Zeitschrift: Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und

Hygiene = Travaux de chimie alimentaire et d'hygiène

Herausgeber: Bundesamt für Gesundheit

Band: 85 (1994)

Heft: 5

Artikel: HPLC-Bestimmungsmethoden in der Qualitätskontrolle von Milch und

Milchprodukten = HPLC-methods for quality assurance of milk and dairy

products

Autor: Bütikofer, Ueli / Bosset, Jacques Olivier

DOI: https://doi.org/10.5169/seals-982773

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

HPLC-Bestimmungsmethoden in der Qualitätskontrolle von Milch und Milchprodukten

HPLC-Methods for Quality Assurance of Milk and Dairy Products

Key words: HPLC-methods, Applications, Milk, Dairy products, Review

Ueli Bütikofer und Jacques Olivier Bosset Eidgenössische Forschungsanstalt für Milchwirtschaft, Liebefeld-Bern

Einleitung

Die praktisch unüberschaubare Menge von Veröffentlichungen und firmeneigenen Applikationsschriften zu den verschiedensten Anwendungen der Hochleistungs-Flüssigkeitschromatographie (HPLC) beweist den hohen Stellenwert, den diese Analysentechnik bereits eingenommen hat. Kürzlich haben *Matissek* und *Wittkowski* (1) mit ihrem Nachschlagewerk «High Performance Liquid Chromatography in Food Control and Research» einen guten Überblick dieser Analysentechnik gegeben. Diese ist seit ca. 30 Jahren bekannt und diente anfangs vorwiegend der pharmazeutischen und medizinischen Analytik, bevor sie sich schliesslich auch in anderen Bereichen, wie z. B. in der Lebensmittelanalytik, etablierte. Ihre rapiden Fortschritte sind unter anderem auf die Neuentwicklung stabiler, leistungsfähiger und streng standardisierter Trennphasen auf «reversed phase»-Basis zurückzuführen.

Bei der Analyse von Milch und Milchprodukten trug die HPLC zum Ersatz von unexakten und / oder zeit- und arbeitsaufwendigen Bestimmungsmethoden bei. Darüber hinaus konnten damit noch nicht analysierbare Komponenten erfasst werden. Somit wurden zahlreiche neue Methoden im Rahmen der milchwirtschaftlichen Forschung, der Kontrolle und Beratung fortlaufend mit Erfolg eingeführt (2). In vielen Fällen konnten die Nachweisgrenzen erniedrigt, die Genauigkeit (oder Richtigkeit) und die Präzision verbessert sowie unerwünschte Artefakte beseitigt werden. Die Umweltbelastung liess sich durch den Einsatz von weniger giftigen Stoffen und geringeren Chemikalienverbrauch reduzieren. Schliesslich hat sich die HPLC als nahezu universell einsetzbar erwiesen, was einen bedeutenden Vorteil gegenüber anderen Analysenmethoden wie der hochspezifischen Ionenaus-

tauschchromatographie (IEC) bietet. Ziel der vorliegenden Übersicht ist, einige neue Anwendungsbeispiele bei Milch und Milchprodukten in der Forschungsanstalt für Milchwirtschaft (FAM) in Liebefeld-Bern vorzustellen. Diese Arbeit wird nach Messvorgang und -einrichtung aufgeteilt.

RP-HPLC-Analysen von Milch und Milchprodukten: Anwendungsbeispiele

Probenvorbereitung

Tabelle 1 zeigt einige typische Beispiele von Probenvorbereitungen und -behandlungen für Milch und verschiedene Milchprodukte.

Tabelle 1. Typische Beispiele zur Probenvorbereitung und -behandlung bei HPLC-Bestimmungen für Milch und verschiedene Milchprodukte

Analysenart	Produkt	Proben- menge	Probenvorbereitung und -behandlung	RefNr.
Fettlösliche Vitamine A und E	Milch, Joghurt, Käse, Rahm, Butter usw.	10–40 g	Verseifung mit 2,5 mol/l ethanolische Kalilauge, Festphasenextraktion über Extrelut	In Vorb.
Wasserlös- liche Vitamine B ₁ B ₂	Milch, Joghurt, Käse, Rahm, Butter usw.	10–50 g	Saure Hydrolyse mit 1 mol/l Salzsäure Saure Hydrolyse mit 1 mol/l Salzsäure, alkalische Oxidation (Kalium-Hexacyanoferrat) Saure Hydrolyse mit 0,4 mol/l Schwefelsäure Ausfällung (10% Meta-Phosphorsäure)	(3) (4) In Vorb. (5)
Konservie- rungsmittel Sorbin- und Ben- zoesäure	Joghurt, Glace, Käse	5–20 g	Alkalische Extraktion mit 0,1 mol/l Kalilauge, Ausfällung (Carrez)	(6)
Amine Biogene Amine	Käse, Schabziger, Zigerpulver	5 g	Extraktion mit Acetonitril/Perchlorsäure Derivatisierung mit Dansylchlorid	(7)

Analysenart	Produkt	Proben- menge	Probenvorbereitung und -behandlung	RefNr.
Amino- säuren	Stan Dress	tension.	Die Proben werden für die verschiedenen Aminosäurebestimmungen zuerst mit Hexan entfettet und lyophilisiert.	etica i i i etik dese
Freie Ami- nosäuren	Käse, Milch, Joghurt	1–20 g	Deproteinisierung mit Trichloressigsäure, Derivatisierung mit OPA und FMOC	In Vorb.
Totale Ami- nosäuren ¹	Käse, Milch, Joghurt	5 g	Saure Hydrolyse mit 6 mol/l Salzsäure, Derivatisierung mit OPA und FMOC	(8)
Tryptophan	agili reradu	20 g	Alkalische Hydrolyse mit 4 mol/l Lithium- hydroxid	In Vorb.
Peptide Peptid- mapping	Käse	10 g	Extraktion mit Wasser und Filtration	In Vorb.
Molken- proteine β-Lactoglo- bulin α-Lactalbu- min	Milch, UF- Konzentrate, Milchpulver	50 g	Caseinfällung bei pH 4,6 und Zentrifugation	In Vorb.
Cholesterin und -oxide	Eingesottene Butter	2 g	Entwässern, lösen mit Hexan, Festphasen- extraktion, einengen und lösen mit Acetonitril/Ethanol	(9)

ausser Tryptophan, Cystein und Cystin In Vorb. = In Vorbereitung

Fast jede Analysenart mit Ausnahme der Vitamine A und E (Abb. 1) sowie B₁, B₂ und B₆-Derivate (Abb. 2) verlangt eine andere Probenvorbereitung. Diese Arbeitsstufe ist jedoch relativ unabhängig von der Matrix.

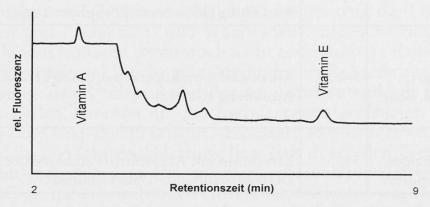


Abb. 1. HPLC-Bestimmung von Vitamin A und E in Butter

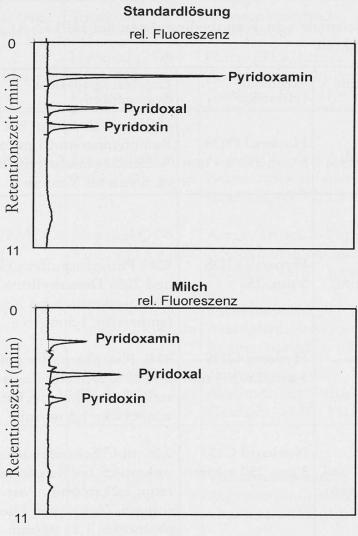


Abb. 2. HPLC-Bestimmung von Vitamin B6

HPLC-Bedingungen

Tabelle 2 zeigt einige typische Beispiele von Chromatographie- und Detektions-

bedingungen für Milch und verschiedene Milchprodukte.

Die Matrix (das Milchprodukt) spielt hier nahezu keine Rolle mehr. Mit 2 verschiedenen Typen von Trennsäulen (Hypersil ODS und Nucleosil C₁₈) und standardisierter Grösse (200–250 x 4,0 oder 4,6 mm, Partikelgrösse 5 µm) können nahezu alle Stoffklassen und Substanzen getrennt werden, was für ein Routinelabor sehr vorteilhaft ist. Massgebend sind die Zusammensetzung der Eluenten (mit oder ohne Gradient) und die Detektionsbedingungen. Abbildungen 3 und 4 zeigen Trennungen von Aminosäuren.

Tabelle 2. Typische Beispiele von Trennbedingungen bei HPLC-Analysen von Milch und Milchprodukten

Prüfmerk- mal	Komponente (Derivate)	Trennsäule (Hersteller ⁴)	Chromatographische Bedingungen	Detektions- bedingungen ¹
Fettlösliche Vitamine A und E	Retinol α-Tocopherol	Hypersil ODS 5 μm, 250 x 4 mm	Methanol als Eluent bei Raumtemperatur, 1 ml/min, Wellenlängenschaltung bei ca. 5 min für Vitamin E	Fl: 324/450 nm (Vit. A) und Fl: 283/351 nm (Vit. E)
Wasser- lösliche Vitamine B ₁	Thiamin	Hypersil ODS	80% Phosphatpuffer pH 7,2	Fl: 368/440 nm
	(Thiochrom)	5 μm, 250 x 4 mm	und 20% Dimethylform- amid, isokratisch bei Raum- temperatur, 1,5 ml/min	
B ₂	Riboflavin	Hypersil ODS 5 μm, 250 x 4 mm	80% Phosphatpuffer pH 7,2 und 20% Dimethylform- amid, isokratisch bei Raum- temperatur, 1,5 ml/min	Fl: 262/470 nm
B ₆	Pyridoxin, Pyridoxal und Pyridoxamin	Nucleosil C18 3 μm, 250 x 4 mm	0,04 mol/l Schwefelsäure, isokratisch bei Raumtemperatur, 1,25 ml/min, Postcolumn-Zugabe von Phosphatpuffer, 1,25 ml/min	Fl: 333/375 nm bei pH 6,8
С	Ascorbinsäure	Nucleosil C18 5 μm, 250 x 4 mm	wässeriger Phosphatpuffer pH 2,5, isokratisch, 35 °C, 1,0 ml/min	UV: 245 um oder ECD ²
C (total)	Dehydro- ascorbinsäure	Spherisorb ODS 5 μm, 250 x 4,6 mm	Pentansulfonat:Methanol: Wasser:Eisessig: Triethylamin:Acetonitril, isokratisch, 35 °C, 1,0 ml/min	Fl: 350/430 nm
Konservie- rungsmittel Sorbin- und Ben- zoesäure	freie Formen	Hypersil ODS 5 μm, 200 x 4,6 mm	Methanol:Phosphatpuffer (8:92), isokratisch, 35 °C, 1 ml/min	UV: 227, 254 nm oder 200–300 nm

Prüfmerk- mal	Komponente (Derivate)	Trennsäule (Hersteller ⁴)	Chromatographische Bedingungen	Detektions- bedingungen ¹
Amine Biogene Amine	Dansylderivate	Hypersil ODS 5 μm, 200 x 4,6 mm	Puffer pH 8, Ethanol: Acetonitril mit binärem Gradient, 35 °C, 1,4 ml/min	Fl: 254/485 nm UV: 254 nm für Histamin
Amino- säuren Freie Ami- nosäuren	(OPA/FMOC)	Hypersil ODS 5 μm, 250 x 4 mm	Acetat/Titriplex-Puffer: Acetonitril mit binärem Gradient, 35 °C, 1,4 ml/min	OPA-Derivate: Fl: 340/455 nm
Totale Aminosäuren ³	(OPA/FMOC)	Hypersil ODS 5 μm, 250 x 4 mm	Acetat/Titriplex-Puffer: Acetonitril mit binärem Gradient, 35 °C, 1,4 ml/min	FMOC- Derivate: Fl: 266/313 nm
Tryptophan	freie Formen	Hypersil ODS 5 μm, 250 x 4 mm	Phosphatpuffer pH 3,25: Acetonitril, isokratisch bei Raumtemperatur, 1,0 ml/min	Fl: 274/356 nm
Peptide Peptid- mapping	freie Formen	Nucleosil C18, 300 Å, 5 μm, 250 x 4 mm	Trifluoressigsäure: Acetonitril mit binärem Gradient, 35 °C, 1,0 ml/min	UV: 210, 220 nm
Molken- proteine β-Lactoglo- bulin α-Lactalbu- min	freie Formen	Nucleosil C18- PPN, 5 μm, 125 x 4 mm	Trifluoressigsäure: Acetonitril mit binärem Gradient, 35 °C, 1,0 ml/min	UV: 205 nm
Cholesterin und -oxide	freie Formen	Hypersil ODS 5 μm, 250 x 4 mm	Acetonitril:Ethanol:Wasser (4:1:1), isokratisch, 35 °C, 1,0 ml/min	UV: 204, 207, 220 und 242 nm

Bei den fluorimetrischen Bestimmungen (Fl) ist λ_1 die Excitationswellenlänge und λ_2 die Emissionswellenlänge.

Elektrochemischer Detektor ESA Coulochem II/5200 (siehe Parametereinstellungen unter Ref. 5).

³ Ausser Tryptophan und Cystin.

⁴ Hypersil (Shandon); Nucleosil (Macherey and Nagel); Spherisorb (Bischoff/Metrohm).

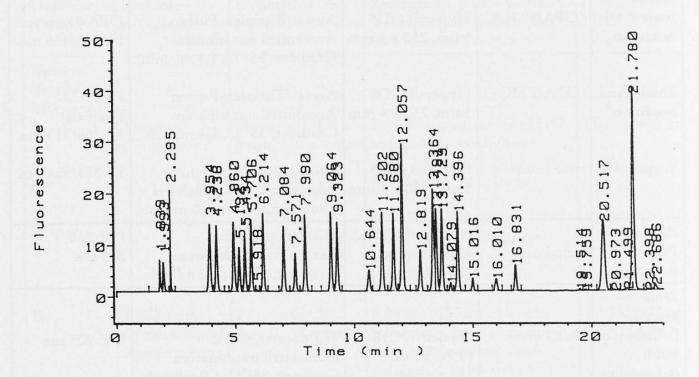

Quantifizierung und Validierung

Tabelle 3 zeigt einige typische Beispiele zur Quantifizierung und Validierung von HPLC-Analysenmethoden für Milch und verschiedene Milchprodukte.

Für ihre Validierung wurden sämtliche HPLC- mit anderen Analysenmethoden verglichen und überprüft und / oder im Rahmen von echten Ringversuchen oder mindestens von Vergleichen mit externen Laboratorien getestet. Beispiele von

«peptidmapping» und Molkenproteinenbestimmungen sind in Abbildungen 5 und 6 ersichtlich.

Standardlösung

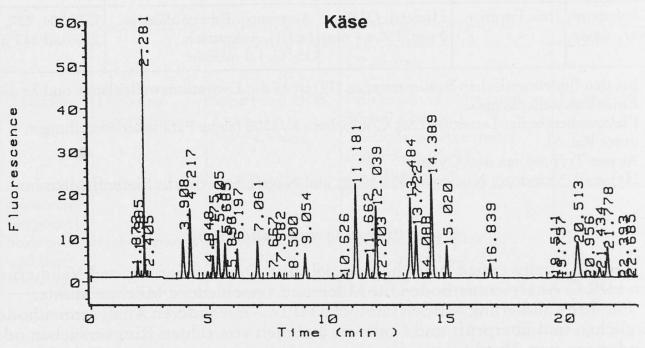


Abb. 3. HPLC-Bestimmung von den freien Aminosäuren

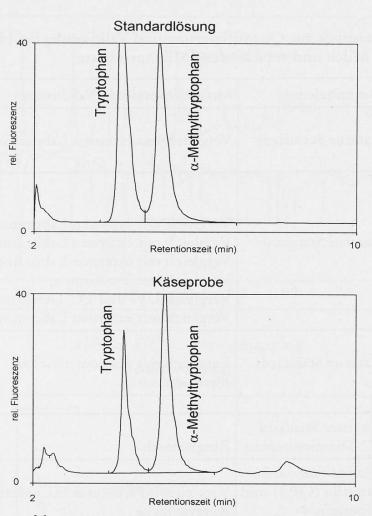


Abb. 4. HPLC-Bestimmung von Tryptophan

Liste der freien Aminosäuren in Käse mit Kurzbezeichnung und Retentionszeiten

Reten- tionszeit	Bez.	Name der Aminosäuren
1.839	PSE	Phosphoserin
1.993	ASP	Asparaginsäure
2.295	GLU	Glutaminsäure
3.954	ASN	Asparagin
4.238	SER	Serin
4.960	GLN	Glutamin
5.192	HIS	Histidin
5.434	GLY	Glycin
5.706	THR	Threonin
6.214	CIT	Citrullin
7.084	ALA	Alanin
7.571	GABA	γ-Aminobuttersäure
7.990	ARG	Arginin
9.064	TYR	Tyrosin
9.323	AABA	α-Aminobuttersäure

Reten- tionszeit	Bez.	Name der Aminosäuren
10.644	CYS	Cystin
11.202	VAL	Valin
11.680	MET	Methionin
12.057	NVA	Norvalin
12.819	GABA	γ-Aminobuttersäure
12.364	TRP	Tryptophan
13.481	ILE	Isoleucin
13.729	PHE	Phenylalanin
14.079	ORN	Ornithin
14.396	LEU	Leucin
15.016	LYS	Lysin
16.010	ORN	Ornithin
16.830	LYS	Lysin
20.517	PRO	Prolin
21.780	PIP	Piperidin-4-carbonsäure

Tabelle 3. Typische Beispiele zur Quantifizierung und Validierung bei HPLC-Analysenmethoden für Milch und verschiedene Milchprodukte

Prüfmerkmal	Quantifizierung	Methodenvergleich (Validierung)	AbbNr.
Fettlösliche Vitamine A und E	Externe Standards	Vergleich mit externen Laboratorien	1
Wasserlösliche Vitamine B ₁ B ₂ B ₆ C	Externe Standards	Vergleich mit externen Laboratorien Vergleich mit externen Laboratorien Vergleich mit externen Laboratorien Vergleich mit Titrationen, Vergleich UV- und EC-Detektion Vergleich mit externen Laboratorien	siehe Ref. (3) siehe Ref. (4) 2 siehe Ref. (5)
Konservierungs- mittel Sorbin- und Benzoesäure	Externe Standards	Vergleich mit photometrischer Methode	siehe Ref. (6)
Amine Biogene Amine	Interner Standard 1,7-Diaminoheptan	Ringversuch	siehe Ref. (7)
Aminosäuren Freie Aminosäuren Totale Aminosäuren ren Tryptophan	Interne Standards Novalin (OPA) und Piperidin-4- carbonsäure (FMOC) α-Methyltrypto- phan	Vergleich HPLC- und IEC-Methoden Ringversuche Vergleich HPLC- und IEC-Methoden Ringversuche Vergleich HPLC- und IEC-Methoden Ringversuche	3 siehe Ref. (8) 4
Peptide (mapping)	Keine Quantifizierung	Vergleich mit externen Laboratorien	5
Molkenproteine β-Lactoglobulin α-Lactalbumin	Externer Standard Externer Standard	Vergleich mit externen Laboratorien Vergleich mit externen Laboratorien	6
Cholesterin und -oxide	Externe Standards	Vergleich mit TLC-Methoden	siehe Ref. (9)

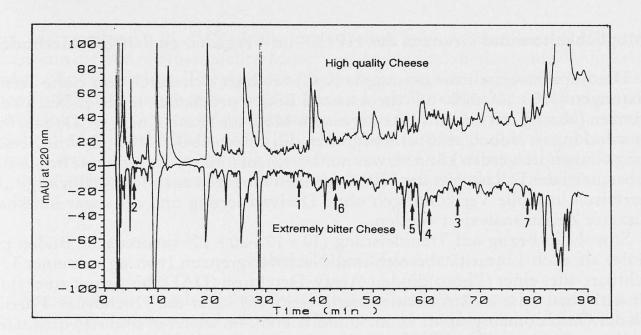


Abb. 5. HPLC-Peptidmapping

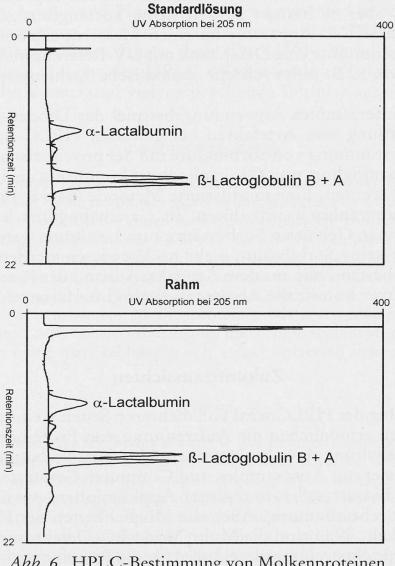


Abb. 6. HPLC-Bestimmung von Molkenproteinen

Möglichkeiten und Grenzen der HPLC- im Vergleich zu den GC-Methoden

Die Kapillar-Gaschromatographie (GC) zeichnet sich durch sehr hohe Trennleistungen (100 * 10³–200 * 10³ theoretische Böden pro Säule), niedrige Nachweisgrenzen (von pg mit einem FID oder einem MSD bis fg mit einem ECD) aus. Ihre Anwendung ist jedoch auf Stoffe begrenzt, die unterhalb 300–400 °C ohne Zersetzung verdampft werden können, was nur bei einem Fünftel der bis heute bekannten Substanzen der Fall ist. Mit der HPLC können hingegen auch schwerflüchtige und thermisch instabile Verbindungen ohne Derivatisierung und oft sogar innerhalb

kürzerer Zeiten analysiert werden.

Sowohl in bezug auf Trennleistung (10 * 10³-20 * 10³ theoretische Böden pro Säule) als auch Linearitätsbereich und Nachweisgrenzen (von ng mit einer UV-sichtbar- oder einer (Photo)dioden-Array-Detektion (DAD) bis pg mit einer fluorometrischen oder elektrochemischen Detektion) kann die Hochdruck-Flüssigmit der Gaschromatographie kaum konkurrieren. Im weiteren sind rein qualitative Analysen (Substanzidentifikation) sehr schwierig: Es gibt den Kovàts-Indices (mit den entsprechenden Datenbanken bei verschiedenen Säulenpolaritäten) vergleichbare Hilfsmittel, aber es besteht zurzeit keine kostengünstige und universelle Möglichkeit, eine HPLC-Apparatur an einen Massenspektrometer zu koppeln. Meist verfügt man nur über eine Datenbank mit UV-Referenzspektren, um gewisse Verbindungen, wie z. B. polycyclische aromatische Kohlenwasserstoffe (PAH), aufzufinden.

Als weiteres interessantes Anwendungsbeispiel des Dioden-Array-Detektors wurde die Ermittlung von Artefakten bei gewissen HPLC-Bestimmungen erwähnt. Bei der Bestimmung von Sorbinsäure mit der provisorischen FIL/IDF-Methode (10) in Birnenjoghurt und Carameljoghurt konnte ein analytischer Artefakt nicht aufgetrennt werden. Eine modifizierte Methode (6) war in der Lage, diesen Artefakt chromatographisch aufzulösen. In Carameljoghurt konnte mit dieser Methode der geringe Gehalt an Sorbinsäure nun bestimmt werden, in Birnenjoghurt konnte gar keine Sorbinsäure mehr nachgewiesen werden. Der scheinbare Sorbinsäurepeak bestand nur aus dem Artefakt. Anhand der Retentionszeiten und Absorptionsspektren konnte die Abwesenheit von Interferenzen praktisch festgestellt werden.

Zukunftsaussichten

Die Entwicklung der HPLC wird von mehreren Seiten weitergeführt. Biokompatible Materialien ermöglichen die Auftrennung von Proteinen in ihrer nativen Form unter Beibehaltung ihrer biologischen Aktivität. Vollautomatische HPLC-Systeme, ausgerüstet mit Autosampler und Computer-Gerätesteuerung, erlauben den 24stündigen Einsatz selbst komplexer Applikationen, wie z. B. der automatischen Aminosäurebestimmung. Auch die Möglichkeiten der Detektion werden sich stark entwickeln. Neu sind die Multi-Mode-EC-Detektoren für Redox-Substanzen sowie die Lichtstreuungsdetektoren für die Proteine und Lipide zu erwäh-

nen. Auch sollte die LC-MS für die analytischen Laboratorien kein Traum mehr sein, wenn die nötigen finanziellen Mittel vorhanden sind. Bedeutende Neuigkeiten sind die hochselektiven Trennphasen, die nun fast täglich für gewisse Substanzen oder Stoffklassen angeboten werden. Hinzu kommen besonders noch die neuen Trennsäulen mit kleineren Innendurchmessern (z. B. 1–2 mm: Typ Microbore), welche die Empfindlichkeit der HPLC-Methoden erhöhen, d. h. ihre Nachweisgrenzen erniedrigen. Gleichzeitig werden auch der Durchfluss und das Elutionsvolumen geringer, was die Umweltbelastung sowie allgemein die Analysenkosten reduziert.

Schlussfolgerung

Die Forschungsanstalt für Milchwirtschaft in Liebefeld-Bern verfügt über moderne HPLC-Methoden, um zahlreiche Komponenten in Milch und Milchprodukten zu bestimmen. Drei neue computergesteuerte HPLC-Geräte, ausgerüstet mit kühlbaren automatischen Probenwechslern, Gradientenpumpen sowie UV-sichtbar- oder Dioden-Array- und Fluoreszenzdetektoren, sind in der Lage, die obenerwähnten Bestimmungen rund um die Uhr auszuführen. Dieses HPLC-Laboratorium wurde anfangs dieses Jahres nach EN 45001 akkreditiert. Die weiteren Fortschritte auf dem Gebiete der HPLC werden auch in Zukunft der milchwirtschaftlichen Analytik neue und vielversprechende Impulse verleihen.

Zusammenfassung

In den letzten Jahren haben sich HPLC-Methoden dank neuer leistungsfähiger und stabiler Trennsäulen auf «reversed phase»-Basis in der Analytik von Lebensmitteln durchgesetzt. Die vorliegende Arbeit stellt einige Anwendungsbeispiele von RP-HPLC-Methoden bei Milch und Milchprodukten an der FAM vor. Es handelt sich dabei um neuentwickelte Methoden für die Bestimmung von fett- und wasserlöslichen Vitaminen (A, E, B₁, B₂, B6, C), von natürlich vorhandenen oder unerlaubten Konservierungsmitteln, von biogenen Aminen, von Aminosäuren (frei und nach Hydrolyse) und von Peptiden, die im Verlaufe der Käsereifung freigesetzt wurden, sowie von Molkenproteinen wie α-Lactalbumin und β-Lactoglobulin. Mit Ausnahme der Probenvorbereitung, die komponentenspezifisch ist, sind diese Analysenmethoden wenig matrixabhängig, d. h. relativ universell anwendbar.

Résumé

Ces dernières années, les méthodes d'analyse des denrées alimentaires par HPLC ont connu un essor considérable dû notamment à l'introduction de nouvelles colonnes de séparation de type phase inverse, plus stables et plus performantes. Le présent travail en présente quelques exemples d'application au lait et aux produits laitiers à la FAM. Il s'agit de méthodes récemment développées pour le dosage de vitamines lipo- et hydrosolubles (A, E, B1, B2, B6, C), d'agents de conservation naturellement présents ou prohibés, d'amines biogènes, d'acides aminés constitutifs (après hydrolyse) ou libres, de peptides libérés lors de

l'affinage des fromages, ainsi que de protéines lactosériques telles qu'α-lactalbumine et ß-lactoglobuline. A l'exception de l'étape de traitement de l'échantillon, spécifique au composant à analyser, ces méthodes de dosage sont relativement peu dépendantes de la matrice, c.-à-d. quasi universellement applicables.

Summary

In the last few years the HPLC methods of analysis of foodstuffs have progressed considerably due to the availability of new, much more efficient and stable reversed phase separation columns. The present work describes some applications of these analytical techniques to milk and dairy products by the Swiss Federal Dairy Research Institute. It deals with methods recently developed for the determination of fat and water soluble vitamins, naturally present or prohibited preservatives, biogenic amines, free and constitutive amino acids (after hydrolysis), peptides produced during cheese ripening, as well as whey proteins such as α -lactalbumin and β -lactoglobulin. With the exception of the sample preparation which is specific to the analyzed component, these methods are relatively independent of the matrix (foodstuff), i.e. universally usable.

Literatur

- 1. Matissek, R. and Wittkowski, R. (ed.): High performance liquid chromatography in food control and research. B. Behr's Verlag GmbH & Co., Hamburg 1992.
- 2. Kneifel, W.: Die HPLC im Rahmen der milchwirtschaftlichen Analytik. Deutsche Milchwirtschaft 35, 1071–1076 (1986).
- 3. Tagliaferri, E., Bosset, J.O., Eberhard, P., Bütikofer, U. und Sieber, R.: Untersuchung einiger Kriterien zum Nachweis von Veränderungen der Vollmilch nach thermischen und mechanischen Behandlungen sowie nach verschieden langen Belichtungszeiten. II. Bestimmung des Vitamins B₁ mit Hilfe einer neuentwickelten RP-HPLC-Methode. Mitt. Gebiete Lebensm. Hyg. 83, 435–452 (1992).
- 4. Tagliaferri, E., Sieber, R., Bütikofer, U., Eberhard, P. und Bosset, J.O.: Untersuchung einiger Kriterien zum Nachweis von Veränderungen der Vollmilch nach thermischen und mechanischen Behandlungen sowie nach verschieden langen Belichtungszeiten. III. Bestimmung des Vitamins B2 mit Hilfe einer neuentwickelten RP-HPLC-Methode. Mitt. Gebiete Lebensm. Hyg. 83, 467–491 (1992).
- 5. Bosset, J.O., Bütikofer, U., Fuchs, Doris, Imhof, Miroslava I. et Tagliaferri, E.: Le dosage des acides ascorbique et déhydroascorbique du lait: Survol bibliographique et comparaison de quelques méthodes titrimétriques et chromatographiques par HPLC. Trav. chim. aliment. hyg. 83, 173–196 (1992).
- 6. Bütikofer, U., Baumann, E. und Bosset, J.O.: Eine verbesserte HPLC-Methode zur Bestimmung von Sorbinsäure in Milchprodukten unter spezieller Berücksichtigung von Artefakten. Mitt. Gebiete Lebensm. Hyg. 79, 392–405 (1988).
- 7. Bütikofer, U., Fuchs, Doris, Hurni, D. und Bosset, J.O.: Beitrag zur Bestimmung biogener Amine in Käse: Vergleich einer verbesserten HPLC- mit einer IC-Methode und Anwendung bei verschiedenen Milchprodukten. Mitt. Gebiete Lebensm. Hyg. 81, 120–133 (1990).

8. Bütikofer, U., Fuchs, Doris, Bosset, J.O. and Gmür, W.: Automated HPLC-amino acid determination of protein hydrolysates by precolumn derivatization with OPA and FMOC and comparison with classical ion exchange chromatography. Chromatographia 31, 441–447 (1991).

9. Sallin, Christine, Baumann, E., Bütikofer, U., Sieber, R. et Bosset, J.O.: Contribution au dosage des oxystérols dans le lait et les produits laitiers: I. Possibilités et limites des

techniques RP-HPLC. Trav. chim. aliment. hyg. 84, 141-157 (1993).

10. Internationaler Milchwirtschaftsverband: Determination of benzoic and sorbic acid content. Provisional FIL/IDF Standard 139 (1987).

Ueli Bütikofer Dr. Jacques Olivier Bosset Sektion Chemie Eidg. Forschungsanstalt für Milchwirtschaft CH-3097 Liebefeld-Bern