Zeitschrift: Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und

Hygiene = Travaux de chimie alimentaire et d'hygiène

Herausgeber: Bundesamt für Gesundheit

Band: 83 (1992)

Heft: 5

Artikel: Quantitative Bestimmung von Aminosäuren aus Hydrolysaten:

Auswertung eines Ringversuches mit klassischen Ionenaustausch-Aminosäureanalysatoren und HPLC-Systemen mit OPA/FMOC-Vorsäulenderivatisierung = Quantitative determination of amino acids

from hydr...

Autor: Bütikofer, U. / Fuchs, Doris / Bosset, J.O.

DOI: https://doi.org/10.5169/seals-982269

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Quantitative Bestimmung von Aminosäuren aus Hydrolysaten: Auswertung eines Ringversuches mit klassischen Ionenaustausch-Aminosäureanalysatoren und HPLC-Systemen mit OPA/FMOC-Vorsäulenderivatisierung

Quantitative Determination of Amino Acids from Hydrolysates: Evaluation of an Interlaboratory Test with Classical Ion Exchange Amino Acid Analyzers and HPLC-Systems with OPA/FMOC-Precolumn Derivatization

U. Bütikofer, Doris Fuchs und J.O. Bosset Eidg. Forschungsanstalt für Milchwirtschaft, Liebefeld-Bern

Einleitung

Die Bestimmung der essentiellen und nichtessentiellen Aminosäuren hat für die menschliche und tierische Ernährung eine grosse Bedeutung, denn das Fehlen der essentiellen Aminosäuren (Histidin, Threonin, Arginin, Valin, Methionin, Tryptophan, Isoleucin, Phenylalanin, Leucin und Lysin) in Nahrung oder Futter kann schwere gesundheitliche Störungen hervorrufen. Seit über dreissig Jahren wird die Ionenaustauschchromatographie (IEC) mit Ninhydrin-Nachsäulenderivatisierung für die quantitative Bestimmung von Aminosäuren angewendet. Die ersten spezifischen Analysengeräte (Beckman-Spinco und Durrum von Dionex) erlaubten damals die Auftrennung der Aminosäuren in 10-20 h, neuere Geräte (z. B. Biotronik 3000, Beckman 6300 und Pharmacia Alpha Plus) führen diese Analyse in weniger als einer Stunde aus. Obschon die erwähnten Aminosäureanalysatoren noch immer vorherrschend sind, hat sich seit einigen Jahren die manuelle und automatische Vorsäulenderivatisierung bei der «reversed phase»-HPLC stark verbreitet. Im Vergleich mit der Ionenaustauschchromatographie bietet diese Technik zahlreiche Vorteile: Sowohl Aminosäurenanalysen als auch alle anderen HPLC-Analysen können auf dem gleichen Gerät ausgeführt werden; die chromatographische Trennzeit ist kürzer, die Peaks sind schmäler und besser aufgelöst, die Basislinie frei von Puffersprüngen, die Nachweisgrenze tiefer und die Störungsanfälligkeit der Analysengeräte deutlich geringer. Verschiedene solche HPLC-Systeme befinden sich bereits im Handel (z. B. von Hewlett-Packard, Waters, Beckman, Gilson, Varian, Kontron, Knauer, Pharmacia und Applied Biosystems), die mit einer Vorsäulenderivatisierung (OPA, FMOC, PITC, DABSYL-Clusw.) der Aminosäuren und mit photometrischer oder fluorimetrischer Detektion arbeiten. Dem vorliegenden Ringversuch, an dem Laboratorien aus 4 europäischen Ländern teilgenommen haben, lagen mehrere Zielsetzungen zugrunde. Als erstes sollte allen Teilnehmern die Möglichkeit gegeben werden, ihre Resultate, die mit unterschiedlichen Methoden und Analysengeräten (IEC, HPLC, GC) erzielt wurden, miteinander zu vergleichen. Als zweites sollten die Vor- und Nachteile der geprüften Methoden, vor allem bezüglich Wiederholbarkeit (r) und Reproduzierbarkeit (R), beurteilt werden. Ein weiteres Ziel bestand darin, den Einfluss der Matrix der analysierten Proben zu bestimmen (Probleme im Zusammenhang mit der Hydrolyse und Salzeinflüsse). Auch wenn diese Arbeit keinen Anspruch auf Vollständigkeit erhebt, ist sie doch repräsentativ für die heutige Situation von Laboratorien, die täglich oder gelegentlich solche Analysen ausführen.

Experimenteller Teil

Wahl der teilnehmenden Laboratorien und deren Analysenmethoden

Von den 26 Laboratorien, die sich für die Teilnahme an diesem Ringversuch angemeldet hatten, übermittelten 21 ihre Analysenresultate auf detaillierten Formularen oder Disketten. Nicht alle beteiligten Laboratorien waren auf dem Gebiet der vorzunehmenden Analysen spezialisiert. Ihre Erfahrungen waren sehr unterschiedlich und erstreckten sich von einigen Monaten über mehrere Jahre; die jährliche Anzahl von Analysen schwankte zwischen ein paar hundert und mehreren tausend. Tabelle 1 enthält Angaben über die teilnehmenden Laboratorien und deren Analysenmethoden.

Wahl und Zusammensetzung der Proben

Den Teilnehmern wurden 4 verschiedene Probentypen zugestellt: eine Aminosäure-Standardlösung, die keine Hydrolyse erforderte, ein Konzentrat aus Molkenproteinen, eine Mischung von Getreide und Milchprodukten und ein Futtermittel. In Tabelle 2 ist von jeder Probe die grobchemische Zusammensetzung angegeben.

Auszuführende Bestimmungen

Die Teilnehmer hatten 2 Arten von Analysen durchzuführen: einerseits die quantitative Bestimmung von 20 Aminosäuren einschliesslich der schwefelhaltigen Aminosäuren (Methioninsulfon MSO und Cysteinsäure CYA) und von Tryptophan (TRP), die spezielle Hydrolysen erforderten, andererseits die Bestimmung der Trockenmasse in den Proben. Letztere war notwendig, um die Analysenresul-

Tabelle 1. Am Ringversuch teilnehmende Laboratorien und deren Analysenmethoden

Anzahl total	Methode	Anzahl	Beschreibung der Methoden
15	IEC		Diese Laboratorien arbeiteten mit klassischen Aminosäureanalysatoren (Ionenaustauschersäulen) und Nachsäulenderivatisierung mit Ninhydrin für die photometrische Bestimmung bei 570 und 440 nm.
8	HPLC	4	Neuste OPA/FMOC-Vorsäulenderivatisierungsmethode von Hewlett Packard (Aminoquant-II) (2), mit welcher die Be- stimmung von Cystin/Cystein möglich sein sollte. Hochemp- findliche Fluoreszenzdetektion.
		4	4 Laboratorien arbeiteten nach der abgeänderten Aminoquant-I-Methode (1) oder einer ähnlichen Methode auf einer 4–4,6 mm Hypersilsäule mit einem zweiten internen Standard für Prolin. Hochempfindliche Fluoreszenzdetektion.
1	GC		Veresterung der freien Carboxygruppen mit iso-Butanol-HCl und Acylierung der Aminogruppen mit Pentafluorpropionsäu- reanhydrid. Trennung der flüchtigen Derivate auf einer unpo- laren Säule. Um Interferenzen zu vermeiden, wird mit einem stickstoffselektiven Detektor gearbeitet (3).

2 Laboratorien führten mehr als 1 Methode durch (maximal 24 Resultate).

Tabelle 2. Grobchemische Zusammensetzung der Proben

Probe	Bezeichnung	Trockensubstanz (g/kg)	Stickstoffgehalt (g N/kg)	Fettgehalt (g/kg)
1	Futtermittel	898	22,5	52
2	Molkenproteinkonzentrat	941	123,1	77
3	Getreide-/Milchprodukte- mischung	958	20,2	145
4	Standardlösung (Konzentration 1–4 µmol/mlje Aminosäure)	PACE CALL		

tate bezogen auf das Trockengewicht der Proben (g Aminosäure / kg Trockensubstanz) anzugeben.

Statistische Auswertung der Resultate

Die Ergebnisse wurden gemäss ISO-Norm 5725 (4) ausgewertet und jedem Teilnehmer detailliert mitgeteilt (FAM-Info 1991/235PW (5)). In der vorliegenden Arbeit werden die Resultate in Form von Tabellen vermittelt.

Resultate und Diskussion

In den Tabellen 3 bis 6 sind sämtliche Einzelauswertungen für Wiederhol- und Reproduzierbarkeit der verschiedenen Proben angegeben.

Tabelle 3. Standardlösung

1863			Methode II	EC			PNATE	Ø HPLC			
	n	ф	r	R	r/R	n	ф	r	R	r/R	ØIEC
		(µmol/ml)	(µmol/ml)	(µmol/ml)			(µmol/ml)	(µmol/ml)	(µmol/ml)		(%)
ASX	11	4,10	0,19	0,47	0,40	7	4,13	0,38	1,46	0,26	101
GLX	11	4,19	0,20	0,73	0,27	7	4,21	0,23	0,66	0,35	100
SER	13	4,04	0,27	0,98	0,28	7	4,10	0,40	0,79	0,51	101
HIS	12	4,04	0,17	0,68	0,25	6	4,37	0,57	1,90	0,30	108
GLY	12	4,08	0,30	0,83	0,36	7	4,20	0,23	0,61	0,38	103
THR	11	4,07	0,23	0,56	0,41	7	4,04	0,29	0,47	0,62	99
ALA	13	4,04	0,22	0,71	0,31	7	4,06	0,36	0,62	0,58	100
ARG	13	3,73	0,16	0,56	0,29	7	3,79	0,34	0,53	0,64	102
TYR	11	4,04	0,12	0,63	0,19	7	4,07	0,35	0,82	0,43	101
CYS	11	1,16	0,11	0,92	0,12	5	3,69	0,51	4,43	0,12	318
VAL	12	4,04	0,14	0,69	0,20	8	3,94	0,51	1,16	0,44	98
MET	11	4,06	0,12	0,64	0,19	7	4,06	0,33	0,55	0,60	100
ILE	13	3,96	0,34	0,78	0,44	7	4,03	0,35	0,49	0,71	102
PHE	12	4,05	0,21	0,69	0,30	7	4,06	0,36	0,50	0,72	100
LEU	13	3,99	0,20	0,80	0,25	7	4,15	0,38	0,53	0,72	104
LYS	12	3,21	0,16	0,40	0,40	7	3,02	0,22	0,75	0,29	94
PRO	11	3,99	0,40	0,84	0,48	7	3,91	0,54	0,91	0,59	98
MSO			q	~							
CYA	3	1,70	0,13	2,08	0,06						
TRP											

= Anzahl Labors

= Gewichteter Mittelwert

= Wiederholbarkeit (innerhalb Labors) = Reproduzierbarkeit (zwischen Labors)

r/R = Prazisionsverhältnis

Tabelle 4. Getreide-/Milchproduktemischung

o.mini			Methode I	EC				φ HPLC			
	n	ф	r	R	r/R	n	ф	r	R	r/R	φIEC
		(g/kg TS)	(g/kg TS)	(g/kg TS)			(g/kg TS)	(g/kg TS)	(g/kg TS)		(%)
ASX	11	10,58	1,18	2,35	0,50	7	11,27	1,94	3,44	0,56	107
GLX	11	25,49	1,65	4,43	0,37	7	26,98	4,45	7,11	0,63	106
SER	11	6,69	0,74	1,30	0,57	7	7,03	1,43	2,49	0,57	105
HIS	14	3,83	0,34	2,31	0,15	6	3,53	0,40	1,12	0,36	92
GLY	12	3,39	0,35	0,81	0,43	7	3,62	1,33	2,15	0,62	107
THR	12	5,23	0,83	1,10	0,75	7	5,69	0,95	1,76	0,54	109
ALA	11	4,92	0,36	0,73	0,49	7	5,25	0,89	1,55	0,57	107
ARG	11	5,84	0,84	0,91	0,92	7	6,37	1,18	2,32	0,51	109
TYR	12	5,77	0,55	2,95	0,19	7	6,05	1,04	2,93	0,35	105
CYS	10	0,55	0,12	1,18	0,10	3	7,21	3,89	3,89	1,00	
VAL	14	7,59	0,70	2,38	0,29	6	8,57	1,11	1,80	0,62	113
MET	11	3,02	0,38	0,78	0,49	7	3,18	0,63	1,61	0,39	105
ILE	13	5,89	0,37	1,79	0,21	6	6,93	0,96	1,69	0,57	118
PHE	13	6,56	0,62	2,45	0,25	7	6,62	1,07	2,02	0,53	101
LEU	14	11,31	0,82	3,27	0,25	6	12,85	1,89	2,57	0,74	114
LYS	12	7,91	0,54	1,62	0,33	7	7,83	1,18	4,83	0,24	99
PRO	12	10,15	1,61	1,98	0,81	7	10,61	1,81	2,74	0,66	105
MSO	5	3,38	0,72	0,72	1,00	184			153.9	1 3 1	10,81/2
CYA	7	2,03	0,43	1,77	0,24						
TRP	5	1,70	0,15	0,99	0,15	2	2,33	0,32	3,03	0,11	

Legende siehe Tabelle 3

Die Ionenaustauschchromatographie (IEC) ergibt für die meisten Aminosäuren sowohl für die Wiederholbarkeit r als auch für die Reproduzierbarkeit R die genauesten Resultate (siehe auch Tabelle 8).

Nur die Tyrosin-Bestimmung ist mittels HPLC präziser. Mit Ausnahme des Cystins stimmen die mit HPLC und IEC erhaltenen Werte bei allen Aminosäuren überein. Nur ein Laboratorium hat die gaschromatographische Bestimmung angewendet. Im grossen und ganzen stimmen diese Resultate mit denjenigen der anderen Laboratorien überein, die mit HPLC und IEC gearbeitet haben. Eine Ausnahme bilden die Aminosäuren Serin, Histidin, Arginin und Isoleucin, bei

Tabelle 5. Molkenproteinkonzentrat

			Methode I	EC			Ø HPLC				
Roma	n	ф	r	R	r/R	n	ф	r	R	r/R	ØIEC
1 (47)		(g/kg TS)	(g/kg TS)	(g/kg TS)			(g/kg TS)	(g/kg TS)	(g/kg TS)		(%)
ASX	11	94,81	6,44	22,28	0,29	6	100,71	4,71	27,75	0,17	106
GLX	11	154,24	12,90	25,47	0,51	7	152,91	15,97	60,09	0,27	99
SER	11	47,58	3,44	9,12	0,38	7	45,66	4,20	18,51	0,23	96
HIS	15	17,86	2,56	17,15	0,15	7	12,88	2,56	13,55	0,19	72
GLY	11	16,89	1,51	2,92	0,52	7	16,24	1,34	8,76	0,15	96
THR	10	62,81	2,64	9,14	0,29	6	65,11	4,66	11,37	0,41	104
ALA	11	44,13	2,56	5,73	0,45	6	46,63	2,05	5,73	0,36	106
ARG	12	23,47	1,99	5,76	0,35	6	23,99	1,60	5,51	0,29	102
TYR	14	28,29	3,88	8,97	0,43	6	27,47	1,12	3,82	0,29	97
CYS	.11	13,81	2,12	17,30	0,12	3	24,23	6,80	17,55	0,39	175
VAL	13	49,41	3,96	14,06	0,28	6	54,25	2,46	8,83	0,28	110
MET	12	20,10	1,77	7,54	0,23	7	18,47	3,06	9,67	0,32	92
ILE	12	51,80	6,07	13,66	0,44	6	54,62	3,25	24,36	0,13	105
PHE	13	29,83	3,50	9,64	0,36	6	29,80	1,94	6,87	0,28	100
LEU	12	92,28	6,57	16,65	0,39	7	92,28	5,04	38,34	0,13	100
LYS	12	82,12	5,35	12,72	0,42	6	80,25	12,93	25,79	0,50	98
PRO	13	53,75	4,29	14,55	0,29	6	53,84	3,44	4,29	0,80	100
MSO	5	18,88	1,93	4,77	0,40	- 00					FORM
CYA	6	22,44	5,80	12,01	0,48						1330
TRP	5	15,53	0,62	3,82	0,16						

Legende siehe Tabelle 3

denen die mit GC erhaltenen Werte zu hoch waren, während sie beim Tyrosin und Methionin zu niedrig ausfielen. Beim Cystin schwanken die Werte beträchtlich, ohne jedoch eine bestimmte Tendenz anzuzeigen.

Die Reproduzierbarkeit der Analysenresultate ist am schlechtesten für das Futtermittel (\$\phi\$ rel. R von IEC 50%; HPLC 61%), durchschnittlich für das Molkenproteinkonzentrat (\$\phi\$ rel. R von IEC 33%; HPLC 37%) und die Getreide-/Milchproduktemischung (\$\phi\$ rel. R von IEC 40%; HPLC 41%) und am besten für die Standardlösung (\$\phi\$ rel. R von IEC 21%; HPLC 26%), die keine Hydrolyse benötigt und keine Matrix aufweist.

Tabelle 6. Futtermittel

			Methode I	EC				Ø HPLC			
	n	ф	r	R	r/R	n	ф	r	R	r/R	ØIEC
		(g/kg TS)	(g/kg TS)	(g/kg TS)			(g/kg TS)	(g/kg TS)	(g/kg TS)		(%)
ASX	10	11,17	0,98	2,32	0,42	7	11,66	5,21	8,75	0,60	104
GLX	10	31,17	2,93	8,36	0,35	7	29,87	13,84	15,85	0,87	96
SER	11	6,88	0,91	2,39	0,38	7	6,63	2,88	3,91	0,74	96
HIS	12	3,30	0,42	2,64	0,16	7	2,80	1,56	2,32	0,67	85
GLY	11	7,17	0,51	2,37	0,22	7	7,08	3,01	3,79	0,79	99
THR	10	5,72	0,49	1,34	0,37	7	5,72	2,66	2,96	0,90	100
ALA	11	7,68	0,72	1,70	0,42	7	7,43	3,16	4,43	0,71	97
ARG	11	7,89	0,93	1,72	0,54	7	7,90	3,42	4,83	0,71	100
TYR	12	4,33	0,43	3,41	0,13	7	4,70	1,97	3,06	0,64	109
CYS	10	0,93	0,34	2,01	0,17	3	11,59	8,46	8,48	1,00	
VAL	13	6,99	1,20	3,21	0,37	7	7,70	3,45	4,36	0,79	110
MET	10	2,53	0,42	1,13	0,37	7	2,74	1,20	1,88	0,64	108
ILE	12	5,25	0,46	2,75	0,17	7	6,10	2,75	3,75	0,73	116
PHE	12	7,45	0,98	2,56	0,38	7	7,40	3,24	4,17	0,78	99
LEU	10	10,97	0,71	2,38	0,30	7	11,27	5,15	5,89	0,87	103
LYS	13	. 7,10	1,06	2,63	0,40	6	6,73	4,11	4,24	0,97	95
PRO	13	11,36	1,21	2,87	0,42	6	10,16	3,44	4,94	0,70	89
MSO	5	2,74	0,39	1,89	0,21						
CYA	7	3,34	0,88	4,07	0,22						
TRP	6	1,88	0,38	1,52	0,25						

Legende siehe Tabelle 3

Schlussfolgerungen

Die Aminosäurenbestimmung mittels HPLC mit OPA/FMOC-Vorsäulenderivatisierung ist wegen der grossen Anpassungsfähigkeit der Analysengeräte eine gute Alternative zur IEC. Den Laboratorien, die ausschliesslich und mit grösster Genauigkeit Aminosäuren zu bestimmen haben, wird dennoch empfohlen, weiterhin mit Ionenaustauschchromatographen zu arbeiten.

Die Leistung der neuen Methode «Aminoquant II» (2) für die Bestimmung von Cystin und Cystein ist schwer zu bewerten. Sie wurde von nur 4 Laboratorien (in

Mitt. Gebiete Lebensm. Hyg., Band 83 (1992)

Tabelle 7. Relative Wiederhol- und Reproduzierbarkeit der verschiedenen Proben

	Standardlösung				Getreide-/Milchproduktemischung				Mo	olkenprote	inkonzent	rat	Futtermittel			
	IEC	HPLC	IEC	HPLC	IEC	HPLC	IEC	HPLC	IEC	HPLC	IEC	HPLC	IEC	HPLC	IEC	HPLC
	rel. r	rel. r	rel. R	rel. R	rel. r	rel. r	rel. R	rel. R	rel. r	rel. r	rel. R	rel. R	rel. r	rel. r	rel. R	rel. R
\$5.700 S	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
ASX	4,6	9,2	11,5	35,4	11,2	17,2	22,2	30,5	6,8	4,7	23,5	27,6	8,8	44,7	20,8	75,0
GLX	4,8	5,5	17,4	15,7	6,5	16,5	17,4	26,4	8,4	10,4	16,5	39,3	9,4	46,3	26,8	53,1
SER	6,7	9,8	24,3	19,3	11,1	20,3	19,4	35,4	7,2	9,2	19,2	40,5	13,2	43,4	34,7	59,0
HIS	4,2	13,0	16,8	43,5	8,9	11,3	60,3	31,7	14,3	19,9	96,0	105,2	12,7	55,7	80,0	82,9
GLY	7,4	5,5	20,3	14,5	10,3	36,7	23,9	59,4	8,9	8,3	17,3	53,9	7,1	42,5	33,1	53,5
THR	5,7	7,2	13,8	11,6	15,9	16,7	21,0	30,9	4,2	7,2	14,6	17,5	8,6	46,5	23,4	51,7
ALA	5,4	8,9	17,6	15,3	7,3	17,0	14,8	29,5	5,8	4,4	13,0	12,3	9,4	42,5	22,1	59,6
ARG	4,3	9,0	15,0	14,0	14,4	18,5	15,6	36,4	8,5	6,7	24,5	23,0	11,8	43,3	21,8	61,1
TYR	3,0	8,6	15,6	20,1	9,5	17,2	51,1	48,4	13,7	4,1	31,7	13,9	9,9	41,9	78,8	65,1
CYS	9,5	13,8	79,3	120,1	21,8	54,0	214,5	54,0	15,4	28,1	125,3	72,4	36,6	73,0	216,1	73,2
VAL	3,5	12,9	17,1	29,4	9,2	13,0	31,4	21,0	8,0	4,5	28,5	16,3	17,2	44,8	45,9	56,6
MET	3,0	8,1	15,8	13,5	12,6	19,8	25,8	50,6	8,8	16,6	37,5	52,4	16,6	43,8	44,7	68,6
ILE	8,6	8,7	19,7	12,2	6,3	13,9	30,4	24,4	11,7	6,0	26,4	44,6	8,8	45,1	52,4	61,5
PHE	5,2	8,9	17,0	12,3	9,5	16,2	37,3	30,5	11,7	6,5	32,3	23,1	13,2	43,8	34,4	56,4
LEU	5,0	9,2	20,1	12,8	7,3	14,7	28,9	20,0	7,1	5,5	18,0	41,5	6,5	45,7	21,7	52,3
LYS	5,0	7,3	12,5	24,8	6,8	15,1	20,5	61,7	6,5	16,1	15,5	32,1	14,9	61,1	37,0	63,0
PRO	10,0	13,8	21,1	23,3	15,9	17,1	19,5	25,8	8,0	6,4	27,1	8,0	10,7	33,9	25,3	48,6
TRP					8,8	13,7	58,2	130,0	4,0		24,6		20,2	fal	80,9	

rel. r = relative Wiederholbarkeit (innerhalb Laboratorien) rel. R = relative Reproduzierbarkeit (zwischen Laboratorien)

Tabelle 8. Relative Reproduzierbarkeit der Aminosäurenwerte (Durchschnitt sämtlicher Proben)

relative Reproduzierbarkeit	Aminosäurenbestimmung mit IEC	Aminosäurenbestimmung mit HPLC
0–25%	ASX, GLX, SER, GLY, THR, ALA, ARG, LEU, LYS, PRO	keine
26–50%	TYR, VAL, MET, ILE, PHE, TRP	ASX, GLX, SER, GLY, THR, ALA, ARG, TYR, VAL, MET, ILE, PHE, LEU, LYS, PRO, TRP
> 50%	HIS, CYS	HIS, CYS

gewissen Fällen zum erstenmal) verwendet. Ausserdem ist die Nachweisgrenze für das Derivat CYS-MPA bei dieser Methode besonders hoch. Bevor sie für Routinebestimmungen eingesetzt werden kann, muss sie unbedingt noch verbessert werden. Die Bestimmung von Prolin lässt sich dank der Verwendung eines zweiten internen Standards deutlich verbessern.

Zusammenfassung

In dieser Arbeit werden die Resultate eines Ringversuches für die quantitative Bestimmung von Aminosäuren in verschiedenen Proteinhydrolysaten mitgeteilt. Am Ringversuch waren 21 Laboratorien mit drei verschiedenen chromatographischen Verfahren beteiligt: IEC (15), RP-HPLC (8 mit 2 Varianten) und GC (1). Zur Beurteilung des Matrixeffektes auf die Analyse wurden vier Probentypen analysiert: eine Aminosäure-Standardlösung, ein Molkenproteinkonzentrat, ein Gemisch aus Getreide und Milchprodukten und ein Futtermittel. Die Analysenresultate für die zwanzig Aminosäuren (einschliesslich schwefelhaltige Aminosäuren und Tryptophan, die verschiedenen Hydrolysen unterzogen worden waren) wurden in g/kg Trockenmasse angegeben und nach der ISO-Norm 5725 ausgewertet. In diesem Versuch konnten die Vor- und Nachteile der verschiedenen Bestimmungsmethoden aufgezeigt werden. Die IEC ist präziser (r und R) als die HPLC. Die mittels IEC und HPLC erhaltenen Resultate weisen für alle Aminosäuren (ausser Cystin) eine gute Übereinstimmung auf. Die Matrix der analysierten Proben spielte eine grosse Rolle (Hydrolyse). Die besten r- und R-Werte wurden mit der Standardlösung, die schlechtesten mit dem Futtermittel erzielt.

Résumé

Le présent travail rapporte les résultats d'un essai collaboratif effectué sur le dosage des acides aminés dans divers hydrolysats de protéines. 21 laboratoires y ont effectivement participé, utilisant 3 techniques chromatographiques: IEC (15), RP-HPLC (8 avec 2 variantes) et GC (1). Afin d'évaluer l'influence de la matrice sur l'analyse, 4 types d'échantillons ont été considérés: une solution standard d'acides aminés, un concentrat de protéines lactiques, un mélange de céréales et de produits laitiers et un fourrage. Les résultats des dosages des 20 acides aminés (dont les acides aminés soufrés et le tryptophane, après des hydrolyses

différentes), exprimés en g/kg de matière séche, ont été évalués selon la norme ISO 5725. Cet essai passe en revue les avantages et les inconvénients des diverses méthodes de dosage: les analyses par IEC sont plus précises (r et R) que celles par HPLC. Les valeurs obtenues par IEC et HPLC concordent pour l'ensemble des acides aminés dosés, sauf pour la cystine. La matrice des échantillons analysés joue un grand rôle (hydrolyse). Les meilleures valeurs de r et R ont été obtenues avec la solution standard, les moins bonnes avec le fourrage.

Summary

This paper reports the results of an interlaboratory study of quantitative amino acid determinations in different protein hydrolysates. 21 laboratories participated in the test using three chromatographic techniques: IEC (15), RP-HPLC (8 with 2 variants) and GC (1). To evaluate the matrix effect on the analysis, four types of samples were considered: an amino acid standard solution, a milk protein concentrate, a mixture of cereals and milk products and a feed sample. The results of determination of the twenty amino acids (including sulphur-containing amino acids and tryptophane after different hydrolyses) were expressed in g/kg dry matter and evaluated according to ISO standard 5725. This test shows the advantages and disadvantages of the different methods applied: IEC is more precise (r and R) than HPLC. The values obtained by IEC and HPLC are in agreement for all amino acids except cystine. The matrix of the analysed samples plays a great role (hydrolysis). The best r and R values were obtained with the standard solution, the worst with the feed sample.

Literatur

- 1. Bütikofer, U., Fuchs, D., Bosset, J.O. and Gmür, W.: Automated HPLC-amino acid determination of protein hydrolysates by precolumn derivatization with OPA and FMOC and comparison with classical ion exchange chromatography. Chromatographia 31, 441–447 (1991).
- 2. Hewlett Packard: HP AminoQuant Series II. Operator's Handbook, HP Part No. 01090-90025, Juli 1990.
- 3. Büser, W.: Entwicklung eines gaschromatographischen Bestimmungsverfahrens für Aminosäuren. Schriftenreihe für Humanernährung und Lebensmittelkunde der Christian-Albrechts-Universität zu Kiel, Heft 1 (1986).
- 4. International Standard 5725: Precision of test methods Determination of repeatability and reproducibility by inter-laboratory tests. ISO 5725 (1981).
- 5. Bütikofer, U.: Auswertung Ringversuch Aminosäuren. FAM Info 1991/235 PW.

U. Bütikofer Doris Fuchs Dr. J.O. Bosset Eidg. Forschungsanstalt für Milchwirtschaft CH-3097 Liebefeld-Bern