
	2-Butanone, 3-méthyl-	7	6	416	296	71	90	233	262	579	939
	2-Pentanone	7	7	44700	31600	71	11100	25200	29100	61000	101000
	2,3-Pentanedione	7	7	1450	752	52	635	1130	1210	1520	3020
	2-Pentanone, 3-méthyl-	7	7	1250	629	51	583	851	1040	1490	2420
	2-Hexanone	7	6	596	524	88	90	334	346	845	1380
	2-Heptanone	7	7	19400	9390	48	8730	13100	18500	23 400	35600
	3-Octanone	7	3	402	409	102	90	90	90	734	986
	2-Nonanone	7	7	1380	879	64	684	812	1180	1520	3170

Tableau 10
Esters identifiés par MS et quantifiés par FID (unité arbitraire) dans des Büscion, des Robiola et des Formaggella (fromages de chèvres) de divers producteurs

Produit	Composé	n total	n > l.d.	Moyenne	Ecart- type	Coefficient de variation (%)	Minimum	Quartile inférieur	Médiane	Quartile supérieur	Maximum
Büscion	Acétate de méthyle	14	7	175	104	60	90	90	135	225	381
	Acétate d'éthyle	14	14	179000	338000	189	1650	3120	10700	158000	1190000
	Butanoate d'éthyle	14	11	2530	3470	137	90	290	766	3240	10700
	Hexanoate d'éthyle	14	6	444	597	134	90	90	90	643	2220
	Octanoate d'éthyle	14	1	109	72	66	90	90	90	90	358
Robiola	Acétate de méthyle	11	6	308	350	113	90	90	220	349	1280
	Acétate d'éthyle	11	11	21900	28400	130	626	2180	8960	27600	93 800
	Butanoate d'éthyle	11	7	6760	18000	267	90	90	637	2720	60800
	Hexanoate d'éthyle	11	3	1010	2700	268	90	90	90	238	9100
	Octanoate d'éthyle	11	1	294	677	230	90	90	90	90	2340
Formaggella	Acétate de méthyle	7	3	213	189	89	90	90	90	270	592
00	Acétate d'éthyle	7	7	11700	14700	126	2690	3440	5780	11400	44100
	Butanoate d'éthyle	7	7	3180	1580	50	1750	2320	2710	3380	6400
	Hexanoate d'éthyle	7	3	230	202	88	90	90	90	319	614
	Octanoate d'éthyle	7	0	90	0	0	90	90	90	90	90
			1000	THE RESERVE TO STREET	HARRIST TO A STORE OF			THE RESIDENCE OF THE PARTY OF T			

Tableau 11
Composés divers, parfois non résolus identifiés par MS et quantifiés par FID (unité arbitraire) dans des Büscion, des Robiola et des Formaggella (fromages de chèvres) de divers producteurs

Produit	Composé	n total		Moyenne	Ecart- type	Coefficient de variation (%)	Minimum	Quartile inférieur		Quartile supérieur	Maximum
Büscion	Sulfure de diméthyle	14	2	204	325	160	90	90	90	90	1270
	Disulfure de diméthyle Benzène, éthyl-+Acétate	14	7	951	2630	277	90	90	136	349	10100
	d'isopentyle*+4-Heptanone*	14	11	1470	2290	155	90	227	401	1160	7240
	Heptanal+2-Heptanol	14	14	5070	4860	96	270	953	4470	7180	16600
Robiola	Sulfure de diméthyle	11	6	1170	2320	198	90	90	307	729	7870
	Disulfure de diméthyle Benzène, éthyl-+Acétate	11	3	192	250	130	90	90	90	150	923
	d'isopentyle*+4-Heptanone*	11	3	219	222	101	90	90	90	318	579
	Heptanal+2-Heptanol	11	5	805	1470	182	90	90	90	404	4590
Formaggella	Sulfure de diméthyle	7	6	1350	2260	167	90	318	367	1020	6360
	Disulfure de diméthyle Benzène, éthyl-+Acétate	7	6	869	884	102	90	339	488	1080	2670
	d'isopentyle*+4-Heptanone*	7	7	985	648	66	681	686	774	810	2450
	Heptanal+2-Heptanol	7	7	2120	600	28	1440	1690	1860	2580	3 0 2 0

Tableau 12 Caractérisation sensorielle des trois sortes de fromages de chèvre tessinois étudiés

Critères	Büscion	Robiola	pâte légèrement élastique, légèrement moins ferme que mi-dure, moyennemen friable, présente des grains fins et des morceaux plus gros et asséchants					
Texture	pâte de couleur blanche, molle, humide, crémeuse et adhésive	de couleur blanche (œuf cuit), légèrement nacrée. Cette pâte fraîche est très élastique, moyennement friable, de grains fins à finement granuleux. Elle possède la particularité d'être à la fois une pâte molle aqueuse exprimant le petit-lait et asséchante en bouche						
Odeur	animale (étable, cuir), végétale (herbe)	très faibles notes lactiques de petit-lait et de caillé frais	lactique, de lait chaud, animale (étable, chèvre), légèrement à moyennement aigre					
Goût	de saveurs moyennement à fortement acide, légèrement à moyennement salée, dominées par des notes animale et lactique (caillé acidifié). Nette persistance en bouche	de saveurs légèrement salée et légèrement sucrée, la Robiola présente des arômes légèrement lactique (petit-lait acidulé, caillé frais) et animal (chèvre). Un très léger goût de blanc d'œuf cuit est perceptible	de saveurs moyennement à fortement salée, moyennement acide et amère, dominées par des arômes de croûte et de morge. Des arômes de noix ont été notés. Légèrement piquant et astringent. Persistance plutôt longue					
Lingerian of t	Montano, espei-+ Acetare d'isopentyle" + 4 - Fleptanone" (Teptanoi + 2 - Eteptanoi	14 11 1470 2290 155 90 14 14 9070 4860 96 270						

Conclusion

Cette étude largement consacrée à la microbiologie non seulement des trois sortes de fromages étudiées, Formaggini (Büscion et Robiola) et Formaggella, mais aussi des laits de départ et des caillés (produits intermédiaires) montre d'une façon générale que leur qualité est bonne à excellente, à quelques rares exceptions près. En ce qui concerne *E. coli* dans les Formaggini (Büscion et Robiola, des pâtes fraîches), les valeurs mesurées sont pratiquement <10 ufc/g à une exception près (env. 800 ufc/g). L'Ordonnance correspondante en matière d'hygiène ne prévoit pas de valeur de tolérance pour les pâtes fraîches, mais une valeur de 1000 ufc/g pour les pâtes mi-dures. La valeur maximale trouvée une seule fois dans une Formaggella (200 ufc/g) est donc inférieure à cette tolérance.

Pour *S. aureus*, un seul Formaggini avec 1000 ufc/g a dépassé la valeur de tolérance de 100 ufc/g. Cette valeur reste pourtant largement en dessous de la valeur limite de 10000 ufc/g fixée par cette même ordonnance. La fréquence et la densité de ce germe sont toujours nettement plus faibles dans les produits finis (le fromage) que dans les laits de départ. Ces micro-organismes sont généralement dus aux mammites des chèvres, relativement plus difficiles à mettre en évidence et à soigner que chez les vaches. Les échantillons analysés ne contenaient en revanche ni *Listeria monocytogenes*, ni salmonelles.

L'ensemble de ces résultats est très satisfaisant à de rares exceptions près, mais indique pourtant qu'il faut rester des plus soigneux et vigilants du point de vue de l'hygiène de ces produits laitiers. Ceci concerne non seulement les producteurs euxmêmes mais aussi les autorités sanitaires.

Les analyses de radioactivité faites sur les laits de départ montrent que le Tessin comme le nord de l'Italie en général sont encore influencés par l'accident de Tschernobyl. Les valeurs mesurées sont relativement faibles, toujours inférieures à la limite de détermination pour le Cs-134. Elles sont supérieures à la valeur de tolérance (10 Bq/kg (44)) mais largement inférieures à la valeur limite (1000 Bq/kg) pour le Cs-137 (37) sauf pour le producteur D dont les chèvres semblent ne pas recevoir un fourrage indigène. La mesure de ce radionucléide peut donc constituer un critère intéressant d'authenticité des laits tessinois. Il faudrait poursuivre cette étude dans une optique de fromages tessinois AOC, puisqu'il pourrait permettre de déterminer si les animaux ont effectivement consommé du fourrage indigène. Il n'est pourtant pas certain que le Cs-137 se retrouve en quantité mesurables dans les fromages, une partie importante étant éliminée lors de l'égouttage du petit-lait.

Les diverses grandeurs caractérisant la composition chimique de ces trois sortes de fromages mettent en évidence l'effet marqué de l'affinage de la Formaggella, une pâte mi-dure affinée sur un mois environ, comparé aux deux autres sortes, les Formaggini. On note en effet dans la première citée toutes les caractéristiques d'un fromage bien protéolysé et mûr telles qu'acidification marquée, teneurs en fractions azotées WLN et NPN élevées, teneurs en acides gras volatils et en autres composés volatils tels qu'alcools primaires et secondaires et méthycétones abondants, absence

de saccharides transformés en acides lactiques L et D, teneur élevée en sel etc. Les deux Formaggini présentent en revanche les profils typiques de pâtes fraîches.

Divers constituants terpénoïdes ont également été identifiés dans ces trois sortes de fromages tessinois qui trouvent leur origine dans des végétaux de montagne consommés par les animaux et qui peuvent également servir de traceurs ou de marqueurs de fromage d'altitude (43). En ce qui concerne toujours les composés volatils, la littérature cite enfin d'autres composés volatils typiques des fromages de chèvres tels qu'acides gras linéaires et ramifiés (par ex. 4-méthyl octanoïque et 4-éthyl octanoïque) (45) mais qui n'ont pu être mis en évidence dans les trois sortes étudiées parce que non extractibles avec les méthodes d'analyses utilisées dans ce travail.

Remerciements

Les auteurs de cette étude tiennent à exprimer ici leur gratitude au Fonds Interreg II mis à disposition par la Confédération suisse, en particulier M. Pierfranco Venzi (Tessin) à Mme Solange Buchin (INRA de Poligny, F), MM. Raoul Daniel et Robert Sieber (FAM) et Gérald Steiger (Mauss) et au Prof. Raphaël Tabacchi (Université de Neuchâtel) pour leur lecture critique du manuscrit et pour les références bibliographiques communiquées. Un grand merci est également exprimé au Prof. Bruno Donati, Licée cantonal de Locarno et à Mme Sara Del Pietro, CDSI à Bellinzone, pour leurs renseignements historiques sur ces fromages tessinois ainsi qu'aux divers producteurs tessinois qui ont aimablement participé à ce travail.

Résumé

Cette vaste étude a pour objectif de caractériser trois sortes de fromages de chèvres tessinois destinés à obtenir une AOC (Appellation d'origine contrôlée): deux pâtes fraîches, grasses, le Büscion et la Robiola (ou Formaggini), et une pâte mi-dure, grasse, la Formaggella. Les laits de départ ainsi que les caillés utilisés pour la fabrication de ces fromages ont également été analysés. De nombreuses méthodes d'analyse i) microbiologiques, incluant également la détection de microorganismes pathogènes (E. coli, S. aureus, Listeria monocytogenes et salmonelles), ii) chimiques de la composition globale (taux butyrique, sel, fractions azotées, acides lactiques L et D et acides gras volatils à courte chaîne), iii) de la radioacivité (Cs-134 et Cs-137) ainsi que iv) de la composition en substances volatiles, ont été utilisées. Ce travail montre que la qualité microbiologique générale des produits étudiés varie de bonne à excellente, à de très rares exceptions près. La mesure de la radioactivité du Cs-137 est un indicateur ou traçeur intéressant de l'origine géographique des laits. Ces trois sortes de fromages se distinguent encore par maintes grandeurs mesurées, notamment par leur degré d'acidification, par leur protéolyse ainsi que par leur teneur en composés volatils, dont certains sont formés pendant l'affinage.

Zusammenfassung

Diese breit angelegte Studie hatte zum Ziel, drei Ziegenkäsesorten aus dem Tessin zu charakterisieren, welche für den Erhalt des AOC vorgesehen sind. Es sind dies zwei vollfett Frischkäse, Büscion bzw. Robiola (oder Formaggini), und Formaggella, ein Halbhartkäse. Sowohl die Ausgangsmilch wie auch der Käsebruch wurden in die Untersuchungen einbezogen. Es gelangten diverse bakteriologische Untersuchungsmethoden zum Einsatz, insbesondere wurde auf potentiell pathogene Keime, wie E. coli, koagulasepositive Staphylokokken (S. aureus), Listeria monocytogenes und Salmonellen geprüft. Im weiteren wurden die chemische Zusammensetzung (Fettgehalt, Salzgehalt, Stickstoff-Fraktionen, L und D Milchsäure), die Radioaktivität (Cs134 und 137) sowie die flüchtigen Substanzen bestimmt. Die Untersuchungen ergaben, dass die Käse bakteriologisch, abgesehen von einzelnen Ausnahmen, im allgemeinen von guter bis sehr guter Qualität sind. Es zeigt sich, dass sich die Messung des radioaktiven Isotops CS-137 als interessanter Indikator für die geographische Herkunft der Milch verwenden lässt. Die drei Käse unterscheiden sich durch verschiedene Messgrössen, besonders deutlich durch ihren Säuregrad, ihre Proteolyse aber auch durch ihren Gehalt an flüchtigen Stoffen, welche teilweise während der Reifung produziert werden.

Summary "Microbial, Chemical and Sensory Characterisation of Goat Milk, Curd and Büscion, Robiola and Formaggella Cheeses from Ticino (Switzerland)"

A broad study was carried out to characterise three goat's milk cheeses produced in the south of the Swiss Alps (canton Ticino) in order to obtain a PDO (Protected Designation of Origin): two fresh full-cream products called Büscion and Robiola cheese (or Formaggini cheese), and the full-cream semi-hard Formaggella cheese. Starting milks as well as curds used for the manufacture of these cheese varieties were also analysed. Several methods of analysis: i) microbiological, also including the detection of pathogenic micro-organisms (E. coli, S. aureus, Listeria monocytogenes and salmonellas), ii) chemical for the determination of the gross composition (fat, salt, nitrogen fractions, lactic acid L and D and volatile short chain fatty acids), iii) radioactivity (Cs-134 and 137) as well as iv) the make-up of volatile components were used. This investigation indicates that the general microbial quality of the products investigated varied from good to excellent with very rare exceptions. Measurement of the radioactivity of Cs-137 could be an interesting indicator for the geographical origin of the milks. These three kinds of cheeses are differentiated by several parameters, such as degree of acidification and proteolysis, and content of volatile compounds, some of which are produced during ripening.

Riassunto

Quest'importante studio effettuato, ha quale obiettivo la caratterizzazione di tre tipi di formaggio caprino ticinese, in vista dell'ottenimento di una DOC: due formaggini a pasta fresca, grassi, il Büscion e la Robiola e uno a pasta semidura grasso, la Formaggella. Il latte alla partenza come pure la cagliata utilizzata per la fabbricazione di questi formaggi, sono pure stati analizzati. Numerosi metodi analitici i) microbiologici, includendo pure la ricerca d'organismi patogeni (*E. coli, S. aureus, Listeria monocytogenes* e Salmonelle), ii) chimiche della composizione totale (tasso butirrici, sale, frazioni azotate, acido lattico L e D e acidi grassi volatili), iii) della radioattività (Cs-134 e 137) come pure iv) della composizione in sostanze volatili sono stati utilizzati. Questo lavoro dimostra che la qualità microbiologica generale dei prodotti considerati per lo studio è da buona ad eccellente, a parte qualche rara eccezione. La misura della radioattività del Cs-137, è un interessante indicatore per l'origine geografica del latte. Questi tre tipi di formaggi si distinguono da numerosi valori misurati, segnatamente dal loro grado d'acidificazione, dalla loro proteolisi come pure dal loro contenuto in elementi volatili, dei quali taluni si formano durante la stagionatura.

Key words

Büscion cheese, Robiola cheese, Formaggella cheese, Microbial composition, Chemical composition, Radioactivity

Bibliographie

- 1 Corti, M., Bruni, G. e Oldrati, G.: La Capra in provincia di Bergamo. Ferrari Edizioni, Bergamo 1997.
- 2 Zanatta, G.: Indagine sul comportamento dei greggi di capre al pascolo libero. Programma INTEREG II. Valorizzazione e tipicizzazione delle produzioni agricole. Comunità Montana Valli del Luinese. Zootecnico del Servizio Assistenza Tecnica agli Allevamenti Ovicaprini-Provincia di Varese. Dicembre 1999.
- Zanatta, G., Lorenzo, N. e Oneto, S.: Osservazioni sul comportamento alimentare in greggi di capre al pascolo in ambiente prealpino insubrico. In: Enne, G., Greppi, G.F. e Licitra, G. (eds), Produzioni animali di qualità ed impatto ambientale nel sistema mediterraneo 363-376. XXXV Simposio internazionale di zootecnia/Proceedings of the XXXV International Symposium of the Società Italiana per il Progresso della Zootecnia (In occasione di CHEESE ART 2000 Nell'ambito del 2º Meeting Euromediterraneo, Ragusa Ibla, 25 Maggio 2000), MG Scientific pub., Bergamo 2000.
- 4 Büchin, S., Duboz, G., Le Quéré, J.-L. et Grappin, R.: Développement des caractéristiques biochimiques et sensorielles des fromages de chèvre. Etude interespèce par échanges de la matière grasse et du lait écrémé de laits de vache et de chèvre. Lait 78, 673–687 (1998).
- 5 Engel, E., Nicklaus, S., Garem, A., Septier, C., Salles, C. and Le Quéré, J.-L.: Taste active compounds in a goat cheese water-soluble extract. 1. Development and sensory validation of a model water-soluble extract. J. Agric. Food Chem. 48, 4252–4259 (2000).
- 6 Engel, E., Nicklaus, S., Septier, C., Salles, C. and Le Quéré, J.-L.: Taste active compounds in a goat cheese water-soluble extract. 2. Determination of the relative impact of water-soluble extract components on its taste using omission tests. J. Agric. Food Chem. 48, 4260–4267 (2000).
- 7 Salles, C., Hervé, C., Septier, C., Demaizières, D., Lesschaeve, I., Issanchou, S. and Le Quéré, J.-L.: Evaluation of taste compounds in water-soluble extract of goat cheeses. Food Chem. 68, 429–435 (2000).

- 8 Manuel suisse des denrées alimentaires. Méthode 7.01, chapitre 56. Office fédéral des imprimés et du matériel, Berne 1988.
- 9 Manuel suisse des denrées alimentaires. Méthode 7.07, chapitre 56. Office fédéral des imprimés et du matériel, Berne 1988.
- 10 Manuel suisse des denrées alimentaires. Méthode 7.11, chapitre 56. Office fédéral des imprimés et du matériel, Berne 1988.
- 11 Terzaghi, B.E. and Sandine, W.E.: Improved medium for lactic streptococci and their batcteriophages. Appl. Microbiol. 29, 807–813 (1975).
- 12 Anonyme: AccuProbeTM. Listeria Monocytogenes culture identification test. Commercial information by Gen-Probe[®], San Diego CA 92121 1992.
- 13 Fédération internationale de laiteries (FIL/IDF). Méthode 93B: 1995.
- 14 Zannoni, M. and Annibaldi, S.: Standardization of the renneting ability of milk by formagraph I. Scienza e Tec. Latt. Cas. 32 (2), 79–94 (1981).
- 15 Gallmann, P., Rüegg, M., Jakob, E., Lehmann, H. und Moor, U.: Messung der enzymatischen Milchgerinnung mit Hilfe des Formagraphen. Schweiz. Milchw. Forschung 21, 12–16 (1992).
- 16 ISO 3433: 1975
- 17 Fédération internationale de laiteries (FIL/IDF). Méthode 88A: 1988
- 18 Norme ISO 2446: 1976
- 19 Fédération internationale de laiteries (FIL/IDF). Méthode 20B: 1993
- 20 Collomb, M., Spahni, M. et Steiger, G.: Dosage de la teneur en azote selon Kjeldahl de produits laitiers et de certaines de leurs fractions azotées à l'aide d'un système automatisé. Trav. chim. aliment hyg. 81, 499-509 (1990).
- 21 Badertscher, R., Liniger, A. und Steiger, G.: Bestimmung der flüchtigen Fettsäuren in Käse aus dem Wasserdampfdestillat mit «Headspace-GC/FID» FAM INFO n° 272, Liebefeld-Berne 1993
- 22 Bergmeyer, H.U.: Bestimmung von Harnstoff. Glutamat-Dehydrogenase als Indikatorenzym. In: Methoden der enzymatischen Analyse, 3. Aufl., Bd 2, 1842–1846. Verlag Chemie, Weinheim 1974.
- 23 Boehringer Mannheim. Urea/Ammonia. In: Methods of biochemical analysis and food analysis, 144–146. Mannheim 1989.
- 24 Bergmeyer, H.U.: L(+)-Lactat. Bestimmung mit Lactat-Dehydrogenase und NAD. In: Methoden der enzymatischen Analyse, 3. Aufl., Bd 2, 1510–1514. Verlag Chemie, Weinheim 1974.
- 25 Boehringer Mannheim. L-/D-Lactic acid. In: Methods of biochemical analysis and food analysis, 78-81. Mannheim 1989.
- Werner, W., Rey, H.G. und Wielinger, H.: Über die Eigenschaften eines neuen Chromogens für die Blutzuckerbestimmung nach der GOD/POD-Methode. Z. anal. Chem. 252, 224–228 (1970)
- 27 Hübner, O., Schäfer, R. und Pietsch, H.: Zur enzymatischen Lactosebestimmung in diätischen Lebensmitteln. Nahrung 23, 959–962 (1979)
- 28 Roche Diagnostics GmbH, Mannheim: Glucose GOD-Perid®-Methode, July 1999.
- 29 Lavanchy, P., Bérodier, F., Zannoni, M., Noël, Y., Adamo, C., Squella, J. et Herrero, L.: L'évaluation sensorielle de la texture des fromages à pâte dure et semi-dure. Etude interlaboratoire. Lebensm.-Wiss.-Technol. 26, 59–68 (1993).
- 30 Bérodier, F., Lavanchy, P., Zannoni, M., Casals, J., Herrero, L. et Adamo, C.: Guide d'évaluation olfacto-gustative des fromages à pâte dure et semi-dure. Lebensm.-Wiss.-Technol. 30, 653-664 (1997).
- 31 Bosset, J.O., Gubler, M., Bütikofer, U. and Gauch, R.: Mono-, di- and trimethyl benzene in frozen cheese samples: Natural metabolites or environmental pollutants? Trav. chim. aliment. hyg. 91, 287–299 (2000).

- 32 Bühlmann, G. und Finessi-Draković, S.: Gesamtkeimzahl in Ziegenmilch. Agrarforschung 7, 302-307 (2000)
- 33 Grappin, R., Jeunet, R., Pillet, R. et Le Toquin, A.: Etude des laits de chèvre. I. Teneur du lait de chèvre en matière grasse, matière azotée et fractions azotées. Lait 61, 117–133 (1981).
- 34 Anifantakis, E.M. and Kandarakis, J.G.: Contribution to the study of the composition of goat's milk. Milchwiss. 25, 617–619 (1980).
- 35 Favier, J.C.: Composition des fromages de chèvre. Cah. Nutr. Diet. 22, 117-123 (1987).
- 36 Bosset, J.O., Berger, T., Bühler-Moor, U., Bütikofer, U., Collomb, M., Gauch, R., Lavanchy, P., Mariaca, R., Sieber, R., Jeangros, B., Scehovic, J., Troxler, J. and Dafflon, O.: Comparison of some highland and lowland Gruyère-type cheese of Switzerland: a study of their potential PDO/AOC/AOP characteristics. In: Amado, R. and Battaglia, R. (eds), Authenticity and adulteration of food The analytical approach. Proceedings of the Symposium Euro Food Chem IX, September 24–26, 1997, Interlaken (Switzerland), Vol. 2, 395–400, Swiss Society of Food and Environmental Chemistry, Druckerei Sailer, Wintherthur 1997. FECS-Event No. 220.
- 37 Buchin, S., Martin, B., Dupont, D., Bornard, A. and Achilleos, C.: Influence of the composition of alpine highland pasture on the chemical, rheological and sensory properties of cheeses. J. Dairy Res. 66, 579–588 (1999).
- 38 Viallon, C., Verdier-Metz, I., Denoyer, C., Pradel, P., Coulon, J.B. and Berdagué, J.L.: Desorbed terpenes ans sesquiterpenes from forages and cheeses. J.Dairy Res. 66, 319–326 (1999).
- 39 Mariaca, R.G., Berger, T.F.H., Gauch, R., Imhof, M.I., Jeangros, B. and Bosset, J.O.: Occurrence of volatile mono- and sesquiterpenoids in highland and lowland plant species as possible precursors for flavor compounds in milk and dairy products. J. Agric. Food Chem. 45, 4423–4434 (1997).
- 40 Bosset, J.O and Liardon, R.: The aroma composition of Swiss Gruyère cheese. II. The neutral volatile components. Lebens.-Wiss.-Technol. 17, 359–362 (1984).
- 41 Bosset, J.O. and Liardon, R.: The aroma composition of Swiss Gruyère cheese. III. Relative changes in the content of alkaline and neutral volatile components during ripening. Lebens.-Wiss.-Technol. 18, 178–185 (1985).
- 42 Bosset, J.O., Gauch, R., Mariaca, R. and Klein, B.: Comparison of various sample treatments for the analysis of volatile compounds by GC-MS: application to the Swiss Emmental cheese. Mitt. Gebiete Lebensm. Hyg. 86, 672–698 (1995).
- 43 Bosset, J.O., Bütikofer, U., Berger, T. et Gauch, R.: Etude des composés volatils du Vacherin fribourgeois et du Vacherin Mont-d'Or. Trav. chim alim. hyg. 88, 233–258 (1997).
- 44 Anonyme: Ordonnance sur les substances étrangères et les composants dans les denrées alimentaires. OSEC du 26 juin 1995 (Etat 22 février 2000).
- 45 Le Quéré, J.-L., Septier, C., Demaizières, D. and Salles, C.: Identification and sensory evaluation of the character-impact compounds of goat cheese flavour. In: Taylor, A.J. and Mottram, D.S. (eds), Flavour science. Recent developments. 8th Weurman Flavour Research Symposium, 325–330. The Royal Society of Chemistry, Reading 1996.
- 46 Fédération internationale de laiteries (FIL/IDF). Méthode 148A: 1995.

Adresse du correspondant: Dr J.O. Bosset, Station fédérale de recherches laitières, Liebefeld, CH-3003 Berne, E-mail: jacques-olivier.bosset@fam.admin.ch