Zeitschrift: Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und

Hygiene = Travaux de chimie alimentaire et d'hygiène

Herausgeber: Bundesamt für Gesundheit

Band: 85 (1994)

Heft: 2

Artikel: Bedarfsgegenstände aus Kupfer und Kupferlegierungen, ein

Gesundheitsproblem? = Utensils of copper and copper alloys in contact

with food, a health problem?

Autor: Bosshard, Elisabeth / Zimmerli, Bernhard

DOI: https://doi.org/10.5169/seals-982761

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Bedarfsgegenstände aus Kupfer und Kupferlegierungen, ein Gesundheitsproblem?

Utensils of Copper and Copper Alloys in Contact with Food, a Health Problem?

Key words: Copper utensils, Food, Risk assessment, Acute human toxicity, Review

Elisabeth Bosshard und Bernhard Zimmerli Bundesamt für Gesundheitswesen, Abteilung Lebensmittelwissenschaft, Bern

Einleitung

Verschiedene Schwermetalle wie Eisen, Kupfer und Zink sind für den Menschen einerseits in bestimmten Mengen lebensnotwendig, andererseits können sie bei überhöhter Zufuhr zu einer Gesundheitsgefährdung führen. Während vor etwa 100 Jahren akute Vergiftungen mit Schwermetallen in Lebensmitteln relativ häufig auftraten, sind sie heute äusserst selten geworden, ausgenommen vielleicht solche durch Blei.

1991 wurden wir mit einem Fall konfrontiert, in welchem der Gebrauch einer «blanken» (nicht verzinnten) Kupferpfanne mit eingebautem Rührwerk zum Verdacht einer Vergiftung geführt hatte. Etwa eine Viertelstunde nach dem Verzehr eines in einer solchen Pfanne zubereiteten Tomatenrisottogerichtes zeigten sich bei einer der beteiligten Personen folgende Symptome: Übelkeit, Erbrechen und trokkener Mund (Mitteilung des Betroffenen). Diese Symptome stimmen mit den für orale Kupfervergiftungen bekannten typischen gesundheitlichen Wirkungen überein. Vorgängig war die fragliche Pfanne während rund eines Jahres ausschliesslich für die Polentazubereitung verwendet worden, ohne dass der Verzehr der entsprechenden Gerichte je Beschwerden verursacht hätte.

Ein mit einem solchen Gerät nachträglich zubereitetes Tomatenrisottogericht zeigte einen Kupfergehalt von rund 43 mg/kg (Frischmasse). In einer Chromstahlpfanne zubereitet, enthielt das gleiche Gericht nur 0,6 mg/kg (1). Bei einer angenommenen verzehrten Portion von nur 200 g Risotto entspricht dies einer Kupferzufuhr von rund 8 mg, entsprechend etwa 0,1 mg/kg Körpergewicht (KG).

Der überwiegende Teil der früher und heute auf dem Schweizer Markt angebotenen Bedarfsgegenstände aus Kupfer und Kupferlegierungen besitzt auf der Innenfläche einen Belag, meistens aus Zinn, neuerdings z.T. auch aus Nickel (2). Solche Beschichtungen sind in der eidgenössischen Verrordnung über Lebensmittel und Gebrauchsgegenstände (LMV) vom 26. Mai 1936 nicht zwingend vorgeschrieben. Die obenerwähnte Pfanne ist somit nach dem Buchstaben des Gesetzes nicht zu beanstanden. In Artikel 458 LMV ist lediglich festgehalten, dass Kupfergefässe, die keine Überzüge aufweisen, stets rein und blank gehalten werden müssen (3).

Da das zur Diskussion stehende Gerät italienischer Herkunft insbesondere zum Zubereiten von Risotto und zum Eindicken von Früchten und Tomaten empfohlen

wird, stellten sich die folgenden Fragen:

1. Was ist beim Menschen über die akute Toxizität bzw. die Dosis-Effekt-Bezie-

hung von via Nahrung aufgenommenem Kupfer bekannt?

2. Muss beim Gebrauch von nicht verzinnten Kupferpfannen mit akuten Vergiftungen gerechnet werden und sind allenfalls gesetzliche Massnahmen angezeigt?

Historisches

Vergiftungen mit Schwermetallen wie Blei, Zink oder Cadmium waren in früheren Zeiten recht häufig. Der Grund lag mehrheitlich darin, dass Lebensmittel in Kontakt mit Materialien gelangten, welche Schwermetalle abgeben konnten. Blei und Zink waren dabei am häufigsten involviert, Kupfer weniger. Denn der Umgang und Gebrauch von Geschirren, Gefässen und Kochgeräten aus Kupfer, Bronze sowie Messing war der damaligen Bevölkerung seit Jahrhunderten bestens vertraut². Kupfer war auch das erste Metall überhaupt, das die Menschheit gewinnen und insbesondere für praktische Zwecke nutzen konnte. Bei Zink (und Cadmium) handelte es sich damals um relativ neu verfügbare Metalle, die u.a. als Überzüge für Eisen Verwendung fanden (z.B. Galvanisierung). Insbesondere die Lagerung sauer reagierender Lebensmittel, wie z.B. Wein oder Kartoffelsalat in galvanisierten Behältnissen, führte deshalb häufig zu eigentlichen Massenvergiftungen mit Zink³. So wurde denn am 14. Mai 1879 in Deutschland auch das sogenannte «Blei-Zink-Gesetz» in Kraft gesetzt (4).

In der noch heute gültigen LMV von 1936 ist in Artikel 449 prinzipiell nur geregelt, dass Gebrauchsgegenstände für den Kontakt mit Lebensmitteln nicht aus

Bedarfsgegenstände sind Gebrauchsgegenstände, die als Fertigerzeugnisse dazu bestimmt

sind, mit Lebensmitteln in Berührung zu kommen.

Da in Bronzekesseln (Kupfer/Zinn) eingedickter Most (z.B. Defructum) im Altertum offenbar gelegentlich zu Bauchschmerzen und Erbrechen führte, empfahl Plinius, statt bronzene, bleierne Kessel zu verwenden (5). Dies hat zwar zu einer erheblichen Bleibelastung geführt, jedoch zu keinen unmittelbar erkennbaren Symptomen, wie sie durch Kupfer verursacht wurden.

Demgegenüber kommen Vergiftungen durch Blei auch heute noch vor. Anlass hierzu ist der Gebrauch von schlecht gebrannten Keramikkrügen und -tassen mit bleihaltigen Glasuren. Solche Artikel werden aus dem Ausland häufig als Souvenir mitgebracht (6).

Blei, Zink oder Cadmium bzw. deren Legierungen hergestellt sein dürfen. Der einzige Hinweis, dass blankes Kupfer (und Messing) nicht in direkten Kontakt mit Lebensmitteln gelangen darf, findet sich in Artikel 56 LMV (Milch- und Rahmgewinnung) (3). Vermutlich war die Basis dieses Artikels aber weniger der Gesund-

heitsschutz als die Verderbnisverhinderung.

Im Schweizerischen Lebensmittelbuch von 1909 wird empfohlen, kupferne und aus Kupferlegierungen hergestellte Gefässe zu verzinnen, und es wird darauf hingewiesen, dass dies für Bierpressionen, Mineralwasserapparate, Wurstmaschinen, Bäckereigerätschaften und dergleichen unerlässlich sei (7). In der damaligen LMV von 1909 waren denn auch die entsprechenden Vorschriften bezüglich Bierarmaturen und -leitungen und Mineralwasserapparate verankert (8). Demgegenüber hat die damalige österreichische Gesetzgebung klar vorgeschrieben, dass mit wenigen Ausnahmen, wie z.B. zum Karamelkochen, zur Erzeugung von Dragees, zum Einsieden von Fruchtsäften, zum Schneeschlagen und zur Erzeugung von Gemüsekonserven, sämtliche Geschirre und Geräte aus Kupfer und Kupferlegierungen, die mit Lebensmitteln in Kontakt gelangen, innen gut verzinnt sein müssen, und dass die Verzinnung sofort zu erneuern ist, wenn sie Schaden erlitten hat (10). Die letztere Vorschrift hat ihr Gegenstück noch heute in Absatz 2 von Artikel 458 LMV, der vorschreibt, dass solche Überzüge stets in gutem Zustand erhalten bleiben müssen (3).

Es kann davon ausgegangen werden, dass der Bevölkerung und den Organen der Lebensmittelüberwachung der Umgang und Gebrauch mit Kupferpfannen früher zumindest bestens vertraut war. So scheint es z.B. im Tessin üblich gewesen zu sein, für die Polentazubereitung blanke, für die Risottozubereitung jedoch verzinnte Kupferpfannen zu verwenden. Bei der Polentazubereitung bildet sich in der Pfanne eine (vermutlich kupferreiche) Kruste, die aber nicht verzehrt wird. Dieses Wissen könnte auch erklären, wieso in der LMV die Zulässigkeit von Pfannen und Geschirren aus Kupfer und dessen Legierungen nicht näher umschrieben worden ist. Da heute dieses (Erfahrungs)-Wissen weitgehend verschwunden sein dürfte, können alte, bereits gelöste Probleme, sich von neuem stellen.

Kupfer in Lebensmitteln und Kupferzufuhr

Kupfer ist ein ubiquitäres, metallisches Element, biologisch essentiell, da es an zahlreichen enzymatischen Prozessen im Organismus mitbeteiligt ist. Ungefähr 0,007% der Erdkruste besteht aus Kupfer und Spuren von Kupfer finden sich in allen Böden, Tieren und Pflanzen. Als Ion geht Kupfer sehr leicht Komplexe ein. Bei einigen Stoffwechselvorgängen ist auch das Redoxpotential Cu(I)/Cu(II) von Bedeutung⁴. Die Komplexbildung reguliert die Kupferverfügbarkeit im Boden und

⁴ Eisen und Kupfer sind als Bestandteile von Enzymen die wichtigsten Metalle, welche durch die Übertragung von Elektronen die Reduktion von Sauerstoff ermöglichen. Aus der dabei frei werdenden Energie speist sich weitgehend das aerobe Leben (20).

in Organismen sowie die Biosynthese kupferhaltiger Proteine und Enzyme. Zwischen Kupfer und anderen Elementen existieren Wechselwirkungen, wie z.B. mit Eisen im Zusammenhang mit der Blutbildung sowie mit Molybdän und Zink. Beispielsweise kann beim Menschen Zinküberschuss zu einem Kupfermangel führen.

Innereien, speziell von Jungtieren, wie Lebern von Lämmern und Kälbern, gehören zu den kupferreichsten Lebensmitteln, gefolgt von Austern und Muscheln, Kakao und Nüssen sowie Getreide (Samen). Die mittleren natürlichen Kupferkonzentrationen einiger Lebensmittel betragen schätzungsweise (bezogen auf Frischmasse): Kuhmilch 0,03-0,07 mg/kg (Humanmilch 0,2-0,3 mg/kg), Weine 0,2 mg/kg, Obst (Apfel) 0,5 mg/kg, Frischgemüse 0,3-1 mg/kg, Fische 1 mg/kg, Fleisch 1,5 mg/kg, Weizenkörner 4-5 mg/kg, Nüsse 4-12 mg/kg, Schweizer Hartund Halbhartkäse 6-20 mg/kg, Weizenkeime 5-20 mg/kg, Elchleber (Finnland) 26-54 mg/kg, Kakao 20-60 mg/kg, Schwarzteeblätter (trocken) 10-60 mg/kg⁵ (9, 11-15). Folgende Konzentrationsmittelwerte wurden in neueren schweizerischen Untersuchungen von Gemüsen und Broten (Frischmasse) ermittelt (in Klammern Bereich der Einzelwerte): gerüstete Karotten 0,7 mg/kg (0,2-1,7 mg/kg), gedämpfte und geschälte Kartoffeln 1,2 mg/kg (0,6-2,3 mg/kg), gerüstete Sellerieknollen 2,0 mg/kg (1,1-2,6 mg/kg), Weissbrote 2,2 mg/kg (1,3-4,3 mg/kg), Halbweissbrote 2,6 mg/kg (1,3-4,2 mg/kg), Ruchbrote 3,4 mg/kg (1,8-5,7 mg/kg) sowie Roggenbrote 3,5 mg/kg (2,4-4,3 mg/kg) (16-19).

Der Zusatz von Kupfersalzen zu grünen Gemüsekonserven bewirkt die Erhaltung der grünen Farbe (Aufgrünen, Reverdissage). Dabei sind Kupferkonzentrationen von etwa 50 mg/kg (Frischmasse) meist ausreichend. Im Chlorophyll enthaltenes Magnesium wird durch Kupfer(II)-ionen ersetzt, wodurch stabilere Komplexe entstehen, die auch beim Kochen weitgehend erhalten bleiben (23, 24). Die Grünung mit Kupfersalzen war in gewissen Ländern seit der Jahrhundertwende umstritten, insbesondere infolge häufiger Überschreitungen der in Deutschland und Österreich festgelegten Limite von 55 mg Kupfer/kg. So wurden damals z.B. in 11 Konservenproben einer bestimmten Fabrik Kupferkonzentrationen im Be-

reich von 51-352 mg/kg, im Mittel 155 mg/kg gemessen (25, 26).

Gemäss Zusatzstoffverordnung ist in der Schweiz diese Verwendung von Kupfer für Konserven von Cornichons und gehacktem Spinat zugelassen. Ebenfalls zugelassen ist die Verwendung von Kupferkomplexen der Chlorophylle und Chlorophylline als grüner Farbstoff (E 141) (27). Diese Anwendung ist in den USA aus

uns unbekannten Gründen nicht erlaubt (24).

Kupfer und seine Verbindungen sind vor über 100 Jahren im *Pflanzenschutz* eingeführt worden, wo sie auch heute noch insbesondere als Fungizide Verwendung finden (z.B. Bordeaux-Brühe). Deren Einsatz kann auf den Lebensmitteln Rückstände hinterlassen. In der Fremd- und Inhaltsstoffverordnung (FIV) ist deshalb für Kupfer in Obst und Gemüse ein Toleranzwert von 15 mg/kg aufgeführt (28). 1992 wurden z.B. in Tafelkirschen Kupferkonzentrationen im Bereich von 0,5–2,1 mg/kg (Mittelwert 1,0 mg/kg) gemessen (29), die aber vermutlich den

⁵ Entsprechend ist im Aufguss mit Konzentrationen von 0,08–0,5 mg/kg zu rechnen (21, 22).

natürlichen Konzentrationen entsprechen. In den 50er Jahren fanden sich in Deutschland in rund 50 importierten Traubensäften < 0,1–12 mg/l, im Mittel rund 2,4 mg/l (30)⁶. In den 30er Jahren wurden in der Schweiz in kommerziellen, sterilisierten Traubensäften Kupferkonzentrationen im Bereich von 0,8 bis 26 mg/kg, Mittelwert rund 8 mg/kg, gemessen (31). Bei der Weinherstellung verbleibt die grösste Menge des mit Pflanzenschutzmitteln eingebrachten Kupfers in der Hefe bzw. im Rückstand (Trester). In Weinen aus dem Baselbiet der Ernte 1992 wurden Kupferkonzentration von 0,004–0,8 mg/l (29) und in 1991 importierten Weinen ein Mittelwert von 0,23 mg/l gemessen (14).

Lebensmitteltechnologische Prozesse sowie die haushaltsmässige Zubereitung der Lebensmittel können deren Kupferkonzentrationen verändern. Beim Mahlen von Getreide nimmt der Kupfergehalt der Mehle mit steigendem Ausmahlungsgrad zu. Der Zusatz von Wasser beim Garen vermindert im allgemeinen die Kupferkonzentrationen der Lebensmittel (Übergang ins Kochwasser). Haushaltsmässig druckgedämpfte Buschbohnen, Blattspinat und Erbsen zeigen nur geringfügig kleinere Konzentrationen als das frische Gemüse. Diese Gemüse, in Dosen abgefüllt, sterilisiert und haushaltsmässig aufgewärmt, führten bei Buschbohnen zu den prozentmässig höchsten und bei Erbsen zu den kleinsten Kupferverlusten (70 bzw. 30%). Tiefgefrieren und tischfertige Zubereitung der entsprechenden Gemüse ergaben nur geringfügige Verluste (32, 33). Im Mittel verschiedener Lebensmittel betragen die Kochverluste 30-40% und sind etwa vergleichbar mit jenen anderer Spurenelemente und Mineralstoffe (34). Die Kupferkonzentrationen können auch ansteigen. Während der Lagerdauer von Konserven in gelöteten Metalldosen: z.B. bei Schweinefleisch von ca. 1 mg/kg auf ca. 1,5 mg/kg, bei Kalbfleisch von ca. 0,5 mg/kg auf ca. 1,3 mg/kg und bei Fruchtsäften (Pfirsich, Aprikosen, Birnen, Äpfel) von 0,11-0,17 mg/kg (frisch) auf 0,30-0,55 mg/kg nach je 24 Monaten Lagerung (35, 36). Bei der Herstellung von Brühwurstbrät erhöhte sich die Kupferkonzentration im Brät durch die Zugabe von Gewürz- und Zusatzstoffen von 0,37 mg/kg auf 0,57 mg/kg (37).

Kupfer kann auch durch den Kontakt mit kupferhaltigen Geschirren und Gefässen in die Nahrung gelangen. Infolge seiner Lage in der elektrochemischen Spannungsreihe reagiert blankes, elementares Kupfer nicht mit Protonen unter Wasserstoffentwicklung wie unedlere Metalle (z.B. Zink). Glänzend poliertes Kupfer, ohne Oxidschicht, wird deshalb durch Lebensmittel nur schwer angegriffen. Für die Kupferkorrosion ist praktisch immer die Gegenwart eines Oxidationsmittels erforderlich, wie z.B. Luftsauerstoff. In der Praxis ist es bei Kochgeschirr aus Kupfer praktisch unmöglich, die Bildung einer Oxidschicht zu verhindern. Diese wird durch Lebensmittel je nach pH rasch gelöst, insbesondere in Gegenwart von Komplexbildnern, wie z.B. Ammoniak als Abbauprodukt von Proteinen oder Cyanid, die zudem auch das elektrochemische Kupferpotential senken (38, 39). Kochgeschirre und Behältnisse aus Kupfer oder Kupferlegierungen, wurden daher früher fast ausschliesslich innen verzinnt. Nur für Spezialanwendungen, wie z.B.

⁶ Zudem fanden sich in diesen Proben Bleikonzentrationen im Bereich von < 0,1–13 mg/l, im Mittel rund 2,4 mg/l (30)!

das Zubereiten von Polenta, gebrannten Mandeln oder das Eiweissschlagen, wurden traditionellerweise blanke Kupfergefässe verwendet.

In welchem Masse Lebensmittel durch den Kontakt mit Kupfergefässen konta-

miniert werden können, zeigen folgende Beispiele:

Versuche mit einer unverzinnten Kupferpfanne mit Rührwerk (siehe Einleitung) ergaben folgende Kupferkonzentrationen (Frischmasse): 4%ige Essigsäure (20 °C, 24 Stunden) 10 mg/l, Tomatensauce (1 Stunde gekocht) 23 mg/kg (neue Pfanne) bis 33 mg/kg (gebrauchte Pfanne) und Tomatenrisotto 43 mg/kg (1). Demgegenüber wurden beim Kochen (mit minimalem Wasserzusatz) verschiedener Lebensmittel in einer unverzinnten Kupferpfanne im Vergleich zu einer Aluminiumpfanne (Werte in Klammern) nur folgende mittlere Kupferkonzentrationen gemessen (Frischmasse): Rindfleisch 5 mg/kg (2 mg/kg), Hühnerfleisch 6 mg/kg (3 mg/kg), Dorsch 5,6 mg/kg (1,4 mg/kg), Kohl 2,1 mg/kg (1,0 mg/kg) und Kartoffeln 2,4 mg/kg (1,9 mg/kg) (40).

In den 40er Jahren gaben die Kupfergehalte kommerzieller Tomatenpurees Anlass zu lebensmittelrechtlichen Überlegungen, da häufig Konzentrationen von 100–250 mg/kg Trockenmasse gemessen wurden. Unverarbeitete Tomaten zeigten Kupferkonzentrationen im Bereich von 10–40 mg/kg Trockenmasse. Über akut toxische Effekte durch solche Ware wurde jedoch nichts bekannt, vermutlich infolge der geringen Verzehrsmenge. Die hohen Konzentrationen waren durch die

Verwendung kupferner Eindickkessel bedingt (23).

Die sechsstündige Lagerung von Milch bzw. Wasser in einem Kupfergefäss bei Raumtemperatur (21 °C) führte zu Konzentrationen von 11,2 mg/l bzw. 0,7 mg/l; für ein analoges Gefäss aus Messing ergaben sich 2,7 mg/l bzw. 0,13 mg/l (Ausgangskonzentrationen: Milch ca. 0,1 mg/l und Wasser ca. 0,05 mg/l). Aufkochen und anschliessend gleiches Lagern führte zu Kupferkonzentrationen von rund 6,3 mg/l in der Milch und ca. 0,3 mg/l in Wasser, unabhängig davon, ob ein Gefäss aus Kupfer oder Messing Verwendung fand (41). In guter Übereinstimmung hierzu zeigten andere Autoren, dass durch 24stündige Lagerung (10 °C) von jeweils 0,5 l Kuhmilchproben in einem Messinggefäss (1 Liter) die jeweiligen Kupferkonzentrationen im Mittel von rund 0,4 mg/l auf 24,8 mg/l anstiegen; zusätzliches Aufkochen erhöhte die Konzentration im Mittel auf rund 35 mg/l (42, 43). Verschiedene, während 24 h in Messinggefässen aufbewahrte Trinkwasserproben, enthielten im Mittel 0,1 mg/kg (pH 8) bis 0,36 mg/kg (pH 6) (43). Dauer des Kontaktes und Art des Lebensmittels scheinen für die sich im Lebensmittel ergebenden Kupferkonzentrationen von grösserer Bedeutung zu sein als die Temperatur.

Auch in der Bier- und Branntweinherstellung⁸ sowie als Wasserleitungen findet blankes Kupfer z.T. Verwendung. So kann die Würze in der kupfernen Sudpfanne bis zu 5 mg/l Kupfer aufnehmen, welches aber zum grössten Teil in der Hefe verbleibt (39). Die üblichen Kupferkonzentrationen in Bier liegen im Bereich von

Bei der Herstellung von Whisky und Steinobstdestillaten ist vermutlich das Vorhandensein von Kupfer für deren sensorische Eigenschaften essentiell.

⁷ ½ gehackte Zwiebel, 4 klein geschnittene Tomaten, 300 g Reis, ca. 0,9 l Bouillon, 20 Minuten gekocht. Andere Rezepte verwenden z.T. auch Weisswein.

< 0,001–2,7 mg/l, im Mittel bei rund 0,13 mg/l (44). Wasserleitungen aus Kupfer sind ebenfalls gebräuchlich, in der Schweiz aber vorwiegend für die Warmwasserverteilung. Je nach pH-Wert (6,5–8,5) und Wasserhärte sowie dem Alter der Leitungen (< 2 bis > 5 Jahre) können in stagnierenden Wässern (Kaltwasser) Kupferkonzentrationen im Bereich von 0,02–8 mg/l auftreten, häufig solche von 0,1–2 mg/l (45). In Haushaltungen mit stark saurem Brunnenwasser (pH 4,5–6,3) und Kupferleitungen wurden sogar Konzentrationen von bis zu 24 mg/l gemessen (46).

Kupferionen wirken bei Oxidationsvorgängen in Lebensmitteln katalytisch. Die Oxidationsprodukte können zu Geschmacksveränderungen führen (z.B. Ranzigkeit). Daher ist die Anwesenheit von Kupfer (und Eisen) in leicht oxidierbaren Lebensmitteln wie Fetten, Ölen, Milch, Rahm und Butter unerwünscht. Auch die Oxidation von Ascorbinsäure wird durch Spuren von Kupferionen stark beschleunigt (23, 39). Destilliertes Wasser, Trinkwasser oder Limonaden, die 2–4 mg/kg Kupfer enthalten, können einen metallischen Geschmack aufweisen. Bei kohlensäurehaltigen Mineralwässern liegt die Geschmacksschwelle mit 0,8–1 mg/kg tiefer (23, 47). Für die Herstellung von Emmentalerkäse ist die Anwesenheit geringer Kupfermengen in der Milch hingegen von erheblicher Wichtigkeit. Kupfer hemmt die Propionsäuregärung im Vergleich zur Milchsäuregärung. Andererseits fördern zu hohe Gehalte die Fettoxidation, wodurch es zu einer unerwünschten Pigmentbildung durch Propionsäurehalterien kommen kann (20,48,40).

bildung durch Propionsäurebakterien kommen kann (39,48, 49)9.

Die mittleren gemessenen Kupferzufuhren Erwachsener in verschiedenen Ländern betragen 0,8-3,2 mg/Tag (häufig etwa 1,2 mg/Tag) für Männer und 0,6-2,7 mg/Tag (häufig etwa 0,9 mg/Tag) für Frauen (38). Anhand von 1983 erhobenen Tagesrationen aus Verpflegungsbetrieben wurde in der Schweiz für Erwachsene ein Mittelwert von rund 1,4 mg/Tag (Bereich der Einzelwerte 0,7-2,5 mg/Tag) geschätzt. Zu diesem Mittelwert tragen der Verzehr von Kartoffeln schätzungsweise rund 11% und von Brot rund 22% bei (16, 17, 38). In dieser Studie wurden Zwischenverpflegungen nicht berücksichtigt, ebensowenig Getränke wie Fruchtsäfte, Kaffee und Tee, soweit sie nicht im Menüpreis inbegriffen waren. Eine empfohlene tägliche Zufuhr (RDA = recommended dietary allowance) konnte bis jetzt mangels ausreichender wissenschaftlicher Unterlagen noch nicht festgelegt werden. Basierend auf Gleichgewichtsstudien an Erwachsenen und unter Zugrundelegung einer gastrointestinalen Absorption von im Mittel 35% wurde berechnet, dass eine tägliche Zufuhr von rund 1,6 mg Kupfer nötig ist, um die täglichen Verluste via Faeces, Urin und Haut zu kompensieren. Eine tägliche Zufuhr von 1,5-3 mg/Erwachsener wird daher von einer amerikanischen Expertengruppe als sicher und adequat angesehen (9, 50).

⁹ Die zur Käseherstellung nötige Kupferkonzentration in der Milch beträgt 10–20 mg/kg Trockenmasse, entsprechend 1,3–2,6 mg/kg Frischmasse (natürliche Konzentration 0,03–0,1 mg/kg). Würden die Kupferkessel zur Herstellung von Emmentalerkäse durch die einfacher zu pflegenden Chromstahlkessel ersetzt, müsste der Milch die benötigte Kupfermenge, die sonst aus dem Kessel migrierte, zugesetzt werden. Mindestens in der Schweiz werden aus diesem und weiteren Gründen die traditionellen Kupferkessel zur Emmentalerherstellung beibehalten (113).

Dies ist in Übereinstimmung mit den Schätzungen der Deutschen Gesellschaft für Ernährung (51). Von der FAO/WHO wird ebenfalls eine Zufuhr von 2–3 mg bzw. 0,05 mg/kg KG als täglicher Bedarf angesehen (52). Wie erwähnt, beträgt die tägliche Zufuhr Erwachsener im Mittel häufig nur 0,9 mg bei Frauen und 1,2 mg bei Männern. Kupfermangelkrankheiten infolge zu geringer Zufuhr wurden bei Erwachsenen nie beobachtet, wohl aber bei unterernährten Kindern (Anämie, Neutropenie, Knochenerweichung)¹⁰. Eine überhöhte orale Zinkzufuhr (z.B. als Medikament) kann jedoch zu einem Kupfermangel und in der Folge auch zu Anämie führen (9)¹¹. Wie bei vielen anderen essentiellen Spurenelementen auch, erlaubt aber die Kenntnis der Zufuhrmenge allein noch keine zuverlässige Einschätzung des Versorgungsstatus, da z.B. Unterschiede in der Bioverfügbarkeit sowie mögliche Interaktionen mit anderen Spurenelementen und Nahrungsmittelbestandteilen diesen beeinflussen.

Biokinetik und Toxikologie

Absorption, Verteilung, Exkretion

In der Literatur wurden verschiedene z.T. ausführliche Übersichtsartikel über Biochemie, Kinetik und Toxikologie von Kupfer publiziert (53–59, 111). Die

wichtigsten Aspekte sind im folgenden nochmals kurz zusammengestellt.

Kupfer ist essentiell für die Hämoglobinbildung, Catecholamin-Biosynthese, für das Cross-linking von Collagen, Elastin und Haarkeratin sowie den Kohlenhydratstoffwechsel. Kupfer kann in mono- und divalenter Form auftreten. Monovalentes Kupfer (Cu⁺) ist im physiologischen wässerigen Milieu unstabil. Es geht in Cu⁰ und Cu²⁺ über, welches wasserlösliche, kationische Salze bildet. Kupfer kann auch Komplexe bilden mit schwefel- und stickstoffhaltigen Liganden und ist deshalb in einer Anzahl von Metalloenzymen und Proteinen inkorporiert.

Die Absorption von Kupfer aus dem Gastrointestinaltrakt ist mit 30–60% bedeutend höher als bei anderen Schwermetallen (Eisen 5–10%, Cadmium 3–7%), aber ungefähr vergleichbar mit derjenigen von Zink. Bei Kindern von 3–6 Jahren wird die Absorption sogar auf 42–85% geschätzt (62). Ionisches Kupfer wird – im

Das Menkes Syndrom, eine angeborene Kupfermangelkrankheit, führt zu Entwicklungsstörungen und progressiver Hirnerkrankung. Die Ursache ist ein genetisch bedingter Defekt der Kupferabsorption aus dem Verdauungstrakt. Seine Häufigkeit dürfte einem Fall auf 35 000 Lebendgeborene entsprechen. Die betroffenen Kinder, vorwiegend Knaben, werden meist nicht älter als 6 Jahre (53, 60).

Dabei scheint in der Darmschleimhaut gebildetes Metallothionein eine Rolle zu spielen. Zink ist einerseits der stärkere Stimulator der Metallothioneinbildung als Kupfer, andererseits wird aber Kupfer stärker an Metallothionein gebunden als Zink und kann dieses somit verdrängen. Es wird angenommen, dass so gebundenes Kupfer schlechter absorbiert

wird (61).

Gegensatz zu den meisten Metallen – bereits im Magen, dann auch im Duodenum und im Jejunum absorbiert. Die Gallenexkretion in den Gastrointestinaltrakt beträgt etwa 25%. Die Absorption wird beeinflusst durch verschiedene Faktoren, wie z.B. die chemische Form. So werden Oxide, Hydroxide, Iodide, Glutamate, Citrate und Pyrophosphate gut absorbiert, während Kupfersulfide und andere schwerlösliche Salze und auch Kupferporphyrine (z.B. im Fleisch) kaum absorbiert werden. Die Anwesenheit verschiedener anderer Metalle kann die Absorption ebenfalls beeinflussen (56, 63, 110). Aus dem Gastrointestinaltrakt absorbiertes Kupfer wird zuerst annähernd quantitativ an Albumin im Plasma gebunden, wo die höchsten Konzentrationen bereits 1-3 Stunden nach Einnahme gefunden werden, dann erfolgt der Transport in die Leber. Diese ist das wichtigste Speicherorgan für Kupfer. Nur geringe Anteile gehen direkt ins Knochenmark oder werden von Erythrozyten aufgenommen. In der Leber wird Kupfer entweder gespeichert, in die Galle ausgeschieden oder in Ceruloplasmin inkorporiert; es erfolgt ein intensiver Metabolismus. In den Hepatozyten wird Kupfer vorwiegend (> 80%) an Metallothionein gebunden, ein niedrigmolekulares sulfhydrylreiches Protein mit hoher Affinität zu divalenten Metallen. Metallothionein ist das Speicherprotein für Kupfer und auch anderer Metalle (z.B. Cadmium). Die Neusynthese einer ausreichenden Menge an Metallothionein erfolgt mehrere Stunden nach der Metallaufnahme in die Hepatozyten. Die restlichen 20% des Kupfers binden an funktionell spezifische Enzyme. Von Metallothionein wird Kupfer auf Ceruloplasmin, ein hochmolekulares Kupfertransportprotein (α-Globulin) übertragen. Von Ceruloplasmin, dem auch die Funktion einer Oxidase zukommt, wird Kupfer wieder ins Blutplasma transportiert. Ceruloplasmin übernimmt eine wichtige Funktion als Regulator in der homöostatischen Kontrolle des Kupfergehaltes im Körper. Der Exkretionsmechanismus für Kupfer von der Leber in die Galle und den Faeces scheint mit über 80% der bedeutendste Ausscheidungsweg für absorbiertes Kupfer zu sein. Zugeführtes Kupfer wird zum grössten Teil über den Kot ausgeschieden, wobei die Gallenexkretion ca. 25% beträgt. Ein geringer Teil von 0,5-4% wird im Urin eliminiert (52-54, 62, 64). Die biologische Halbwertszeit von Kupfer im Körper Erwachsener beträgt im Mittel etwa 20 Tage (65, 66).

Der Gehalt an Kupfer im Körper eines Erwachsenen wird auf rund 100 mg geschätzt, wobei Leber, Herz und Niere – in abnehmender Reihenfolge – die höchsten Konzentrationen enthalten. Ungefähr 10–30% des Körperkupfergehaltes werden in der Leber gespeichert. Die Kupferkonzentration im Blut beträgt etwa

1 mg/l (56, 66).

Die Kupfergehalte und -verteilung im Fötus sind sehr verschieden von derjenigen eines Erwachsenen. Zur Zeit der Geburt beträgt die mittlere Kupferkonzentration im fettfreien Gewebe von Neugeborenen ca. 5 mg/kg im Vergleich zu einer Konzentration von rund 2 mg/kg beim Erwachsenen (55). Die Leber Neugeborener weist sogar eine bis 10fach höhere Konzentration auf als die Leber eines Erwachsenen. Die anfängliche Kupferkonzentration von ungefähr 30 mg/kg Frischmasse nimmt während des ersten Lebensjahres auf eine konstante Konzentration von 5–10 mg/kg ab (66). Plasmakupfer- und Serumceruloplasminspiegel betragen bei der Geburt hingegen nur ca. 33% derjenigen von Erwachsenen,

erreichen aber nach 3–5 Monaten die Höhe, die normalerweise bei grösseren Kindern und Erwachsenen gefunden wird. Aus diesen Gründen kann vermutet werden, dass Neugeborene eine erhöhte Empfindlichkeit gegenüber Kupfer aufweisen, da die homöostatische Regulierung des Kupfers noch nicht vollständig entwickelt ist. Auch Metallothionein spielt in der homöostatischen Regulation von Kupfer während der verschiedenen Entwicklungsphasen eine wichtige Rolle (67).

Toxikologie

Kupfermangel führt bei Tieren zu verschiedenen Schädigungen, so z.B. Anämie, Skelettdefekte, Demyelinisierung und Degeneration des Nervensystems, Ataxie, Beeinträchtigung der Fortpflanzung, kardiovaskuläre Schädigungen, Pigmentierungsstörungen und Defekte der Haarstruktur (z.B. bei Schafen) (55). Ähnliche Effekte wurden auch für den Menschen beschrieben. Offensichtliche Kupfermangelkrankheiten sind jedoch, wie bereits erwähnt, sehr selten und sind vor allem die Folge von Erbdefekten. Ein effizienter homöostatischer Mechanismus schützt den gesunden Menschen vor Schädigungen durch Kupferüber- oder -unterangebot. So sind auch chronische Kupfervergiftungen beim erwachsenen Menschen weitgehend unbekannt. Kupfer ist kein kumulativ toxisches Schwermetall, wie etwa Blei und Cadmium. Es ist jedoch ein Krankheitsbild bekannt, das mit einer abnormen Kupferspeicherung im Körper in Zusammenhang gebracht wird.

Die Wilson'sche Krankheit ist eine autosomal rezessiv vererbbare Kupferspeicherkrankheit. Infolge mangelnder Ausscheidungskapazität, wahrscheinlich vor allem in die Galle, wird Kupfer in der Leber, im Zentralnervensystem und in verschiedenen anderen Geweben, u.a. in Cornea und Niere gespeichert. Gleichzeitig ist die Kupferkonzentration im Serum sowie die Konzentration von Ceruloplasmin erniedrigt (Serumceruloplasminspiegel: < 10 mg/100 ml; normal: ca. 30 mg/100 ml), die Kupferausscheidung via Urin sowie die Kupfergehalte der Leber sind jedoch erhöht. Die tägliche Kupferzufuhr von Wilsonpatienten muss minimal gehalten werden. Epidemiologische Untersuchungen in der Schweiz und der ehemaligen DDR ergaben für Morbus Wilson eine Inzidenz zwischen 2,5 und 2,9 pro 100 000 Einwohner. Die Wilson'sche Krankheit führt letztlich zu Leberzirrhose und neurologischen Effekten, vornehmlich in den ersten Lebensdekaden (53, 68).

Säuglinge und Kleinkinder scheinen gegenüber Kupfer, wie die Berichte von Kupfervergiftungen durch Trinkwasser und das Vorkommen der frühkindlichen Leberzirrhose (Indian Childhood Cirrhosis [ICC]) vermuten lassen, besonders empfindlich zu sein. Die ICC ist eine tödliche Lebererkrankung, die vor allem bei Kleinkindern aus Familien der mittleren Einkommensschicht in ländlichen Gegenden Indiens vorkommt und mit hohen Kupferkonzentrationen in der Leber einhergeht (> 1000 mg/kg versus < 50 mg/kg Trockenmasse) (69). Es wird vermutet – der kausale Zusammenhang ist noch nicht bewiesen –, dass die chronische Zufuhr hoher Kupfermengen bei Säuglingen und Kleinkindern zu den zirrhotischen Veränderungen führt (41–43, 70–72). Wie erwähnt sind die Kupferkonzentrationen in der Leber Neugeborener bedeutend höher als bei Erwachsenen. Ist nun die Zufuhr

über die Nahrung erhöht, wie z.B. in Indien, wo Messing- und Kupfergefässe zum Kochen und Aufbewahren von Milch verwendet werden und nicht oder nur unzureichend gestillten Säuglingen demzufolge kupferkontaminierte Milch verabreicht wird, genügt möglicherweise der noch nicht vollständig entwickelte homöostatische Mechanismus nicht, um die gegenüber Muttermilch stark erhöhte Kupferzufuhr zu regulieren. Unter Annahme eines täglichen Milchkonsums von 150 ml/kg KG wurde die Kupferzufuhr durch kontaminierte Milch auf 0,5–1 mg/kg KG geschätzt, gegenüber rund 0,05 mg/kg KG durch Brustmilch (41). Interessanterweise erkranken etwa 3mal mehr Knaben als Mädchen an ICC (69). Kupferdosen von 0,17 mg/kg KG an neugeborenen Kindern in einer Milchdiät über mehrere Wochen verabreicht, verursachten keine Effekte auf das Wachstum, die Hämoglo-

bin-, Serumprotein- und Serumkupferspiegel (73).

Ein ähnliches Krankheitsbild mit verschiedenen Todesfällen ist auch bei nichtgestillten, mit Flaschennahrung ernährten Säuglingen in gewissen Gegenden Deutschlands aufgetreten (German Childhood Cirrhosis [GCC]). Es wird vermutet, dass die hohe Kupferbelastung durch Trinkwasser die zirrhotischen Leberveränderungen verursacht hat. Ob allerdings eine erhöhte Kupferzufuhr allein für die aufgetretenen Krankheitsfälle verantwortlich ist, bleibt fraglich, da aus anderen Landesgegenden, wo die Bevölkerung mit Trinkwasser mit ähnlichen Kupferkonzentrationen versorgt wird, offenbar keine Fälle von GCC bekannt wurden. In einem Fall von zirrhotischen Leberveränderungen bei einem Säugling konnte aufgrund von nachträglichen Messungen der Kupferkonzentrationen im Wasser abgeschätzt werden, dass täglich ungefähr 2 mg Cu/kg KG aufgenommen wurden. Es kann angenommen werden, dass eine längere Aufnahme von 10–20% dieser (fatalen) Dosis, d.h. also 2–4 mg Cu/10 kg Kind, bereits eine Leberschädigung verursachen kann (46, 70, 74, 75). Nach wie vor offen ist die Frage, ob und welche anderen zusätzlichen Faktoren für die Entstehung der schwerwiegenden Erkran-

kung verantwortlich zu machen sind.

Es gibt zahlreiche Publikationen, die sich mit der Kupfertoxizität nach andauernder Exposition in verschiedenen Tierspezies befassen. Orale Dosen von ungefähr 5 mg Cu/kg KG verabreicht im Futter über 4 Wochen verursachten eine Reduktion der Körpergewichtszunahme bei Ratten (52). Kupferkonzentrationen von 2000 ppm in Rattenfutter (entsprechend 100 mg/kg KG), über 105 Tage verabreicht, führten zu nekrotischen Leberveränderungen (76). Diese Resultate sind in guter Übereinstimmung mit den Ergebnissen einer neuen Studie, in der Kupfersulfat in Trinkwasser oder Futter über mindestens 2 Wochen an Ratten verabreicht wurde. Es wurden histopathologische Leber- und Nierenveränderungen gefunden mit einem «no effect level» von 1000 ppm Kupfersulfat entsprechend ungefähr 25 mg Cu/kg KG. Ebenso verursachte Kupfersulfat bei Ratten wie bei gleich behandelten Mäusen histopathologische Veränderungen im Vormagen (Hyperplasie, Hyperkeratose) mit einem «no effect level» von 1000 ppm bei Ratten sowie 2000 ppm (ca. 100 mg Cu/kg KG) bei Mäusen. Effekte auf das Körpergewicht und das hämatopoetische System wurden erst in höheren Konzentrationen gefunden (112). Kupfer wird nicht als Mutagen oder Kanzerogen betrachtet. Verschiedene Kupfersalze und -komplexe zeigten eine antitumorigene Wirkung (59). Embryotoxische Effekte und eine erhöhte Inzidenz von Missbildungen wurden bei Mäusen beobachtet, die mit Kupfersulfat im Futter in Dosen von mehr als 280 mg/kg KG (> 70 mg Cu/kg KG) während eines Monats behandelt wurden (77).

Da ein akuter Vergiftungsfall Anlass zu der vorliegenden Arbeit gab, interessieren in diesem Zusammenhang insbesondere Angaben zur akuten Toxizität von

Kupfer.

Bei den beobachteten akuten Effekten von Kupferverbindungen, die beim Menschen als Folge beruflicher Expositionen gegenüber kupferhaltigen Stäuben und Dämpfen aufgetreten sind, handelt es sich meist um Effekte auf die Haut und die Atemwege. Berichte von Vergiftungsfällen durch Inhalation bei Winzern durch die Exposition mit Bordeaux-Brühe (Kupfersulfatlösung) wurden ebenfalls publiziert (78). Die meisten Berichte akuter Vergiftungen stehen aber im Zusammenhang mit akzidenteller oder willentlicher (Suizidversuche) Kupferaufnahme oder mit einer erhöhten Zufuhr, z.B. durch den Genuss kontaminierter Getränke. Die typischen akuten Vergiftungssymptome nach oraler Aufnahme sind Kopfschmerzen, Schwindel, Bauchschmerzen, Metallgeschmack und insbesondere Erbrechen.

In früheren Zeiten wurde Kupfersulfat in einer Dosierung von 200-250 mg entsprechend 51-64 mg Kupfer oder etwa 1 mg Cu/kg KG als Emetikum verabreicht (79, 80). Kupfersulfat führte bei Kindern im Vergleich zu Ipecacuanha (Brechwurzel) bei mehr Patienten und schneller zum Erbrechen (109). Anderen Angaben zufolge sollen bei Erwachsenen schon Dosen im Bereich von 15 mg Kupfer zu gastrointestinalen Störungen geführt haben (66, 81). Die EPA basiert den Vorschlag über eine Limite bezüglich Kupfer in Trinkwasser auf eine Publikation von Chuttani et al., wonach bereits bei einer Dosis von 5,3 mg Kupfer (0,09 mg Cu/kg KG) gastrointestinale Effekte beobachtet werden (82). Diese Dosis konnte allerdings aus der Originalarbeit (83) von den Autoren der vorliegenden Arbeit nicht abgeleitet werden. Es wird vermutet, dass viel eher die in der Arbeit von Wyllie (92) bei verschiedenen Personen gefundene minimale toxische Dosis von 5,3 mg Kupfer als Basis diente. Im Zusammenhang mit Trinkwasser weist eine WHO-Expertengruppe darauf hin, dass bei einigen wenigen Personen Kupferkonzentrationen im Trinkwasser von mehr als 3 mg/l bereits zu akuten Effekten führen können (84).

Die gastrointestinalen Störungen durch Kupfersalze sind die Folge einer lokalen Reizung im Magen-Darm-Trakt. In älteren Publikationen wird berichtet, dass Gemüse, welches mit Kupfersalzen gegrünt worden war und in dem Kupfer in wenig löslichen Verbindungen vorliegt, keine gastrointestinalen Effekte bewirkte (85). Trotzdem soll ein Erbsengericht, das total 120 mg Kupfer enthielt, heftige Übelkeit und zweimaliges starkes Erbrechen verursacht haben (25). Eine mögliche Erklärung wäre, dass in diesem Fall das zur Grünung verwendete Kupfer massiv

überdosiert war und somit grösstenteils als Kupferion vorlag.

In Tabelle 1 sind die wichtigsten Angaben verschiedener bei Menschen beobachteter akuter Vergiftungsfälle zusammengestellt. Offenbar können in einzelnen Fällen bereits orale Dosen im Bereich von 0,1 mg Cu/kg KG zu akuten Symptomen führen. Am häufigsten zuurde Erhrechen beobachtet.

führen. Am häufigsten wurde Erbrechen beobachtet.

Tabelle 1. Akute Kupfervergiftungen beim Menschen

Betroffener Personen- kreis (Anzahl Personen)	Vergiftungs- symptome (Zeit nach Expos.)	Lebensmittel	Kupfer- gehalt	Geschätzte Zufuhr (Einzeldosis)	Referenz
Arbeiter in Bolton (20)	Erbrechen, Durchfall, Übelkeit (2–5 h)	Morgentee (Heisswasser- kessel)	≥ 30 ppm (≥ 6 mg/ 2 dl)	≥ 0,1 mg/kg KG ¹	86
Arbeiter	Erbrechen	Johannisbeer- saft (Getränke- automat)	72 ppm (14 mg/2 dl)	0,23 mg/kg KG	zitiert in 87
Schulkinder	Effekte nicht spezifiziert	Glacestengel	910 ppm Kupfer- Sulfat (→ 230 mg Kupfer/l; 20 mg/dl)	1 mg/kg KG ²	zitiert in 87
Mitglieder eines Sport- klubs (10)	Erbrechen (einige Min.)	alkoholfreie Getränke (Flaschenaus- güsse)	200 ppm 60 mg/3 dl	1 mg/kg KG	87
Arbeiter in Liverpool (18 von 150)	Bauchschmerzen, Erbrechen, Diarrhoe, Kopfschmerzen, Schwindel (einige Min.)	Tee (Heisswasser- kessel)	≥ 44 ppm (≥ 9 mg/2 dl)	≥ 0,15 mg/kg KG	88
Spitalange- stellte in Vermont (36/189)	Erbrechen (wenige h)	kohlensäure- haltiges Wasser und Getränke (Apparat für kohlensäure- haltiges Wasser)	7–70 mg/l ³ (6 mg/2 dl)	0,1 mg/kg KG	89
Angestellte + Schüler ei- ner Schule (3/87 Er- wachsene 9/458 Kin- der)	Erbrechen, Diarrhoe (einige Min.)	gekochte Äpfel (verzinnter Kupferkoch- kessel, beschädigt)	90 ppm (4,5 mg/50 g)	0,08 mg/kg KG ⁴ (Erw.) 0,2 mg/kg KG (Kinder)	90

Annahme: Körpergewicht Erwachsene 60 kg (gilt für ganze Tabelle)
Annahme: Körpergewicht Kind 25 kg (gilt für ganze Tabelle)
Annahme: Mittlere Konzentration 30 mg/l
Annahme: Mittlerer Verzehr von ca. 50 g gekochten Äpfeln

Betroffener Personen- kreis (Anzahl Personen	Vergiftungs- symptome (Zeit nach Expos.)	Lebensmittel	Kupfer- gehalt	Geschätzte Zufuhr (Einzeldosis)	Referenz
Familie in Vermont (³ / ₄ Familien- mitglieder) ⁵	Erbrechen, Bauchschmerzen (einige Min.)	Trinkwasser (Wasserleitung in Küche)	Probe nach Stagnation: 7,8 mg/l → ~1 mg/dl ⁶	Vater: 0,05 mg/kg KG Kinder: 0,1 mg/kg KG	91
Kranken- schwestern (10/15) (Spital Ka- nada)	Erbrechen, Diarrhoe (1 h)	Cocktail Getränk (Cocktail- mischer)	5,3–32 mg/ Portion ⁷	0,08– 0,5 mg/kg KG	92
Verschiede- ne Fälle	Erbrechen	kohlensäure- haltige Getränke (Apparat für kohlensäure- haltiges Wasser)	35 ppm-260 ppm (7 mg-52 mg/2 dl)	0,1–0,9 mg/kg KG	93
Verschiede- ne Fälle	alle fatal, Symptome: Erbrechen, Bauchschmerzen, toxische Psychose, hämolytische Anämie, Gelbsucht	«spiritual green water» (Getränk in spirituellen Kirchen verabreicht)	> 100 g Kupfer- Sulfat/l (→ 25 g Kupfer/l → ~5 g/2 dl)	~ 80 mg/kg KG	94
Verschiede- ne Fälle (Suizide) (48)	fatal, Erbrechen, Magenschmerzen, Diarrhoe, akutes Nierenversagen, Koma, Tod (9 Fälle)		1–50 g Kupfer- Sulfat (→ 0,25– 12,5 g Kupfer)	4–200 mg/kg KG	95
Verschiede- ne Fälle (Suizide) (48)	fatal, Erbrechen, Schwindel, Diarr- hoe, Hämo- globinurie, Koma, Tod (7 Fälle)		1–113 g Kupfer- Sulfat (→ 0,25–30 g Kupfer)	4–500 mg/kg KG	83

Vater und 2 Töchter von 5 und 7 Jahren
 Annahme: Konsum Vater 3 dl, Kinder 2 dl
 Kein Originaldrink zur Verfügung, jedoch Zufuhrabschätzung aufgrund eines nachträglich zubereiteten Drinks

Gesetzliche Limiten und Empfehlungen

Für Kupfer in Lebensmitteln wurden in verschiedenen Ländern gesetzliche Limiten festgelegt. Gemäss FIV gilt in der Schweiz für Kupfer in *Trinkwasser* ein Toleranzwert von 1,5 mg/l (28). Von einer WHO-Arbeitsgruppe wurde für Trinkwasser kürzlich ein provisorischer, gesundheitsbezogener Wert von 2 mg/l vorgeschlagen. Dieser basiert auf der Annahme, dass Trinkwasser nicht mehr als 10% zur provisorisch maximal tolerierbaren täglichen Zufuhrmenge von 0,5 mg/kg KG beitragen sollte (84). Dabei wurde darauf hingewiesen, dass bei dieser oder auch bereits bei geringeren Konzentrationen (1 mg/l) Geschmacksveränderungen bzw. Flecken in der Weisswäsche auftreten können (47, 84). EPA und FDA schlagen als Qualitätsstandard für Trink- bzw. Flaschenwasser einen Wert von 1 mg/l vor. Dieser berücksichtigt die ästhetische Qualität von Trinkwasser bezüglich Geschmack, Geruch oder Farbe (97, 98). Für Trinkwasser schlägt die EPA auf der Basis von beobachteten gastrointestinalen Effekten eine Limite von 1,3 mg/l vor (82). In Deutschland gilt für Trinkwasser nach 12 Stunden Stagnation ein Richtwert von 3 mg/l (99).

In der Schweiz wurden für Kupfer in verschiedenen weiteren Lebensmitteln Toleranzwerte festgelegt (28). So für Fruchtsäfte 5 mg/kg, für Tafelgetränke 2 mg/kg, Weine 1 mg/kg, Bier 0,2 mg/kg und Fette, Öle, Margarine 0,1 mg/kg. Für Rückstände aus der Anwendung von Kupfer im Pflanzenschutz gilt für Obst und Gemüse im allgemeinen sowie Zuckerrüben ein Toleranzwert von 15 mg/kg. Im Vereinigten Königreich gilt für Tomatenketchup ein gesetzlicher Höchstwert von 20 mg/kg. Weitere dort zur Anwendung empfohlene Werte sind: Pektin 30 mg/kg (flüssig) bis 300 mg/kg (fest), Tomatenpuree und -säfte 100 mg/kg (pro Trockenmasse), Hefe und Hefeprodukte 120 mg/kg (Trockenmasse), Zichorie und Kaffeebohnen 30 mg/kg, Kakao und Kakaomasse 70 mg/kg (pro fettfreie Trockenmasse), Getränke wie Wein, Spirituosen, Süssmost 7 mg/kg sowie übrige Lebensmittel 20 mg/kg und Getränke 2 mg/kg (12). Für die Verwendung von Kupfersalzen als Zusatzstoffe für Konserven von Cornichons und gehacktem Spinat besteht in der

Schweiz eine Höchstmenge von 100 mg/kg (abgetropfte Ware) (27).

Im Hinblick auf die chronische Toxizität von Kupfer schlägt eine Expertengruppe der FAO/WHO 1966 provisorisch eine maximale tägliche Zufuhrmenge von 0,5 mg/kg KG entsprechend 30 mg/Mensch und Tag vor (100). In verschiedenen späteren Publikationen wurde dieser Wert bestätigt (52, 84, 101, 102). In der Begründung für diesen Wert heisst es, dass die mittlere Kupferzufuhr von 2 bis 3 mg/Tag bei gewissen Bevölkerungsgruppen deutlich erhöht sein kann und offenbar keine Berichte über Gesundheitsbeeinträchtigungen der exponierten Personen bekannt sind (52). In Langzeitfütterungsstudien ergaben sich «no effect levels» von < 30 mg/kg KG bei Ratten und ungefähr 5 mg/kg KG bei Hunden (52). Als Grundlage für die damalige Abschätzung der provisorisch zulässigen Höchstmenge scheinen weniger die tierexperimentellen Daten als die Beobachtungen am Menschen gedient zu haben. Es geht allerdings aus den publizierten Berichten der WHO nicht hervor, auf welchen epidemiologischen Daten die Abschätzung basiert. Eine

allfällige akute Toxizität von Kupferionen scheint nicht mitberücksichtigt worden zu sein.

Diskussion und Schlussfolgerungen

Die in Tabelle 1 zusammengestellten Angaben zu akuten Vergiftungsfällen durch Kupfer beim Menschen zeigen, dass bereits Mengen im Bereich von 0,1 mg/kg KG unter Umständen zu akuten gastrointestinalen Störungen führen können. Da Erbrechen und ähnliche Symptome einer Reizung des Magen-Darm-Trakts zugeschrieben werden müssen, kann angenommen werden, dass das auslösende Agens das frei verfügbare Kupferion ist. Zu analogen Effekten führen bekannterweise auch Zinkionen, wobei aber grössere Mengen nötig sind als bei Kupfer. Kupfer als ubiquitäres Metall kommt in zahlreichen Lebensmitteln und auch im Trinkwasser vor. Kontamination und absichtliche Anwendung können die Gehalte jedoch beträchtlich erhöhen. Unter Berücksichtigung der Verzehrsmengen kann jedoch angenommen werden, dass die durch feste Nahrung zugeführten Mengen im allgemeinen zu gering sind, um akute Effekte auszulösen. Zudem spielt die Bioverfügbarkeit – bestimmt durch die chemische Form – eine grosse Rolle. Kochen oder anderweitiges Zubereiten von Speisen kann die chemische Form von Kupfer und damit dessen Verfügbarkeit als freies Ion verändern. Auch dürfte Kupfer in fester Nahrung in der schlechter verfügbaren komplexierten Form vorliegen im Vergleich zu Trinkwasser, wo Kupfer vorwiegend in ionischer Form vorhanden ist. So ist bekannt, dass Kupfer in gegrüntem Konservengemüse als kaum absorbierbarer Porphyrinkomplex vorliegt. Es ist aus diesen Gründen nicht erstaunlich, dass akute Kupfervergiftungen beim Menschen fast ausschliesslich durch Getränke oder zumindest wasserreiche Lebensmittel verursacht werden. Die Beobachtung, dass oftmals nur ein Teil der exponierten Personen Effekte zeigen, mag mit individuellen Empfindlichkeitsunterschieden bezüglich der magenirritierenden Wirkung von Kupferionen zusammenhängen. Vermutlich spielt dabei aber auch der unterschiedliche Füllungsgrad des Magens eine wesentliche Rolle.

Kupfersulfat wurde früher in einer Dosierung entsprechend etwa 1 mg Cu/kg KG als Emetikum verwendet. Es kann davon ausgegangen werden, dass diese Kupfermenge bei den meisten behandelten Personen zum erwünschten Effekt, nämlich zum Erbrechen geführt hat. Obwohl uns die Angaben zur Dosis-Effekt-Beziehung und zum Kurvenverlauf im Detail nicht bekannt sind und damit die individuelle Reaktionsfähigkeit nicht abgeschätzt werden kann, scheint es vernünftig, davon auszugehen, dass auch die emetische Wirkung einer Normalverteilung folgt. Wird angenommen, dass erstens die erwähnte Dosis von 1 mg/kg KG bei 95,5% der Personen emetisch wirkt und zweitens, dass die Standardabweichung der entsprechenden Normalverteilung 0,33 mg/kg KG beträgt (30% des Mittelwertes), ergibt sich für die Dosis, bei welcher theoretisch nur noch 1% der Betroffenen

eine Reaktion zeigt, ein Wert von 0,2 mg/kg KG.

Auch diese pragmatische Überlegung unterstützt die Vermutung, dass eine Kupferdosis, bei der das Kupfer vorwiegend als Kation vorliegt, im Bereich von 0,1 mg/kg KG bei empfindlichen Personen Symptome verursachen kann. Wird diese Kupferdosis mit der abgeschätzten Kupfermenge, die aus dem Genuss des fraglichen Risottogerichtes resultieren konnte, verglichen, kann ein Kausalzusammenhang nicht ausgeschlossen werden. Allerdings ist fraglich, ob die tatsächlich zugeführte Kupfermenge als Folge einer inhomogenen Verteilung im Gericht möglicherweise nicht höher war als die abgeschätzte Dosis. Auch ist unbekannt, in welcher chemischen Form das Kupfer in dem vorliegenden Fall vorlag. Da Kupfer durch das saure Milieu des Tomatenrisottos direkt aus der Pfanne, wo es vermutlich als Oxid vorhanden war, gelöst wurde und das Gericht wahrscheinlich keine grösseren Mengen Chlorophyll oder andere Stoffe zur Komplexierung von Kupferionen enthielt, kann jedoch angenommen werden, dass Kupfer in einer gut verfügbaren Form vorlag.

Interessant ist zudem der Vergleich zwischen der minimalen akut toxischen Kupfermenge von ungefähr 0,1 mg/kg KG beim Menschen mit der von der FAO/WHO vorgeschlagenen provisorisch maximalen täglichen Zufuhrmenge von 0,5 mg/kg KG, entsprechend 30 mg/Mensch/Tag. Die Begründung der FAO/WHO, dass der Konsum von grossen Mengen Trinkwasser mit hohen Kupfergehalten, z.B. in Trockengebieten, offenbar nicht zur Gesundheitsbeeinträchtigung führt, berücksichtigt wahrscheinlich eher die fehlende kumulative Toxizität von Kupfer, jedoch nicht die mögliche akute Toxizität. Es bleibt abzuklären, ob allfällige Beobachtungen von akuten Symptomen, die durch eine erhöhte Kupferzufuhr durch Trinkwasser in solchen Gebieten verursacht werden könnten, möglicherweise durch eine ohnehin hohe Inzidenz von gastrointestinalen Störungen in den betreffenden Ländern maskiert wird und dadurch die Erkennung eines Kausalzusammenhanges erschwert wird. Bei einer allfälligen Reevaluation der maximal zulässigen täglichen Zufuhrmenge von Kupfer müsste den möglichen akuten Ef-

fekten Rechnung getragen werden.

Wird von einer mittleren Kupferzufuhr Erwachsener von rund 1 mg/Tag ausgegangen, entsprechend rund 0,02 mg/kg KG/Tag, und diese mit der minimalen akut toxischen Dosis von 0,1–0,2 mg/kg KG verglichen, ergibt sich formal ein Sicherheitsfaktor von 5–10. Allerdings ist in diesem Zusammenhang auch auf die Bedeutung der chemischen Form, in welcher Kupfer vorliegt, hinzuweisen. Ähnliche Sicherheitsfaktoren (von 5–50) resultieren im Hinblick auf akute Effekte aber auch für andere natürlicherweise in Lebensmitteln enthaltene, vermutlich aber nicht lebensnotwendige Stoffe, wie z.B. die Furocoumarine (Sellerie) bei anschliessender Sonnenlichtexposition (UVA) sowie die Glykoalkaloide (Kartoffel) (103, 104). Demgegenüber gibt es keine künstlichen Stoffe in der Nahrung, die ähnlich geringe Sicherheitsfaktoren zwischen minimaler toxischer Dosis und effektiver Exposition beim Menschen aufweisen wie die erwähnten Naturstoffe¹².

Auch in chronisch toxischer Hinsicht ergeben sich bei verschiedenen anderen lebensnotwendigen Stoffen, wie z.B. den Vitaminen A, D und bei Selen, sowie bei nicht lebensnotwendigen Stoffen, wie z.B. Cadmium, zwischen empfohlenen (oder effektiven) und

Durch die Zubereitung oder Lagerung gewisser Lebensmittel in unbeschichteten Gefässen aus Kupfer oder Kupferlegierungen kann sich deren Kupferkonzentration deutlich erhöhen. Der Genuss solcher Lebensmittel kann zu akuten aber auch zu chronischen Erkrankungen führen: Erbrechen bzw. Leberzirrhose bei Säuglingen und Kleinkindern oder bei Personen mit vorgeschädigter Leber (Alkohol). Es scheint, dass dieser Aspekt von Kupfer in der schweizerischen Gesetzgebung über Lebensmittel und Gebrauchsgegenstände im Verlauf der seit 1909 verschiedentlich vorgenommenen Revisionen verlorengegangen ist. Dies war allerdings während etlicher Jahrzehnte ohne bedeutungsvolle Konsequenzen, da sich die Hersteller und Benützer solcher Gebrauchsgegenstände der möglichen Gefahren durch unbeschichtete Kupferpfannen bewusst waren und diese, je nach vorgesehenem Einsatz, nur mit Beschichtungen aus Zinn (und später auch aus Nickel) in den Verkehr brachten bzw. entsprechend verwendeten.

Wie die zur Diskussion stehende unbeschichtete Pfanne mit Rührwerk zeigt, scheint dieses Wissen heute aber verschwunden zu sein, so dass eine gesetzliche Regelung geschaffen werden sollte. Ein generelles Verbot des Gebrauchs von unbeschichtetem Kupfer im Lebensmittelbereich, welches auch spezifische Anwendungen, wie z.B. für Wasserleitungen, Sudpfannen in Brauereien, Gefässen zum Eiweissschlagen und zur Herstellung «gebrannter Mandeln» umfassen würde, wäre aber unverhältnismässig. Es wird deshalb folgender Text für die sich in Vorbereitung befindliche Verordnung über Gebrauchs- und Verbrauchsgegenstände vorgeschlagen: «Bedarfsgegenstände aus Kupfer oder seinen Legierungen müssen mit einem dauerhaften Überzug versehen sein. Ausgenommen sind Gegenstände, die traditionellerweise ohne Überzüge verwendet werden (z.B. Gefässe zum Karamelkochen, zum Schneeschlagen, zur Käse- Bier- oder Branntweinherstel-

lung, Wasserleitungen, Armaturen).»

Zusammenfassung

Im Zusammenhang mit dem Verdacht einer akuten Kupfervergiftung infolge der Verwendung einer unbeschichteten Kupferpfanne zur Zubereitung von Speisen wird eine Übersicht über Vorkommen und Bedeutung von Kupfer in Lebensmitteln, seine Verwendung im Lebensmittelbereich sowie insbesondere seiner akuten Toxizität beim Menschen gegeben.

gesundheitlich bedenklichen Zufuhren Sicherheitsfaktoren im Bereich von 10–50 (105, 106). Werden die entsprechenden Sicherheitsfaktoren bezüglich einer chronischen Exposition für natürlicherweise in Lebensmitteln vorkommende Stoffe mit jenen für künstlich hergestellte (z.B. Pestizide) von in der Regel mindestens 100 verglichen und berücksichtigt, dass die gesundheitliche Beurteilung der letzteren Stoffe auf den Ergebnissen von Tierversuchen (keine beobachtbaren Effekte) basiert (zusätzlicher Sicherheitsfaktor 10), so resultiert formal für beide Stoffgruppen ein etwa vergleichbarer Massstab des Gesundheitsschutzes. Werden hingegen die tatsächlich täglich zugeführten Mengen dieser beiden Stoffgruppen miteinander verglichen, kann festgestellt werden, dass bei den künstlichen Stoffen die effektiven Sicherheitsfaktoren in der Regel bis zu mehreren Tausend betragen (107).

Die Auswertung aller verfügbaren Unterlagen führt zur Schlussfolgerung, dass unter Umständen eine einmalige orale Kupferdosis von 0,1–0,2 mg/kg Körpergewicht (KG) bei empfindlichen Personen zu gastrointestinalen Störungen führen kann. Die von der FAO/WHO vorgeschlagene provisorische maximale tägliche Zufuhrmenge von 0,5 mg Cu/kg KG ist offenbar nur auf die fehlende kumulative Toxizität von Kupfer beim Menschen abgestützt, nicht jedoch auf die möglichen akuten Effekte. Für Bedarfsgegenstände aus Kupfer und Kupferlegierungen, die bestimmungsgemäss mit Lebensmitteln in Kontakt gelangen, wird ein entsprechender Verordnungsartikel vorgeschlagen.

Résumé

Ce travail donne un aperçu au sujet de la présence et de l'importance du cuivre dans les denrées alimentaires, de son utilisation dans le domaine alimentaire ainsi que de sa toxicité aiguë pour l'homme. La présente étude a été effectuée à la suite d'un cas douteux d'intoxication aiguë par du cuivre après cuisson de la nourriture dans une poêle en cuivre sans couche de protection. La mise en valeur de toutes les données à disposition mène à la conclusion que, selon les circonstances, une simple dose orale de cuivre de 0,1–0,2 mg/kg poids du corps (pc) peut provoquer des troubles gastro-intestinaux chez les personnes sensibles. Il semblerait que la quantité maximale d'apport par jour de 0,5 mg Cu/kg pc, proposée provisoirement par la FAO et l'OMS, ne tienne compte uniquement du manque d'une toxicité cumulative pour l'homme, mais non pas d'effets aigus possibles. Il est proposé d'introduire dans l'Ordonnance sur les objets usuels, un article concernant les objets usuels en cuivre et en alliages de cuivre destinés à être en contact avec les denrées alimentaires.

Summary

The use of an uncoated copper pan for cooking led to the suspicion of an acute copper poisoning. In this context the occurrence of copper in foodstuffs, its use in the food industry and especially its acute toxicity in man is summarized and discussed. Based on the available data it is concluded that under special conditions a single oral copper dose of 0.1–0.2 mg/kg body weight (bw) may cause gastrointestinal disturbances in the most sensitive persons. The provisional maximum tolerable daily intake proposed by FAO/WHO of 0.5 mg Cu/kg bw is obviously based only on the missing cumulative toxicity of copper in man and does not consider possible acute effects. An appropriate text for utensils of copper and Copper alloys intended for use in contact with food is proposed for supplementing the Swiss regulation.

Literatur

1. Rieder, K., Kantonales Laboratorium, Bern, persönliche Mitteilung, 1991.

2. Zimmerli, B., Candrian, U. und Schlatter, Ch.: Vorkommen und toxikologische Bedeutung von Nickel in der Nahrung. Mitt. Gebiete Lebensm. Hyg. 78, 344–395 (1987).

3. Schweizerischer Bundesrat: Verordnung über Lebensmittel und Gebrauchsgegenstände (Lebensmittelverordnung) vom 26. Mai 1936 (Stand 1. Juli 1990). Eidg. Drucksachen- und Materialzentrale, Bern.

- 4. *Gronover*, A. und *Wohnlich*, E.: Cadmium als Überzugsmetall für Gebrauchsgegenstände. Zeitschr. Untersuch. Lebensm. **53**, 392–396 (1927).
- 5. Kobert, R.: Chronische Bleivergiftungen im klassischen Altertum. In: Diergart, P. (Hrsg.), Beiträge aus der Geschichte der Chemie, S. 103–119, F. Deuticke, Leipzig/Wien 1909.
- 6. Bundesamt für Gesundheitswesen: Vergiftungen durch aus dem Ausland mitgebrachtes Keramikgeschirr. Bulletin BAG, Nr. 20, 345 (1993).
- 7. Schweizerischer Verein analytischer Chemiker: Schweizerisches Lebensmittelbuch. Zweite, erweiterte Auflage, S. 293. Neukomm und Zimmermann, Bern 1909.
- 8. Schweizerischer Bundesrat: Verordnung betreffend den Verkehr mit Lebensmitteln und Gebrauchsgegenständen vom 29. Januar 1909.
- 9. National Research Council: Recommended dietary allowances, Food and Nutrition Board, National Research Council 10th edition, pp. 224–230. National Academy Press, Washington DC 1989.
- 10. Anonym: Codex Alimentarius Austricus, Bd. III, S. 368–369, K.K. Hof- und Staats-druckerei, Wien 1917.
- 11. Thomas, B.: Kupfer- und Zinkgehalte in Lebensmitteln pflanzlicher und tierischer Herkunft. Lebensmittelchem. Gerichtl. Chem. 37, 139–142 (1983).
- 12. Anonym: Ministry of Agriculture, Fisheries and Food. Survey of copper and zinc in food. Food Surveillance Paper No. 5, Her Majesty's Stationary Office, London 1981.
- 13. Schlettwein-Gsell, D. und Mommsen-Straub, S.: Spurenelemente in Lebensmitteln. Internationale Zeitschrift für Vitamin- und Ernährungsforschung, Beiheft 13. Verlag Hans Huber, Bern 1973.
- 14. Andrey D., Beuggert, H., Ceschi, M., Corvi, C., De Rossa, M., Herrmann, A., Klein, B. und Probst-Hensch, N.: Monitoring-Programm Schwermetalle in Lebensmitteln. IV. Blei, Cadmium, Kupfer und Zink in Weinen auf dem Schweizer Markt. Teil B: Vorgehen, Resultate und Diskussion. Mitt. Gebiete Lebensm. Hyg. 83, 711–736 (1992).
- 15. Niemi, A., Venäläinen, E.-R., Hirvi, T., Valtonen, M.: Heavy metals in muscle, liver and kidney from Finnish elk in 1980–81 and 1990. Bull. Environ. Contam. Toxicol. 50, 834–841 (1993).
- 16. Andrey, D., Rihs, T., und Wirz, E.: Monitoring-Programm Schwermetalle in Lebensmitteln. II. Blei, Cadmium, Zink und Kupfer in Schweizer Kartoffeln. Mitt. Gebiete Lebensm. Hyg. 79, 327–338 (1988).
- 17. Wenk, P., Schaub, H. und Stutz, W.: Monitoring-Programm Schwermetalle in Lebensmitteln. V. Blei, Cadmium, Kupfer und Zink in Brot. Mitt. Gebiete Lebensm. Hyg. 83, 55–70 (1992).
- 18. Beuggert, H., Andrey, D., Guggisberg, H. Herrmann, A. und Huber, D.: Monitoring-Programm Schwermetalle in Lebensmitteln. VI. Blei, Cadmium, Zink und Kupfer in Schweizer Karotten. Mitt. Gebiete Lebensm. Hyg. 84, 27–47 (1993).
- 19. Rieder, K.: Monitoring-Programm Schwermetalle in Lebensmitteln. VII. Blei, Cadmium, Zink und Kupfer in Schweizer Knollensellerie. Mitt. Gebiete Lebensm. Hyg. 84, 545–556 (1993).
- 20. Dieter, H.H.: Biochemische Essentialität und Toxikologie von Kupfer. Öff. Gesundh.-Wes. 51, 222–227 (1989).
- 21. Schüpbach, M.: Jahresbericht des Kantonalen Laboratoriums Basel-Stadt für das Jahr 1985, S. 41.
- 22. Kenney, M.A. and Thimaya, S.: Copper content of tea. J. Amer. Diet. Assoc. 82, 509-510 (1983).

- 23. Monier-Williams, G.W.: Trace elements in food. 1st edition, pp. 1-65. Chapman and Hall, London 1949.
- 24. La Borde, L.F. and von Elbe, J.H.: Zinc complex formation in heated vegetable purees. J. Agr. Food Chem. 38, 484–487 (1990).
- 25. Graff, G.: Über kupferhaltige Gemüse-Konserven. Z. Untersuch. Nahr.- u. Genussmittel 16, 459–468 (1908).
- 26. Anonym: Obergutachten der Wissenschaftlichen Deputation für das Medizinalwesen (No 22 C), betr. kupferhaltige Spinat-Konserven. Gesetze u. Verordnungen Beilage 1, S. 74–77, Z. Untersuch. Nahr.- u. Genussmittel, 1909.
- 27. Eidg. Departement des Innern: Verordnung über die in Lebensmitteln zulässigen Zusatzstoffe vom 20. Januar 1982 (Stand 30. August 1990). Bundeskanzlei, Bern 1986.
- 28. Eidg. Departement des Innern: Verordnung über Fremd- und Inhaltsstoffe in Lebensmitteln (FIV) vom 27. Februar 1986.
- 29. Anonym: Kantonales Laboratorium Basel-Landschaft. Mitt. Gebiete Lebensm. Hyg. 84, 431 (1993).
- 30. Koch, J. und Breker, E.: Über die Bestimmung von Schwermetallen in Fruchtsäften (Traubensüssmost). Ind. Obst- und Gemüseverwert. 40, 252–256 (1955).
- 31. Benvegnin, L. et Capt, E.: Contribution à l'étude du cuivre dans les moûts et vins. Trav. chim. aliment. hyg. 25, 125–138 (1934).
- 32. Leinert, J., Becker, D.P., Somogyi, J.C. und Hötzel, D.: Einfluss der Garweise auf Mineralstoffverluste. Ernährungs-Umschau 28, 12-14 (1981).
- 33. Blumenthal, A., Meier, M. und von Känel, B.: Zu den Nährstoffgehalten tischfertiger Nahrungsmittel. 2. Mitteilung: Zu den Gehalten an Magnesium und Spurenelementen frischer und industriell verarbeiteter Bohnen, Erbsen und Blattspinat vor und nach haushalts- und grossküchenmässiger Zubereitung. Alimenta 20, 45–50 (1981).
- 34. Kimura, M. and Itokawa, Y.: Cooking losses of mineral in foods and its nutritional significance. J. Nutr. Sci. Vitaminol. 36, 525-533 (1990).
- 35. Arvanitoyannis, I.: The effect of storage of canned juices on content of the metals Fe, Cu, Zn, Pb, Sn, Al, Cd, Sb and Ni. Nahrung 34, 141–145 (1990).
- 36. Arvanitoyannis, I.: The effect of storage of canned meat on concentration of the metals Fe, Cu, Zn, Pb, Sn, Al, Cd and Ni. Nahrung 34, 147–151 (1990).
- 37. Hecht, H. und Schrammel, P.: Fleischwarenherstellung. Kontamination mit Nickel und anderen Elementen. Fleischwirtsch. 64, 1257–1260 (1984).
- 38. Zimmerli, B., Tobler, L., Bajo, S. Wyttenbach, A. und Sieber, R.: Untersuchungen von Tagesrationen aus schweizerischen Verpflegungsbetrieben. VI. Essentielle Spurenelemente: Eisen, Zink, Mangan und Kupfer. Mitt. Gebiete Lebensm. Hyg. 85, 245–286 (1994).
- 39. Schikorr, G. und Miethke, H.: Bedarfsgegenstände aus Metall. In: Schormüller, J.(Hrsg.), Handbuch der Lebensmittelchemie, Bd. IX, S. 11–46. Springer-Verlag, Berlin, Heidelberg 1970.
- 40. Reilly, C.: The dietary significance of adventitious iron, zinc, copper and lead in domestically prepared food. Food Additiv. Contam. 2, 209–215 (1985).
- 41. Tanner, M.S., Bhave, S.A., Kantarjian, A.H. and Pandit, A.N.: Early introduction of copper-contaminated animal milk feeds as a possible cause of Indian childhood cirrhosis. Lancet, October 29, 992–995 (1983).
- 42. Sharda, B. and Bhandari, B.: Copper contamination of milk from brass utensils. Indian Pediatrics 22, 343–344 (1985).
- 43. Sharda, B. and Bhandari, B.: Elimination of brass utensils prevents Indian childhood cirrhosis. Indian J. Gastroenterol. 5, 198 (1986).

- 44. Kallischnigg, G., Legemann, P., Müller, J. und Käferstein, F.K.: Schwermetallgehalte in Bier. ZEBS-Bericht 2/1982. Dietrich Reimer Verlag, Berlin 1982.
- 45. Wagner, I.: Kupfer in Trinkwasser von Hausinstallationen aus Kupfer. Ergebnisse einer Feldstudie. Wasser, Abwasser GWF 129, 690–693 (1988).
- 46. Eife, R., Reiter, K., Sigmund, B., Schramel, P., Dieter, H.H. und Müller-Höcker, J.: Die frühkindliche Leberzirrhose als Folge der chronischen Kupferintoxikation. Bundesgesundheitsblatt 34, 327–329 (1991).
- 47. Béguin-Bruhin, Y., Escher, F., Roth, H.R. and Solms, J.: Threshold concentration of copper in drinking water. Lebensm.-Wiss. u. -Technol. 16, 22–26 (1983).
- 48. Schwab, H. und Oehen, V.: Die Oxidation des Milchfettes durch Kupfer und die Pigmentbildung der Propionsäurebakterien. In: XVIII. Intern. Milchwirtschaftskongress, Sydney, 12.–16. Oktober 1970, Bd. 1D, S. 377. Australian National Dairy Committee, Sydney 1970.
- 49. Kiermeier, F. und Weiss, G.: Einfluss von Kupfer auf die Säurebildung in Käse. In: XVIII. Intern. Milchwirtschaftskongress, Sydney, 12.–16. Oktober 1970, Bd. 1D, S. 376. Australian National Dairy Committee, Sydney 1970.
- 50. National Research Council (NRC): Recommended dietary allowances. Committee on dietary allowances food and nutrition board. Division of biological sciences. Assembly of life science. 9th rev. ed., pp. 151–154. National Academy of Science, Washington 1980.
- 51. Deutsche Gesellschaft für Ernährung: Empfehlungen für die Nährstoffzufuhr, 1. korrigierter Nachdruck. Umschau Verlag, Frankfurt, 1991.
- 52. World Health Organization: Copper. In: International Programme on Chemical Safety (IPCS). Toxicological evaluation of certain food additives. Joint FAO/WHO Expert Committee on Food Additives, Rome, 19–28 April 1982. WHO Food Additives Series No. 17, p. 265–296. WHO, Geneva 1982.
- 53. Mason, K.E.: A conspectus of research on copper metabolism and requirements of man. J. Nutr. 109, 1979–2066 (1979).
- 54. Stokinger, H.E.: Copper, Cu. In: Clayton, G.D. and Gayton, F.E. (eds.) Patty's industrial hygiene and toxicology, 3rd. ed., Vol. 2A, pp. 1620–1630. John Wiley, New York 1981.
- 55. *Underwood*, *E.J.*: Trace elements in human and animal nutrition, pp. 56–108. Academic Press, New York 1977.
- 56. Venugopal, B. and Luckey, T.D.: Metal toxicity in mammals, Vol. 2, pp. 24-32. Plenum Press, New York 1978.
- 57. O'Dell, B.L.: Biochemistry and physiology of copper in vertebrates. In: Prasad, A.S. and Oberleas, D. (eds.), Trace elements in human health and disease, Vol. 1, Zinc and copper, pp. 391–413 Academic Press, New York 1976.
- 58. Scheinberg, I.H. and Sternlieb, I.: Copper toxicity and Wilson's disease. In: Prasad, A.S. and Oberleas, D. (eds.), Trace elements in human health and disease, Vol. 1, Zinc and copper, pp. 415–438 Academic Press, New York 1976.
- 59. Oesterberg, R.: Physiology and pharmacology of copper. Pharmac. Ther. 9, 121–146 (1980).
- 60. *Harris*, *E.D.*: Menkes' disease: perspectives and update on a fatal copper disorder. Nutr. Rev. **51**, 235–238 (1993).
- 61. Danks, D.M.: Copper deficiency in humans. Ann. Rev. Nutr. 8, 235-257 (1988).
- 62. International Commission on Radiological Protection (ICRP): Report of the Task Group on Reference Man. ICRP Publ. 23, pp. 382–383. Pergamon Press, New York 1975.
- 63. Sandstead, H.H.: Copper bioavailability and requirements. Amer. J. Clin. Nutr. 35, 809–814 (1982).

64. Williams, D.M.: Clinical significance of copper deficiency and toxicity in the world population. In: Prasad, A.S. (ed.) Clinical biochemical and nutritional aspects of trace elements, pp. 277–299. Alan R. Liss, Inc., New York 1982.

65. Johnson, P.E., Milne, D.B. and Lykken, G.I.: Effect of age and sex on copper absorption,

biological half-life and status in humans. Am. J. Clin. Nutr. 56, 917-925 (1992).

66. Aaseth, J. and Norseth, T.: Copper. In: Friberg, L., Nordberg, G. and Vouk, V.B. (eds.) Handbook on the toxicology of metals, Vol. 2, Chapter 10, pp. 233–249. Elsevier North Holland Biomedical, Amsterdam 1986.

67. Klein, D., Scholz, P., Drasch, G.A., Müller-Höcker, J. and Summer, K.W.: Metallothionein, copper and zinc in fetal and neonatal human liver: Changes during development. Toxicol.

Lett. 56, 61-67 (1991).

68. Buschmann, L. and Kruse, H.: Morbus Wilson. Ernährungs-Umschau 33, 303-306 (1986).

69. Tanner, M.S. and Barrow, L.: Is chronic copper poisoning a sufficient explanation for Indian childhood cirrhosis? In: Momcilovic, B. (ed.), 7th International symposium on trace elements in man and animals, May 20–25, 1990. Trace elements in man and animals, Vol. 7, pp. 5.23–5.25. Institute for Medical Research, Zagreb 1991.

70. Schäfer, S.G. und Schümann, K.: Zur Toxikologie des Kupfers. Bundesgesundheits-

blatt 34, 323-327 (1991).

- 71. Bhave, S.A., Pandit., A.N. and Tanner, M.S.: Comparison of feeding history of children with Indian childhood cirrhosis and paired controls. J. Pediatr. Gastroenterol. Nutr. 6, 562–567 (1987).
- 72. Tanner, M.S. and Mattocks, A.R.: Hypothesis: plant and fungal biocide, copper and Indian childhood liver disease. Ann. Tropical Paediatr. 7, 264–269 (1987).

73. Wilson, J.F. and Lakey, M.E.: Failure to induce dietary deficiency of copper in premature

infants. Pediatrics 25, 40-49 (1960).

74. Schramel, P., Müller-Höcker, J., Meyer, U., Weiss, M. and Eife, R.: Nutritional copper intoxication in three German infants with severe liver cell damage (features of Indian childhood cirrhosis). J. Trace Elem. Electrolytes Hlth. Dis. 2, 85–89 (1988).

75. Dieter, H.H., Meyer, E. und Möller, R.: Kupfer – Vorkommen, Bedeutung und Nachweis. In: Aurand, K., Hässelbarth, U. et al. (Hrsg.), Die Trinkwasserversorgung, S. 472–491,

Erich Schmidt Verlag, Berlin 1991.

- 76. Haywood, S.: The effect of excess dietary copper on the liver and kidney of the rat. J. Comp. Pathol. 90 (2), 217–232 (1980).
- 77. Lecyk, M.: Toxicity of cupric sulfate in mice embryonic development. Zool. Pol. 28 (2), 101–105 (1980).
- 78. Pimental, J.C. and Menezes, A.P.: Liver granulomas containing copper in vineyards sprayer's lung. A new etiology of hepatic granulomatosis. Am. Rev. Respir. Dis. 111, 189–195 (1975).
- 79. Holtzman, N.A. and Haslam, R.H.A.: Elevation of serum copper following copper sulfate as an emetic. Pediatrics 42, 189–193 (1968).
- 80. Eder, R., Büchi, J., Flück, H. und Käsermann, H. (Bearbeiter): Kommentar zu Pharm. Helv. Ed. Quinta, S. 306. Selbstverlag des Schweizerischen Apothekervereins, Zürich 1947.
- 81. Sarkar, B.: Copper In: Seiler, H.G., Sigel, A. and Sigel, H. (eds.), Handbook on toxicity of inorganic compounds, pp. 265–276. Marcel Dekker, New York and Basel 1988.

82. Federal Register, Vol. 50/219, pp. 46 967–46 968 (1985).

83. Chuttani, H.K., Gupta, P.S., Gulati, S. and Gupta, D.N.: Acute copper sulphate poisoning. Am. J. Med. 39, 849–854 (1965).

- 84. World Health Organization: Guidelines for drinking water quality, Vol. 1, p. 46, 2nd ed. WHO, Geneva 1993.
- 85. Flury, F. und Zangger, H. (Hrsg.): Lehrbuch der Toxikologie, S. 153–154. Verlag J. Springer, Berlin 1928.
- 86. Nicholas, P.O. and Brist, M.B.: Food-poisoning due to copper in the morning tea. The Lancet 2, 40–42 (1968).
- 87. McMullen, W.: Copper contamination in soft drinks from bottle pourers. Hlth. Bull. 29, 94–96 (1971).
- 88. Semple, A.B., Parry, W.H. and Phillips, D.E.: Acute copper poisoning. An outbreak traced to contaminated water from a corroded geyser. Lancet 2, 700–701 (1960).
- 89. Hamel, A.J., Drawbaugh, R. McBean, A.M., Watson, W.N. and Witherell, L.E.: Outbreak of acute gastroenteritis due to copper poisoning Vermont. Morbidity and Mortality Weekly Report 26, 218 + 223 (1977).
- 90. Ross, A.I.: Vomiting and diarrhoea due to copper in stewed apples. Lancet, July 9, 87–88 (1955).
- 91. Spitalny, K.C., Broudum, J., Vogt, R.L., Sargent, H.E. and Kappel, St.: Drinking-water-induced copper intoxication in a Vermont family. Pediatrics 74, 1103–1106 (1984).
- 92. Wyllie, J.: Copper poisoning at a cocktail party. Am. J. Publ. Hlth. 47, 617 (1957).
- 93. Hopper, S.H. and Adams, H.S.: Copper poisoning from vending machines. Publ. Hlth. Rep. 73, 910-914 (1958).
- 94. Akintonwa, A., Mabadeje, A.F.B. and Odutola, T.A.: Poisoning by copper sulfate ingested from «spiritual water». J. Dairy Sci. 31, 453-454 (1989).
- 95. Chugh, K.S., Sharma, B.K., Singhal, P.C., Das, K.C. and Datta, B.N.: Acute renal failure following copper sulphate intoxication. Postgraduated Med. J. 53, 18–23 (1977).
- 96. Salmon, M.A. and Wright, T.: Chronic copper poisoning presenting as «Pink» disease. Arch. Dis. Child 46, 108–110 (1971).
- 97. Federal Register, Vol. 44/140, Part 143 (1979).
- 98. Federal Register, Vol. 58/2, 21 CFR Part 103 (1993).
- 99. Anonym: Trinkwasserverordnung vom 5.12.1990, Bundesgesetzbl. (BRD) I, S. 2613 (1990).
- 100. World Health Organization: Specifications of the identity and purity of food additives and their toxicological evaluation: Some emulsifiers and stabilizers and certain other substances. Tenth Report of the Joint FAO/WHO Expert Committee on Food Additives, Geneva, 11–18 October 1966, FAO Nutrition Meetings Report Series No 43 (= WHO Tech. Rep. Ser. No 373), p. 15. FAO, Rome 1967.
- 101. World Health Organization: Copper and cupric sulphate. In: Toxicological evaluation of some extraction solvents and certain other substances. Joint FAO/WHO Expert Committee on Food Additives, Geneva, 24 June 2 July 1970, FAO Nutr. Meetings Report Series No 48A, pp. 32–36 (WHO/Food Add/70.39). FAO, Rome 1971.
- 102. World Health Organization: Cupric sulfate. In: Toxicological evaluation of some food additives including anticaking agents, antimicrobials, antioxidants, emulsifiers and thikkening agents. Joint FAO/WHO Expert Committee on Food Additives, 25 June–3 July 1973. WHO Food Additives Series No 5, pp. 43–51. WHO, Geneva 1974.
- 103. Slanina, P.: Solanine (glycoalkaloid) in potatoes: toxicological evaluation. Fd. Chem. Toxic. 28, 759–761 (1990).
- 104. Schlatter, J., Zimmerli, B., Dick, R., Panizzon, R. and Schlatter, Ch.: Dietary intake and risk assessment of phototoxic furocoumarins in humans. Fd. Chem. Toxic. 29, 523–530 (1991).

- 105. Walter, P.: Supraphysiological dosage of vitamines and their implications in man. Experientia 47, 178–181 (1991).
- 106. Bundesamt für Gesundheitswesen: Zur Selenversorgung der Bevölkerung. Bulletin des Bundesamtes für Gesundheitswesen Nr. 11, 160-163 (1991).
- 107. Wüthrich, C., Müller, F., Blaser, O. und Marek, B.: Die Belastung der Bevölkerung mit Pestiziden und anderen Fremdstoffen durch die Nahrung. Mitt. Gebiete Lebensm. Hyg. 76, 260–276 (1985).
- 108. Cohen, St.R.: A review of the health hazards from copper exposure. J. Occup. Med. 16, 621–624 (1974).
- 109. Karlson, B. and Noren, L.: Ipecacuanha and copper sulphate as emetics in intoxications in children. Acta Paediat. Scand. 54, 331–335 (1965).
- 110. Fischer, P.W.F., Giroux, A. and L'abbe, M.R.: The effect of dietary zinc on intestinal copper absorption. Am. J. Clin. Nutr. 34, 1670–1675 (1981).
- 111. Sternlieb, I.: Copper and the liver. Gastroenterol. 78, 1615-1628 (1980).
- 112. Hébert, Ch.D., Élwell, M.R., Travlos, G.S., Fitz, Ch.J. and Bucher, J.R.: Subchronic toxicity of cupric sulfate administered in drinking water and feed to rats and mice. Fundament. Appl. Toxicol. 21, 461–475 (1993).
- 113. Schwab, H., Bundesamt für Gesundheitswesen, Abteilung Lebensmittelwissenschaft, persönliche Mitteilung, Februar 1994.

Dr. Bernhard Zimmerli
Bundesamt für Gesundheitswesen
Abteilung Lebensmittelwissenschaft
Sektion Lebensmittelchemie
Postfach
CH-3000 Bern 14

Dr. Elisabeth Bosshard Bundesamt für Gesundheitswesen Abteilung Lebensmittelwissenschaft Fachstelle für Toxikologie c/o Institut für Toxikologie Schorenstrasse 16 CH-8603 Schwerzenbach