Zeitschrift: Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und

Hygiene = Travaux de chimie alimentaire et d'hygiène

**Herausgeber:** Bundesamt für Gesundheit

**Band:** 77 (1986)

Heft: 2

Rubrik: Angewandte Probleme der Rückstandsanalytik

#### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF: 11.12.2025** 

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

# Angewandte Probleme der Rückstandsanalytik

Anlässlich der Jahrestagung 1985 der Schweiz. Naturforschenden Gesellschaft führte die Schweiz. Gesellschaft für Analytische und Angewandte Chemie zusammen mit der Schweiz. Gesellschaft für Lebensmittelwissenschaft und -technologie und der Schweiz. Gesellschaft für Instrumentalanalytik und Mikrochemie am 3. Oktober 1985 in Biel ein gemeinsames Fachsymposium durch.

Die Vorträge von J. Hurter, Y. Siegwart, R. Battaglia, G. Kiss und T. Avigdor werden im folgenden publiziert, derjenige von B. Zimmerli folgt im Heft 4/1986.

Mitt. Gebiete Lebensm. Hyg. 77, 165-172 (1986)

J. Hurter, Eidg. Forschungsanstalt für Obst-, Wein- und Gartenbau, Wädenswil

# Probleme der Rückstandsanalytik – Gesetzliche Vorschriften im Bereich Landwirtschaft

Problems of Residue Analysis - Legislation in Agriculture

## Einleitung

1908 gelang Fritz Haber die erste Ammoniaksynthese. Die damit eröffneten Möglichkeiten zur pflanzlichen Ernährung liess die Ängste vor europäischen Hungersnöten schwinden. Justus Liebig prophezeite:

«Es wird die Zeit kommen, wo man jede Pflanze mit dem ihr zukommenden

Dünger versieht, den man in chemischen Fabriken bereitet.»

In den Jahren nach dem zweiten Weltkrieg bis heute leisteten Pflanzenschutzmittel und Dünger bei abnehmendem Kulturland und stetig wachsender Bevölkerung (Tabelle 1) einen wesentlichen Beitrag zur Sicherstellung unserer Ernährung. Bei aller Kritik, die wir uns mit satten Bäuchen gelegentlich leisten, bewahrte die damalige Erkenntnis vom Nutzen einer leistungsfähigen Agrochemie – bis heute – ihre volle Gültigkeit. Die damit verbundene Euphorie zur Verwendung und zum Verkauf landwirtschaftlicher Hilfsstoffe verlangte in der Folge nach einem Bewilligungsverfahren mit dem folgenden Zweck:

- Prüfung der biologischen Wirkung angepriesener Handelsprodukte

- Verhinderung gesundheitsgefährdender Pestizidrückstände in Lebensmitteln.

Tabelle 1: Bevölkerungsentwicklung der Schweiz 1910-84 (1)

| isata<br>Isataala | Jahr | Gesamtbevölkerung in Mio | Personen/km² Acker,<br>Wiesland, Obst- und Reben |  |
|-------------------|------|--------------------------|--------------------------------------------------|--|
|                   | 1910 | 3,8                      | (327)                                            |  |
|                   | 1950 | 4,7                      | (404)                                            |  |
|                   | 1960 | 5,4                      | 465                                              |  |
|                   | 1970 | 6,3                      | 537                                              |  |
| gittar -          | 1980 | 6,4                      | 545                                              |  |
|                   | 1984 | 6,5                      | . Say Say Say                                    |  |

Die Werte in Klammern entsprechen einer linearen Extrapolation, ausgehend vom Jahr 1960. Infolge schwindendem Kulturland dürfte, entgegen schwach gestiegener Gesamtbevölkerung, die Personenzahl pro Quadratkilometer für 1984 in der Nähe von 600 liegen.

## Aktuelle Gesetze und Verordnungen

Heute stützen sich die rechtlichen Grundlagen auf Gesetze und Verordnungen, zusammengefasst in Abbildung 1.

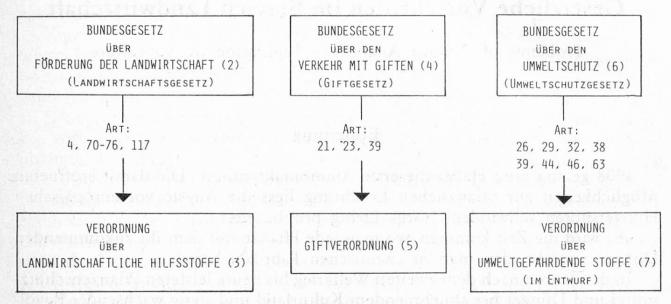



Abb. 1: Zusammenfassung der gesetzlichen Erlasse

Die für unser Thema einschlägigsten Artikel der 3 Verordnungen lauten wie folgt:

## 1. Verordnung über landwirtschaftliche Hilfsstoffe (3)

Artikel 1 Absatz 1: Geltungsbereich

Der Kontrolle unterliegen folgende Hilfsstoffgruppen, Spezialitäten und Ersatzstoffe:

Düngemittel. Zusätze zu Düngemitteln. Kompostiermittel. Bodenverbesserungsmittel. Kulturen von Mikroorganismen zur Behandlung von Böden, Saatgut oder Pflanzen. Mittel zur Beeinflussung biologischer Vorgänge im Boden. Regulatoren für die Pflanzenentwicklung. Pflanzenschutzmittel. Mittel zum Schutze von Erntegütern. Pflanzliches Vermehrungsmaterial. Futtermittel, ausgenommen Bienenfutter. Konservierungs- und Silierungszusätze. Bau-, Beschichtungs- und Anstrichmaterial. Mittel zur Bekämpfung von Stallfliegen und anderen Schadorganismen in Ställen.

### Artikel 9 Absatz 1: Materielle Voraussetzungen

Die Bewilligung hat einzuholen, wer den Hilfsstoff gewerbsmässig gewinnt, herstellt, importiert, neu verpackt oder umarbeitet. Bewilligungen werden nur an Personen und Firmen mit Wohnsitz oder Geschäftsniederlassung in der Schweiz erteilt.

### Artikel 10 Absatz 1: Formelle Voraussetzungen

- Vollständige Angaben über die Zweckbestimmung, den Anwendungsbereich und die Gebrauchsweise des Wirkstoffes.
- Genaue und vollständige Angaben über die Eigenschaften des Hilfsstoffes und dessen Eignung zum vorgesehenen Gebrauch.
- Nachweis, dass der Hilfsstoff keine wesentlichen nachteiligen Nebenwirkungen hat.

Anhand von Artikel 10 werden während des Vollzuges des Bewilligungsverfahrens vom Hersteller, unter vielem anderem, konkret die folgenden Angaben verlangt:

- Wie lange vermag das Präparat, nach der letzten Anwendung und unter Berücksichtigung der Anwendungsvorschrift, den Schädlingsbefall auf ein tolerierbares Mass zu senken?
- Wie verläuft die Abbaukurve des Wirkstoffes und seiner Metaboliten?
- Liegt der Rückstandswert, ausgedrückt in mg Wirkstoff pro kg Produkt, deutlich unter der toxikologisch zulässigen Grenze?

Das Zusammenspiel der verschiedenen Fachausdrücke wird in Abbildung 2 dargestellt.

## 2. Giftverordnung (5)

Artikel 42-43:

Regelt die Beschaffenheit von Verpackungen und Behältern.

Artikel 44-45:

Beschreibt die Kennzeichen und Beschriftung nach Giftklassen, im wesentlichen abhängig vom prozentualen Anteil des Wirkstoffes im Handelsprodukt und seiner akuten Toxizität.

Artikel 46-47:

Äussert sich über die Art der Aufschriften der Verpackung.



### Abb. 2. Biologische Wirksamkeit, Rückstandmenge und Toleranzwerte

Die Wartefrist, das Zeitintervall zwischen letzter Anwendung und Ernte, soll möglichst gross sein, wobei die abnehmende Pestizidkonzentration den Schädlingsbefall gleichwohl unter einem tolerierbaren Mass halten muss. Zur Ermittlung der Abbaukurve dienen sämtliche Methoden der mikroanalytischen Chemie, wobei die Gaschromatographie, wenn möglich kombiniert mit Massenspektroskopie, eine zentrale Bedeutung einnimmt.

Die Konzentration des Pflanzenschutzmittels im landwirtschaftlichen Produkt zur Zeit der Ernte ist massgebend für die Festlegung des Toleranzwertes in mg

Wirkstoff pro kg Ernteprodukt (ppm).

Der toxikologischen Grenze liegen die Resultate der chronischen Tierversuche zu Grunde. Eine gute landwirtschaftliche Praxis (integrierter Pflanzenschutz) trachtet danach, die Differenz zwischen der toxikologischen Grenze und des Toleranzwertes möglichst gross zu halten.

Mit den bis anhin dargelegten Bestimmungen werden ausschliesslich die Hersteller von landwirtschaftlichen Hilfsstoffen zur Rechenschaft gezogen. Die gesetzlichen Richtlinien für den Verbraucher finden sich in der nachfolgenden, im Entwurf vorliegenden Verordnung:

## 3. Verordnung über umweltgefährdende Stoffe (7)

In ihr wird der Grundsatz vertreten, wonach landwirtschaftliche Hilfsstoffe als notwenig, aber unerwünscht zu betrachten sind.

#### Artikel 38:

Fordert den Verbraucher auf, sie massvoll und fachgerecht im Rahmen der Anwendungsvorschriften auszubringen.

In diesem Zusammenhang sei auch auf Artikel 16 des Giftgesetzes hingewiesen, wonach überschüssige Publikumsprodukte vom Verkäufer oder einer öffentlichen Sammelstelle kostenlos entgegenzunehmen sind.

### Vollzug der gesetzlichen Bestimmungen

Die dargelegten Ausführungen beschreiben die wesentlichsten Vorschriften im Umgang mit landwirtschaftlichen Hilfsstoffen. Die damit verbundenen, oft zeitraubenden Arbeiten, unter Leitung der Eidg. Forschungsanstalt Wädenswil sowie des Bundesamtes für Gesundheitswesen, führen bei positivem Ausgang zur Festlegung eines Toleranzwertes für den untersuchten Wirkstoff und damit zur

Verkaufsbewilligung der betreffenden Handelsprodukte.

Zu diesem Entscheidungsprozess können gleichsam eigene, pflanzenpathologische oder entwicklungsphysiologische Erfahrungen dienen. Der verbreitete Wunsch nach einer Beschleunigung des Reifeprozesses an Tomaten liess sich beispielsweise nicht mit Hilfe eines ethylenproduzierenden Wachstumsregulators erfüllen, da die kurze Zeitspanne zwischen Applikation und Ernte in den Früchten toxikologisch bedenkliche Rückstände verursachte. Dagegen induzierte eine auxinartige Verbindung, in homöopatischen Dosen appliziert, im frühen Stadium der Blüte die raschere Entwicklung des Fruchtknotens und letztlich den Reifeprozess, ohne die Tomaten hygienisch oder qualitativ zu belasten.

Sämtliche im Handel anzutreffenden Produkte finden sich zusammengefasst im Verzeichnis «Pflanzenschutzmittel und weitere Hilfsstoffe, bewilligt für die

Landwirtschaft» (8).

Über die Toleranzwerte gibt die «Liste der Höchstkonzentrationen (Toleranzwerte, Grenzwerte) für Pflanzenschutzmittel, Vorratsschutzmittel sowie Regulatoren für die Pflanzenentwicklung» (9) Auskunft. Sie dient den Kantonschemikern als verbindliche Grundlage zur rechtlichen Beurteilung der identifizierten Rückstände in Lebensmitteln.

Eine gesamtschweizerische Statistik (10) des 2. Halbjahres 1984 vergegenwärtigt das erfreuliche Resultat, wonach von 1632 willkürlich durch die Kantonschemiker erhobenen Proben landwirtschaftlicher Produkte schweizerischer Herkunft lediglich 40 oder 2,5% die Toleranzwerte überschritten. Dieses Resultat attestiert dem allergrössten Teil unserer landwirtschaftlichen Produzenten einen verantwortungsvollen Umgang mit den ihnen zur Verfügung gestellten Hilfsstoffen.

#### Ausblick

Die Ausführungen wurden auf einer breiten Basis begonnen, und sie sollen überblickend mit ein paar allgemeinen Betrachtungen enden.

Unsere gesetzlichen Bestimmungen erlauben den staatlichen Stellen, in Zusammenarbeit mit der chemischen Industrie, eine massvolle Verwendung der verfügbaren Hilfsstoffe, im Sinne einer integrierten landwirtschaftlichen Praxis, durchzusetzen. Sie geben dem Konsumenten die Gewissheit, von minimalen Pestizidrückständen betroffen zu werden.

Im Vergleich zu Umweltbelastungen wie Lärm, Luftverschmutzung oder Stress repräsentieren die heutigen Pflanzenschutzmittelrückstände, nach menschlichem Ermessen, einen toxikologisch unbedeutenden Faktor. Sowohl Produ-

zenten wie Konsumenten darf dieses Resultat weltweiter und im speziellen helvetischer Gründlichkeit mit Genugtuung erfüllen. Der hohe Entwicklungsstand der dargebotenen Hilfsmittel wird durch die Tatsache repräsentiert, wonach DDT als Beispiel in der Landwirtschaft oder Penicillin in der Pharmakologie heute anhand ihrer Nebeneffekte keine Verkaufsbewilligung erhielten, obschon Hunderttausende, wenn nicht Millionen von Menschen diesen beiden Wirkstoffen ihr Leben verdanken. Eine an sich erfreuliche Situation. Dennoch soll sie uns zur Frage veranlassen, wohin uns eine zunehmend intensivierte und differenzierte landwirtschaftliche Kulturtechnik und die dadurch hervorgerufene Gesetzesflut führt. Mit Sicherheit werden nachstehende Massnahmen künftige Diskussionsthemen bilden:

der Konsument muss falsche Qualitätsbegriffe bei der Auswahl seiner Nahrungsmittel ersetzen. Eine Laus am Gemüse soll beispielsweise als willkommener Garantieschein für wenig oder keine Akarizidrückstände gelten.

Der Produzent muss seine übernutzten landwirtschaftlichen Böden durch weniger intensive Kulturtechniken schonen.

Wir alle müssen neben einer kommerziellen, eine biologische Denkweise vermehrt fördern und in letzter Konsequenz einen Abbau der Gesamtbevölkerung für die ferne Zukunft akzeptieren.

Die Erfüllung dieser Forderungen bietet langfristig die Voraussetzung, die Vorteile unseres technischen Zeitalters massvoll zu nutzen, ohne in Widerspruch zu unserer Umwelt zu geraten. Uns Wissenschaftlern obliegt die dringende Aufgabe, die erkannten Möglichkeiten und ihre harten Konsequenzen ins Bewusstsein breiter Kreise zu tragen, damit wir im Dickicht der Gesetze nicht ersticken und nach Möglichkeit dem Grundsatz vom Sreko Kosovel (Slowenischer Dichter, 1904–28) folgen:

«Grosse Menschen leben nach den Gesetzen ihrer Seele, kleine Menschen leben nach Paragraphen.»

## Zusammenfassung

Beurteilung und Verwendung landwirtschaftlicher Hilfsstoffe richten sich nach den Bundesgesetzen über

- die Förderung der Landwirtschaft und die Erhaltung des Bauernstandes
- den Verkehr mit Giften,
- den Umweltschutz,
  - Die Folgen dieser gesetzlichen Bestimmungen erscheinen zusammengefasst:
- 1. Im Verzeichnis der «Pflanzenschutzmittel und weiterer Hilfsstoffe, bewilligt für die Landwirtschaft».
- 2. In der «Liste der Höchstkonzentrationen (Toleranzwerte, Grenzwerte) für Pflanzenschutzmittel, Vorratsschutzmittel sowie Regulatoren für Pflanzenentwicklung».

Nach einer gesamtschweizerischen Statistik des zweiten Halbjahres 1984 lagen die Pestizidrückstände von lediglich 40 oder 2,8% von 3203 Proben landwirtschaftlicher Produkte über der Toleranzgrenze.

#### Résumé

L'évaluation et l'utilisation des matières auxiliaires pour l'agriculture sont régies par la loi fédérale sur

- l'amélioration de l'agriculture et le maintien de la population paysanne,
- le commerce des toxiques,
- la protection de l'environnement.
   Les conséquences de ces dispositions législatives sont résumées
- 1. dans l'index sur les «Produits phytosanitaires et autres matières auxiliaires, autorisés pour l'agriculture»;
- 2. dans «la liste des concentrations maximales (tolérances, valeurs limites) des produits phytosanitaires, des produits de protection des denrées emmagasinées ainsi que des régulateurs de croissance des plantes».

Selon la statistique fédérale du deuxième semestre 1984, seuls 40 échantillons, soit 2,8% de 3203 produits agricoles présentaient une teneur en résidus de pesticides dépassant la limite de tolérance.

### Summary

Evaluation and application of agricultural chemicals are determined in the federal laws on:

- Bundesgesetz über die Förderung der Landwirtschaft und die Erhaltung des Bauernstandes
- Bundesgesetz über den Verkehr mit Giften
- Bundesgesetz über den Umweltschutz

The consequences of this legislation are reflected and summarized in the following indexes:

- 1. Pflanzenschutzmittel und weitere Hilfsstoffe, bewilligt für die Landwirtschaft,
- 2. Liste der Höchstkonzentrationen (Toleranzwerte, Grenzwerte) für Pflanzenschutzmittel, Vorratsschutzmittel sowie Regulatoren für die Pflanzenentwicklung.

In accordance with the federal statistics for Switzerland of the second semester of 1984, only 40 market-samples or 2,8% out of 3203 revealed residues of pesticides exceeding established tolerances.

#### Literatur

- 1. Brugger, H.: Die Schweiz. Landwirtschaft 1914-1980, 1. Auflage, S. 27. Verlag Huber, Frauenfeld 1985.
- 2. Bundesgesetz über die Förderung der Landwirtschaft und die Erhaltung des Bauernstandes vom 3. 10. 1951 mit Stand am 1. 10. 1983. SR-Nr. 910.1.
- 3. Verordnung über landwirtschaftliche Hilfsstoffe vom 4. 2. 1955 mit Stand 1. 1. 1979. SR-Nr. 916.051.
- 4. Bundesgesetz über den Verkehr mit Giften vom 31. 3. 1969 mit Stand 1. 1. 1985. SR-Nr. 814.80.
- 5. Giftverordnung vom 19. 9. 1983. ST-814.801.

- 6. Bundesgesetz über den Umweltschutz vom 7. 10. 1983 mit Stand 1. 1. 1985. SR-Nr. 814.01.
- 7. Verordnung über umweltgefährdende Stoffe. Im Entwurf.
- 8. Pflanzenschutzmittel und weitere Hilfsstoffe, bewilligt für die Landwirtschaft.
- 9. Liste der Höchstkonzentrationen (Toleranzwerte, Grenzwerte) für Pflanzenschutzmittel, Vorratsschutzmittel sowie Regulatoren für die Pflanzenschutzentwicklung. Befindet sich in der Vernehmlassung.
- 10. Bulletin des Bundesamtes für Gesundheitswesen Nr. 29 S. 288 vom 25. 7. 1985.

Die Literaturzitate 2-8 sind bei der Eidg. Drucksachen- und Materialzentrale, 3000 Bern, erhältlich.

Dr. J. Hurter
Eidg. Forschungsanstalt für
Obst-, Wein- und Gartenbau
Sektion Biochemie
CH-8820 Wädenswil

Y. Siegwart, Office fédéral de la santé publique, Berne

# Prescriptions se rapportant aux denrées alimentaires en matière de résidus

Prescriptions in Relation to Foodstuffs in the Field of Residues

#### Introduction

Les prescriptions se rapportant aux denrées alimentaires en matière de résidus reposent en premier lieu sur la législation sur les denrées alimentaires.

L'article de la constitution qui a initié la mise en route des dispositions pour un contrôle efficace des denrées alimentaires stipule en effet que la Confédération peut légiférer sur la mise dans le commerce des denrées alimentaires et des objets usuels (1).

La loi qui en est née date de l'année 1905 et s'est donnée comme buts de protéger le consommateur des atteintes à sa santé dues aux denrées alimentaires et de protéger le consommateur de la fraude dans le domaine des denrées alimentaires (2).

## Les principes à la base du contrôle

Au début du contrôle des denrées alimentaires celui-ci ne se préoccupait pas encore autant des résidus et impuretés pouvant se trouver dans les denrées alimentaires. Son intérêt allait davantage aux contaminations d'ordre bactériologique, aux détériorations ainsi qu'aux falsifications des denrées alimentaires. Néanmoins l'idée de substances étrangères nuisibles y trouvait déjà sa place. Ceci se répercute dans quelques textes de l'ordonnance sur les denrées alimentaires illustrés par les exemples ci-après. Si les prescriptions ne se trouvaient pas toutes dès le début dans l'ordonnance il y en a certaines qui y figurent depuis bien des années.

Qu'il soit fait mention de l'ancien article 6 qui statuait une défense générale de mettre dans le commerce des substances dangereuses pour la santé. Le texte était le suivant:

#### «Art. 6 de l'ODA

<sup>1</sup>Les denrées alimentaires ne doivent pas contenir de substances nocives ni des organismes de nature à mettre en danger la santé humaine» (3).

Des prescriptions valables pour des denrées alimentaires spécifiques font l'objet des articles suivants:

#### «Art. 293 de l'ODA

Le résidu en solvant organique destiné à l'extraction du café torréfié décaféiné ne doit pas dépasser 10 mg/kg.

#### Art. 347 et 349 de l'ODA

Les vins ne doivent pas contenir plus de 250 mg d'acide sulfureux total ni plus de 35 mg d'acide sulfureux libre par litre.

Le teneur en cuivre du vin ne doit pas dépasser 10 mg.

#### Art. 399 de l'ODA

Les eaux-de-vie de fruits à noyau peuvent renfermer de l'acide cyanhydrique dans la proportion maximum de 40 mg par litre.

#### Art. 404 de l'ODA

Les spiritueux de toute espèce peuvent renfermer du cuivre et du fer dans une proportion qui ne doit pas dépasser, pour les deux substances prises ensemble, 30 mg par litre. Ils peuvent contenir des traces de zinc; en revanche, ils doivent ne contenir aucune trace d'autres combinaisons métalliques nocives» (3).

Dans les cas mentionnés sont indiqués des valeurs limites. Il existe cependant également plusieurs prescriptions où l'absence de toute impureté où d'une substance spécifique est stipulée. Ceci est par exemple le cas de l'article 129 qui a la teneur suivante:

#### «Art. 129 de l'ODA

Les céréales et les légumineuses destinées à être consommées telles quelles, sans traitement préalable, doivent avoir une apparence, une odeur et une saveur normales; elles ne doivent pas contenir des impuretés d'origine minérale, végétale ou animale (sable, terre, chlorures provenant d'avaries causées par l'eau de mer, moisissures, graines de mauvaises herbes, substances destinées à augmenter le poids de la marchandise, enrobages, résidus de matières employées pour la destruction des insectes nuisibles, cirons, etc.)» (3).

Ceci vaut aussi pour les articles 22, 24 et 25 se rapportant à la propreté des récipients et qui s'exprime comme suit:

### «Art. 22 de l'ODA

Il est interdit de délivrer au public dans des récipients destinés à contenir une denrée alimentaire (bouteilles pour le vin, la bière, la limonade, l'eau minérale, etc.) des substances nocives, telles que les acides minéraux, l'ammoniaque, les solutions désinfectantes, le pétrole, la benzine.

#### Art. 24 et 25 de l'ODA

Les récipients, les appareils, les outils, le matériel d'emballage, etc., employés pour la fabrication, la détention, le transport et la vente des denrées alimentaires et pour la préparation d'aliments et de boissons doivent être maintenus propres et en bon état.

La plus grande propreté et l'ordre le plus strict doivent être observés dans la fabrication, la production, la détention, l'emballage, le transport et la vente des denrées alimentaires, en évitant tout influence extérieure préjudiciable» (3).

La tolérance zéro correspondait aux représentations et aux possibilités de détermination des débuts du contrôle des denrées alimentaires. Comme on n'était pas à même de déceler des substances en dessous d'une certaine quantité on les considérait comme absentes. Cette philosophie s'est maintenue très longtemps et n'est pas encore surmontée à tout point de vue de nos jours. C'est ainsi que la découverte, grâce aux appareils toujours plus sophistiqués d'infimes quantités de substances en soi étrangères à la denrée alimentaire analysée, est souvent jugée comme une nouvelle pollution de la denrée en question et de ce fait inadmissible. Les connaissances actuelles de la science ne permettent en aucun cas un tel raisonnement qui est de toute façon irréaliste. Il est par contre sans autre plausible de n'admettre des impuretés et des résidus, même à des concentrations non toxiques que si leur présence est techniquement et technologiquement inévitable.

# Evolution dans l'appréciation des résidus

Une nouvelle appréciation des résidus inspirée du raisonnement cité s'est concrétisée dans les textes légaux au cours de ces dernières années. Le nouvel article 6 de l'ordonnance sur les denrées alimentaires émet le principe général d'une absence de substances non d'une façon absolue mais à des concentrations pouvant nuire à la santé des consommateurs. Il s'exprime ainsi:

«Art. 6

<sup>1</sup>Les denrées alimentaires ne peuvent contenir des substances et des organismes qu'en quantités ne présentant pas de danger pour la santé de l'homme.

<sup>2</sup>Les denrées alimentaires ne doivent pas être altérées, ni souillées; en outre, leur valeur spécifique ne doit pas être affectée d'une autre façon» (3).

Mais déjà avant la concrétisation de ce principe par les nouveaux articles 6 et suivants, le législateur a fait en 1969 un grand pas en avant dans l'appréciation des résidus en établissant une liste des résidus de pesticides admis dans les denrées alimentaires. Cette liste est intégrée à une ordonnance départementale et porte la

dénomination «Ordonnance du département fédéral de l'intérieur sur les résidus de produits auxiliaires de protection des plantes et des denrées emmagasinées» (4). La façon dont les différentes substances y sont traitées peut être jugée à l'exemple du dithiocarbonate (voir tableau 1).

Tableau 1. Extrait de la liste des concentrations maximales légalement autorisées pour le dithiocarbamate

| Substance active | Champ<br>d'applic. | Denrées<br>alimentaires | Concentration<br>maxim. mg/kg | Remarques                     |
|------------------|--------------------|-------------------------|-------------------------------|-------------------------------|
| Dithiocarbamate  | F                  | légumes,<br>fruits      | 2                             |                               |
|                  | 21.50              | tabac                   | 2                             |                               |
| i pos            |                    | bananes<br>(chair)      | 0,5                           | exprimé<br>en CS <sub>2</sub> |
|                  |                    | pommes<br>de terre      | 0,2                           |                               |
|                  |                    | céréales                | 0,1                           | J                             |

Cette liste a été plusieurs fois corrigée ou complétée. Le nouvel article 6, dont il a déjà été question, a été complété d'une série de nouveaux articles ou d'articles modifiés qui se rapportent aux résidus, à leur définition, à leur appréciation ainsi qu'aux possibilités d'intervention des autorités. Les passages les plus importants de ces articles sont les suivants:

#### «Art. 7 de l'ODA

### Composants

Le Département fédéral de l'intérieur peut régler dans une ordonnance l'appréciation des composants nuisibles à la santé ou ayant un effet antinutritif, naturellement présents dans certaines denrées alimentaires, et fixer des concentrations maximales. Des composants de ce genre sont, par exemple, la solanine, la tyramine, l'histamine, les inhibiteurs de protéases.

## Art. 7a de l'ODA

## Substances étrangères

<sup>1</sup>Le Département fédéral de l'intérieur peut régler dans une ordonnance l'appréciation des substances étrangères et fixer des concentrations maximales.

<sup>2</sup>Les substances étrangères sont des substances qui ne sont pas naturellement présentes dans les denrées alimentaires, mais qui, au contraire:

a) Sont employées dans la production, la fabrication, etc. par exemple, les produits pour la protection des plantes; en outre, font partie de ce groupe, les

substances telles que les désinfectants, les peintures, les produits pour la protection du bois;

b) Y pénétrent sous l'influence de l'environnement ou apparaissent à la suite de processus chimiques et biologiques, par exemple les biphényles polychlorés, le mercure, les nitrosamines, les aflatoxines...

Avant de mettre dans le commerce une substance étrangère . . . le fabricant, l'utilisateur ou l'importateur doit soumettre à l'office fédéral toutes les données nécessaires à l'appréciation» (3).

Par suite de ces nouvelles prescriptions l'Office fédéral de la santé publique a non seulement la possibilité de réglementer dans le domaine des substances étrangères mais elle y est même indirectement contrainte. Or une telle obligation n'est pas sans difficulté, car elle nécessite à côté de nombreux facteurs, dont il faut inévitablement tenir compte, une étude toxicologique approfondie des produits que l'on veut réglementer. A ces obstacles vient s'ajouter le fait qu'en plus des substances de traitement qui sont en soit contrôlables, des quantités toujours plus variées de résidus dus à l'environnement souillent les denrées alimentaires. Ce sont notamment certains métaux lourds, des solvants comme par exemple le perchloréthylène ou des fongicides ou autres produits de traitement comme le pentachlorphénole ou les biphényles polychlorés qui se trouvent dans beaucoup de denrées alimentaires sans qu'un contact intentionnel ait eu lieu.

A l'occasion de la révision d'articles de l'ODA pour des denrées spécifiques au cours de ces dernières années des valeurs pour la teneur maximale de matières étrangères métalliques ont été établies dans la mesure du possible. Ceci a été le cas notamment pour la margarine et les jus de fruits soumis aux prescriptions suivantes:

### «Art. 101 de l'ODA

Dans la margarine, la teneur en matières étrangères métalliques sera au maximum par kg:

- arsenic (As) 0,1 mg
- plomb (Pb) 0,1 mg
- fer (Fe) 1,5 mg
- cuivre (Cu) 0,1 mg
- nickel (Ni) 0,2 mg

## Art. 249 de l'ODA

<sup>4</sup>Les concentrations maximales des jus de fruits en substances étrangères métalliques exprimées en mg/kg sont: arsenic (As) 0,2, plomb (Pb) 0,3, cadmium (Cd) 0,03, fer (Fe) 15, cuivre (Cu) 5, mercure (Hg) 0,01, zinc (Zn) 5, étain (Sn) 50, pour les jus en boîtes de fer-blanc non laquées 150» (3).

Quand on parle de résidus on entend logiquement une substance qui ne fait pas partie des composants de la denrée alimentaire. Cette consigne n'est pas toujours aisée à appliquer. L'exemple typique est celui des nitrates qui a été à maintes reprises l'objet de discussions ces dernières années. Légitimés par les nouveaux articles de l'ODA mentionnées précédemment (Art. 6, 7, 7a) des valeurs de tolérance ou limites ont été établies pour une série de légumes ou pourtant les nitrates ne peuvent pas ou que partiellement être considérés comme substances étrangères. Ce raisonnement ne s'applique par contre pas à l'eau de boisson. Les valeurs de nitrates prescrites ressortent du tableau 2.

Tableau 2. Nitrates dans les légumes et l'eau de boisson

| Légumes/<br>eau de boisson           | Valeur<br>indicative | Valeur de<br>tolérance      | Valeur<br>limite                |
|--------------------------------------|----------------------|-----------------------------|---------------------------------|
| Salade pommée                        |                      | 3500 mg NO <sub>3</sub> /kg | 4000 mg NO3/kg                  |
| Epinards crus                        |                      | 3500 mg NO <sub>3</sub> /kg | - The same of the same of       |
| Epinards en conserves<br>ou surgelés |                      | 1500 mg NO <sub>3</sub> /kg | l eb                            |
| Betteraves crues ou cuites           | Heren transcore      | 3000 mg NO3/kg              |                                 |
| Jus de betterave rouge               |                      | 2500 mg NO <sub>3</sub> /kg | 51 74 5 7 W                     |
| Chou blanc                           |                      | 875 mg NO3/kg               | Lead of the Asian Communication |
| Chou rouge                           |                      | 875 mg NO <sub>3</sub> /kg  |                                 |
| Chou frisé                           |                      | 875 mg NO <sub>3</sub> /kg  | MARIE AND AND AND A             |
| Eau de boisson                       | 25 mg NO3/1          | 40 mg NO <sub>3</sub> /1    | mus vocarat co                  |

## Ordonnance sur les substances étrangères et les composants

La liste des pesticides exigeait depuis longtemps un révision. De plus la nécessité se faisait sentir d'étendre cette liste à d'autres résidus par exemple à ceux dus à l'environnement.

Pour ces raisons l'initiative a été prise il y a quelques années déjà de mettre sur pied une ordonnance traitant des substances étrangères, y compris les composants dans les denrées alimentaires représentant des facteurs de risque. Cette ordonnance a été très difficile a réaliser, ceci tout spécialement par suite de questions de définition et des considérations juridiques.

A ce jour l'ordonnance en question est entrée en vigueur. Les deux articles de base ainsi que les listes des valeurs de tolérance ou limites qui en font nécessairement partie se présentent de la façon suivante:

«Ordonnance sur les substances étrangères et les composants dans les denrées alimentaires

#### Art. 1

Les substances étrangères et les composants (substances) ne sont tolérés dans ou sur les denrées alimentaires que s'ils sont présents en quantités inoffensives pour la santé et techniquement inévitables.

#### Art. 2

Les valeurs tolérées sont des concentrations maximales de substances dont le dépassement donne lieu à la contestation de la denrée alimentaire par l'autorité d'exécution. Les valeurs limites sont des concentrations maximales dont le dépassement signifie que la denrée alimentaire est jugée comme impropre à l'alimentation de l'homme» (5); voir en outre les tableaux 3, 4 et 5.

Tableau 3. Prescriptions pour le malathion dans la nouvelle liste des concentrations maximales autorisées

| Substance active | Domaine<br>d'application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Denrées<br>alimentaires                              | Tolérance<br>mg/kg                               | Valeurs<br>limites<br>mg/kg |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------|-----------------------------|
| Malathion        | Insecticide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | céréales                                             |                                                  | 8                           |
|                  | Produit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | agrumes                                              |                                                  | 4                           |
|                  | pour la protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | huile de                                             |                                                  |                             |
|                  | des denrées<br>alimentaires                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | germes de<br>blé                                     | 3                                                |                             |
|                  | a salata da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | semoule de                                           | ande mire et e                                   |                             |
|                  | al magazinaking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | maïs brute                                           | 2                                                |                             |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | thés, thés<br>de plantes,<br>autres den-<br>rées non | erior de la<br>constanta de la<br>de el els rest |                             |
|                  | Assessed to the same of the sa | spécifiées                                           | 0,5                                              |                             |

Tableau 4. Prescriptions pour le dichlorométhane dans la nouvelle liste des concentrations maximales autorisées

| Substances étrangères<br>ou composants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Denrées<br>alimentaires                                                         | Tolérance<br>mg/kg                                              | Valeurs<br>limites<br>mg/kg |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------|
| Dichlorméthane<br>(Chlorure de méthylène)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | café et thé sans<br>caféine, café<br>décaféiné                                  | Naschgen son der l<br>Sesände in der Lei<br>Gesterhalt der Jege | 10                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | extraits de café<br>et de thé sans<br>caféine, extraits<br>de café<br>décaféiné | ermus midiman                                                   | 5                           |
| produce refer to the beauty to the contract of | bière                                                                           | 0,005                                                           | er kontrol man              |

Tableau 5. Prescriptions pour le cadmium dans la nouvelle liste des concentrations maximales autorisées

| Métaux et<br>métalloides | Denrées alimentaires                            | Tolérance<br>mg/kg | Valeurs limites<br>mg/kg |
|--------------------------|-------------------------------------------------|--------------------|--------------------------|
| Cadmium                  | Champignons de culture, frais                   | 0,05               |                          |
|                          | Jus de fruits, jus de fruits dilués, nectars    |                    | 3                        |
|                          | de fruits, sirops de fruits; cidre sans alcool; |                    |                          |
|                          | jus de raisins fermentés et désalcoolisés       | 0,03               |                          |
|                          | Vinaigre                                        | 0,02               |                          |
|                          | Boissons de table aux jus de fruits ou          |                    | 2 17                     |
|                          | lactées, sirops avec arômes, limonades          |                    |                          |
|                          | et autres boissons sans alcool                  | 0,01               | Late and Late 1          |
|                          | Eau de boisson                                  |                    | 0,005                    |

La liste englobe à côté des pesticides en partie également des métaux lourds et des solvants. Les valeurs indiquées ne sont pas nécessairement nouvelles mais ont été dans plusieurs cas tirées d'articles déjà existants.

La liste devra être périodiquement complétée et mise à jour. De cette façon des prescriptions claires et réalistes régleront dorénavant les substances indésirables et pouvant être nuisible à la santé présent dans les denrées alimentaires.

La façon de déterminer, d'évaluer et de fixer des valeurs faisant partie de ces listes fait l'objet de la contribution de *B. Zimmerli* (6).

#### Résumé

La citation de textes légaux a pour but de démontrer l'évolution dans l'appréciation des résidus dans les denrées alimentaires au cours des années. Les principes régissant actuellement cette appréciation sont énoncés. La nouvelle ordonnance sur les substances étrangères et les composants dans les denrées alimentaires est présentée.

## Zusammenfassung

Mit Hilfe von Auszügen aus der Lebensmittelgesetzgebung wird gezeigt, wie sich die Beurteilung der Rückstände in den Lebensmitteln mit den Jahren gewandelt hat. Die heute geltenden Grundsätze werden dargelegt sowie die neue Verordnung über Fremd- und Inhaltsstoffe in Lebensmitteln vorgestellt.

#### Abstract

Using extracts of food legislation the change during the last years is shown in appreciation of residues in food. The actually valid principles are explained and the new ordinance on foreign substances and natural componds in food is presented.

## Bibliographie

- 1. Constitution fédérale, article 69<sup>bis</sup>. Office central fédéral des imprimés et du matériel, Berne 1985.
- 2. Loi fédérale sur le commerce des denrées alimentaires et de divers objets usuels du 8 décembre 1905. Office central fédéral des imprimés et du matériel, Berne 1986.
- 3. Ordonnance sur les denrées alimentaires (ODA) du 26 mai 1936. Office central fédéral des imprimés et du matériel, Berne 1985.
- 4. Ordonnance du Département fédéral de l'intérieur sur les résidus de produits auxiliaires de protection des plantes et des denrées emmagasinées du 19 mai 1969. Office centrales fédéral des imprimés et du matériel, Berne 1982.
- 5. Ordonnance sur les substances étrangères et les composants dans les denrées alimentaires du 27 février 1986. Office central fédéral des imprimés et du matériel, Berne 1986.
- 6. Zimmerli, B.: Betrachtungen zur Festlegung und Bedeutung von Normen für potentiell gesundheitsgefährdende Stoffe in Lebensmitteln. Mitt. Gebiete Lebensm. Hyg. 77, (1986) (im Druck).

Dr Y. Siegwart Office fédéral de la santé publique Division du contrôle des denrées alimentaires Case postale 2644 CH-3001 Berne R. Battaglia, Kantonales Laboratorium, Zürich

# Probleme der Rückstandsanalytik – Technische und rechtliche Fragen in der Analysenpraxis der Lebensmittelkontrolle

Problems of Residue Analysis – Technical and Legal Aspects of Analytical Chemistry in Food Control

### Einleitung

Der Vollzug der Lebensmittelgesetzgebung in der Schweiz ist den Kantonen übertragen. Sie betreiben zu diesem Zweck chemische und bakteriologische Laboratorien, welche unter der Leitung des Kantonschemikers stehen. Die dort beschäftigten Beamten erheben unter anderem Lebensmittelproben, welche nach verschiedenen Gesichtspunkten untersucht werden.

Einer der zu bearbeitenden Problemkreise betrifft die Situation der Lebensmittelverunreinigungen bzw. der Rückstände und Fremdstoffe in Lebensmitteln. Die Reglementierung und Legiferierung dieser chemischen Stoffe und Elemente obliegt den Bundesorganen. Die Gründe zur Reglementierung eines Fremdstoffes bzw. Rückstandes sind toxikologischer, ethischer oder/und politischer Natur. (Die Reihenfolge dieser Aufzählung impliziert keine Prioritäten!)

In der folgenden Abhandlung soll gezeigt werden, dass einerseits (scheinbar) klare Regelungen in der Vollzugspraxis zu drastisch divergierenden Schlussfolgerungen Anlass geben können und dass andererseits unklare Regelungen (bzw. gar keine) Denkanstösse zu vernünftigen Problemlösungen liefern können.

# Klare Regelungen - für Nicht-Überprüfbares?

Die Nulltoleranz existiert noch! Was Wissenschaftlern bereits seit Zeiten klar ist — die Abwesenheit eines Dings lässt sich nicht positiv beweisen — hat offensichtlich Mühe, in der Lebensmittelgesetzgebung konsequent Eingang zu finden. Es ist allerdings zu hoffen, dass im Laufe der nächsten paar Jahre die letzten expliziten Nulltoleranzen mit dem Wortlaut « . . . darf nicht enthalten sein» verschwinden.

Andererseits wird wohl kaum vermeidbar sein, dass implizite Nulltoleranzen überleben, wie dies anhand des folgenden Beispiels gezeigt wird:

Oestrogene in der Tiermast – die implizite Nulltoleranz

Artikel 35 Absatz 2 der Fleischschauverordnung lautet:

«Den Schlachttieren dürfen keine Stoffe oder Präparate verabreicht werden, welche die Beschaffenheit oder Haltbarkeit des Fleisches in unzulässiger Weise beeinflussen können. Darunter fällt insbesondere die Anwendung von Stoffen mit östrogener oder thyreostatischer Wirkung zur Beeinflussung des Fleisch- oder Fettansatzes oder zur sexuellen Neutralisation während der Mast.»

Dies ist, wie es scheint, eine klare Regelung: ein Verbot, eine bestimmte Handlung zu begehen. Sie beinhaltet auch nicht unmittelbar ersichtlich eine Nulltoleranz. Mehr noch: die Einhaltung dieses Artikels kann prinzipiell durch geeigneten Einsatz von Lebensmittelpolizeikräften überwacht, kontrolliert und durchgesetzt werden. Allerdings würde dies einen unannehmbar grossen Apparat von Beamten mit sehr weitreichenden Kompetenzen erfordern. Falls die zuständigen Vollzugsorgane somit die notwendigen organisatorischen Massnahmen zur Verhinderung des Gebrauchs von Östrogenen nicht treffen, bleibt nur die Möglichkeit, mit Hilfe von chemischen Analysen von Fleisch, Harn, Kot usw. abzuklären, ob die betreffende Bestimmung eingehalten wurde. Und damit wird klar, dass diese Art des Gesetzesvollzugs den betreffenden Artikel als Nulltoleranz zumindest für synthetische Östrogene zu interpretieren hat.

# Das Wohlstandsparadox

Nicht nur die Existenz von Nulltoleranzen, sondern auch der berufliche Ehrgeiz der analytischen Chemiker führt dazu, dass Nachweisempfindlichkeitsrekorden fast mit olympischer Verbissenheit nachgejagt wird. Im Gegensatz zu olympischen Disziplinen jedoch, wo die zum Einsatz gelangenden Instrumente und Geräte genauestens reglementiert sind, ist in der analytischen Chemie jeder Trick erlaubt. Am Kantonalen Laboratorium Zürich wurde, zur Zeit als bekannt wurde, dass auch in der Schweiz verbotene Masthilfsmittel eingesetzt wurden, eine Nachweismethode für Stilbenöstrogene entwickelt. Sie beruhte darauf, dass Extrakte von hydrolysiertem Harn und von Fleisch mit Dansylchlorid behandelt wurden, wobei Stilböstrol und seine Verwandten in fluoreszierende Derivate übergeführt wurden. Diese konnten flüssigchromatographisch getrennt und bestimmt werden.

Hier beginnen sich bereits Interpretationsdifferenzen zu zeigen: während das Auftreten eines Signals, welches das Untergrundrauschen um einen Faktor von drei übersteigt, von den einen bereits als positiver Nachweis gewertet wird, verlangen andere Analytiker, dass solch ein Befund mittels Alternativmethoden bestätigt werden müsse. Dies kann beispielsweise gaschromatographisch geschehen. Die Empfindlichkeit beider Verfahren – Hochdruckflüssigchromatographie als auch Gaschromatographie – liegt in etwa der gleichen Grössenordnung; eine Konzentration von  $10 \,\mu g/kg$  Stilböstrol führt zu interpretierbaren Signalen. Demgegenüber ist es möglich, die gaschromatographische Nachweisgrenze mit Hilfe massenspezifischer Detektion drastisch zu senken. Dank der Tatsache, dass das Massenspektrum des Bis-trimethylsilylethers von z. B. Diethylstilböstrol (DES), ein sehr intensives Signal bei m/e 412 aufweist, gelingt es, diesen Stoff noch in Konzentrationen von  $0.1 \,\mu g/kg$  (im Harn) nachzuweisen.

Da nun – verständlicherweise! – die gefundenen DES-Konzentrationen nach Bekanntwerden der ersten Analysenresultate sukzessive kleiner wurden, konnten mittels der üblichen chromatographischen Methoden bald keinerlei positive Proben mehr gefunden werden. Am Kantonalen Laboratorium Zürich wurde deshalb bald nur noch die massenspektrometrische Methode eingesetzt mit dem Resultat, dass eine Reihe von Proben gefunden wurde, welche zwischen 0,1 und 5  $\mu$ g/kg DES bzw. Dienylstilböstrol enthielten. Da unser Laboratorium zu jener Zeit als einziges kantonales Laboratorium mit einem GC-MS Gerät ausgerüstet war, wurden ausschliesslich zürcherische Kälbermäster der Zuwiderhandlung gegen Arti-

kel 35 der Fleischschauverordnung angeklagt.

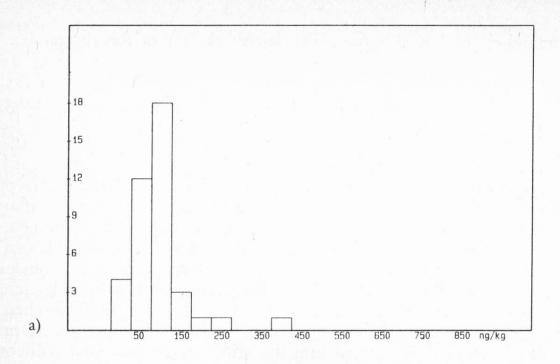
Somit sieht man sich der Situation gegenüber, dass in finanzstarken Kantonen Verstösse gegen Nulltoleranzen häufiger vorkommen als in finanzschwachen Kantonen. Diese etwas drastisch geschilderte, jedoch reale Situation sollte meines Erachtens den Gesetzgeber einmal mehr darauf aufmerksam machen, Nulltoleranzen, auch implizite, in Zukunft zu vermeiden.

# Klare Regelungen - für diffuse Analysenresultate?

Die Aufforderung, klare Regelungen zu treffen, wird an den Gesetzgeber von mehreren Seiten gerichtet. Nicht zuletzt sind es die Vollzugsorgane, die dabei führende Rollen übernehmen. So oft in der lebensmittelanalytischen Fachliteratur von neu- oder wiederentdeckten Verunreinigungen, Rückständen oder gesundheitlich bedenklichen Spurenstoffen die Rede ist, folgt innert Wochenfrist eine meist schriftliche Aufforderung an das Bundesamt für Gesundheitswesen, gefälligst sofort Richtlinien zur Beurteilung zu erlassen und verbindliche «Action Levels» festzusetzen. Das Schlagwort der rechtsgleichen Auslegung von analytischen Befunden ist dabei Hauptargument. Gerade diese erhoffte Klarheit der Interpretation jedoch wird allein durch die Festlegung eines «Grenzwertes» selten erreicht. Die Fragestellung, ob eine Ware bzw. Probe (s. weiter unten!) den gesetzlichen Anforderungen genüge, wurde dabei lediglich umgesetzt in die Frage, ob ein analytisches Resultat höher oder tiefer als der Grenzwert sei. Dass gerade diese Frage oft schwierig zu beantworten ist, zeigen die nachfolgenden Beispiele.

## Genauigkeit und Richtigkeit; Vergleichbarkeit von Resultaten

Als in der Schweiz der Grenzwert für Aflatoxin M<sub>1</sub> in Milch auf 50 ng/kg (bzw. 10 ng/kg für Milch für die Säuglingsernährung) festgesetzt wurde, hat die Commission on Food Chemistry der IUPAC an ihrer Sitzung in Wien 1982 in einem Memorandum festgehalten, dass es nach dem damaligen wissenschaftlichen Kenntnisstand keine im Ringversuch geprüfte Methode gebe – und in absehbarer Zeit auch keine geben würde! -, mit welcher solch tiefe Gehalte zuverlässig erfasst werden könnten. Es gab natürlich Chemiker, die behaupteten, Aflatoxin M<sub>1</sub> in Milch mit einer Nachweisgrenze von 2 ng/kg analysieren zu können. Dies mag wohl sogar gestimmt haben – nur nachprüfen liess es sich nicht! Da zu jener Zeit die Arbeitsgruppe «Toxine 2» der Schweizerischen Lebensmittelbuchkommission bereits erste Ringversuche mit tief kontaminierter Milch erfolgreich durchgeführt hatte, wurde beschlossen, in Zusammenarbeit mit holländischen Kollegen einen gesamteuropäischen Ringversuch mit schwach kontaminiertem Milchpulver durchzuführen. Die Herstellung des Milchpulvers und die detaillierten Resultate sind publiziert (1), ein Auszug soll hier lediglich dazu dienen, die Problematik zu illustrieren:


In Abbildung 1a ist die Resultateverteilung der tief-kontaminierten Probe (ca. 100 ng/kg), in Abbildung 1b jene der hoch-kontaminierten Probe (ca. 500 ng/kg) dargestellt.

Diese Bilder zeigen deutlich, dass eine Übereinstimmung von Analysenresultaten nur innerhalb einer grosszügigen Bandbreite erwartet werden kann. Sie wird dann etwas schmaler, wenn man nur die Resultate von geübten, erfahrenen Laboratorien berücksichtigt (2).

Aber auch hier sind immer noch Variationskoeffizienten der Resultate von Labor zu Labor in der Grössenordnung von 30% und mehr Realität. Die hier vorgestellten Resultate dürfen im internationalen Vergleich als sehr gut beurteilt werden, wurden sie doch nicht mit einer einheitlichen, sondern mit mehreren Analysenmethoden und im sehr tiefen Konzentrationsbereich erzielt.

Die Erkenntnis aus diesem und vielen z. T. schlimmer verlaufenen Ringversuchen für die im Vollzug tätigen Analytiker sollte dazu führen, dass Einzelresultate vorsichtig beurteilt werden. Viele Laboratorien nehmen regelmässig an internationalen und nationalen Ringversuchen teil. Mit Stolz wird dann darauf hingewiesen, dass man mit seinen Resultaten innerhalb einer Standardabweichung vom Mittelwert gelegen sei – man analysiere somit richtig und könne «zu seinen Resultaten stehen». Wie sieht die Realität jedoch aus? Zitate aus amtlichen Analysenberichten:

- Orangensaft in Dosen, Bleigehalt 0,31 mg/kg (Grenzwert 0,3 mg/kg): Beanstandung!
- Kakaopulver, Fettgehalt 17% (Anforderung: 18%): Beanstandung!
- Käse, Aflatoxin M<sub>1</sub> 275 ng/kg (Grenzwert 250 ng/kg): Beanstandung!
- Margarine «mit 10% Butter», analytisches Resultat aufgrund des Buttersäuregehaltes: 9,03%: Beanstandung!



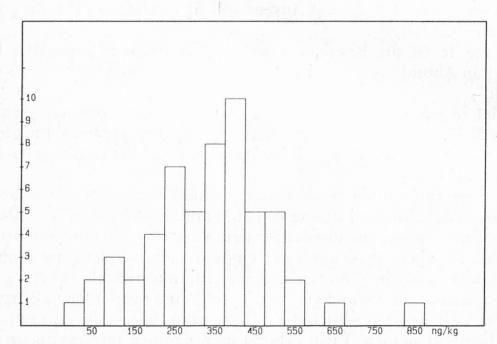



Abb. 1. Ringversuchsresultate mit kontaminiertem Milchpulver:

- a) Muster mit ca. 0,1 µg Aflatoxin M<sub>1</sub> pro kg
- b) Muster mit ca. 0,5  $\mu$ g Aflatoxin M<sub>1</sub> pro kg

X-Achse: gefundener Gehalt, Y-Achse: Anzahl Versuchsteilnehmer mit den entsprechenden Resultatsbereichen

In den hier zitierten Fällen hat man sich offensichtlich überhaupt keine Gedanken über Genauigkeit, geschweige denn über Richtigkeit gemacht!

Mit diesen Beispielen soll illustriert werden, dass es nicht angeht, ein Messresultat «direkt ab Gerät» mit einer Grenzwerttabelle zu vergleichen und «automatische Vollzugsabläufe» auszulösen! Ein erstes «amtliches Zögern» sollte durch die

b)

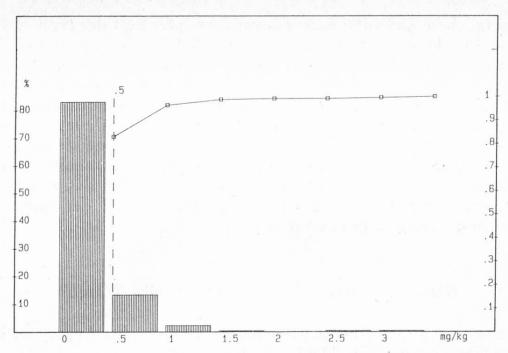



Abb. 2. Bleigehalt in Frucht- und Gemüsekonserven X-Achse: Gehalt in mg/kg, Y-Achse: Prozentsatz der Proben pro Gehaltsgruppe (total 254 Proben) sowie (Skala rechts) die kumulierte Häufigkeit (eingezeichnete Verbindungslinie)

Berücksichtigung der im Messresultat liegenden möglichen Ungenauigkeit verursacht werden!

Wird der Analytiker bereits durch die oben erwähnten Phänomene vor Interpretationsschwierigkeiten gestellt, so sind die Probleme der Analysenrichtigkeit fast unlösbar. Um zu überprüfen, ob der Mittelwert von Mehrfachbestimmungen eines Analysenparameters auch dem wahren Wert entspricht, müsste ein der Probe weitgehend ähnliches Referenzmaterial mit bekanntem Gehalt erhältlich sein. Dies ist in der Regel jedoch nicht der Fall. Man kann sich somit höchstens so nahe als möglich an die Wahrheit herantasten: die Wahl wissenschaftlich anerkannter methodischer Schritte, gute Laborpraxis, Vergleich der Resultate mit denen anderer Laboratorien, anderer Methoden sind Voraussetzungen dafür.

Ein weiteres Beispiel mag dazu dienen, die Konsequenzen möglicher Unrichtigkeiten aufzuzeigen.

In Abbildung 2 sind die Bleigehalte von Frucht- und Gemüsekonserven dargestellt.

Aus dieser Abbildung ist klar ersichtlich, dass Analysenresultate von über 90% aller Proben Bleiwerte von weniger als 0,5 mg/kg zeigten. Falls diese Werte auch richtig sind, kann der beruhigende Schluss gezogen werden, dass 90% aller untersuchten Proben unter dem als Grenzwert ins Auge gefassten Niveau von 0,5 mg/kg liegen.

Sind die Resultate jedoch beispielsweise um 0,2 mg/kg zu tief – dies könnte unter anderem auf unvollständige Extraktion der Proben zurückzuführen sein – sieht die Situation drastisch anders aus. Nur noch gerade 68% aller Proben wür-

den den gesetzlichen Anforderungen entsprechen. Der Rest der Proben wäre als «zu stark mit Blei kontaminiert» zu beurteilen. Solche Aussagen bergen neben wissenschaftlichem Zündstoff – man erinnere sich, wie z. B. Belastungsstatistiken mit Fremdstoffen erstellt werden – selbstverständlich auch wirtschaftliche und letztlich politische Implikationen. Dieser Tragweite muss sich der Analytiker, der nicht nur misst, sondern seine Messungen mit bezug auf das Gesetz interpretiert, bewusst sein. Er muss genau Bescheid wissen, wie ungenau seine Messungen sind, wie weit von der Wahrheit – oder schlimmstenfalls dem allgemeinen Konsens – seine Messungen entfernt sind. Erst mit verantwortungsvoller Beurteilung dieser Messwerte wird es möglich, zu entscheiden, ob diese auf der «guten» oder «schlechten» Seite eines Grenzwertes liegen!

## Klare Regelungen - für Proben oder Waren?

Die Beantwortung dieser Frage ist wahrscheinlich in den Augen der Konsumenten und des Gesetzgebers klar.

Die Regelungen haben den Zustand einer Ware zu umschreiben. Erst wenn wir weiterfragen, wird die Angelegenheit unklar. Eine Probe einer Ware muss doch sicherlich den Anforderungen so gut genügen, wie die Ware selbst, da sie letztlich Teil der Ware ist. Die Probe muss somit selbstverständlich repräsentativ sein. Wir wissen jedoch alle, dass gerade diese letzte Forderung entweder oft unerfüllbar ist und wiederum auch deren Erfüllbarkeit nicht beweisbar ist: um die Vermutung, eine Probe sei repräsentativ für ein Warenlos, zu erhärten, müsste das gesamte Los analysiert werden. Es müsste dann bewiesen werden, dass Resultatstreuungen auf die Analytik und nicht auf Inhomogenitäten zurückzuführen sind . . .

Die Beurteilung von Waren läuft somit in der Praxis auf die Beurteilung von Einzelproben hinaus. Schon nur diese ganz kurze Betrachtung zeigt deutlich, dass nicht ohne weiteres von der Beschaffenheit einer Einzelprobe auf den Zustand eines Warenloses geschlossen werden darf. Dies kann durch Beispiele erhärtet werden:

- Der Grenzwert für Aflatoxin B<sub>1</sub> in Nussprodukten beträgt 1 μg/kg (1 ppb). Es ist bekannt, dass dieses Mycotoxin nicht homogen in einem Warenlos enthalten ist, sondern dass nur einzelne Nüsse, diese jedoch zum Teil massiv, kontaminiert sind. Um den durchschnittlichen Aflatoxingehalt einer Nusspartie zu ermitteln, in welcher nur jede tausendste Nuss befallen ist, müssen somit mehrere tausend Nüsse analysiert werden. Die mathematisch-statistischen Betrachtungen zeigen, wie gross eine Probe beschaffen sein muss, um bestimmte Sicherheiten der Aussage zu erzielen (3).
  - Aus den dort berechneten Operations-Characteristics-Kurven kann abgelesen werden, dass sogar bei einer Probengrösse von 10 kg und einer Entscheidungsgrenze von 1  $\mu$ g/kg noch Chargen, welche im Schnitt 5  $\mu$ g/kg Aflatoxin B<sub>1</sub> enthalten, in einem von 10 Fällen als «gut» beurteilt werden!
- Die Bleikonzentration, welche in einer abgetropften Gemüsekonserve nicht überstiegen werden sollte, beträgt gemäss den Empfehlungen des Bundesam-

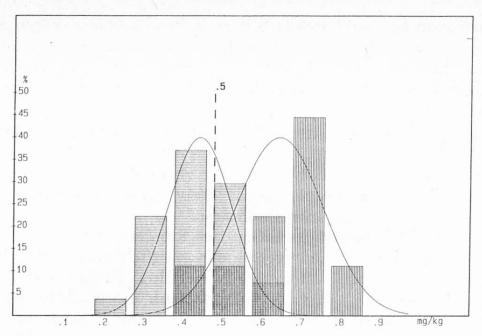
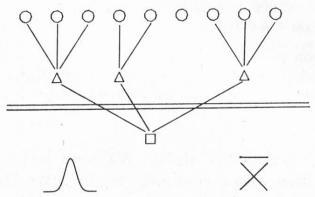



Abb. 3. Bleigehaltverteilung in 2 Chargen Palmherzen in Dosen. Achsenbedeutung wie bei Abbildung 2

Die Inhalte von jeweils 5 Dosen wurden vereinigt, homogenisiert und führten zu einem Analysenresultat. Die eingezeichneten Kurven entsprechen den aufgrund des Mittelwertes und der Standardabweichung berechneten Normalverteilungen

tes für Gesundheitswesen 0,5 mg/kg. Während mehr als 90% aller in der Schweiz hergestellten Konservendosen geschweisste Dosennähte aufweisen, werden noch sehr viele ausländische Produkte in gelötete Dosen abgefüllt. Da jedes Lebensmittel ein gewisses Lösungsvermögen für Metalle aufweist, erstaunt es weiter nicht, dass die Bleikonzentration in einer solchen Konserve im Laufe der Zeit ansteigt.


Sämtliche in Abbildung 2 dargestellten Bleiwerte resultierten aus der Analyse von Einzelproben. Wie repräsentativ ist nun eine einzelne oder 2–5 Dosen bezüglich Bleigehalt für ein Warenlos?

Unser Laboratorium hatte Gelegenheit, die Konzentrationsverhältnisse in zwei Warenlosen genauer abzuklären. Von einer ca. 1 Jahr alten Lieferung Palmherzen in Dosen, von welcher noch ca. 3000 Dosen vorhanden waren, wurden 50 Dosen in 5er-Gruppen analysiert. Die Verteilung der gefundenen Bleiwerte zeigt klar (Abb. 3), dass der grösste Teil der Proben mehr als 0,5 mg Blei/kg enthielt. In einem frisch gelieferten Warenlos lagen die Verhältnisse anders. Nur ca. ein Drittel der Proben enthielt mehr als 0,5 mg Blei pro kg. Diese Resultate sind nun im Lichte der eingangs dieses Abschnittes gestellten Frage zu beurteilen. Soll der zukünftige Grenzwert von 0,5 mg/kg auf einzelne Proben angewendet werden oder auf das Warenlos? Betrifft er den durchschnittlichen Gehalt oder sollte irgendwo spezifiziert werden, wieviel % der

Ware höchstens mehr als 0,5 mg/kg Blei enthalten darf? Die Fragen und die damit verknüpfte Frage der Probenahmepläne beschäftigen zur Zeit auch den Codex Alimentarius. Im Jahr 1984 wurde ein Fragebogen versandt bzw. von den Codex-Ländern diskutiert, worin diverse Möglichkeiten schematisch dargestellt sind.

Die Abbildung 4 zeigt in geraffter und symbolisierter Form die Diskussionsansätze:

- Analyse: Einzel- oder Mischproben zur Analyse?
- Beurteilung: der Einzelresultate (jede Probe muss entsprechen?)
  - des Durchschnittsresultates?
  - der Verteilungsfunktion der Resultate? Die sich daraus ergebenden Möglichkeiten, eine Ware zu beurteilen, sind natürlich vielfältig. Es ist somit nicht erstaunlich, dass die Problematik noch nicht zu Ende diskutiert wurde und es wahrscheinlich noch einige Zeit dauern wird, bis eine Lösung gefunden wird, welcher dann auch noch in der Praxis nachgelebt werden kann.



- Abb. 4. O Einzelne Wareneinheiten (z. B. Verkaufseinheit, Lagereinheit, Transporteinheit)
  - △ Proben, aus einer oder mehreren Einheiten
  - ☐ Analysenresultat aus einer oder mehreren Proben
  - Übrige Erklärungen siehe Text

## Klare Regelungen - Flexible Interpretationen!

Bestehende Zustände zu kritisieren ist leicht. Für jeden Angelpunkt der Kritik lassen sich Beispiele finden. Ich habe mich bemüht, meine Argumente mit Fakten und Situationen, wie sie uns oft begegnen, zu stützen. Was jedoch erwartet wird nach einer Kritik, sind mit Recht Vorschläge, wie man's denn besser machen solle.

Allein die Tatsache, dass der oben erwähnte Fragenkomplex der Probenbeurteilung heute auf breiter Ebene diskutiert wird, zeigt, dass man sich der in diesem Referat behandelten Problematik prinzipiell bewusst ist. Ich glaube jedoch, dass der Versuch, solche Fragen mehr oder weniger losgelöst von der Praxis abstrahiert, generalisiert und global zu beantworten, scheitern muss. Der Ausnahmen

sind zu viele! Ich bin der Meinung, dass die verschiedenen Beurteilungsmodi grundsätzlich gleichberechtigt sind; von Fall zu Fall muss das eine oder andere Vorgehen gewählt werden. Nur dadurch wird es möglich, die vom Gesetzgeber erlassenen Grenzwerte sinnvoll in der Praxis der amtlichen Lebensmittelkontrolle und der Produktionsqualitätskontrolle zu interpretieren! Damit ist auch etwas gesagt, worauf zum Schluss noch näher eingegangen werden soll: die «Interpretation» eines Grenzwertes. Konkret heisst das, sich mit der Frage beschäftigen, ob eine Probe, in welcher eine Komponente nahe oder leicht über dem Grenzwert gemessen wurde, nicht beanstandet oder beanstandet werden sollte und ob die Warenvorräte zu beschlagnahmen seien oder ausverkauft werden dürfen.

Wir haben bereits vor mehreren Jahren versucht darzustellen, was eigentlich unter dem Begriff einer Analyse (in der Lebensmittelkontrolle) unseres Erachtens zu verstehen sei (4).

Bereits dort wurde die enorme Komplexizität der Informationen dargestellt, welche verarbeitet und gewertet werden müssen, um, gestützt auf die rechtlichen Grundlagen, die richtigen, angemessenen Massnahmen zu treffen. Die wesentlichsten Fragen, welche unter anderem gestellt und beantwortet werden müssen, seien noch einmal zusammengefasst:

- Ist die Probe für das zu beurteilende Warenlos repräsentativ?
- Ist sie unverändert an den Untersuchungsort gelangt?
- Wurde sie richtig homogenisiert und/oder aufgeteilt?
- Wie genau ist die Analyse?
- Wie richtig ist die Analyse?
- Können Genauigkeit und Richtigkeit belegt werden? (laborinterne Qualitätskontrolle!)
- Wie gross ist die Chance, dass ein Kollege innerhalb von + x % denselben Wert findet («Oberexpertisen»!)?

Spätestens hier wird klar, dass der Chemiker im Vollzug der Lebensmittelgesetzgebung nicht ganz ums Denken herumkommt. Die Tabelle mit den fettgedruckten Grenzwerten ist jetzt nicht mehr wichtigste Entscheidungsgrundlage. Sie nimmt neben den Antworten auf diese gewichtigen Fragen fast einen bescheidenen Platz ein! Damit kann ebenfalls verständlich gemacht werden, dass es auch möglich ist, Waren ohne die Existenz von Grenzwerten zu beurteilen: die Kenntnis der Waren - Warenkunde im Sinne des Schulfachs -, der Technologie und ihrer Einflüsse auf das Lebensmittel in Verbindung mit den Antworten auf die obigen Fragen lassen es beispielsweise ohne weiteres zu, das Vorkommen von 100 mg/kg Naringin in einem sogenannten «reinen» Orangensaft als Grapefruitzusatz zu deuten - ohne dass für Naringin ein Grenzwert vorläge. Auch zeigt das Studium der Fachliteratur, dass 0,1% n-Alkane und einige µg/kg Benzo-a-pyren im Speiseöl durchaus natürlicher Herkunft oder zumindest «normal» sein können ohne dass deswegen gleich Grenzwerte verordnet werden müssen! Hüten wir uns vor allzu starkem Rufen nach Grenzwerten. Die Gefahr besteht, dass wir uns damit die Wege, flexibel und intelligent zu handeln, verbauen!

## Zusammenfassung

Mit Hilfe von Beispielen aus der lebensmittelanalytischen Praxis wird der Einfluss von Analysen-Genauigkeit und -Richtigkeit, der Kenntnis der Herkunft und Vorgeschichte der Untersuchungsmaterialien demonstriert. Es wird argumentiert, dass deshalb die Existenz von Grenzwerten die Beurteilung einer Ware nicht abschliessend regeln kann.

#### Résumé

L'influence d'un grand nombre de paramètres sur les résultats de l'analyse des denrées alimentaires est discutée: fidélité et exactitude, origine et «histoire» de la marchandise, homogénéité du lot et échantillon prélevé jouent un rôle, qui est illustré par des exemples pratiques. Sur la base de tous ces facteurs, on constate que l'existence de valeurs limites ne suffit pas à l'appréciation exhaustive d'une marchandise.

#### Summary

The influence of a wide range of parameters on an analytical result in food control is discussed: accuracy and precision, origin and history of the goods, homogeneity of the lot and the analytical sample play a role, which is illustrated with practical examples. It is argued that the existence of legal limits often does not allow the government-chemists to pass a final judgment on the material under examination in view of all the mentioned factors.

#### Literatur

- 1. Battaglia, R., von Egmond, H. P. and Schuller, P. L.: Results of a FECS/WPFC cooperation study on the determination of aflatoxin M<sub>1</sub> at low levels in dried milk; Challenges to contemporary dairy analytical techniques. Royal Soc. Chemistry Special Publication No. 49, p. 37–55 (1984).
- 2. Arbeitsgruppe Toxine 2: Amtliche Methoden zur Bestimmung von Aflatoxin M<sub>1</sub> in Milch und Milchpulver, Mitt. Gebiet Lebensm. Hyg. 76, 92–103 (1985).
- 3. Knutti, R. and Schlatter, Ch.: Distribution of aflatoxin in whole peanuts and kernels. Sampling plans for small samples, Z. Lebensm. Unters. Forsch. 174, 122–128 (1982).
- 4. Battaglia, R. und Romann, E.: Der Begriff der umfassenden Analysen in der Lebensmittelkontrolle. Mitt. Gebiet Lebensm. Hyg. 68, 497-503 (1977).

Dr. R. Battaglia Kantonales Laboratorium Fehrenstrasse 15 Postfach CH-8030 Zürich G. Kiss, Zentrallaboratorium des Migros-Genossenschafts-Bundes, Zürich

# Probleme der Rückstandsanalytik – Technische und rechtliche Fragen in der Analysenpraxis lebensmittelverarbeitender Betriebe

Problems of Residue Analysis – Technical and Legal Aspects of the Practice of Residue Analysis in Food Processing Plants

## Einleitung

In hochentwickelten Ländern werden die meisten Erzeugnisse der Landwirtschaft nicht in ihrem Naturzustand konsumiert. Unzählige Betriebe in allen Grössenordnungen befassen sich mit der Be- und Verarbeitung der Urprodukte: Metzgereien, Mühlen, Käsereien, Konservenfabriken, Brauereien, Restaurants, kommunale Wasserwerke usw. Dass derart verschiedenartige Betriebe sehr unterschiedlich gelagerten Rückstandsproblemen gegenüberstehen, liegt auf der Hand. Auf den ersten Blick gleichen die Details dieser Probleme einem Irrgarten. Erst bei genauerem Hinsehen erkennt man darin gewisse Prinzipien und Systeme, welche die Orientierung erleichtern.

Der Begriff «Rückstand» wird im Lebensmittelrecht zunehmend vom übergeordneten, klareren «Fremdstoff» verdrängt. Im allgemeinen Sprachgebrauch wird sich allerdings «Rückstand» noch lange halten. Es sei hier deshalb daran erinnert, dass zwar jeder Rückstand ein Fremdstoff, nicht aber jeder Fremdstoff ein Rückstand ist. So z. B. gehört der Fremdstoff Aflatoxin B<sub>1</sub> nicht zu den Rückständen. Zu den letzteren wären — streng genommen — nur die in den genussfertigen Lebensmitteln zurückgebliebenen Reste landwirtschaftlicher und technischer Hilfsstoffe zu zählen. Alle diese Stoffe werden mit Absicht bei der Produktion von Lebensmitteln eingesetzt. (Eine weitere Absicht, sie bei der Konsumation nicht mehr wiederzufinden, bleibt leider nur ein Wunschtraum.) Tabelle 1 zeigt eine unter praktischen Gesichtspunkten erstellte, inoffizielle Aufteilung jener Stoffe und Organismen, welche den Lebensmittelverarbeitern am meisten Sorge bereiten.

Tabelle 1. Fremdstoffe, Fremdorganismen und Inhaltsstoffe

#### Fremdstoffe

- Schmutzstoffe und Fremdkörper (Steine, Haare, Insektenteile, Nussschalen, Schrauben usw.)
- Gifte von Mikroorganismen (Staphylokokkentoxine, Botulinustoxine, Aflatoxine usw.)
- Rückstände von landwirtschaftlichen Hilfsstoffen, Tierarzneimitteln und Masthilfsmitteln (DDT, Chloramphenicol, DES usw.)
- Rückstände von technischen Hilfsstoffen (Nickel, Perchlorethylen, Dichlormethan usw.)
- Fremdstoffe in Lebensmittelzusatzstoffen (Cyclohexylamin, Methylimidazol, cyclische Polyphosphate usw.)
- Fremdstoffe aus Werkstoffen, Verpackungsmaterialien und Geschirr (Styrol, Phthalate, Cadmium usw.)
- Fremdstoffe aus der Umwelt (PCB, Blei, Quecksilber usw.)
- «Umsatzprodukte» (Benzpyren, Nitrosamine, Diketopiperazin usw.)

#### Fremdorganismen

- Viren
- Mikroorganismen (Krankheitserreger, Fremdhefe, Fremdschimmel usw.)
- Niedere Tiere (Würmer, Milben, Käfer usw.)

Gesundheitsgefährdende oder antinutritiv wirkende Inhaltsstoffe

- Solanin, Safrol, Amygdalin, Phytinsäure, Avidin usw.

Die Grenzen zwischen Rückständen und den restlichen Fremdstoffen sind unscharf. Asbest z. B. kann sowohl aus Filtermaterialien als auch mit dem Strassenstaub in Lebensmittel gelangen. Bei Produktion und Qualitätssicherung müssen Rückstände und Nichtrückstände stets gemeinsam betrachtet werden.

## Verantwortung und Sorgfaltspflicht

Wer eine Rückstandskontrolle auf die Beine stellen will, wird mit unzähligen Fragen personeller, organisatorischer, technischer und – last but not least – finanzieller Art konfrontiert. Ohne die Bedeutung dieser Probleme herunterzuspielen, tut der Verantwortliche gut daran, sich zunächst einmal die ethischen und rechtlichen Aspekte seines Vorhabens zu überlegen. Schliesslich kommt auch für den Lebensmittelverarbeiter das Warum vor dem Wie! Bevor man also Entscheidungen über Umfang und Ausführung der Kontrolle trifft, sollten zumindest folgende zwei Fragen geklärt sein:

- Ist eine Kontrolle überhaupt nötig?
- Wer trägt die Verantwortung?

Die in den «Mitteilungen» kürzlich publizierten Arbeiten über die Belastung der schweizerischen Bevölkerung mit diversen Fremdstoffen durch die Nahrung (1–4) zeigten, dass die Ausschöpfung der ADI-Werte erfreulicherweise nur in Einzelfällen 10 oder 20% erreicht. Dennoch wäre jede Verharmlosung der Rückstandssituation ein verhängnisvoller Fehler! Abgesehen von den Unwägbarkeiten toxikologischer Art darf nicht vergessen werden, dass eine Abschaffung oder Lokkerung der Rückstandskontrolle mit Sicherheit zu Missbräuchen bei der Anwendung von Hilfsstoffen und bei der «Warenverteilung» (kontrollschwache Gebiete ziehen belastete Ware an) führen würde. Der Pegel an erlaubten und unerlaubten Rückständen in der Nahrung würde somit unweigerlich steigen. Deshalb muss die Devise heissen: Wehret den Anfängen! Die Kontrolle der Rückstände ist vor allem aus prophylaktischen Gründen unerlässlich; sie bildet einen Teil des vorbeugenden Gesundheitsschutzes.

Vielschichtiger als die Frage nach der Notwendigkeit scheint jene nach der Verantwortung zu sein. Immerhin ist hier ein fester Ausgangspunkt gegeben: Wer Lebensmittel für andere herstellt oder zubereitet, greift buchstäblich in die Körperfunktionen seiner Mitmenschen ein! Dass er für die Qualität, insbesondere für die Sauberkeit und gesundheitliche Unbedenklichkeit seiner Produkte geradestehen muss, ist eine Selbstverständlichkeit. Das Aufsichnehmen der Verantwortung könnte geradezu als conditio sine qua non des anständigen und kultivierten Lebensmittelverkehrs bezeichnet werden – und es steht ausser Zweifel, dass sich die Lebensmittelverarbeiter in ihrer überwiegenden Mehrheit ihrer Verantwortung auch voll bewusst sind. Es wäre bestimmt interessant, die Wurzeln dieses Verantwortungsbewusstseins hinab in die Tiefen der Seele, bis zu jener Stelle, wo das Gewissen haust, zu verfolgen. Einen solchen Tauchgang müsste man aber wohl den «Fachleuten der Psyche» überlassen.

Ob man will oder nicht: Mit Verantwortung sind stets Pflichten gekoppelt – auch in diesem Fall ist es nicht anders. Die Lebensmittelverarbeiter sind – letzten Endes egal, ob durch eigenen Antrieb oder durch Gesetzeszwang – verpflichtet, bei ihren Tätigkeiten mit einer, dem Gefahrenpotential des Lebensmittelsektors adäquaten Sorgfalt vorzugehen. Die Verpflichtung zur Sorgfalt ist ein Begriff, der die Lebensmittelbranche zukünftig in zunehmendem Masse beschäftigen wird.

Unter den von der Eidgenössischen Ernährungskommission im Februar 1983 zum Thema «Fremdstoffe in Lebensmitteln» herausgegebenen Thesen befindet sich auch diejenige mit dem Titel «Sorgfaltspflicht und Überwachung». Die ersten zwei, den Lebensmittelverarbeiter besonders interessierenden Sätze dieser These lauten: «Der Konsument soll sich darauf verlassen können, dass er vor gesundheitsgefährdenden Schadstoffmengen, die für ihn nicht erkennbar sind, geschützt wird. Es ist die Pflicht aller derjenigen, die Lebensmittel in den Verkehr bringen, auf diesem Gebiet grösste Sorgfalt walten zu lassen».

Diesen klaren Aussagen ist an sich nichts hinzuzufügen. Immerhin verdient der Passus «die für ihn nicht erkennbar sind» besondere Beachtung. Hier wird indirekt festgehalten, dass die Verantwortung des Produzenten bei Lebensmittelbestandteilen, die nur von ihm, nicht aber vom Konsumenten wahrgenommen werden können, besonders gross ist. Denn jenseits der Stelle, wo ihn die Sinnesorgane im Stich lassen, ist der Konsument dem Produzenten im wahrsten Sinne des Wortes ausgeliefert!

Wer nun meint, die Thesen einer bloss beratenden Kommission seien vernachlässigbar, benimmt sich etwas leichtsinnig. Die Sorgfaltspflicht könnte nämlich bald zu einer mehr oder weniger klar formulierten, gesetzlichen Pflicht werden – mit der üblichen Androhung von Strafmassnahmen im Widerhandlungsfall! Im letzten, für «Aussenstehende» noch bekannten Entwurf für das zukünftige Lebensmittelgesetz steht unter dem Titel «Sorgfaltspflicht», als Artikel 19, folgendes:

- «1. Der Hersteller oder Importeur und der Verkäufer müssen den Umständen entsprechend dafür besorgt sein, dass die Lebensmittel, Gebrauchsgegenstände und Stoffe zur Herstellung und Behandlung von Lebensmitteln den gesetzlichen Anforderungen entsprechen. Sie sind verpflichtet, die Ware, die sie in den Verkehr bringen, zu kontrollieren und in angemessener Weise zu untersuchen oder untersuchen zu lassen.
- 2. Die amtlichen Kontrollen entbinden sie nicht von ihrer Verantwortung.»

Nimmt man etwas voreilig an, Artikel 19 des Entwurfes gelange in seinem Sinn unverändert in den endgültigen Text, so lohnt es sich, noch einige Überle-

gungen zum zentralen Begriff «Sorgfaltspflicht» anzustellen.

Es deutet vieles darauf hin, dass selbst die gewissenhaftesten Lebensmittelverarbeiter Artikel 19 mit gemischten Gefühlen betrachten. Sie fragen sich: Wird in Zukunft schon die Verletzung der Sorgfaltspflicht an sich ein Vergehen gegen das Lebensmittelgesetz darstellen? Darf jemand gebüsst werden, wenn er zwar einwandfreie Ware produziert, aber beispielsweise keine lückenlose Pestizidkontrolle vorweisen kann? Oder andersherum: Werden die amtlichen Kontrollorgane zukünftig nicht Waren analysieren, sondern Laborjournale inspizieren? Gegenwärtig wäre es sicher verfrüht, über diese Frage ein Urteil abzugeben. H. H. Schiedermaier vom Bayerischen Staatsministerium des Innern stellte indessen schon 1978 fest (5): «Die Verletzung der Sorgfaltspflicht ist für sich allein noch keine Zuwiderhandlung gegen Lebensmittelrecht. Erst wenn die Missachtung der Sorgfaltspflicht kausal für einen Verstoss gegen Lebensmittelrecht verantwortlich ist, liegt eine mit Strafe oder Geldbusse bedrohte Handlung vor.»

Eine weitere, die Lebensmittelverarbeiter brennend interessierende Frage: Könnte Artikel 19 nicht zu einer totalen finanziellen Überforderung der kleineren Betriebe führen? Die gute alte Warenprüfung durch die Sinnesorgane des Meisters genügt ja gerade wegen der Fremdstoffe nicht mehr; diese können nur in teuren Laboratorien bestimmt werden. Hier droht eine Spaltung der Sorgfaltspflicht, nämlich in eine Sorgfaltspflicht 1. Klasse, nur für finanzkräftige Grossbetriebe, und in eine Sorgfaltspflicht 2. Klasse, für die sog. «Kleinen». Dies hätte aber – abgesehen von der prinzipiellen Ungerechtigkeit – unerfreuliche Konsequenzen: Die Behörden könnten die Produkte der «Kleinen» mit Rücksicht auf

erwähnten Schwierigkeiten larger beurteilen, die Konsumenten könnten die (vermeintlich) besser kontrollierten Produkte der «Grossen» bevorzugen usw.

Die Antwort auf die sehr ernstzunehmende Frage der Überforderung liegt wahrscheinlich im Zusammenrücken der kleineren Betriebe zwecks Errichtung von gemeinsam getragenen Laboratorien bzw. zwecks Verteilung der Kosten für die in auswärtigen Laboratorien durchgeführten Analysen.

Jedenfalls darf sich der Lebensmittelverarbeiter nicht auf den Standpunkt stellen, eine Selbstkontrolle wäre angesichts der Existenz staatlicher Kontrollorgane unnötig. Und wer sogar darauf spekuliert, dass ihn ein gelegentliches Erwischtwerden immer noch billiger kommt als die Kosten einer ständigen Überwachung, der betreibt ein gefährliches, ja ein verbotenes Glücksspiel! Dies wird vom Absatz 2 des Artikels 19 auch klar zum Ausdruck gebracht.

Bei allem Verständnis für die Sorgen der Lebensmittelverarbeiter sei hier festgehalten: Entscheidend ist nicht das, was ihnen finanziell und in anderer Hinsicht zugemutet werden kann. Entscheidend ist letztlich die Tatsache, dass dem Konsumenten nicht zugemutet werden kann, Lebensmittel zu erwerben, die dem Gesetz nicht entsprechen! Ausserdem profitiert ja der Lebensmittelverarbeiter von der Anwendung landwirtschaftlicher und technischer Hilfsstoffe. Es ist deshalb recht und billig, wenn er für die Kontrolle derselben etwas aufwenden muss. Dies wird er wohl einsehen, selbst dann, wenn er die Sorgfaltspflicht eher als «Sorgfaltszwang» empfindet.

Dass es auch ausserhalb der Lebensmittelgesetzgebung Vorschriften gibt, die geeignet sind, das Verantwortungsgefühl der Produzenten zu intensivieren, dürfte weniger bekannt sein. So werden Lebensmittelverarbeiter, die ihre Produkte direkt an Letztverbraucher abgeben – z. B. Wirte – bezüglich der Eigenschaften ihrer Waren auch vom Obligationenrecht tangiert. Als Verkäufer unterstehen sie der sog. Gewährleistungspflicht (Art. 197 OR): «Der Verkäufer haftet dem Käufer sowohl für die zugesicherten Eigenschaften als auch dafür, dass die Sache nicht körperliche oder rechtliche Mängel habe, die ihren Wert oder ihre Tauglichkeit zu dem vorausgesetzten Gebrauche aufheben oder erheblich mindern. Er haftet auch dann, wenn er die Mängel nicht gekannt hat.» Niemand wird bestreiten, dass etwa eine stark mit Rückständen belastete Pizza Mängel aufweist, die ihre Tauglichkeit als Nahrungsmittel erheblich mindern.

Am sog. «Gefahrensatz» des Bundesgerichtes (BGE 82 II 28; 93 II 92, 339; 95 II 96) kommt auch der Lebensmittelverarbeiter nicht vorbei. Er lautet: «Wer einen gefährlichen Zustand schafft oder unterhält, ist verpflichtet, die nötigen Schutzmassnahmen zu ergreifen, um Schädigungen Dritter zu vermeiden.» Der Passus «wer einen gefährlichen Zustand schafft oder unterhält» gilt nicht nur für Sprengstoffabriken! Er trifft beispielsweise recht genau die Situation eines Maismüllers, der den aflatoxingefährdeten Platamais verarbeitet.

Ein Blick über die Grenzen, etwa in den EG-Raum, zeigt, dass dort die Verantwortung der Produzenten sehr ernst genommen wird. So wurde kürzlich eine neue EG-Richtlinie über die Produktehaftpflicht publiziert (Richtlinie 85/374/EWG vom 25.7.1985); danach haftet der Hersteller auch ohne direktes Ver-

schulden für körperliche Schäden, die durch seine fehlerhaften Produkte verursacht wurden. Den Mitgliedstaaten steht es frei, landwirtschaftliche Erzeugnisse zu den «Produkten» zu zählen. Wird die Produktehaftungswelle im «EG-Meer» bald auch die «Halbinsel Schweiz» erreichen? Die Wahrscheinlichkeit dafür ist gross.

#### Praktische Probleme der Rückstandskontrolle

Verständlicherweise befassen sich die meisten Lebensmittelverarbeiter nicht allzu intensiv mit den theoretischen Aspekten der Rückstandskontrolle. Sie gehen direkt zur Sache und versuchen, die Maschenweite ihres Kontrollnetzes festzulegen. Es gilt, die handfesten Probleme des Kontrollumfanges zu lösen:

- Welche Produkte sind
- auf welche Rückstände,
- in welchen Intervallen,
- mit welcher Genauigkeit,
- wie schnell und
- unter welchen Kosten

zu untersuchen?

Jede Suche nach «Patentantworten» auf diese Fragen wäre vergeblich! Es gibt nämlich kaum zwei lebensmittelverarbeitende Betriebe, die sich bezüglich Rückstände in der genau gleichen Lage befinden würden und den genau gleichen Bedarf an Kontrolle hätten. Dafür sind mehrere Faktoren verantwortlich:

- 1. Je nach Branche können die zu verarbeitenden Rohstoffe in ganz unterschiedlichem Masse mit den verschiedensten Rückständen belastet sein. Ein Mineralwasserabfüller hat bei seinen Rohstoffen – Mineralwasser und Kohlendioxid – naturgemäss viel weniger Rückstandsprobleme als ein Biskuitfabrikant, der u. a. mit Mehlen, Fetten, Eiern und Gewürzen arbeitet.
- 2. Der Löwenanteil der Rückstände wird dem Lebensmittelverarbeiter mit den landwirtschaftlichen Rohstoffen beschert den Rest aber fügt er selber seinen Produkten zu! Zum «Hausgemachten» gehören nicht nur die Rückstände der technischen Hilfsstoffe. Erhebliche Bedeutung kommt auch den Werkstoffen und Verpackungsmaterialien, die mit den Produkten in Kontakt geraten, zu. Eine weitere Quelle von ärgerlichen Rückständen bildet der unsachgemässe Einsatz von Vorratsschutz-, Desinfektions- und Reinigungsmitteln.
- 3. Der Verarbeitungsprozess, die Verfahrenstechnik, übt auf den Rückstandsgehalt der Endprodukte oft einen starken Einfluss aus. Bei Raffinationsvorgängen werden die in den Rohstoffen ursprünglich vorhandenen Rückstände reduziert. Einen Zuckerfabrikanten stören die Pestizide in den Rüben kaum, nachdem sein Endprodukt in kristalliner Reinheit ausfällt . . . Konzentrationsund Trocknungsvorgänge erhöhen die Konzentration an schwerflüchtigen Rückständen. Diese Fälle sind speziell dann zu beachten, wenn die Endprodukte nicht in rückverdünnter Form konsumiert werden (z. B. Dörrobst).

Der Einfluss der Hitze auf die Rückstände kann sehr verschieden sein. Die Möglichkeiten reichen von Wirkung Null (z. B. Asbest) bis zur praktisch vollständigen Entfernung (z. B. Hexan).

4. Der Umfang der Rückstandskontrolle hängt merklich von der Homogenität der Rohstoffe ab. Zunehmende Inhomogenität führt zwangsläufig zu vermehrten Kontrollen, es sei denn, die inhomogene Ware lasse sich vor der Pro-

benahme kostengünstig und gründlich durchmischen.

5. Ein weiterer Faktor, der bei der Festlegung des Kontrollumfanges berücksichtigt werden kann - und normalerweise auch berücksichtigt wird -, ist die Vertrauenswürdigkeit der Rohstoff-, Werkstoff- und Packstofflieferanten. Allerdings ist hier grösste Vorsicht geboten! Ganz darf sich der Lebensmittelverarbeiter nie auf seine Lieferanten verlassen, selbst dann nicht, wenn diese über bessere Möglichkeiten zur Rückstandskontrolle verfügen als er selber.

Über den Ausführungsmodus der Rückstandskontrolle gibt es – richtigerweise – keine gesetzlichen Vorschriften. Unter Berücksichtigung der betriebsspezifischen Faktoren steht es dem Lebensmittelverarbeiter frei, eine Risikoanalyse nach eigenem Gutdünken, nach seinem gesunden Menschenverstand vorzunehmen. Auf diese Weise lässt sich dann meistens ein massgeschneiderter, effizienter und wirtschaftlich tragbarer Kontrollplan aufstellen. Dieser muss natürlich verbindlich sein, sollte jedoch nicht zum Dogma erstarren! Die sich erfahrungsgemäss ständig ändernde Rückstandsszene verlangt nach Anpassungsfähigkeit.

Jeder Kontrollplan hat drei, aus der Sicht des Lebensmittelverarbeiters besonders markante Eckpfeiler: Die Probenahme, die Analyse und das Resultat. Keiner

davon ist frei von Problemen!

So setzen die finanziellen Möglichkeiten des Lebensmittelverarbeiters, der keine selbstzerstörerischen Absichten hat, der Probenahme enge Grenzen. Allein schon deshalb wird die Rückstandskontrolle immer nur Stichprobenkontrolle bleiben! Doch wer seine Produkte regelmässig wenigstens stichprobenweise kontrolliert, tut das Menschenmögliche und braucht sich nichts vorzuwerfen. Dass diese Feststellung nicht etwa auf eine Rechtfertigung der Verantwortungslosigkeit hinzielt, zeigt schon ein einfaches Beispiel. In der Schweiz werden jährlich ca. 18 000 t Kopfsalat konsumiert; diese Menge entspricht etwa 60 Millionen Salatköpfen. Wollte man nur jeden tausendsten Kopf in die Kontrolle einbeziehen, müsste man jährlich 60 000 Einzelproben – d. h. ganze Salatköpfe – erheben! Nach Ansicht der Expertengruppe, die das Kapitel «Pestizidrückstände» des Lebensmittelbuches bearbeitet, wären pro Tonne Ware mindestens 10 Einzelproben zu erheben; dies ergäbe sogar 180 000 Salatköpfe im Jahr! (Gerechtigkeitshalber wäre noch zu erwähnen, dass im Laboratorium nicht jede Einzelprobe einzeln analysiert wird.)

Eine wirklich lückenlose Rückstandskontrolle und damit eine hundertprozentige «Aufklärungsquote» bei Missbräuchen ist also nicht möglich. Dennoch: Auch Stichproben zeigen Wirkung! Vor allem dann, wenn sie konsequent zur Selektion der Lieferanten und zur Optimierung der eigenen Produktionsweise benutzt werden.

Die eigentliche analytische Laborarbeit hat womöglich noch mehr Tücken als die Probenahme. Rückstandsanalyse ist Spurenanalyse und im Reich der Einheitenzwerge ppm, ppb und ppt herrschen andere Gesetze als in höheren Konzentrationsgefilden. Die Suche nach der Stecknadel im Heuhaufen ist, verglichen mit der Arbeit des Rückstandsanalytikers, ein Kinderspiel. Im ersten Fall weiss man wenigstens, dass sich im Heuhaufen ein einziges, bekanntes Objekt befindet; der Analytiker sucht dagegen oft nach einer unbekannten Anzahl unbekannter Substanzen!

Heute müssen – unter dem Diktat der gesetzlichen Grenzwerte – unvorstellbar niedrige Konzentrationen an Rückständen bestimmt werden. Dabei kann es vorkommen, dass die Umgebung der Probe – etwa das Lösungsmittel – mehr vom zu bestimmenden Stoff enthält als die Probe selbst! Zudem führen gewisse Lebensmittel-Rückstand-Kombinationen zu äusserst dürftigen Wiederfindungsraten. Trotz hochmoderner Gerätschaft und erfahrenem Personal ist es nicht zu vermeiden, dass mit sinkendem Konzentrationsbereich, mit näherrückender Nachweisgrenze die Zuverlässigkeit, ja die Glaubwürdigkeit der Analysenresultate stetig abnimmt. Diese Tatsache tritt besonders drastisch bei Ringversuchen zutage – manch stolzes Laboratorium hat dabei schon böse Überraschungen erlebt!

Nach dem Bundesgesundheitsamt der BRD ist beispielsweise bei chlorierten Kohlenwasserstoffen um 0,1 ppm herum mit einem Streubereich von 50% zu rechnen (6). Nach amerikanischen Angaben liegt die «coefficient of variation» im für Rückstände üblichen Konzentrationsbereich zwischen etwa 10 bis 60% (7).

Schon die Interpretation der eigenen Analysenresultate verursacht dem Lebensmittelverarbeiter oft Kopfzerbrechen. Noch delikatere Situationen können bei amtlichen Beanstandungen entstehen, insbesondere wenn der Grund der Beanstandung in einer nur geringfügigen Überschreitung eines gesetzlichen Grenzwertes liegt. Befindet sich der amtliche Befund im analytischen Streubereich, so ist die Beanstandung im juristischen Sinn unberechtigt, da der Nachweis einer tatsächlichen Überschreitung des Grenzwertes nicht mit hinreichender Sicherheit erbracht werden kann. Unser Lebensmittelverarbeiter darf in einem solchen Fall getrost auf die Anwendung des Grundsatzes «in dubio pro reo» hoffen.

Schlägt nun das Laboratorium wegen erhöhter Rückstandsgehalte Alarm, so beginnt eine hektische, «postanalytische» Phase schwieriger Entscheidungen. Nicht selten geht es dabei um das Schicksal eines Warenloses im Werte von vielen Tausend Franken! Dementsprechend verschiebt sich die Zuständigkeit vom Laboratorium in Richtung Marketing und Direktion. Welche Möglichkeiten verbleiben den Verantwortlichen?

1. Eine «Reinigung» der betroffenen Charge, d. h. die Entfernung der Rückstände, ist nur in Ausnahmefällen unter hohem Kostenaufwand möglich. Die relativ billige, mechanische Aussortierung kommt hier selbstverständlich nicht in Frage.

2. Die Charge kann – sofern es sich um einen Rohstoff handelt – zurückgewiesen und an den Lieferanten refüsiert werden. Auch diese, an sich naheliegende

Lösung ist nicht immer realisierbar: Bei gewissen Rohstofflieferanten besteht auf eine Rückerstattung des Kaufpreises keine Hoffnung.

3. Manchmal kann die Charge ins Ausland verkauft werden. Die Fragwürdigkeit dieses Abschiebens nach dem Motto «aus dem Auge, aus dem Sinn» ist offenkundig.

4. Die Charge kann einer Verwendung ausserhalb der menschlichen Ernährung zugeführt (Futtermittel, Kosmetika usw.) oder schlimmstenfalls vernichtet werden.

5. Unter Umständen kommt eine «Verdünnung» der Charge in Betracht. Darunter ist entweder die Vermischung der Charge mit einwandfreien Partien oder ihre Verwendung in Endprodukten, bei denen ihre Anteile sehr niedrig liegen, zu verstehen. All dies dient dem Zweck, den Rückstandsgehalt der genussfertigen Endprodukte unter den Grenzwert zu drücken. Die Rettungsmassnahme «Verdünnung» ergibt — sofern sie korrekt ausgeführt wird — ein rechtlich kaum anfechtbares Endprodukt. In ethischer Hinsicht scheint sie allerdings weniger problemlos zu sein.

Hin und wieder kommt es zu echten Härtefällen, bei denen der Lebensmittelverarbeiter massiven finanziellen Verlusten gegenübersteht. Welch enormer Versuchung er dabei ausgesetzt ist, die Ware trotz Rückstandsbelastung in den Verkauf zu schleusen, können Aussenstehende kaum vorstellen. So entwickelt sich ein solcher Härtefall manchmal zu einer «moralischen Feuerprobe».

Die Kosten der Rückstandskontrolle sind auch ohne Härtefälle hoch genug. Nach Angaben aus der BRD (8) wird man bei der personellen Dotierung eines Rückstandslabors einen Akademiker und vier Hilfskräfte vorsehen müssen. Dies bedeutet jährliche Personalkosten in der Grössenordnung von 300 000 DM. Die Mindestausstattung des Laboratoriums mit Geräten beläuft sich auf 300 000 bis 400 000 DM. Auch in der Schweiz präsentiert sich die Kostensituation ähnlich. In vielen Fällen ist es aber so, dass der Betrieb ohnehin schon über ein Laboratorium für die Qualitätskontrolle verfügt. Darin lässt sich meistens auch die Rückstandskontrolle integrieren. Auf diese Weise kommt man mit weniger als fünf (zusätzlichen) Personen aus. Als Faustregel kann gelten: Die Rückstandskontrolle ist mit ca. 100 000 Franken pro Person und Jahr zu budgetieren.

## Ausblick

Kontrolle ist nötig, aber sie ist nicht alles. Rückstandsarmut lässt sich nicht in die Ware hineinkontrollieren; sie muss von verantwortungsbewussten Fachleuten mühsam erkämpft werden. Die Lebensmittelverarbeiter stehen mitten in diesem, wahrscheinlich nie endenden Kampf und können bereits auf zahlreiche kleinere und grössere Erfolge zurückblicken. Zur Veranschaulichung seien hier nur vier Beispiele genannt:

1. Die anrüchigen chlorhaltigen Lösungsmittel, wie Methylenchlorid oder Perchlorethylen, werden nach und nach durch harmlosere Substanzen, wie Ethylacetat oder Kohlendioxid, ersetzt.

2. Ein grosser Teil der heutigen Filter ist asbestfrei.

3. Die Fetthärtung mit Nickelkatalysatoren bekommt immer mehr Konkurrenz in Form der Umesterung und der Fraktionierung.

4. Die schweiz. Konservendosen sind heute praktisch bleifrei.

Der Einfluss der Lebensmittelverarbeiter macht sich auch ausserhalb der Betriebe, auf den Feldern und in den Ställen bemerkbar. Viele Betriebe arbeiten mit «Vertragsbauern» zusammen und geben diesen Vorschriften über die Anwendung der Pestizide, Düngemittel, Futterzusätze usw. ab. Von dieser Partnerschaft kann der Konsument einen positiven Einfluss auf die Rückstandssituation erwarten.

Obwohl noch viele Probleme einer Lösung harren, darf man heute mit einiger Sicherheit behaupten: Die Rückstände von Substanzen, die absichtlich bei der Produktion von Lebensmitteln eingesetzt werden, zeigen eine gleichbleibende bis abnehmende Tendenz. Die «grossen Zeiten» der Rückstände scheinen vorbei zu sein.

## Zusammenfassung

Die Rückstandskontrolle gehört zur Sorgfaltspflicht der Lebensmittelverarbeiter. Einige ethische und rechtliche Aspekte dieser Pflicht werden diskutiert. Neben Problemen des Kontrollumfanges, der Probenahme, der Analyse und der Resultate wird kurz auf die Kostensituation eingegangen. Es wird ferner auf die bisher erreichten Erfolge der Lebensmittelverarbeiter im Kampf gegen die Rückstände hingewiesen.

#### Résumé

Le contrôle des résidus fait partie du devoir de vigilance des fabricants de denrées alimentaires. Quelques aspects de ce devoir sur les plans éthique et juridique sont discutés. A côté des problèmes concernant l'ampleur des contrôles, le prélèvement des échantillons, l'analyse et les résultats est abordée brièvement la situation des frais. En outre, il est fait mention des succès obtenus jusqu'à présent par les fabricants de denrées alimentaires dans la lutte contre les résidus.

# Summary

Residue control belongs to the duties of food processors. Some ethical and legal aspects of this duty are discussed. Problems of sampling, size of the control, analysis, results and costs are treated. Positive results of food processors in the fight against residues are mentioned.

#### Literatur

- 1. Zimmerli, B. und Knutti, R.: Untersuchung von Tagesrationen aus schweizerischen Verpflegungsbetrieben. I. Allgemeine Aspekte von Zufuhrabschätzungen und Beschreibung der Studie. Mitt. Gebiete Lebensm. Hyg. 76, 168–196 (1985).
- 2. Knutti, R. und Zimmerli, B.: Untersuchung von Tagesrationen aus schweizerischen Verpflegungsbetrieben. III. Blei, Cadmium, Quecksilber, Nickel und Aluminium. Mitt. Gebiete Lebensm. Hyg. 76, 206–232 (1985).
- 3. Schoch, U. und Schlatter, Ch.: Gesundheitliche Beurteilung von Hexachlorbenzol-Immissionen. Mitt. Gebiete Lebensm. Hyg. 76, 233-259 (1985).
- 4. Wüthrich, C., Müller, F., Blaser, O. und Marek, B.: Die Belastung der Bevölkerung mit Pestiziden und anderen Fremdstoffen durch die Nahrung. Mitt. Gebiete Lebensm. Hyg. 76, 260-276 (1985).
- 5. Schiedermaier, H. H.: Die Sorgfaltspflicht des Unternehmers im Lebensmittelverkehr. Lebensmittelchem. gerichtl. Chem. 33, 45-49 (1979).
- 6. Mitteilungen aus dem Bundesgesundheitsamt: Untersuchungsmethoden zur Bestimmung der Rückstände von Chlorkohlenwasserstoff-Pestiziden in oder auf Lebensmitteln tierischer Herkunft. Dtsch. Lebensm. Rdsch. 70, 406–409 (1974).
- 7. Horwitz, W., Kamps, L. R. and Boyer, K.W.: Quality assurance in the analysis of food for trace constituents. J. Assoc. Offic. Anal. Chemists 63, 1344–1354 (1980).
- 8. Thier, H.-P.: Rückstände von Pflanzenschutz- und Vorratsschutzmitteln in Rohstoffen und Lebensmitteln; kritische Betrachtung von Methoden, Auswertung von Ringversuchen, Kostensituation. In: Rückstände und Verunreinigungen in Rohstoffen und Lebensmitteln, Band 7 der Schriftenreihe Lebensmittelchemie, Lebensmittelqualität, S. 31–50, Hrsg.: Fachgruppe Lebensmittelchemie und gerichtliche Chemie in der GDCh. B. Behr's Verlag, Hamburg 1984.

Dr. G. Kiss
Zentrallaboratorium des MigrosGenossenschafts-Bundes
Postfach 266
CH-8031 Zürich

L. T. Avigdor, La Tour-de-Peilz

# Présence de contaminants dans les aliments et conformité légale au niveau des échanges internationaux

Contaminants in Processed Food: Legal Compliance in International Trade

## Introduction

La libre circulation d'une denrée alimentaire d'un pays à l'autre soulève de nombreux problèmes d'ordre technique mais, avant tout, de conformité légale. Cela est vrai, qu'il s'agisse d'une denrée à l'état brut, ou semi-manufacturée,

p. ex. un prémélange, ou d'un produit fini préemballé.

En ce qui concerne les contaminants, les problèmes sont d'une part d'ordre analytique (divergence des méthodes de dosage et d'échantillonnage ou absence de méthodes de référence) d'où la difficulté de prouver en temps utile, vu que la marchandise est souvent périssable, qu'un lot n'est pas conforme et peut être rejeté. Les difficultés peuvent être d'ordre technologique. Il suffit de rappeler les transformations que peut subir un produit, d'excellente qualité au départ, si le délai d'acheminement est trop long ou si les conditions d'entreposage (température, humidité et lumière) sont défavorables. Un exemple classique est la dissolution de l'étain dans un produit conditionné dans une boîte en fer-blanc (1, 2). Dans certaines conditions les microorganismes peuvent être une cause importante de modification d'un aliment, mais ces agents, exception faite des mycotoxines, ne feront pas l'objet de ce travail.

Les problèmes de conformité légale, qui assure la salubrité des aliments, sont nombreux sur le plan national mais leur complexité ne fait que s'accroître dès qu'il s'agit d'échanges internationaux. Un produit fabriqué dans un pays «A» devra être conforme aux lois du pays «B» où il sera commercialisé. La plupart des difficultés résident dans le fait que les normes alimentaires ou exigences légales, soit divergent beaucoup d'un pays à l'autre, soit (et c'est souvent le cas pour les contaminants) elles présentent des lacunes ou elles sont inexistantes.

## **Définitions**

Il est difficile d'aborder les problèmes des échanges internationaux sans quelques remarques concernant la nomenclature et la définition du terme «contami-

nant», puisqu'elles varient d'un pays à l'autre.

L'analyste dose le résidu de la substance qui contamine l'aliment et on a tendance, dans le langage courant, à appeler tout simplement «résidus» les contaminants ou substances indésirables, inévitables, fortuites, présentes en quantités négligeables dans le produit alimentaire tel qu'il est offert au consommateur. Contrairement à l'additif et à l'auxiliaire technologique, les contaminants ne sont pas introduits dans la chaîne alimentaire intentionnellement (les pesticides et les médicaments vétérinaires forment une exception). La définition de contaminant recommandée par le Codex Alimentarius de la FAO/OMS peut être utilisée au niveau des échanges internationaux. Elle a déjà été adoptée soit officiellement, soit dans la pratique courante par différents pays. Le texte de cette définition, de même que la nomenclature utilisée, figurent au tableau 1 (3-5). A titre de comparaison, il semble utile de citer également le texte des définitions du Codex pour l'additif et l'auxiliaire technologique. Pour délimiter notre champ d'application, les différentes catégories de substances indésirables qui nous concernent sont énumérées au tableau 2. La liste n'est pas exhaustive, les contaminants sont regroupés conventionnellement d'après leur origine. Les mycotoxines sont incluses dans l'inventaire mais la contamination par les microorganismes ne fait pas l'objet de cette étude.

# Normes et dispositions légales

Dans un grand nombre de pays, il existe des dispositions légales ou normes pour différentes catégories d'aliments. Ainsi pour les denrées de base (lait, beurre, pain, œufs, etc.) les caractéristiques de composition sont en général très semblables.

Pour les denrées faisant l'objet d'importants échanges internationaux (blé, café, cacao) les normes sont fixées par les experts des associations professionnelles internationales en accord avec les autorités qui les adaptent à la législation nationale. C'est ainsi par exemple que le taux d'humidité est généralement fixé à 13% pour le café en grains et 15% pour le blé tendre. Pour certains produits préemballés, fabriqués traditionnellement depuis plusieurs décennies (par exemple les petits pois en boîtes ou le concentré de tomates) les normes sont très semblables dans la plupart des pays. Pour le chocolat, le taux minimum de solides de cacao est 35%. Les normes et les appellations spécifiques peuvent par contre varier beaucoup pour des produits qui sont devenus de large consommation depuis relativement peu de temps (par exemple les préparations à base de jus de fruits et les desserts). Pour toutes les catégories d'aliments énumérées il existe donc des normes de composition, d'étiquetage, d'emballage et même de microbiologie dans de nombreux pays. Mais en ce qui concerne les contaminants qui, comme

les microorganismes présents dans les aliments peuvent devenir un sujet de santé publique, il n'existe au niveau national et surtout international que très peu de dispositions légales.

Tableau 1. Contaminants: nomenclature et définition

#### Nomenclature

Suisse: - Fremdstoffe und Inhaltstoffe

F: Contaminants

CEE:

- Substances étrangères et composants

Contaminants

RFA: Kontaminantien (Schadstoffe)

CODEX: Contaminants

UK, USA: Contaminants (indirect additives)

## Définition

Aux fins du Codex Alimentarius, l'expression «contaminant» s'entend de toute substance qui n'est pas intentionnellement ajoutée à la denrée alimentaire, mais qui est cependant présente dans celle-ci comme un résidu de la production (y compris les traitements appliqués aux cultures et au bétail et dans la pratique de la médecine vétérinaire), de la fabrication, de la transformation, de la préparation, du traitement, du conditionnement, de l'emballage, du transport ou du stockage de ladite denrée, ou à la suite de la contamination par l'environnement. L'expression ne s'applique pas aux débris d'insectes, poils de rongeurs et autres substances étrangères (3).

(Remarque: Les pesticides et les médicaments vétérinaires sont également des contaminants mais leur présence dans la denrée peut être le résultat d'une action intentionnelle.)

## A titre de comparaison

Additif alimentaire s'entend de toute substance qui n'est pas normalement consommée en tant que denrée alimentaire en soi, et dont l'addition intentionnelle à la denrée alimentaire, dans un but technologique ou organoleptique, peut entraîner son incorporation ou celle de ces dérivés dans la denrée ou peut affecter les caractéristiques de ladite denrée (4).

Un auxiliaire technologique est une substance ou matière, à l'exclusion de tout appareil ou instrument, qui n'est pas consommée comme ingrédient alimentaire en soi, qui est intentionnellement utilisée dans la transformation des matières premières, des denrées alimentaires ou de leurs ingrédients, pour répondre à un certain objectif technologique pendant le traitement ou la transformation et pouvant avoir pour résultat la présence non intentionnelle mais inévitable de résidus ou de dérivés dans le produit fini (Remarque: Il n'affecte pas les caractéristiques du produit fini) (5).

Quel est le rôle joué par les organisations internationales dans le domaine des contaminants (6, 7)? A part le GATT (General Agreement on Tariff and Trade, ou Accord Général sur les Tarifs Douaniers et le Commerce) dont la tâche est de limiter les mesures protectionnistes, plusieurs organisations, soucieuses de faciliter le libre échange et d'assurer la sécurité des aliments, se sont penchées sur les questions d'harmonisation de la législation alimentaire. Il faut avant tout mentionner l'activité que le Codex Alimentarius FAO/OMS des Nations Unies (fondé en 1962) et la CEE, Communauté Economique Européenne (fondée en 1957),

déploient à travers leurs groupes d'experts et par leurs programmes internationaux de surveillance de la contamination alimentaire. Une des tâches des groupes d'experts est d'apprécier, par des évaluations toxicologiques, le risque potentiel pour l'homme d'ingérer pendant une très longue période de très petites quantités d'un contaminant contenu dans une alimentation normale (8, 9).

# Tableau 2. Contaminants des aliments regroupés d'après leurs sources

1. Contamination suite à l'activité agricole et à l'élevage

Pesticides

Mycotoxines et phycotoxines

Nitrates, nitrites, (nitrosamines)

Médicaments vétérinaires (antibiotiques, coccidiostatiques, aides de croissance et sédatifs)

2. Contamination suite à l'activité d'industries autres que l'industrie alimentaire

Les métaux (plomb, mercure, cadmium, étain, arsenic, zinc, cuivre, fer, chrome, aluminium, sélénium)

Les polychlorobiphényles (PCB)

Perchloréthylène (PER)

Pentachlorphénol (PCP)

3. Contamination pendant la fabrication et le stockage des aliments

Hydrocarbures aromatiques polycycliques: benzo-\alpha-pyrene (BaP)

Monomères et additifs de matières plastiques

Détergents et désinfectants

4. Les contaminants de l'eau potable

Les programmes internationaux de surveillance comprennent des enquêtes analytiques (monitoring) et des études d'ingestion potentielle de contaminants. Par exemple le programme UNEP/FAO/OMS est centré sur la contamination par les pesticides organochlorés, les métaux lourds et les mycotoxines. Le tableau 3 donne un aperçu des principales organisations internationales et des documents contenant leurs recommandations. Il mentionne également l'activité des groupes d'experts ainsi que les objectifs poursuivis par les programmes de surveillance de la contamination (10, 11). Seul un nombre très restreint de contaminants a été

Tableau 3. Rôle joué par les organisations internationales: groupes d'experts, programmes de surveillance et études sur la contamination

|            | 8                                                                                                                                             | surveinance et etudes                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>A</i> ) | Organisations  - Codex Alimentarius FAO/OMS (1962) 129 pays membres 30 comités 200 normes                                                     | Documents publiés  - Normes et recommandations  - Codes d'usage                                                                                                                                                                                                                                                                                    | Substances et sujets étudies Pesticides Métaux lourds Médicaments vétérinaires Eau potable p. ex. «en matière d'hygiène», pour les arachides                                                                                                                                                                                                                                                                                                                    |
|            | <ul> <li>Communautés<br/>économiques<br/>européennes<br/>(CEE, 1957)<br/>12 pays membres</li> </ul>                                           | <ul> <li>Méthodes analytiques d'arbitrage</li> <li>Principes d'application de critères microbiologiques</li> <li>«Directives»</li> </ul>                                                                                                                                                                                                           | Critères microbiologiques  Pesticides  Médicaments vétérinaires  PCB  Matériaux d'emballage plastique                                                                                                                                                                                                                                                                                                                                                           |
| <i>B</i> ) | Groupes d'experts  - FAO/OMS: JMPR JECFA  JECVD  - OMS: IARC  - CEE: C. S.  - Conseil de l'Europe (Strasbourg)  - OECDE  - ISO  - FIL  - PAHO |                                                                                                                                                                                                                                                                                                                                                    | Pesticides Métaux lourds et médicaments vétérinaires Médicaments vétérinaires Substances cancérigènes Médicaments vétérinaires, emballages plastique Pesticides, emballage plastique  Méthodologie pour tester substances chimiques Méthodes d'analyse et échantillonnage Méthodes d'analyse et échantil- lonnage produits laitiers + normes Protection des aliments contre la contamination dans les 2 Amériques (conférence août 1985, 145 délégues, 36 pays) |
| <i>C</i> ) | Programmes de surveillance et études — UNEP/FAO/OMS  - IPCS (OMS/UNEP/ILO)  - IARC (OMS) — IAAE/FAO/OMS                                       | Objectifs  Surveillance et études d'ingestion de contaminants des aliments (résultats analytiques et études d'ingestion d'organochlorés, de métaux lourds et de mycotoxines) Risque global des contaminants des: aliments cosmétiques poste de travail  Programme de recherche sur le cancer Etudes sur les risques par l'irradiation des aliments |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

#### D) Quelques abréviations **IMPR** Joint Expert Committee on pesticide residues Joint Expert Committee on food additives and contaminants **IECFA** Joint Expert Committee on veterinary drugs (dès 1986) **IECVD** Centre international de recherche sur le cancer IARC C.S. Comité scientifique de la CEE, sur les denrées alimentaires OECDE Organisation de coopération et de developpement économique ISO International Standard Organisation FIL Fédération internationale laitière Panamerican Health Organisation (Washington D. C.) PAHO United Nations Environment Protection UNEP **IPCS** International Programme on Chemical Safety ILO International Labour Organisation International Agency for Atomic Energy IAAE

l'objet des recommandations des experts (voir tableau 4). Il s'agit des pesticides, métaux lourds, médicaments vétérinaires, PCB, PVC et des contaminants de l'eau potable. Par contre les mycotoxines qui jouent pourtant un rôle essentiel dans la contamination des aliments n'ont pas encore été considérées.

Tableau 4. Contaminants faisant l'objet de recommandations des experts internationaux

Pesticides
Métaux lourds
Médicaments vétérinaires
Monomères PVC
Eau potable (substances organiques et inorganiques)
PCB

Pas encore de recommandations internationales pour: mycotoxines, phycotoxines nitrates, nitrites, nitrosamines perchloréthylène pentachlorphénol benzo-α-pyrène détérgents, désinfectants

Les travaux d'harmonisation de la législation sont surtout avancés dans le domaine des résidus de pesticides. Sur la base de l'avis des experts du JMPR (FAO/ WHO Joint Expert Committee on Pesticide Residues) le Codex a publié des normes («limites pratiques maximum de résidu») concernant 120 pesticides dans 2000 denrées alimentaires. Ces valeurs sont établies sur la base d'essais agricoles contrôlés et en tenant compte de l'évaluation toxicologique (fixation d'une dose journalière acceptable ou DJA de la substance chimique) (12, 13). A part ces normes la FAO a publié un «Code international pour la distribution et l'usage des pesticides» ainsi que des «Directives pour l'harmonisation des procédures d'enregistrement des pesticides». La CEE a fixé un certain nombre de normes dans ses directives sur les résidus de pesticides dans les fruits et légumes (1976), dans les aliments d'origine animale et dans les céréales (1980) (14, 15). Les valeurs fixées par le Codex et par la CEE sont assez proches. Un Groupe d'experts du Conseil de l'Europe étudie les risques pour la santé humaine de par l'utilisation de pesticides et il publie des recommandations sur les spécifications, les taux de résidus, les conséquences sur l'environnement, les procédures d'enregistrement et d'homologation, l'efficacité des pesticides sur les récoltes et les modalités d'étiquetage (16).

Pendant la dernière décade les experts se sont penchés sur l'évaluation toxicologique des métaux lourds (17-20). Leurs recommandations sont exprimées sur la base de «doses tolérables temporaires», c'est-à-dire, les quantités d'un contaminant qu'un homme peut ingérer chaque jour ou chaque semaine par une alimentation normale et pendant toute la durée de sa vie, sans risque appréciable pour sa santé. Pour les métaux lourds pouvant s'accumuler dans l'organisme (comme le plomb, le mercure et le cadmium) la dose fixée est hebdomadaire. Une dose journalière ne serait pas un seuil toxicologique approprié. En effet certains aliments peuvent contenir des concentrations supérieures à la moyenne si bien que leur consommation un jour donné augmente considérablement l'apport de ce jour-là (par exemple la consommation sporadique de poisson contenant du mercure). Les doses proposées à titre temporaire par les experts sont résumées au tableau 5. Sur la base de ces doses plusieurs pays ont fixé des limites maximum pour les métaux lourds contenus dans les aliments (à titre d'exemple, pour le plomb, en mg/kg, Suède: lait frais 0,02, foie et rognon 2,0; Canada: lait évaporé 0,15, boissons sans alcool 0,2). Toutefois, sur le plan international, il n'existe que très peu de limites. Le Codex en a fixé uniquement pour le sucre blanc, les graisses et huiles et les jus de fruits. La CEE n'a pas encore fixé de limites pour les métaux lourds.

Les médicaments vétérinaires sont des préparations pharmacologiques utilisées de plus en plus soit pour prévenir et soigner les maladies des animaux, soit pour améliorer leur croissance ou pour les tranquilliser. Ils font également l'objet de travaux du JECFA (FAO/WHO Joint Expert Committee on Food Additives and Contaminants) qui, en attendant de plus amples connaissances scientifiques, fait les recommandations suivantes. Pour les anabolisants artificiels ou analogues (p. ex. le diéthylstilbestrol): interdiction d'emploi compte tenu de leur extrême activité tumorigène. Pour les anabolisants de synthèse, identiques aux naturels (par ex. le 17-beta-oestradiol) qui possèdent la même structure moléculaire que les

hormones secrétées par un organe vivant: utilisation temporaire suivant de bonnes pratiques vétérinaires et de l'élevage. Compte tenu de l'importance croissante des médicaments vétérinaires, le Codex a décidé de créer un nouveau Comité d'experts dont les activités débuteront en octobre 1986 (21, 22).

Tableau 5. Métaux lourds: évaluation toxicologique

| Critères de base                                      | Doses fixées                                                                            |  |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------|--|
| 1. Accumulation dans l'organisme                      | Dose hebdomadaire<br>en mg/personne adulte<br>plomb 3<br>mercure 0,3<br>cadmium 0,4-0,5 |  |
| 2. Pas d'accumulation dans l'organisme                | Dose journalière<br>en mg/kg poids corporel<br>étain 2<br>arsenic 0,002                 |  |
| 3. Nutriments essentiels mais toxiques à hautes doses | Dose journalière en mg/kg poids corporel cuivre 0,5 zinc 1 fer 0,8                      |  |

Aux recommandations des experts sur les pesticides, sur les métaux lourds et les médicaments vétérinaires, il faut ajouter celles du Comité scientifique de la CEE, concernant d'une part l'élimination des déchets de PCB et, d'autre part, la limitation du taux de migration du monomère de PCV dans les aliments (23, 24).

Dans un domaine tout aussi important, puisque l'eau représente l'élément de base pour la fabrication des aliments, il faut mentionner les normes de l'OMS concernant entre autres les contaminants de *l'eau potable* (25).

# Contraintes d'ordre juridique, économique et social

Si les résultats obtenus dans le domaine des normes sur les contaminants semblent disproportionnés par rapport aux efforts déployés depuis plus de 25 ans par les nombreux groupes d'experts internationaux, c'est que *l'élaboration* de normes praticables est un travail de longue haleine.

La présence de pesticides dans les aliments est le résultat d'une action intentionnelle. Ces substances sont en général très bien contrôlées si elles sont utilisées suivant de bonnes pratiques agricoles. Par contre, pour les autres contaminants, la présence dans les aliments est très souvent fortuite, et difficilement contrôlable: une analyse «risque contre avantage» n'est pas possible. Certains contaminants sont devenus depuis relativement peu de temps un problème de santé publique: par exemple, l'exposition à l'ingestion de métaux lourds est devenue l'objet d'études très poussées par les scientifiques et les autorités surtout à partir des années '60. Nous rappelons les intoxications par le plomb des enfants des quartiers pauvres de New York, léchant les peintures au minium, les graves accidents dûs à l'absorption de mercure à Minamata ou le syndrome Itai-Itai causé par le cadmium. Depuis les années '60 les techniques analytiques ont avancé très rapidement (26) et, ont permis de déceler un nombre croissant de substances présentant un risque potentiel dans les aliments. Toutefois, les méthodes d'échantillonnage sont encore peu fiables, compte tenu de l'extrême variabilité du taux de contaminants dans le même lot. Par exemple, dans le cas de mycotoxines, on évalue que le 80% des écarts des résultats d'analyse sont imputables à l'échantillonnage et 20% à la méthode d'analyse. Pendant la même période l'ensemble des études visant à apprécier le risque (batterie de tests toxicologiques et estimation de l'ingestion) n'a fait que devenir plus compliqué et onéreux, mais les moyens à disposition restent les mêmes ou sont limités pour des questions budgétaires.

Sur la base des différentes études, en principe trois alternatives se présentent aux autorités sanitaires. Mesures d'interdiction: par exemple l'interdiction par la Suède d'utiliser le cadmium dans les matériaux d'emballage destinés aux aliments, ou bien l'interdiction par les USA d'utiliser les PCB dans les appareils électriques placés à proximité de la fabrication des aliments. Mesures de limitations: fixer des limites ou tolérances maximum de résidus dans les aliments. Ne pas fixer de limites, mais intensifier les contrôles quand les taux de résidus ne

semblent pas présenter un danger pour la santé publique.

Pour l'application de ces mesures les compétences des autorités sanitaires sont limitées, puisque dans la plupart des pays les pouvoirs sont partagés entre deux ou trois ministères. Pour les contaminants industriels (par exemple le cas du cadmium en RFA) (27) la contamination peut être limitée à une région très spécifique du pays. Il faut tenir compte des réalités économiques. (Par exemple, aux USA, un abaissement des limites de tolérance du PCB dans le poisson de 5 à 2 µg par kg, aurait correspondu à une perte économique de 22 à 500 millions de \$ suivant les évaluations officielles. Egalement aux USA, la limite proposée par le FDA pour l'aflatoxine dans les stocks de tourteaux de coton, très contaminés, a été portée de 20 à 300 µg par kg pour empêcher une perte totale de 11 millions de \$, ce qui a permis l'emploi des tourteaux comme fourrage sous certaines conditions, étant donné que les taux de résidus étaient inférieurs à cette limite.)

Sur le plan international, l'application des normes se heurte d'abord aux con-

traintes d'ordre juridique.

En principe, une directive de la CEE (comme par exemple celles sur les additifs: antioxygènes, conservateurs, émulsifiants et colorants) est contraignante

pour les états membres. Mais celles concernant les résidus de pesticides (les seules de la CEE pour les contaminants) ont un caractère optionnel ou facultatif. Les normes du Codex sont des recommandations que les pays membres peuvent accepter intégralement dans leur législation ou bien avec des dérogations spécifiques. Les groupes d'experts sont des organes consultatifs: les résultats de leurs travaux, même s'ils débouchent sur des limites chiffrables, ne représentent que des avis. Les programmes des Nations Unies de surveillance de la contamination ne sont qu'une excellente source d'information avant tout pour le scientifique et pour le législateur.

(Remarque: même si toutes ces mesures n'ont pas force de loi les travaux d'harmonisation ont des mérites indubitables. Le Codex est le seul forum international où scientifiques, législateurs, représentants de l'industrie et des consommateurs peuvent dialoguer afin de parvenir à une harmonisation de la législation. Les documents publiés, qu'il s'agisse de normes, de codes d'usage, de méthodes analytiques ou critères microbiologiques, sont préparés par les experts et entérinés seulement après de nombreuses consultations entre tous les partenaires. Compte tenu de ces garanties, ces documents peuvent dans certains cas être acceptés intégralement et servir d'instruments juridiques surtout pour les pays qui ne possèdent pas de législation ou dont les prescriptions existantes sont insuffi-

santes.)

A part les difficultés d'ordre juridique, l'application des recommandations des experts se heurte aux profondes divergences du contexte social et économique existant entre pays industrialisés et pays en voie de développement. De plus en plus, à cause de la dénatalité, des progrès de la technologie et de l'agriculture, certaines régions du monde deviennent des sociétés de consommation et de surplus tandis que d'autres, souvent à cause de la surpopulation, des guerres et des catastrophes naturelles, sont durement éprouvées par la pénurie alimentaire et l'endettement. Pendant la dernière décennie ces divergences n'ont fait que s'accentuer. Une des raisons est la forte augmentation (+ 200%) du volume des échanges internationaux de denrées alimentaires, accompagnée par une diminution (-20%) des prix au niveau international. Cette baisse des prix touche surtout les denrées de grande consommation dont l'exportation est souvent la seule source de devises pour certains pays producteurs. Le tableau 6 (28, 29) illustre à travers quelques chiffres, le contexte général. Il faut également mentionner les pertes considérables de denrées par manque de conformité légale en raison de l'absence, dans certains pays exportateurs, d'un système de contrôle opérationnel de denrées. Quelques cas sont illustrés au tableau 7.

# Cheminement des produits et action du fabricant

C'est dans ce contexte difficile et dans le cadre des accords commerciaux que se déroulent souvent les échanges internationaux. Si nous nous plaçons dans la position d'un fabricant européen, dans le cas le plus simple, un produit fabriqué

dans un pays «A» est exporté directement dans le pays «B» où il est distribué soit directement, soit par l'intermédiaire d'un agent. Dans ce premier cas le produit n'aura franchi qu'une barrière (du pays A au pays B). Mais il est bien connu qu'en pratique le produit préemballé tel qu'il est présenté au consommateur a suivi un cheminement compliqué par les barrières à franchir. Le nombre de ces barrières dépend de la multiplicité des ingrédients utilisés, du nombre de leurs pays de provenance et de la destination finale du produit manufacturé.

Tableau 6. Contexte général des échanges internationaux de denrées alimentaires (période 1962–1982)

| Contexte dans<br>pays industrialisés:                                                                | Progrès de technologie<br>et agriculture,<br>dénatalité | Contexte dans<br>pays du tiers-monde:                                  | Guerres, catastrophes<br>naturelles,<br>surpopulation,<br>contrôle des denrées<br>insuffisant |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Exemples:                                                                                            |                                                         | Exemple:                                                               |                                                                                               |
| CEE                                                                                                  |                                                         | Afrique                                                                | P. Paris I. V.                                                                                |
| Démographie + 0,7% Production + 2,0%  USA                                                            |                                                         | Démographie + 2,6% Volume exportations + 0% Volume importations + 300% |                                                                                               |
| Nombre de produits alimentaires disponibles sur le marché: ~ 2000 (ils étaient environ 100 en 1900!) | surplus,<br>«société de<br>consommation»                |                                                                        | pénurie<br>alimentaire,<br>endettement                                                        |

Prenons le cas pourtant simple des produits chocolatés pour lesquels au moins une ou deux matières premières (la fève de cacao et le sucre) proviennent d'un autre continent. Le tableau 8 représente le cheminement de deux produits et met en évidence le nombre de barrières à franchir. Dans le premier cas (2 barrières) un seul ingrédient, le cacao est importé du pays A au pays C où le produit est fabriqué et emballé avant d'être exporté, pour la distribution, au pays D. Dans le deu-

xième cas (4 barrières), en plus du cacao importé du pays A au pays C, le sucre sera importé du pays B au pays C. Le produit prémélangé au pays C, sera exporté en D pour la fabrication, puis en E pour l'emballage et la distribution.

Tableau 7. Exemples de contrôle insuffisant des denrées alimentaires

Cas no 1 Procédure d'enregistrement d'un pesticide seulement 3 pays sur 23 (13%) en Amérique latine et 2 pays sur 36 (6%) en Afrique exigent la présentation d'un dossier complet (Agro, chimie, tox, sécurité d'emploi, écologie)

Cas no 2 manque de conformité (contamination chimique ou microbiologique)

Exportation d'Amérique latine aux USA:
de 1980–1891: 2200 lots saisis par la FDA
perte estimée: 125 millions de \$

Tableau 8. Cheminement d'un produit: barrières à franchir

## Exemple: Produit chocolaté

| MATIÈRES PREMIÈRES ET<br>ÉTAPES DU PROCÉDÉ | PAYS EXPORTATEURS<br>DE MATIÈRES PREMIÈRES |   | PAYS FABRICANTS ET DISTRIBUTEURS DU PRODUIT FINI |   |   |
|--------------------------------------------|--------------------------------------------|---|--------------------------------------------------|---|---|
| ÉTAPES DU PROCÉDÉ                          | А                                          | В | С                                                | D | E |
| CACAO                                      | 1                                          |   | 12                                               |   |   |
| SUCRE                                      |                                            | 2 | 1 1                                              |   |   |
| MÉLANGE                                    |                                            |   | 1 2                                              |   |   |
| FABRICATION                                |                                            |   | olg godd 14                                      | 7 |   |
| EMBALLAGE                                  |                                            |   |                                                  |   | 2 |
| PRODUIT FINI                               | e the a                                    |   | กลายเกลา                                         |   | 2 |
| DISTRIBUTION                               | Ture values                                |   | N DE BYSNEROUS                                   | 1 | 2 |

Cas no 1: 2 Barrières à franchir

1 ingrédient (cacao) importé de A en C où le produit est fabriqué et emballé avant d'être exporté, pour la distribution, au pays D

## Cas no 2: 4 barrières à franchir

En plus du cacao importé de A, le sucre est importé de B au pays C. Le produit, prémélangé en C, est exporté en D pour la fabrication, puis au pays E pour l'emballage et la distribution.

La pratique des échanges est beaucoup plus compliquée. Les cas cités à titre d'exemple au tableau 9 mettent en évidence les mesures que l'exportateur sera appelé à prendre en fonction du degré de développement des normes en vigueur dans le pays de destination.

Tableau 9. Exigences légales pour l'exportation d'un produit: différents cas

| Alternatives pouvant se présenter lors de l'exportation                                     | Mesures à prendre par l'exportateur<br>(Objectif: taux le plus bas de contaminants) |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 1. Les normes nationales dans le pays importateur sont définies:                            | appliquer les normes nationales                                                     |
| 2. Seule norme existante dans le pays importateur: «Absence totale de substances toxiques»: | négocier avec les autorités en se<br>référant à une autre législation               |
| 3. Les normes nationales n'existent pas dans le pays importateur:                           | appliquer les normes internationales                                                |
| 4. Il n'existe pas de normes internationales:                                               | appliquer les normes d'un pays de<br>référence (pays exportateur ou p. ex.<br>FDA)  |
| 5. Aucune norme n'existe                                                                    | comme dans les cas précédents:<br>le taux le plus bas de contaminants               |

Pour mener à bien une simple opération d'exportation le fabricant prend en considération dans le cadre de son programme d'assurance de la qualité tous les aspects de la salubrité et de la conformité légale. Les différents paramètres du programme seront fixés bien avant l'achat des matières premières et la fabrication, déjà au stade du développement du produit, en fonction du pays auquel il est destiné. Le programme couvrira le contrôle à toutes les étapes de la chaîne alimentaire et du procédé, jusqu'à la vente au consommateur.

Une liste de contrôle (check-list) contient les spécifications détaillées des matières premières et du produit fini. Il est intéressant de constater que parmi les nombreuses exigences fixées (composition et facteurs de qualité, méthodes d'analyse, gammes de poids, étiquetage, liste d'ingrédients, emballage, tarifs douaniers etc.) avant tout celles concernant l'hygiène (microbiologie) et les contaminants, ont un impact direct sur la santé du consommateur (voir tableau 10). Un produit peut être donc «illégal» sans être pour autant dangereux. Par exemple: le chocolat avec graisse végétale autre que le beurre de cacao, n'est pas «dangereux» mais il

est illégal en Suisse et en RFA. En Suisse on peut appeler glace un produit contenant de la graisse végétale, mais ce produit est illégal en France et en RFA. Une des difficultés majeures du fabricant est d'acheter à un prix concurrentiel, dans les quantités voulues et au moment voulu, un lot de matières premières dont les spécifications correspondent aux exigences de fabrication (technologie) et soient conformes à la législation. Un exemple classique est celui du lait reconstitué. Dans beaucoup de pays (Philippines, Malaisie, Indonésie p. ex.) qui ne produisent pas assez de lait, l'utilisation de lait reconstitué a été généralisée depuis quelques décennies. Les spécifications recommandées pour les deux matières premières de base utilisées, le butter oil ou graisse lactique et le lait écrémé en poudre, sont particulièrement strictes. Quelques paramètres sont indiqués au tableau 11. Il faut ajouter que, suivant le procédé de fabrication du produit fini (mélange à sec ou produit thermisé), les exigences peuvent varier. Pour la microbiologie de la poudre de lait on peut tolérer jusqu'à 1000 germes par gramme pour le mélange à sec mais 50 000 pour le produit thermisé. Le choix du fournisseur des matières premières est primordial. Le fabricant visite et inspecte ses usines (contrôle de la propreté, ses laboratoires, etc.) afin de choisir la mieux habilitée. Pour ce faire il établit pour chaque usine de production des matières premières un protocole d'agréage avec des notes de performance. Il exigera des échantillons représentatifs et des livraisons d'une qualité constante. Il tiendra compte du délai et des conditions d'acheminement puisque les matières premières s'altèrent. L'achat peut s'effectuer directement ou par l'intermédiaire d'un courtier, «broker», qui n'est pas toujours un technicien. Dans d'autres cas l'achat s'effectue par l'entremise exclusive du gouvernement d'un pays. Ce gouvernement fait un appel d'offres et choisit souvent le fournisseur en tenant compte avant tout du prix. Il est difficile dans ces cas d'obtenir un produit dont les spécifications remplissent les exigences de fabrication. Certains pays africains obtiennent des matières premières en donation dans le cadre d'un programme d'aide alimentaire, par exemple par la CEE. Dans ces cas également il est difficile d'avoir un produit conforme.

Tableau 10. Check-list pour la conformité légale d'un produit alimentaire

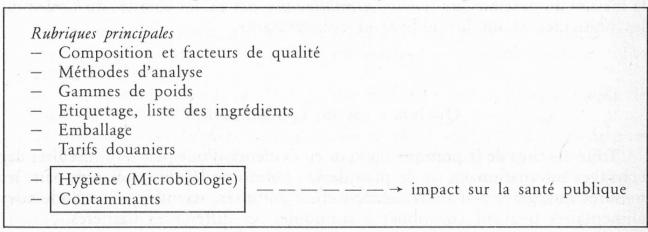



Tableau 11. Lait entier reconstitué: quelques spécifications recommandées pour les matières premières

Graisse lactique

- graisse lactique

humidité

- cuivre et autres métaux

- pesticides

99,8-99,9%

0,06%

20 mg/kg

normes nationales

Poudre de lait écrémé

- Microbiologie!!

- Absence d'antibiotiques

 Absence de TBC + fièvre aphteuse dans cheptel du pays d'origine

- Aflatoxines

Pour assurer la qualité de ses produits, le fabricant collaborera avec les agriculteurs, éleveurs, ingénieurs agronomes, vétérinaires et instituts officiels de contrôle. (Par exemple au moyen de contrats avec les fermiers, il peut intervenir à la source pour obtenir une réduction du taux de nitrates dans certains légumes.) Au niveau de la fabrication il peut diminuer la contamination et modifier certaines technologies par exemple en remplaçant certains pesticides par l'irradiation, ou bien certains solvants d'extraction par le CO<sub>2</sub> en état super critique, ou en remplaçant dans les boîtes en fer-blanc la soudure au plomb par la soudure électronique. Il peut intervenir auprès des industries qui par le déversement des déchets sont responsables de contaminations localisées mais souvent graves (PCB dans l'huile usée et Cd dans les effluents après raffinage du zinc). Par ses contacts avec les scientifiques et les autorités le fabricant suivra les développements dans le domaine de la toxicologie appliquée aux aliments.

Il restera ainsi un interlocuteur valable des responsables de la santé publique, avec lesquels il collaborera, en participant aux tests interlaboratoires et en fournissant des résultats analytiques représentatifs. Enfin le fabricant participera dans la mesure du possible aux *comités internationaux*, par ex. les comités du Codex sur les pesticides et sur les additifs et contaminants.

# Quelques cas de contamination

Trois cas tirés de la pratique mettent en évidence d'une part les difficultés des échanges internationaux sur le plan de la conformité légale et, d'autre part, les mesures qui, grâce à la collaboration entre autorités, scientifiques et industries alimentaires peuvent contribuer à surmonter les différentes barrières.

## Cas no 1: Les nitrates

Les nitrates peuvent être utilisés comme des additifs mais peuvent devenir des contaminants des aliments (voir au tableau 12).

Dans certains pays (en Hollande par exemple), l'addition de nitrates au lait de fromagerie est autorisée pour les fromages salés à la saumure, afin d'éviter des fermentations tardives. Dans d'autres pays l'utilisation de ces sels n'est pas suffisamment contrôlée, c'est ainsi que beaucoup de petits laits peuvent contenir facilement de 1000 à 3000 mg de nitrate par litre.

Pour la fabrication de certains produits diététiques, le taux de nitrates ne doit pas dépasser les 250 mg/kg.

Il a fallu donc plusieurs années à l'industrie alimentaire suisse pour sélectionner un petit lait répondant à ces exigences. En attendant que la qualité des petits laits de provenance de l'étranger s'améliore, il a fallu utiliser exclusivement des petits laits particulièrement pauvres en nitrates, provenant de fabrications suisses.

Tableau 12. Nitrates: rôle d'additifs ou de contaminants

Additifs Dose d'utilisation admise par certains pays (anti-fermentatifs) 200 mg ajoutés au lait de fromagerie

Résidus

Contaminants → 1000-3000 mg/l dans petit-lait

A titre de comparaison:

Limite pratique maximum de résidu admise dans certains produits diététiques → 250 mg/kg

# Cas no 2: Le toxaphène

Dans certains pays africains, cette substance est appliquée directement au bétail, soit par spray, soit par des bains (cattle dipping), afin de combattre les tiques et autres hectoparasites.

Il peut en résulter un taux élevé de résidus dans le lait et dans la viande des animaux traités.

Ne disposant pas de résultats analytiques représentatifs ni de critères de pureté et d'identité pour le toxaphène, qui est un mélange, les experts FAO/OMS n'ont pas pu fixer de DJA et ont recommandé pour ses résidus une limite d'intervention de 0,5 mg kg, ce qui correspond en pratique à la limite de détection de la méthode d'analyse. En Europe et aux USA, cette substance a été remplacée par des organophosphorés et par des carbamates dont la persistance est bien inférieure. Mais nombreux sont les pays dans les régions tropicales et équatoriales, où, le toxaphène est encore utilisé pour des raisons économiques.

Dans un pays africain, après environ 10 ans de pourparlers entre les autorités et les milieux professionnels du lait, on est parvenu à interdire l'utilisation du to-

xaphène (qui est maintenant remplacé par le delnav).

Pendant toute cette période le lait contaminé produit dans le pays ne pouvait

pas être destiné à la fabrication de certains produits laitiers.

Les taux moyens de résidus de toxaphène dans le lait frais (2-8 ppm) dosés avant l'interdiction du pesticide comparés à la limite d'intervention recommandée par les experts (0,5 ppm), sont représentés graphiquement à la figure 1 (30).

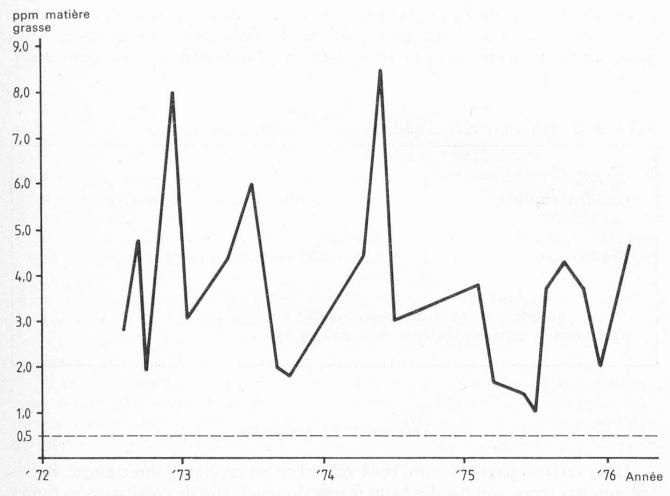



Fig. 1. Taux de résidus de Toxaphène dans le lait frais dans un pays africain. (0,5 ppm = limite recommandée par les Experts).

Cas no 3: Résidus de pesticides dans les produits à base de lait destinés aux nourrissons; en Suisse et en Belgique (période: 1971–1981)

En Suisse, en 1971, d'après l'article 181 de l'ODA, les matières premières destinées à la fabrication d'aliments pour nourrissons et enfants en base âge «ne de-

vaient pas contenir de résidus de pesticides». Cette «tolérance zéro» correspondait environ aux limites de détermination des méthodes analytiques courantes à l'époque (10 ppb pour les organochlorés et 100 ppb pour les organophosphorés). Il est utile de rappeler qu'il était encore difficile de séparer des «couples critiques» comme DDT et PCB, HCB et alpha HCH.

Compte tenu des progrès réalisés dans les méthodes, les autorités estimèrent que le texte de loi pouvait être modifié tout en donnant les garanties de salubrité.

Trois options ont été proposées:

- 1. Fixer pour les produits infantiles des limites max. dix fois inférieures à celles en vigueur pour les produits pour adultes. (Cette option n'a pas été retenue car les limites en vigueur pour les adultes ne reposent pas seulement sur des critères toxicologiques mais également sur une utilisation des pesticides suivant des bonnes pratiques agricoles.)
- 2. La deuxième option était de calculer des tolérances provisoires pour les enfants, en partant de la DJA, d'un poids corporel de 6 kg et de 1000 g d'aliment par jour. (Ce calcul trop théorique, n'a pas été retenu par l'expert toxicologue, compte tenu aussi des facteurs de sécurité très différents entre pesticides.)
- 3. La troisième option: fixer «les valeurs les plus basses possible» à atteindre successivement avec la régression de la contamination. Cette alternative a été retenue. Un premier test interlaboratoire a été organisé en 1972 entre les laboratoires officiels et ceux de l'industrie. Les résultats provenant des différents laboratoires, présentés sous forme d'histogrammes (bar charts), ont été discutés périodiquement avec les autorités. Surtout en ce qui concerne le HCB (hexachlorbenzène), les résultats prouvaient que l'application des limites proposées aurait entraîné l'élimination d'un très haut pourcentage de lots de lait frais prévu pour la fabrication (7). Grâce à de nombreuses mesures (avant tout la sélection des tournées de ramassage), le taux de contamination a été successivement réduit. En 1975, des limites praticables ont pu être agréées par les autorités et par l'industrie alimentaire.

En Belgique (voir tableau 13), une situation analogue s'est présentée au moment où l'Arrêté Ministériel du 25 février 1976 fixait, pour les mêmes produits infantiles, une «tolérance zéro de pesticides organochlorés». La même année, pendant les sessions du comité du Codex sur les résidus de pesticides, des échanges d'information ont débuté entre les délégations de Suisse et de Belgique. A noter qu'il n'existait pas de normes internationales pour ces produits au Codex.

Pendant quelques années, l'échange d'information s'est poursuivi au Codex et en même temps, les pourparlers entre autorités et associations professionnelles en Belgique, se sont déroulés un peu comme en Suisse, en utilisant entre autre le même système de représentation graphique.

En Belgique, les étapes ont été les suivantes:

1976: «tolérance zéro»

1977: dépassements tolérés si les valeurs n'étaient pas plus que 50% des limites pour les adultes.

- 1978: propositions de limites praticables par un groupe de travail du Conseil Supérieur de l'Hygiène.
- 1981: ces limites qui d'ailleurs sont assez proches des limites suisses ont été entérinées par l'Arrêté Ministériel du 15 décembre 1981.

Cet exemple prouve bien que même s'il n'existe pas de normes internationales, il est possible aux gouvernements représentés au Codex de résoudre de graves problèmes de contamination des aliments sur le plan national. Sur le plan international, même si à l'heure actuelle aucune norme pour cette catégorie n'a été publiée par le Codex, les résultats obtenus grâce à un long échange d'information, permettent maintenant le libre passage de ces produits entre la Suisse et la Belgique.

Tableau 13. Résidus de pesticides dans le lait destiné à la fabrication de produits infantiles (développements de 1971 à 1981)

|       | Sur le pla                                                                 | n national                               | Au Codex                                           |
|-------|----------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------|
| Année | En Suisse                                                                  | En Belgique                              | a Middle billionar stor                            |
| 1971  | Tolérance zéro<br>(art. 181 de l'ODA)                                      |                                          | Pas de normes<br>internationales                   |
| 1972  | Premier test<br>interlaboratoire                                           |                                          | recommandées                                       |
| 1973  | Limites pratiques temporaires                                              |                                          |                                                    |
| 1974  | 3000 résultats<br>analytiques                                              | and the survey of the end                | mais                                               |
|       | (histogrammes)                                                             | dan yan setimil sab 177<br>man savis 277 | t fall out or respectively.                        |
| 1975  | Limites praticables                                                        |                                          | to View applied the                                |
| 1976  | elaja kari Syra II. Filozofia ya Kari<br>Sintafa ya Sikoli kenyi Elik inda | Tolérance zéro<br>(a. m. 27. 2. 76)      | Echanges d'information<br>réguliers entre          |
| 1977  | Compression to the Section Co.                                             | Dépassements tolérés                     | délégations Suisse et                              |
| 1978  | D'us stature, sel tude<br>Tudickensis                                      | Propositions conseil sup. hygiène        | Belge                                              |
| 1979  | official actions on the contract.                                          |                                          | or meal service service                            |
| 1980  | Anno Incomission area                                                      | Enception Land and S                     | elejejte, se sent derete<br>Enter evstiksy de cent |
| 1981  |                                                                            | Limites praticables (a. m. 15. 12. 81)   |                                                    |

## Conclusions

Pendant les 20 dernières années, le volume des échanges internationaux de denrées alimentaires a augmenté de 200%. Les cas de contamination par des substances chimiques ou par des mycotoxines sont beaucoup plus nombreux eu égard entre autre à l'utilisation des aliments pour le bétail provenant d'outre-mer. Pendant la même période, les techniques analytiques ont beaucoup progressé en général. Toutefois elles ne sont pas applicables dans certains pays, où le contrôle des denrées alimentaires est très précaire. Il s'agit souvent de pays exportateurs, d'où les graves pertes financières causées par les lots de matières premières refusées par manque de conformité et qui représentent pour eux la seule source de devises. Les progrès de la législation sur les contaminants sont très lents sur le plan national et il existe des divergences considérables entre les différentes législations des pays. Sur le plan international, malgré les grands efforts déployés par les grandes organisations (Codex, CEE), il n'existe pas encore une législation internationale applicable dans la plupart des pays, mais seulement des recommandations qui n'ont pas force de loi. Elles concernent avant tout: les pesticides, médicaments vétérinaires, métaux, PCB, PVC et les contaminants de l'eau potable. Toutefois, les résultats des travaux du Codex ont eu une influence sur les législations nationales et, dans de nombreux cas, ils facilitent les échanges internationaux. Le rôle du fabricant est très ardu à cause des divergences des législations ou à cause de leur absence. Il est de plus en plus difficile d'acheter sur le marché international des matières premières dont le taux de contamination est conforme aux exigences de fabrication souvent très strictes.

Le fabricant interviendra: par un programme d'assurance de la qualité couvrant toutes les étapes de la production, jusqu'à la consommation. Il agira: au niveau de la production agricole; en modifiant certaines technologies; en collaborant avec les industries qui, par leurs déchets sont des polluants potentiels; par ses contacts avec les scientifiques (toxicologues) et les autorités nationales; en

participant, dans la mesure du possible aux sessions du Codex.

De nombreux efforts sont entrepris sur le plan national et international d'une part pour évaluer le risque d'ingestion de contaminants et, d'autre part, pour réduire le taux de contamination.

En poursuivant ces deux buts, scientifiques, législateurs, industriels et consommateurs sont des partenaires indissociables. Dans l'optique de procurer à des millions d'êtres humains des aliments salubres à des prix acceptables, ils devront tenir largement compte de cette déclaration des experts FAO/OMS (31):

«Du fait de la sensibilité de plus en plus grande des méthodes d'analyse, des substances insoupçonnées jusqu'ici ont été dosées en quantités infimes dans les aliments. La présence d'un résidu de substance toxique ne représente pas par ellemême un risque pour l'homme: il faut tenir compte des données toxicologiques et de son exposition potentielle. Toutefois, dans le cas de cancérigènes puissants, par exemple les mycotoxines, tout doit être entrepris pour limiter leur présence dans les aliments à un taux irréductible. Ce taux irréductible est défini comme la concentration d'une substance qui ne peut pas être éliminée d'un aliment sans la

destruction de cet aliment, ce qui compromettrait gravement l'approvisionnement de denrées de première nécessité.»

## Résumé

La conformité légale d'un produit alimentaire destiné à l'exportation pose des problèmes d'ordre juridique, économique et social. Les organisations internationales s'efforcent d'harmoniser les normes nationales mais leurs dispositions concernant pesticides, métaux lourds, médicaments vétérinaires, PCB, PVC et contaminants de l'eau potable sont peu contraignantes pour les gouvernements. Leur application se heurte en plus aux divergences croissantes entre le contexte économique et social des pays industrialisés et des régions en voie de développement exportatrices de matières premières. En l'absence d'un système opérationnel de contrôle des denrées alimentaires, de nombreux lots destinés à l'exportation sont rejetés.

Quelques cas spécifiques de contamination tirés de la pratique mettent en évidence les nombreuses difficultés du fabricant exportateur et les mesures prises en collaboration avec les autorités et les scientifiques sur le plan national et international.

## Zusammenfassung

Die Freigabe von kontaminierten Lebensmitteln im internationalen Handel ist mit rechtlichen und sozialwirtschaftlichen Problemen verbunden. Eine Harmonisierung der nationalen Vorschriften wird von den internationalen Organisationen angestrebt, aber ihre Empfehlungen über Pestizide, Schwermetalle, Tierarzneien, PCB, PVC und Trinkwasserkontaminantien sind für die Regierungen nicht verbindlich. Ihre Einhaltung wird ausserdem erschwert durch die wachsende soziale und wirtschaftliche Diskrepanz zwischen Industrie- und Entwicklungsländern (letztere exportieren Rohstoffe). Das Fehlen eines wirksamen Kontrollsystems bedingt in vielen Ländern die Beanstandung von Lebensmitteln für den Export.

Einige spezifische Kontaminationsfälle aus der Praxis unterstreichen die zahlreichen Engpässe des Lebensmittelherstellers und -exporteurs sowie seine Massnahmen in Zusammenarbeit mit Behörden und Wissenschaftlern auf nationaler und internationaler Ebene.

# Summary

The compliance of contaminated foods in international trade is linked with legal, economic and social constraints. The international organizations attempt to harmonize national regulations but their recommendations issued on pesticides, heavy metals, veterinary drugs, PCB, PVC and drinking water contaminants are not mandatory for the governments. Moreover their enforcement is hampered by the widening economic and social gap between industrialized countries and developing areas exporting food commodities. The lack of an effective food control system in many countries results in the rejection of shipments destined for export.

Specific cases of food contamination exemplify the different constraints of the food manufacturer and exporter, the solutions envisaged and the results achieved in collaboration with national health authorities and international expert bodies.

# Bibliographie

- 1. Azzeri, N.: La banda stagnata verniciata a contatto con i prodotti alimentari. Industria conserve 57, 304–310 (1982).
- 2. Bielig, H. J.: Teneur en métaux lourds des jus de fruits. Informations internes sur l'agriculture. Commission des communautés européennes no 148, 50, (1975).
- 3. Codex Alimentarius Commission: Doc. CAC/FAL 3-1976, Rome 1976.
- 4. Codex Alimentarius Commission: Doc. Alinorm 72/12, Annexe II, Rome 1972.
- 5. Codex Alimentarius Commission: Doc. Alinorm 79/12, Rome 1979.
- 6. Avigdor, L. T. et Schubiger G. F.: Additifs: pourquoi comment combien. Nestec S. A., Vevey 1981.
- 7. Avigdor, L. T.: Contaminants: pourquoi comment combien. Nestec S. A., Vevey 1984.
- 8. Munro, I. C., et al.: Risk assessment and regulatory decision making. Food Cosmet. To-xicol. 19, 549-560 (1981).
- 9. National research council: Risk assessment, safety evaluation of food chemicals. National academy press, Washington D. C. 1980.
- 10. UNEP, FAO, WHO: Global environmental monitoring system, summary and assessment of data received. National food administration, Uppsala 1982.
- 11. UNEP, FAO, WHO: Guidelines for the study of dietary intakes of chemical contaminants. WHO, Genève 1985.
- 12. Codex alimentarius commission: Codex maximum residue limits for pesticides in food. Vol. XIII. FAO, Rome 1984.
- 13. Codex alimentarius commission: Pesticide residues in food, plant production and protection paper series no 56. FAO, Rome 1983.
- 14. Commission des communautes européennes: Directive 76/895 sur les résidus de pesticides dans fruits et légumes, journal officiel des C. E., L 340 du 9. 12. 1976.
- 15. Commission des communautes européennes: Projet de directive sur les résidus de pesticides dans les aliments d'origine animale et dans les céréales. Journal officiel des C. E., C 56 du 6. 3. 1980.
- 16. Conseil de l'Europe: pesticides, 6e edition. Strasbourg, 1984.
- 17. WHO: Technical report series 505, Genève 1972.
- 18. WHO: Technical report series 599, Genève 1976.
- 19. WHO: Technical report series 648, Genève 1980.
- 20. WHO: Technical report series 669, Genève 1981.
- 21. WHO: Technical report series 683, Genève 1982.
- 22. WHO: Technical report series 696, Genève 1983.
- 23. Commission des communautés européennes: Directive 76/403 concernant l'elimination du P. C. B. journal officiel des C. E., L 108 du 26. 4. 1976.
- 24. Commission de communautés européennes: Directive 81/432 sur le contrôle du V. C. M. cédé par les matériaux et objets aux aliments, journal officiel des C. E., L 167 du 24. 6. 1981.
- 25. WHO: Guidelines for drinking water, vol. 1, Genève 1984.

- 26. Horwitz, W. et al.: Quality assurance in the analysis of foods for trace constituents. J. Assoc. Off. Agric. Chemists 63, 1344-1354 (1980).
- 27. Mack, D. et al.: Cadmium in Nahrungspflanzen von kontaminierten Standorten. Deut. Lebensm. Rdschau 75, 309-311 (1979).
- 28. De las Carreras, A.: food protection in international trade. Proceedings of the interamerican conference on food protection (Washington D. C. August 1985). National research council, 1986.
- 29. Morrison, A. B.: Food control mechanisms in the Americas. Proceedings of the interamerican conference on food protection (Washington D. C. August 1985). National research council, 1986.
- 30. Stijve, T.: Miniaturised methods for monitoring organochlorine pesticide residues in milk, IUPAC pesticide chemistry, p. 95-99, Miyamoto J. et al. Pergamon press 1983.
- 31. WHO: Technical report series 631, Genève 1978.

L. T. Avigdor Ing. agr. ETHZ Béranges 37 CH-1814 La Tour-de-Peilz

# Bericht über Nitrate im Trinkwasser – Standortbestimmung 1985

Report on Nitrates in Drinking Water – Position-finding 1985

D. Leu\*, R. Biedermann\*, J. Dettweiler\*\*, J. Hoigné\*\*\* und F. X. Stadelmann\*\*\*\*

# Einleitung

Die Vollzugsorgane des schweizerischen Lebensmittelrechts sahen sich 1977 veranlasst, das Trinkwasser verschiedener Gemeinden der Kantone Bern und Schaffhausen mit Nutzungsbeschränkungen zu belegen (Verbot der Zubereitung von Säuglingsnahrung). Sie schafften somit der eidg. Lebensmittelverordnung (1) Nachachtung, die bestimmt, dass Lebensmittel im allgemeinen und Trinkwasser im besonderen keine Stoffe in Mengen enthalten dürfen, welche die menschliche Gesundheit gefährden können. Neben hohen Nitratgehalten in bestimmten Grundwässern stellt man zum Teil extrem hohe Nitratwerte in Gemüsen, vor allem im Kopfsalat, fest. Dies führte den Verband der Kantons- und Stadtchemiker der Schweiz 1977 dazu, dem Bundesamt für Gesundheitswesen (BAG) den Antrag zu stellen, eine Arbeitsgruppe einzusetzen mit der Aufgabe, die gesundheitliche Problematik der Nitrate zu untersuchen und Gegenmassnahmen auszuarbeiten. Diese Arbeitsgruppe bestand aus vier Mitgliedern, die die Ergebnisse ihrer Nachforschungen in einem Bericht «Nitrate in Nahrungsmitteln» herausgegeben vom Bundesamt für Gesundheitswesen (2) veröffentlichten.

Einige spektakuläre Korrosionsfälle an Trinkwasserleitungen im Kanton Bern, deren eine Ursache in zu hohen Nitratgehalten des Leitungswassers vermutet wurde, veranlassten 1977 zudem das Eidgenössische Departement des Innern (EDI) nach Anfrage der bernischen Behörden, die – nicht auf den Kanton Bern beschränkten – Korrosionsprobleme durch eidgenössische Fachstellen untersuchen zu lassen. Das Bundesamt für Umweltschutz (BUS) erstellte in der Folge in

<sup>\*</sup> Kantonales Laboratorium, Schaffhausen

<sup>\*\*</sup> Bundesamt für Umweltschutz, Bern

<sup>\*\*\*</sup> EAWAG, Dübendorf

<sup>\*\*\*\*</sup> Eidg. Forschungsanstalt für Agrikulturchemie und Umwelthygiene, Liebefeld

Zusammenarbeit mit anderen Stellen einen Lagebericht November 1979 «Nitrat im Trinkwasser» (3).

Zunehmende Nitratprobleme bei Trinkwasser und Gemüsen sowie eine auch international ins Grenzenlose anwachsende Nitratforschungstätigkeit, vor allem in den Bereichen Landwirtschaft und Toxikologie, führten 1980 zur Erweiterung der Arbeitsgruppe des BAG auf 16 Mitglieder, welche folgende Bereiche abdekken: Bundesämter für Gesundheitswesen, Umweltschutz und Veterinärwesen, landwirtschaftliche, pflanzenphysiologische, hydrologische und toxikologische Forschung, Kantonschemiker, Lebensmittelindustrie, Gemüsebau und -handel sowie Konsumentenorganisationen (Federführung beim Bundesamt für Gesundheitswesen). Die Aufgaben dieser Nitratkommission sind:

- a) Sichtung und Auswertung der laufenden wissenschaftlichen und amtlichen Publikationen
- b) Diskussion, Begutachtung und Koordination von Forschungsprojekten
- c) Ausarbeiten von kurz- und längerfristigen landwirtschaftlichen Massnahmen (auch im Bereich des Gemüse-, Obst- und Rebbaus)
- d) Ausarbeitung von Vorschlägen für Höchstkonzentrationen.

Die Autoren wurden von der erweiterten Arbeitsgruppe Nitrate in Nahrungsmitteln 1985 beauftragt, den heutigen Stand des Wissens über Nitrate im Trinkwasser aufzuarbeiten. Es galt, die Nitratauswaschung aus Böden in Abhängigkeit verschiedener Faktoren wiederzugeben (Boden- und Bewirtschaftungsart, Düngung, Klima usw.), Möglichkeiten der Beeinflussung und konkrete Massnahmen aufzuzeigen (wissenschaftlich, praktisch, rechtlich) und das Problem in einen agrar-ökologischen Zusammenhang zu stellen. Da sich das Problem – wenigstens vordergründig – an der möglichen Gesundheitsgefährdung von Menschen einschätzen lässt, soll auch ein Überblick über neueste toxikologische und epidemiologische Ergebnisse gegeben werden.

Die vorliegende Arbeit soll der erweiterten Arbeitsgruppe Nitrate in Nahrungsmitteln als Grundlage dienen, den zuständigen Behörden entsprechende Massnahmen vorzuschlagen. Sie wendet sich weiter an Fachstellen, direkt Beteiligte und Behörden von mit dem Trinkwasserproblem betroffenen Regionen.

Zur besseren Lesbarkeit sind die naturwissenschaftlichen Detailrecherchen in Anhängen beigefügt, währenddem ganz am Anfang für den eiligen Leser die Übersicht hergestellt wird. Die in bestimmten Fällen sich ergebenden Wiederholungen sind beabsichtigt.

Wir möchten an dieser Stelle allen Kolleginnen und Kollegen, die uns bei den aufwendigen Recherchen geholfen haben und die uns fachlich unterstützten, danken. Ebenfalls sei dem Bundesamt für Gesundheitswesen in Bern und der kantonalen Sanitätsdirektion von Schaffhausen für die zur Verfügung gestellten finanziellen Mittel gedankt.

## Übersicht

## Ausmass und Charakter des Problems

Das Problem der Nitrate im Trinkwasser verläuft – mit zum Teil beachtlicher zeitlicher Verzögerung – parallel zur mechanischen und chemischen Intensivierung der Landwirtschaft und wird zum Hauptanteil durch deren Praxis verursacht (inkl. Obst-, Wein- und Gemüsebau). Der Trend zu überhöhten und stets steigenden Nitratgehalten in Grund- und Trinkwässern hat sich in den letzten zwanzig Jahren auch in der Schweiz massiv verstärkt. Die Lage ist aber nicht generell problematisch. Problemgebiete bestehen vor allem dort, wo eine bodenmässig und hydrogeologisch ungünstige Situation (rasche Versickerung und wenig Infiltration von nitratarmem Grund- und Oberflächenwasser) zusammentreffen mit intensiver landwirtschaftlicher Nutzung.

Im allgemeinen tiefe Nitratgehalte, in der Regel unter 10 mg/l, finden sich in Oberflächengewässern sowie in den Grundwässern der Alpentäler, des Juragebirges und der Alpensüdseite (abgesehen von grösseren Gemüsebaugebieten), ferner im Mittelland unter Dauergrünland (Weiden) und Wald. Zum Vergleich: der im Schweizerischen Lebensmittelbuch angegebene Toleranzwert für Trinkwasser beträgt 40 mg Nitrat/l. In Gebieten des Mittellandes mit mehr als 50% Ackerbau werden im Durchschnitt etwa 25 mg Nitrat/l Grundwasser gemessen. In Problemgebieten sind die Werte stark erhöht (über 50 mg/l) und überschreiten teilweise sogar die 100-mg/l-Grenze. Wegen ungenügender Datenlage besteht keine vollständige Übersicht dieser Gebiete; einige Beispiele werden im Text beschrieben. Ausser in Gegenden, wo Sanierungsprojekte angegangen worden sind, wird im allgemeinen eine steigende Tendenz festgestellt.

Zur Zeit bezieht über die Hälfte der schweizerischen Bevölkerung Trinkwasser mit weniger als 10 mg Nitrat im Liter. Etwa 5% der Bevölkerung, nach anderen Hochrechnungen etwas mehr, beziehen Trinkwasser, das mehr als 30 mg Nitrat im Liter aufweist. Diese Mittelwerte geben allerdings nur ein grobes Bild der Situation ab. Bei der Beurteilung der Nitratbelastung muss davon ausgegangen werden, dass kleine, regionale Bevölkerungsgruppen extremen Belastungen ausgesetzt sein können.

## Zu den Ursachen

Der Nitratanteil eines Bodens macht nur etwa 1-3% des gesamten Stickstoffhaushaltes aus, aber im System Boden-Pflanze stellt Nitrat im allgemeinen die wichtigste düngewirksame Stickstofform dar. Nitrat gelangt auch praktisch ungehindert mit dem Sickerwasser ins Grundwasser, weil es nicht wie andere Stickstofformen (z. B. organische N-Verbindungen und Ammonium) von Bodenteilchen zurückgehalten wird. Nitrat wird entweder als Handelsdünger oder durch atmosphärische Deposition (z. B. Regenwasser) in den Boden eingebracht (zusammen ca. 10%). Der grösste Teil des Nitrats bildet sich durch mikrobielle Prozesse aus organischen Stickstoffverbindungen oder Ammonium, die aus Hofdüngern (Gülle, Mist), Handelsdüngern, Klärschlamm, Ernte- und Wurzelrückständen oder Humusbestandteilen stammen können. Die mechanische Bodenbearbeitung (Sauerstoffeintrag), Wärme und ausreichende Wasserversorgung fördern diese mikrobiellen Prozesse. In Anhang A wird detailliert über die Herkunft des Nitrats im Trinkwasser berichtet.

Einen starken Einfluss auf die Nitratauswaschung übt die Sickerwassermenge aus. Diese ist abhängig von der Menge und Verteilung der Niederschläge sowie von der Art und Dauer des pflanzlichen Bewuchses. Dichter und dauernder Bewuchs vermindert einerseits die Sickerwassermenge und erhöht andererseits die Nitrataufnahme durch die Pflanzen: beide Faktoren vermindern die Nitratauswaschung.

Als weitere Einflussgrösse ist die Gesamtheit der Bodeneigenschaften zu nennen: Körnung, Gründigkeit, Humusgehalt und biologische Aktivität beeinflussen die Wasserspeicherungskapazität und das Rückhaltevermögen für Stickstoff. Schliesslich kommt der Art, Höhe und zeitlichen Verteilung der Stickstoffdüngung eine wesentliche Rolle zu. Bei günstigen Boden-, Witterungs- und Bewuchsverhältnissen spielt die Düngung nur eine untergeordnete Rolle, während bei ungünstigen Verhältnissen (flachgründige, grobkörnige Böden, schwacher Bewuchs und viel Niederschlag) der aktuellen Düngung der grösste Stellenwert zugeordnet werden muss. Nicht nur die Düngung, sondern alle obgenannten Einflussgrössen sind komplexe Faktoren und stehen miteinander in einem dynamischen Zusammenspiel. Die Summe all dieser Faktoren lässt sich dennoch für den Allgemeinfall mit folgendem Schema verdeutlichen:

| abnehmende Nitratauswaschung |                                                |                     |  |  |
|------------------------------|------------------------------------------------|---------------------|--|--|
| Mais*<br>Gemüse*<br>Reben*   | Hackfrucht<br>(Kartoffeln, Rüben usw.) Getreic | Wald<br>le Grünland |  |  |
|                              | im allg. abnehmende Düngung                    |                     |  |  |
|                              | abnehmender Bracheanteil                       |                     |  |  |
|                              | abnehmende Bodenbearbeitung                    | = 4                 |  |  |

Da in der Schweiz etwa zwei Drittel der den landwirtschaftlichen Böden zugesetzten Stickstoffmenge aus Hofdüngern (Gülle, Mist) stammen und nur etwa ein Viertel aus mineralischen Handelsdüngern (der Rest aus Niederschlägen und

<sup>\*</sup> ohne Untersaaten und/oder Zwischenfutter

Klärschlamm), kommt der Hofdüngerbewirtschaftung eine grosse Bedeutung zu. Fehlende Lagerkapazität bei der Gülle und der Nutzfläche nicht angepasste Viehhaltungen (bodenunabhängige Betriebe) lassen die grosse Menge Hofdünger oft eher zu einem lästigen Abfallproblem als zu einem wertvollen Produktionsfaktor werden. Als Folge werden diese zur Unzeit (z. B. auf durchnässte Böden) und in Unmengen ausgebracht. Der Zwang zur Rationalisierung (z. B. Schwemmentmistung), ungenügende Methoden für Dosierung und Nährstoffbestimmung von Gülle und Mist sowie eine unterdotierte, neutrale Beratung der Landwirte verschärfen das Problem zusätzlich.

Bei den mineralischen Stickstoffdüngern dürfte wegen der genaueren Dosiermöglichkeit und aus ökonomischen Gründen eine Überdüngung eigentlich nicht vorkommen. Dieses auch von der Düngerindustrie unterstützte Argument wird aber durch Untersuchungen in der Praxis widerlegt. In diesem Zusammenhang ist dennoch festzustellen, dass die landläufig gehörte Meinung, die Überdüngung mit «Kunstdüngern» sei hauptschuldig am Nitratproblem, falsch ist. Im Ackerbau und ganz besonders stark bei den Sonderkulturen Gemüse, Reben und Obst werden leider häufig zu grosse und zeitlich nicht angepasste Anwendungen von Stickstoffdüngern festgestellt. Bei den Sonderkulturen drängt sich zudem teilweise eine Anpassung der Düngerichtlinien durch die landwirtschaftlichen Forschungsanstalten auf. Ein weiterer Nachteil der Handelsdünger ist ihr immer noch relativ günstiger Preis, der den bezüglich Nitratauswaschung unerwünschten Differenzierungsprozess in «reine» Ackerbau- und «reine» Viehwirtschaftsbetriebe fördert. Auch ein Vergleich des Energieverbrauches lässt Handelsdünger viel schlechter abschneiden als Hofdünger.

Die aus Modellversuchen gewonnenen Erkenntnisse über Ursachen und Verlauf der Nitratauswaschung werden unter Praxisbedingungen in sog. Naturlabors und in einer Reihe wissenschaftlich begleiteter Sanierungsprojekte erhärtet. Auf diese wird in dieser Arbeit näher eingetreten (Anhang B).

# Allgemeine Auswirkungen

Die in der Schweiz (publizistisch) am Anfang des Nitratproblems gestandene Vermutung, überhöhte Nitratgehalte im Trinkwasser führten zu Leitungskorrosionen und Lochfrass, ist mittlerweile durch die Forschung widerlegt worden. Der Nitratgehalt des Leitungswassers hat auf korrekt verzinkte und installierte Leitungen keinen aktiven Einfluss hinsichtlich Korrosion (siehe Anhang D). Er erhöht allenfalls die Leitfähigkeit des Wassers. Einzig in längere Zeit unbewohnten Häusern können allenfalls Probleme entstehen, wenn vor Wiedergebrauch nicht eine Hausnetzspülung vorgenommen wird, da sich Nitrat in verzinkten Leitungen zum giftigeren Nitrit reduziert.

Einen bestimmten Stellenwert hat der Einfluss des Nitratgehaltes auf die natürlichen, biologischen und hydrochemischen Prozesse, die im Grundwasserleiter ablaufen. Dieser Einfluss wirkt sich teilweise langfristig aus und ist beim derzeitigen Stand der Forschung nicht quantifizierbar. Die Zeit zwischen Nitratauswa-

schung aus einem Boden und Erscheinen dieses Salzes im Trinkwasser kann – je nach Art des Bodens und Untergrundes – Tage bis Jahrzehnte dauern. Bei geeigneter Beschaffenheit der Böden, des Untergrundes und entsprechender mikrobieller Tätigkeit, kann eine unter Umständen beträchtliche Denitrifikation, d. h. eine Reduktion des Nitrats zu Stickstoff (N<sub>2</sub>), stattfinden. Damit diese – das Nitratproblem vermindernden – mikrobiellen Prozesse ablaufen, muss genügend verwertbares organisches Substrat, d. h. Kohlenstoffverbindungen oder reduzierte Schwefelverbindungen, vorhanden sein – ein Reservoir, das sich möglicherweise über geologische Zeiträume gebildet hat und dessen neuzeitlicher Verbrauch nicht in kurzer Zeit wieder aufgefüllt werden kann.

Unter sehr speziellen geochemischen Verhältnissen, wie sie z. B. in der BRD bekannt sind, kann ein andauernder, hoher Nitrateintrag den Grundwassermechanismus derart beeinflussen, dass ein Härteanstieg und nach Erschöpfung der im Untergrund eingelagerten organischen Substanz ein durchbruchartiger Anstieg des Nitratgehaltes auftritt. In der Schweiz sind solche Grenzfälle wegen anderer Beschaffenheit der wesentlichen Grundwasserleiter nur vereinzelt und lokal zu erwarten. Ihre Beobachtung verdient jedoch Aufmerksamkeit, auch wegen der Beurteilung von benachbarten Gebieten (Anhang D).

# Gesundheitliche Auswirkungen

Die wichtigsten Auswirkungen überhöhter Nitratgehalte im Grund- und schliesslich im Trinkwasser sind toxikologischer Art. Im Detail wird diese Problematik in der vorliegenden Arbeit im Anhang C abgehandelt.

Der Durchschnittsschweizer nimmt, neben etwas Nitrit, pro Tag 90 mg Nitrat auf, wobei 70% aus Gemüsen stammen (bei einem Nitratgehalt des Trinkwassers von 10 mg/l). Bei einem Gehalt von 40 mg Nitrat/l Trinkwasser (= Toleranzwert des Schweizerischen Lebensmittelbuches) erhöht sich die statistische Gesamtauf-

nahme auf ca. 150 mg Nitrat (Anteil des Trinkwassers: 50%).

Zwar sind die Primärwirkungen auch hoher Nitrataufnahmen – im Grammbereich – gering (Darmreizungen) und der grösste Teil aufgenommenen Nitrats wird rasch über die Nieren ausgeschieden. Ein kleiner Teil jedoch verbleibt im Kreislauf, wird über die Speicheldrüsen in die Mundhöhle ausgeschieden und dort zum weit toxischeren Nitrit reduziert. Durch die Reaktion aufgenommenen Nitrits mit Hämoglobin wird dessen Funktion als Sauerstoffträger im Blut gestört, was im Akutfall zu «innerer Erstickung» führen kann. Von dieser Erkrankung (Methämoglobinämie, «Blausucht») sind aus verschiedenen Gründen vor allem Säuglinge in den ersten drei Lebensmonaten gefährdet. Dabei spielen vor allem zusätzliche Faktoren zum Nitratgehalt des Wassers eine Rolle (z. B. bakterielle Nitritbildung durch längeres Stehenlassen nitrathaltiger Speisen).

In Westeuropa sind in den letzten Jahren kaum Methämoglobinämiefälle in direktem Zusammenhang mit Trinkwasser beobachtet worden, so dass diese Gefahr unter den heutigen Lebensbedingungen als sehr gering eingeschätzt wird. Andererseits sind kausale Zusammenhänge zwischen subklinisch (äusserlich

nicht sichtbaren) erhöhten Methämoglobinwerten und erhöhten Nitratgehalten im Trinkwasser erwiesen.

Die von der Forschung zweifellos am gravierendsten eingeschätzte Gefahr überhöhter Nitrataufnahme betrifft die Bildung krebserzeugender Stoffe. In der Mundhöhle gebildetes Nitrit kann sich im Magen mit den in der Nahrung weit verbreiteten Aminen und Amiden zu N-Nitrosoprodukten verbinden. Ein Grossteil dieser Stoffe ist stark krebserregend. Die Bildung von N-Nitrosoverbindungen sowie ihre Abhängigkeit von der Nitrat-/Nitritaufnahme wurde bei Mensch und Tier nachgewiesen. Etwa 300 verschiedene N-Nitrosoverbindungen wiederum sind aktive Carcinogene bei 40 verschiedenen Tierarten (inkl. Primaten) und eine Fülle von biochemischen und toxikologischen Resultaten spricht dafür, dass die krebserzeugenden Mechanismen bei menschlichen und tierischen Geweben prinzipiell die gleichen sind. Postuliert und in dieser Arbeit diskutiert wird auch die These einer endogenen, d. h. im Körper stattfindenden Synthese von Nitrat, die aber – falls überhaupt – toxikologisch nur von untergeordneter Bedeutung sein dürfte.

Eine umfassende Antwort und quantifizierte Risikoabschätzungen zur Frage der Krebsgefährdung durch überhöhte Nitrataufnahme werden – trotz sehr intensiver Forschung – erst in mehreren Jahren möglich sein. Die gesundheitliche Forderung von seiten der Toxikologie lautet daher immer noch: Die Belastung mit Nitrat/Nitrit ist so gering als möglich zu halten.

Verschiedene, voneinander unabhängige Forschergruppen haben festgestellt, dass die Nitratausscheidung in die Speicheldrüsen und somit die Möglichkeit der Bildung des toxischen Nitrits ein Schwellenwertphänomen darstellt: erst nach Aufnahme von etwa 50 mg Nitrat ist eine wesentliche Ausscheidung dieses Salzes in die Speicheldrüsen messbar.

Damit im Magen eine Bildung relevanter Mengen der cancerogenen N-Nitrosoprodukte erfolgt, muss aus chemischen (reaktionskinetischen) Gründen Nitrit im Verhältnis zum Reaktionspartner Amin/Amid im Überschuss vorliegen. Um diesen Sachverhalt zu vermeiden, muss bei präventiver Betrachtungsweise eine weitere Forderung berücksichtigt werden: Auch vereinzelte Spitzenbelastungen durch Nitrat sind zu vermeiden.

## Generelle Grundsätze

Neben gesundheitlichen Überlegungen gilt es, auch solche grundlegender Natur anzustellen. So ist nach Gewässerschutzgesetz (46) jedermann verpflichtet, alle nach den Umständen erforderliche Sorgfalt anzuwenden, um die Verunreinigung der ober- und unterirdischen Gewässer zu vermeiden. Weiter dürfen nach Artikel 6 der Lebensmittelverordnung (1) Lebensmittel und somit Trinkwasser nicht verdorben, verunreinigt oder sonst im Wert verringert sein. Daraus ergibt sich die Forderung nach der Reinheit unseres relevantesten Nahrungsbestandteils. Stickstoff benötigt der Mensch wohl in der Form von Eiweissen, nicht aber in der des Pflanzennährstoffs und Salzes Nitrat.

Sowohl Modellversuche als auch unter Praxisbedingungen erhobene Forschungsresultate haben die Gesamtheit (nicht nur die Düngung) der modernen intensiven Landwirtschaftsmethoden als Hauptursache des Nitratproblems erhellt und bestätigt (siehe Kapitel «Massnahmen zur Bewältigung des Nitratproblems» sowie Anhänge A und B). Die Zusammenarbeit der Wissenschaft mit der praktischen Landwirtschaft im Rahmen von Naturlabors und Sanierungsprojekten hat gezeigt, dass sich eine grosse Mehrheit der Landwirte den ökologischen Konsequenzen ihres Handelns bewusst ist und dass die Bereitschaft für Änderungen der heutigen Praxis vorhanden ist. Die Probleme können nicht gegen, sondern nur mit den Landwirten (und Gemüse-, Reb- und Obstbauern) gelöst werden. Dazu gehört auch eine aufgeklärte Konsumentenschaft, die bereit ist, sich gemäss Kriterien der langfristigen Umwelterhaltung, statt nach kurzfristigen Bedürfnissen von Luxus und Bequemlichkeit zu verhalten. Die Verbreitung dementsprechender Informationen ist gezielt zu fördern.

Alle Versuche und Praxisbeobachtungen haben gezeigt, dass die wirksamste und dringendste Massnahme zur Vermeidung von Nitratverlusten ins Grundwasser eine möglichst lückenlose Begrünung des Bodens ist: beim Ackerbau durch Zwischenfutteranbau bzw. Gründüngung, bei Kulturen mit hohem Bracheanteil (Mais, Reben, Gemüse) zusätzlich durch Untersaaten. Weitere wichtige Massnahmen sind die Beachtung des optimalen Zeitpunkts und die Modifikation bzw. Beschränkung der mechanischen Bodenbearbeitung auf das unbedingt Notwendige. Besondere Vorsicht ist geboten beim Umbruch von Grünland, besonders wenn es sich um eine Gründüngung mit Leguminosen (Stickstoff fixierende Pflanzen) handelt. Wird nach dem Unterpflügen nicht sofort eine rasch wachsende Kultur angesät, dann hat das in der Regel enorme Nitratverluste zur Folge. Unablässlich für den modernen Landwirt ist die Erstellung (und Einhaltung) von Düngeplänen, die auf Pflanzenbedürfnissen, Bodenanalysen und gegebenenfalls zusätzlich auf Pflanzenanalysen beruhen und eine pflanzengerechte, ökologisch angepasste Düngung in Menge, Form (Wirkungsdynamik) und Zeitpunkt ermöglicht.

Auf jeden Fall zu unterlassen ist das Ausbringen von Gülle und Klärschlamm auf durchnässte, gefrorene und unbewachsene Böden. Das bedeutet kurzfristig eine Anpassung der Lagerkapazitäten oder die Erstellung geeigneter Abnahmeverträge für diese Stoffe.

Neue Schwemmentmistungsanlagen mit ihrem enormen Anfall an Flüssigdüngern sind nur zu bewilligen, wenn die Entsorgung garantiert keine übermässige Nitratauswaschung bewirkt. Zu fördern ist allenfalls die Entwicklung von kostengünstigen Festentmistungssystemen und von Aufbereitungsmethoden, die Gülle in eine ökologisch sinnvollere Verwertungsform überführen. Langfristig ist die örtliche (Wieder-) Anpassung der Tierbestände an die nutzbare Bodenfläche und -belastbarkeit ins Auge zu fassen. Einschränkungen und Verbote sind daher besonders nötig bei den industriellen oder halbindustriellen Produktionsbetrieben, die nicht auf betriebseigenem Futterangebot basieren. Auf bestimmten proble-

matischen Böden, beispielsweise organischen Böden, sind längerfristig Nutzungsumstellungen abzuklären, was allerdings schwerwiegende Eingriffe in traditionelle Betriebsstrukturen ganzer Regionen bedeuten kann. In solchen Fällen sind wirksame agrarpolitische Massnahmen unumgänglich.

In Regionen mit einem hohen Nitratgehalt des Grundwassers ist eine Stabilisierung oder eine Reduktion der Mais- und Zuckerrübenanbaufläche zu fordern, sofern der Nitrataustrag ins Grundwasser nicht mit anderen Mitteln gebremst werden kann.

Die Kantone sind angehalten, die Arbeiten zur Ausscheidung von Grundwasserschutzzonen und -arealen voranzutreiben und auf Bundesebene sind die Voraussetzungen zu schaffen für die Ausscheidung grossflächiger Schutzgebiete von mehreren Quadratkilometern, die nicht nur Wasserfassungen betreffen; vorzusehen sind abgestufte Nutzungsbeschränkungen. Zu diskutieren ist auch eine allmähliche Änderung des heutigen Subventionswesens, verbunden mit Lenkungsabgaben, in dem Sinne, dass ökologisch geeignete Anbauweisen vermehrt gefördert werden als andere und dass die sozialen Kosten übermässiger Nitratauswaschung in Rechnung gestellt werden (An- und Abreizsysteme). Dies darf allerdings nicht mittels finanziellen Massnahmen, die das Verursacherprinzip umkehren, geschehen.

In Tabelle 1 sind die wichtigsten Massnahmen aufgelistet. Diese decken sich nicht notwendigerweise mit den Auffassungen aller Amtsstellen. Alle Massnahmen sind ursächlich orientiert und helfen nicht nur, das Nitratproblem zu vermindern, sondern haben weitere positive Wirkungen auf Humusgehalt, Struktur und biologische Aktivität der Böden und somit sowohl auf deren Ertragsfähigkeit als auch auf deren Kapazität, Schadstoffe zu eliminieren. Generell wird mit diesem Katalog erreicht, dass der Eintrag von Stickstoffverbindungen, die unsere Oekosysteme belasten, reduziert wird.

Viele der genannten Massnahmen bedürfen noch beträchtlicher Abklärungsarbeit durch Fachleute der landwirtschaftlichen Forschungsanstalten und der Beratung, damit sie im Einklang mit Oekologie und Oekonomie unter den unterschiedlichsten Betriebsverhältnissen in der Landwirtschaft eingesetzt werden können. Für den einzelnen Landwirt bedeutet die Verwirklichung der Massnahmen – nebst der Umstellung alter Gewohnheiten – oft beträchtlichen zeitlichen und finanziellen Mehraufwand. Dieser muss – wie erwähnt – durch entsprechendes Verhalten einer aufgeklärten Konsumentenschaft oder durch fiskalische Massnahmen des Staates ausgeglichen werden. Durch die enorme Komplexität aller zusammenwirkender Faktoren ist der einzelne Landwirt (auch Gärtner und Hobbygärtner) zudem bald wissenschaftlich überfordert. Zu fordern ist daher ein wirksamer und bedeutender Ausbau der neutralen, an ökologischen und agronomischen Erkenntnissen orientierten, einzelbetrieblichen Beratung von seiten der landwirtschaftlichen Forschungsanstalten sowie der kantonalen Ausbildungszentren (Landwirtschaftsschulen) und Beratungsdienste.

Bei Melioration von Feuchtgebieten und anderen baulichen Eingriffen in die Landschaft sowie bei der Nutzung des Waldes ist in Zukunft auch der mögliche Schaden zusätzlicher Nitratauswaschung in die Rechnung einzubeziehen.

Tabelle 1. Katalog der wichtigsten Massnahmen zur Bewältigung des Nitratproblems im Trinkwasser

| Massnahme                                                                                                                                                  | Priorität         | Voraussetzungen                                                                                                                                                                                                                                                                                                                                                                                                         | Weitere Folgen                                                                                     | Bemerkungen                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 1. Toleranzwert von 40 mg NO <sub>3</sub> /l Trinkwasser des LMB als Höchstkonzentration nach Art. 7a der Lebensmittelverordnung rechtsverbindlich machen. | vor-<br>dringlich | Entscheid des<br>EDI bei Erlass<br>der Fremdstoff-<br>verordnung.*                                                                                                                                                                                                                                                                                                                                                      | Motivierende Wir-<br>kung in sämtli-<br>chen Bereichen,<br>wo Massnahmen<br>angezeigt sind.        | Ist Voraussetzung für die Kontrollbe-<br>hörden, um Aufla-<br>gen aller Art wirk-<br>sam durchzu-<br>setzen. |
| 2. Möglichst lükkenlose Begrünung des Bodens durch Zwischenfutteranbau, Gründüngung und Untersaaten                                                        | vor-<br>dringlich | <ul> <li>Intensivierung der Beratung.</li> <li>Teilweise noch Forschungs- und Entwicklungsarbeit (z. B. bei schweren Böden, spätem Erntezeitpunkt, langsam startenden Kulturen und anderem mehr).</li> <li>Gezielte Information der Landwirte (inkl. Obst-, Gemüse-, Rebbau und Hobbygärtner).</li> <li>Bereitschaft der Konsumenten, entsprechenden Mehraufwand zu begleichen bzw. fiskalische Massnahmen).</li> </ul> | auch längerfristig gesichert (Nachhaltigkeit der Böden).  – Mehraufwand an Zeit, Geld und Energie. | ausser bei Un-<br>fruchtbarkeit<br>oder Wasserman                                                            |

<sup>\*</sup> Dieser Schritt ist auf den 1. Mai 1986 erfolgt (159).

| Massnahme                                                                                                                                                  | Priorität         | Voraussetzungen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Weitere Folgen                                                                                                                                                                                                                                                                                                                                                                                       | Bemerkungen                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3. Beschränkung der mechanischen Bodenbearbeitung auf das Minimum bzw. deren Modifikation; Anpassung an Bodenart, Beachtung des optimalen Zeitpunktes.     | vor-<br>dringlich | <ul> <li>Intensivierung der Beratung.</li> <li>Teilweise noch Forschungs- und Entwicklungsarbeit nötig (z. B. Geräte und Methoden für pfluglosen Anbau ohne Herbizideinsatz).</li> </ul>                                                                                                                                                                                                                                                                                                                       | Bodenverbesserung<br>(ähnlich wie bei<br>Massnahme 2).                                                                                                                                                                                                                                                                                                                                               | Besondere Vorsicht<br>beim Umbruch von<br>Grünland (Wetter!,<br>Neuansaat).                                                                                                           |
| 4. Bodenangepass- te Düngung ge- mäss den Bedürf- nissen der Pflan- zen, d. h. am richtigen Ort, zum richtigen Zeitpunkt, in der richtigen Menge und Form. | vor-<br>dringlich | <ul> <li>Intensivierung der Beratung.</li> <li>Teilweise noch Forschungsund Entwicklungsarbeit (z. B. weitere Eichungsarbeiten an N<sub>min</sub>-Methode, N<sub>mob</sub>-Methode und Nitratschnelltest, einfache Nährstoffbestimmungsmethode für Gülle, Entwicklung von Prognosemodellen, Zeilendüngung beim Mais und anderem mehr).</li> <li>Gesetzliche Grundlagen ergänzen.</li> <li>Information/Bereitschaft der Konsumenten (s. Massnahme 2).</li> <li>Vgl. Voraussetzungen für Massnahme 5.</li> </ul> | <ul> <li>Teilweise Mehraufwand an Zeit und Geld, teilweise Reduktion der Düngerkosten.</li> <li>Optimierung der Erträge mit angemessenem Aufwand an Mitteln statt Maximierung der Erträge auf Kosten der Natur.</li> <li>Günstige Auswirkung auf langfristige Erhaltung der Bodenfruchtbarkeit.</li> <li>Teilweise Mehraufwand (z. B. bei Aufteilung einer Düngermenge in mehrere Gaben).</li> </ul> | <ul> <li>Düngung gemäss Pflanzenbedürfnissen berücksichtigt automatisch die Erfordernisse der Boden- und Gewässerbelastbarkeit.</li> <li>Vgl. Bemerkungen bei Massnahme 5.</li> </ul> |

| Massnahme                                                                                                                                                                                             | Priorität    | Voraussetzungen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Weitere Folgen                                                                                                                                                                                                    | Bemerkungen                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5. Kein Ausbringen von Gülle u. Klärschlamm auf durchnässte, gefrorene und unbewachsene Böden, generell keine Düngung von Bracheflächen (ausser bei sofortiger Neuansaat schnellwachsender Pflanzen). | vordringlich | <ul> <li>Anpassung der Lagerverhältnisse und/oder Abnahmeverträge für Gülleüberschüsse.</li> <li>Starke Einschränkung des weiteren Baus von Schwemmentmistungsanlagen/Entwicklung von Festentmistungs- und Gülleaufbereitungssystemen.</li> <li>Klärschlammverordnung auf sämtliche Flüssigdünger ausdehnen (Art. 32, 4, lit. g USG (56)).</li> <li>Mittelfristig Anpassung der Nutztierzahl andie bewirtschaftete Fläche und Bodenbelastbarkeit (d. h. unter anderem Verbot von «Tierfabriken»).</li> <li>Mittelfristig Beschränkung des Futtermittelzukaufes pro ha Nutzfläche (einzelbetriebliche Futtermittelzukaufentierung).</li> </ul> | <ul> <li>In geringerem Masse dieselben positiven Wir- kungen wie Massnahme 2.</li> <li>Mehraufwand an Zeit und Geld.</li> <li>Geld.</li> <li>Beeinflussung des gegenwärtigen agrarpolitischen Systems.</li> </ul> | — Alle Voraussetzungen zu Mass nahme 5 können ihrerseits als Massnahme aufgefasst werden und sind auch Randbedingung für Massnahme 4. Neben intensivierter Beratung sind auch gesetzliche Grundlagen zu schaffen. Das bedingt juristische Abklärungen und politische Entscheide auf Bundesebene.  — Mehraufwand an Zeit heisst auch Schaffung von Arbeitsplätzen, aber ebense Verteuerung landwirtschaftlicher Produkte |

| Massnahme                                                                                                                                                                                                                              | Priorität          | Voraussetzungen                                                                                                                                                                                                           | Weitere Folgen                                                                                                                                                        | Bemerkungen                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6. Bei Melioration von Feuchtge- bieten und an- deren baulichen Eingriffen in die Landschaft, so- wie bei der Nut- zung des Wal- des ist auch der mögliche Scha- den zusätzlicher Nitratauswa- schung in die Rechnung ein- zubeziehen. | sofort<br>möglich  | <ul> <li>Intensivierung der Beratung.</li> <li>Evtl. gesetzliche Grundlagen schaffen.</li> </ul>                                                                                                                          | Erhaltung natur-<br>naher Landschaf-<br>ten.                                                                                                                          | - Grossflächiges Absterben von Teilen des Waldes in Wassereinzugsgebieten bzw. undifferenzierte Gegenmassnahmen (Kalken) erhöhen auch den Nitratgehalt des Grundwassers.         |
| 7. Einsatz von Fruchtwahl und Fruchtfolge nach Kriterien ver- minderter Ni- tratauswa- schung.                                                                                                                                         | mittel-<br>fristig | <ul> <li>Intensivierung der Beratung.</li> <li>Teilweise Forschung und Entwicklung.</li> <li>Information.</li> <li>Änderung des Subventionswesens (neue Zielsetzungen in der Landwirtschaftspolitik (vgl. 9)).</li> </ul> | <ul> <li>(Vgl. Massnahme 2).</li> <li>Evtl. weniger Ertrag pro Hektar Nutz- fläche.</li> <li>Rückgang der Überproduktionen (Milch- schwemme, Fleischberg).</li> </ul> | Der undifferenzierte Ausbau der Anbaufläche für Zuckerrüben ist zu vermeiden. Die Maisanbaufläche ist zu stabilisieren bzw. in Problemgebieten zu reduzieren. Im übrigen vgl. 9. |
| 8. In exponierten  Lagen Ausscheidung grossflächiger Schutzzonen  (mehrere km²)  mit abgestuften  Nutzungsbeschränkungen.                                                                                                              | mittel-<br>fristig | Gesetzliche Grund-<br>lagen auf Bundes-<br>ebene schaffen (ju-<br>ristische Abklä-<br>rungen und poli-<br>tische Entscheide).                                                                                             | <ul> <li>Vgl. Massnahme 2.</li> <li>Möglicherweise Entschädigungsansprüche wegen Einkommensschmälerung.</li> </ul>                                                    | Wo keine gross-<br>flächigen Schutz-<br>zonen ausgeschie-<br>den werden (Ein-<br>zelbrunnen), ver-<br>mehrte Trinkwas-<br>serkontrollen.                                         |

| Massnahme                                                                                                                                                                                                                             | Priorität                       | Voraussetzungen                                                                                                                                                                                                                                                                                                                     | Weitere Folgen                                                                                                                                                                                                                                                                                                                                    | Bemerkungen                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9. Änderung des Subventionswesens, verbunden mit Lenkungsabgaben, damit ökologisch sinnvolle Produktionsweisen eher gefördert werden als andere und die sozialen Kosten vermehrt in Rechnung gestellt werden (An- und Abreizsysteme). | mittel-<br>bis lang-<br>fristig | <ul> <li>Entsprechende ökologische, agrar-ökonomische und agrarsoziologische Studien sind kurzfristig zu veranlassen.</li> <li>Bedingt intensive und weitreichende politische Auseinandersetzungen und immense agronomische, gesetzgeberische und behördliche Arbeit (neue Zielsetzungen in der Landwirtschaftspolitik).</li> </ul> | <ul> <li>Gerechtere Belastung der Verursacher.</li> <li>Längerfristig in jeder Hinsicht positive Auswirkungen bezüglich Erhaltung der Bodenfruchtbarkeit und Wiedererlangen eines «natürlichen» Gleichgewichtes.</li> <li>Noch nicht abschätzbare Auswirkungen auf das komplexe Gefüge der schweizerischen Landwirtschaft (-spolitik).</li> </ul> | Sinnvoll scheint ein schrittweises Vorgehen. So können einzelne Punkte dieser Forderung auch kurzfristig verwirklicht werden, z. B. Anbauprämien für Körnermais nur bei Verwirklichung einer bodenbedeckenden Untersaat oder mittelfristig, z. B. Lenkungsabgaben auf Handelsdüngern oder Grossvieheinheiten, die das erträgliche Mass pro Hektar Nutzfläche übersteigen. |
| 10. Umstellung in der Nutzung organischer (mooriger und anmooriger) Böden von Intensivkulturen in Richtung Graswirtschaft oder Naturlandschaft.                                                                                       | lang-<br>fristig                | Politische und gesetzliche Grund-lagen schaffen.                                                                                                                                                                                                                                                                                    | <ul> <li>Bodenerhaltung (Nachhaltig- keitsprinzip).</li> <li>Reduktion technischer Eingriffe in den Wasserhaushalt (z. B. bei Juragewässerkorrektionen).</li> <li>Erhaltung bzw. Wiederherstellung naturnaher Landschaften.</li> </ul>                                                                                                            | Bedeutet einen schwerwiegenden Eingriff in die traditionelle Betriebsstruktur ganzer Regionen.                                                                                                                                                                                                                                                                            |

Grossflächiges Absterben von Teilen des Waldes in Wassereinzugsgebieten bzw. undifferenzierte Gegenmassnahmen (Kalken) erhöhen auch den Nitratgehalt des Grundwassers.

Die Überprüfung der rechtlichen Instrumente hat ergeben, dass unsere Gesetze und Verordnungen heute schon Handhabe zur Eindämmung des Nitratproblems bieten – entsprechend konsequenter Vollzug vorausgesetzt (siehe Anhang E). Voraussetzung dazu ist u. a., dem im Schweizerischen Lebensmittelbuch enthaltenen Toleranzwert von 40 mg Nitrat pro Liter Trinkwasser Verbindlichkeit auf Verordnungsstufe zukommen zu lassen. Erst damit ist den Kontrollinstanzen die Möglichkeit gegeben, neben Beanstandungen auch direkt verpflichtende Auflagen zu machen.\* Will man bestimmte Massnahmen zur Beherrschung des Nitratproblems im Grundwasser zum Tragen bringen, ist die Ausweitung des rechtlichen Instrumentariums auf Verordnungs- und Gesetzesstufe notwendig.

Neben ursächlichen Massnahmen werden in dieser Arbeit auch Symptombekämpfungsmassnahmen beschrieben: Güllengrubenvergrösserung, Einsatz künstlicher Nitrifikationshemmer, Erstellung neuer Wasserbezugsorte, Mischung mit nitratarmem Wasser und verschiedene Technologien zur Wasseraufbereitung. Solche Massnahmen werden jedoch für die grundlegende und langfristige Lösung des Nitratproblems als untauglich erachtet. Sie bergen die Tendenz, die Probleme zu verschleiern und neue Probleme hervorzurufen und sollen daher nur als vorübergehende Massnahmen in besonders kritischen Fällen eingesetzt werden.

# Heutige Situation und Tendenzen

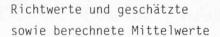
#### International

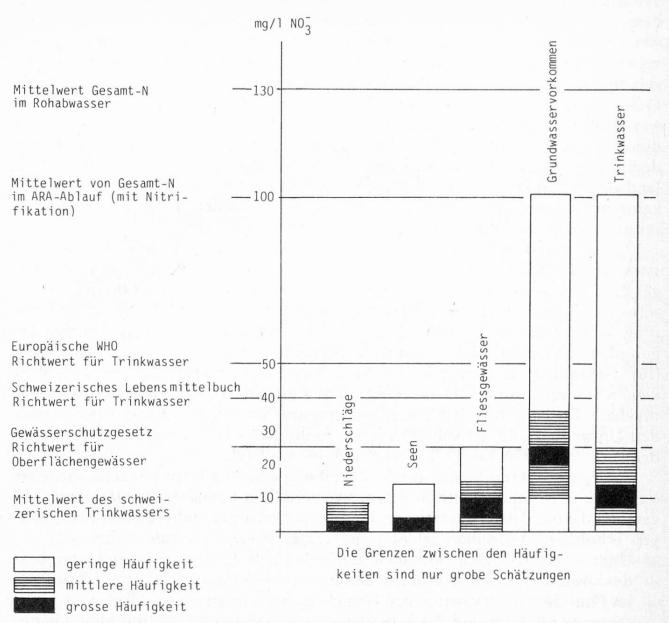
Verschiedene Nationen und internationale Gremien beschäftigen sich seit Jahren mit Nitratproblemen. Die Datenlage erlaubt allerdings bei weitem keinen vollständigen Überblick über das Ausmass der Situation. Die neueste Publikation der Weltgesundheitsorganisation zum Nitratproblem (4) erwähnt hohe und steigende Nitratgehalte von Oberflächen- und Grundwässern in einer Reihe von Ländern, wo intensive Landwirtschaft betrieben wird. Beispielsweise ergab eine Prüfung von 2000 ländlichen Brunnen der Provinz Saskatchewan, Kanada, bereits im Jahr 1948, dass fast 20% Nitratgehalte über 50 mg/l und etwa 5% Konzentrationen von über 300 mg/l hatten. Etwa 180 Brunnen der öffentlichen Trinkwasserversorgung in der dichtbesiedelten Küstenregion Israels wiesen 1970 Nitratgehalte von über 45 mg/l auf. Sowohl im Zentrum der USA als auch in verschiedenen Gebieten der Sowjetunion zeigten viele Ziehbrunnen Nitratgehalte bis zu 450 mg/l (um 1970). Bei diesen Extremwerten handelt es sich meist um private, ländliche Brunnen, die durch Punktquellen (einzelne Ställe, defekte Güllenlöcher) verschmutzt werden.

<sup>\*</sup> Siehe Fussnote auf Seite 250.

Demgegenüber erwähnt der Bericht der Nitratkommission der Vereinigten Staaten (Panel on nitrates; NAS (5)) eine Studie (6), dergemäss die Trinkwasserversorgungen der 100 grössten Städte der USA Nitratwerte von 0 bis 28 mg

NO<sub>3</sub>/1 aufweisen, bei einem Medianwert von 0,7 mg/l.


Ein aktueller Report der OECD (7) über die Gewässerverschmutzung in Europa stellt fest, dass die Belastung natürlicher Gewässer mit Nitraten - meist in Gebieten intensiver landwirtschaftlicher Nutzung - seit den 60er Jahren einen markanten Anstieg erfahren hat, der in den letzten Jahren noch beschleunigt wurde. Im Pariser Becken z. B. haben 10% der Brunnen Nitratgehalte von über 40 mg/l und fast 50% solche von über 20 mg/l. Im Departement de Yonne wiesen 1965 noch 82% aller untersuchten Wasserfassungen niedere Gehalte bis zu 10 mg NO<sub>3</sub> /l auf, 1977 waren dies nur noch 1,3%, während die Fassungen mit über 40 mg/l im gleichen Zeitraum von 0% auf 15% anstiegen. Die Aussage, dass die Nitratgehalte in Grundwässern in den letzten Jahren noch stärker anstiegen, wird auch von einer Arbeitsgruppe der WHO gemacht (8), die festhält, dass in Europa mehrere Millionen Menschen auf Trinkwasser angewiesen sind, das mehr als 45 mg Nitrat pro Liter enthält. Diese Arbeitsgruppe vermutet, dass die ansteigende Tendenz des Nitratgehaltes im Grundwasser für mehrere (!) Jahrzehnte anhalten wird, und zwar auch dann, wenn die Auswaschung von Nitrat aus dem Boden durch eine veränderte landwirtschaftliche Praxis drastisch reduziert werden könnte.


In der Bundesrepublik Deutschland wurde 1974/75 (9) der Versuch unternommen, eine flächendeckende chemische Wasserstatistik zu erstellen (Datenbanksystem BIBIDAT). Eine erste Auswertung, die etwa ½ der Bevölkerung erfasst, ergab folgendes Bild: Der Nitratgehalt des Trinkwassers überschritt zur Zeit der Analyse den (alten) Grenzwert der Trinkwasserversorgung (90 mg NO3/l) für ca. 1% und den Wert der WHO (50 mg/l) für ca. 6,5% der erfassten Verbraucher. Der maximale Nitratgehalt lag bei 140 mg/l. Diese Aussagen werden dahingehend eingeschränkt, dass die erhöhten Nitratgehalte nicht dauernd im gesamten Versorgungsgebiet auftreten, was von den Druckverhältnissen im Verteilernetz – bei Mischwasserlieferungen – abhängt (9–11). Eine grossflächige Untersuchung aus Weinbaugebieten der Regionen Baden, Württemberg, Hessische Bergstrasse und Franken zeigte, dass die Trinkwässer dieser Gebiete mit 13% Grenzwertüberschreitungen (mehr als 50 mg NO3/l und 46% Richtzahlüberschreitungen (mehr als 25 mg NO3/l) deutlich mehr Nitrat enthalten als die BRD im Durchschnitt (12).

#### Schweiz

Die folgende Übersicht stützt sich auf Beispiele, die aus einer Umfrage (14) der Arbeitsgruppe «Nitrate in Nahrungsmitteln» bei den Kantonschemikern (9. 1. 85) stammen, sowie auf den ersten Lagebericht «Nitrat im Trinkwasser» (3) und Fachliteratur.

Als Orientierung und zur Darstellung der uns heute bekannten Nitratwerte sei anhand der Abbildung 1 zunächst auf einige grundlegende Gegebenheiten einge-





gemessene Werte nur teilweise statistisch erfasst

Abb. 1. Übersicht über die wichtigsten Nitratkonzentrationswerte. Aus EDI 1979 (3)

gangen: Das Niederschlagswasser kann als wenig nitrathaltig bezeichnet werden, und auch die Nitratkonzentrationen im Seewasser sind unbedeutend. Die Fliessgewässer weisen im allgemeinen kleine Nitratgehalte auf. Selbst die sehr stark belastete Glatt wies im Jahresmittel 1978 «nur» einen Wert von 22 mg Nitrat/l und der stark eutrophe Greifensee einen solchen von 8 mg/l auf (3). Als Güteziel bzw. als Grenzwert für Fliessgewässer, bei denen Trinkwassernutzungen zu berücksichtigen sind, gibt die Verordnung über Abwassereinleitungen einen Wert von 25 mg Nitrat/l an.

Beim Grundwasser ist ein Qualitätsziel nur indirekt vorhanden: Das Grundwasser soll - im weiteren Sinne des Gewässerschutzgesetzes grundsätzlich überall

- so beschaffen sein, dass möglichst keine Aufbereitung bei einer allfälligen Trinkwassernutzung notwendig ist. Orientiert man sich am Schweizerischen Lebensmittelbuch (15), so muss ein entsprechendes Qualitätsziel (bzw. Toleranzwert) mit 40 mg Nitrat/l angegeben werden. Zur Verbesserung der für die Wasserversorgung genutzten Grundwasservorkommen dient heute bei zu hohen Nitratgehalten fast ausschliesslich die Verdünnung mit nitratarmem Wasser. Nun gilt es zu bedenken, dass unsere Grundwasservorkommen mehrheitlich durch Flusswasserinfiltration angereichert und ihre Nitratgehalte somit natürlicherweise verdünnt werden. Übermässig hohe Nitratkonzentrationen im Trinkwasser kommen demzufolge hauptsächlich bei jenen Wasserversorgungen vor, die sich in stark landwirtschaftlich genutzten Gebieten des Mittellandes befinden und die über keine mit Uferinfiltrat angereicherten Grundwasser- oder zur Trinkwasseraufbereitung geeignete Oberflächenwasservorkommen verfügen.

Zusammenfassend kann festgestellt werden, dass vereinzelt vorkommende, stark erhöhte Nitratwerte in den schweizerischen Oberflächengewässern in der Regel die Folge spezifischer lokaler Gegebenheiten sind. Falls das Oberflächengewässer nicht wesentlich durch Grundwasser gespiesen ist, wird die Nitratanreicherung in Oberflächengewässern vorzugsweise durch den kommunalen Entsorgungsbereich (Abwässer) und nur nachrangig durch die Landwirtschaft verursacht (16). Gesamthaft gesehen gibt die Nitratbelastung der Oberflächengewässer zu keiner Besorgnis Anlass. Dieser erfreuliche Zustand darf jedoch nicht als unverrückbare Tatsache für alle Zeiten hingenommen werden. Gemäss Bericht über den Umweltzustand der OECD stieg z. B. die Nitratkonzentration in der Seine

bei Paris von 1970 bis 1975 von 8 auf 19 mg/l (3).

Schwieriger gestaltet sich die Beschreibung und erst recht ein schematischer Vergleich der Nitratgehalte in den schweizerischen Grundwasservorkommen. Abgesehen davon, dass systematische, langfristig und unter einheitlichen Bedingun-

gen erhobene Messreihen fehlen, sind einige weitere Gründe dafür:

Unterschiedliche Beschaffenheit der Böden und des geologischen Untergrundes sowie die Sickertiefe beeinflussen sowohl Zeitpunkt als auch Menge des im Grundwasser erscheinenden Nitrats, das einmal aus einem Boden ausgewaschen wurde (während des Versickerns können mikrobielle und hydrochemische Prozesse stattfinden, die unter Umständen den Nitratgehalt stark redu-

zieren, vgl. Anhang D).

Unterschiedliche Häufigkeit, Menge und Verteilung der Niederschläge sowie die natürlichen jahreszeitlichen Schwankungen der Nitratauswaschung, bedingt durch Klima- und Vegetationsperioden, wirken sich je nach topographischer, geologischer und pedologischer (bodenkundlicher) Situation verschieden auf das Erscheinen des Nitrats im Grundwasser aus. Das Ermitteln des hydrologischen Einzugsgebietes (oft nicht identisch mit dem topographischen Einzugsgebiet) und der Aufenthaltsdauer des Wassers im Boden bedingt meist zeitaufwendige und teure geologische Untersuchungen.

- Zwischen Grund- und Oberflächengewässern spielen sich je nach geologischen Verhältnissen unterschiedliche Ex- und Infiltrationsvorgänge ab (ebenfalls nur aufwendig erforschbar), die die Nitratkonzentrationen verändern.

Durch Lysimeter-(Gefäss-)Versuche und in abgegrenzten Naturlabors wurden zwar übereinstimmende Ergebnisse darüber erzielt, wie die verschiedenen Bodentypen, Klimafaktoren und landwirtschaftlichen Anbauweisen die Nitratauswaschung beeinflussen (vgl. Anhang A). Durch das beliebige Zusammenspiel der obgenannten Faktoren aber können die in einem bestimmten Grundwasser gemessenen Nitratwerte die ursächlichen Prozesse, die der Auswaschung zugrunde lagen, nur in extremen Fällen und oft erst nach langer Zeit widerspiegeln.

Generell tiefe Nitratwerte, in der Regel weit unter 10 mg Nitrat/l, finden sich in den Alpentälern (17). Werden in diesen Gebieten ausnahmsweise doch Nitratwerte im kritischen Bereich um 40 mg/l gefunden, dann können die Ursachen meist leicht eruiert werden, z. B. intensiv begülltes Weideland. Auch im Flachland der Alpensüdseite (19) und im Jura (17) finden sich – soweit Daten vorliegen – fast durchwegs niedrige Werte. Lediglich im Süden des Kantons Tessin werden im Einzugsgebiet intensiven Gemüsebaus erhöhte Werte im Grundwasser gemessen, die aber immer noch im Bereich bis zu ca. 30 mg NO<sub>3</sub> /l liegen (19).

Im Mittelland ergibt sich, aufgrund der oben geschilderten Faktoren, kein einheitliches Bild. Immerhin kann festgestellt werden, dass in reinen Waldeinzugsgebieten die Nitratwerte im Sickerwasser in der Regel unter 15 mg/l liegen. Dieses Bild muss im Lichte neuerer Erkenntnisse allerdings differenziert werden. Manche Erlenbestände in Auenwäldern können mit in Symbiose lebenden Actinomyceten beträchtliche Mengen an Luftstickstoff binden. Unter solchen Beständen sind im Sickerwasser Nitratgehalte bis zu 100 mg/l gemessen worden (18). (Hier stellt sich die Frage, weshalb z. B. die Wasseranreicherungsanlage «Lange Erlen» in Basel keine Nitratprobleme hat. Erstens: Der Name ist historisch, die Anlage ist mit Mischwald bepflanzt, mit nur wenig Erlen. Zweitens: Das Wasser wird mit nitratarmem Rheinwasser angereichert.)

Daneben können auch forstwirtschaftliche Massnahmen (Verjüngung, Durchforstung, Bestockungswechsel, Düngung und Kalkung) zu sehr hohen Nitratgehalten im Sickerwasser führen (Abb. 2). So wurden unter Buchenmischbeständen, die ihr Kronendach nach einer Auflichtphase wieder geschlossen und die aufgekommene Bodenvegetation bis auf eine kurze Frühjahresperiode «hinausgedunkelt» hatten, im Sickerwasser 43 mg Nitrat/l im jährlichen Schnitt gemessen. Auch eine Umstellung von Laubholz auf Fichte kann den Nitrataustrag für Jahrzehnte (!) wesentlich erhöhen. Der untere Teil des Bodenraums unterliegt wegen der geringen Durchwurzelungstiefe in der ersten Fichtengeneration einem zunehmenden Humusabbau. Bei ausreichender Durchlüftung und nicht zu tiefen pH-Werten werden die mineralisierten Stickstoffverbindungen grösstenteils zu Nitrat umgewandelt. In einem über 50jährigen Fichtenbestand enthielt das Sickerwasser in 1,8 m Tiefe über mehrere Messjahre hinweg zwischen 70 und 120 mg Nitrat/l und der jährliche Auswaschverlust betrug 40 kg N/ha (18). Neben Düngungen können auch Kalkungen, allerdings mit zeitlicher Verzögerung, zu verstärkter Stickstoffmobilisierung und somit unter Umständen bedenklichen Nitratwerten im Sickerwasser führen. In diesem Lichte wären auch die manchenorts als Gegenmittel zur Bodenversauerung empfohlenen Kalkungen zu betrachten. Mehrere



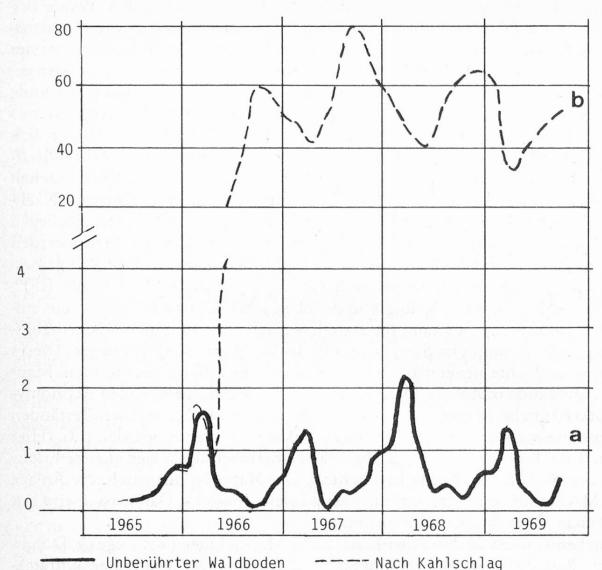



Abb. 2. Verhalten eines Waldbodens bezüglich Nitratauswaschung. Kurve a zeigt den unberührten Waldboden. Kurve b zeigt die Nitratverluste nach durchgeführtem Kahlschlag (Dezember 1965 bis März 1966) (20)

Hinweise lassen überdies vermuten, dass auch in krankheitsbedingt aufgelichteten Wäldern eine verstärkte Nitrifikation abläuft (18).

Untersuchungen über Nitratgehalte aus Grundwasserfassungen und Quellwässern in der Schweiz ergaben folgende durchschnittliche Werte (17):

Alpen 3 mg NO<sub>3</sub>/1

Jura 4 mg  $NO_3^-/1$ 

Mittelland 24 mg NO3/1

(Sämtliche Werte sind mit grossen Streuungen behaftet.)

Unter Vorbehalt der eingangs erwähnten «Unschärfefaktoren» (Seite 244) widerspiegeln die Nitratgehalte der Grund- und Quellwässer eines bestimmten Gebietes dessen landwirtschaftliche Bewirtschaftungsweise. So fand Quinche (17) den durchschnittlichen Gehalt bei Wiesen-, Weiden- und Waldnutzung bei 6 mg Nitrat/l, bei Akker- und Weinbau dagegen bei 24 mg NO<sub>3</sub> /l. Ein ähnliches Bild ergibt die Häufigkeitsverteilung der Nitratkonzentrationen im Trinkwasser (Messungen zwischen 1970–1980) der Gewässerschutzstatistik (154). In Gebieten mit weniger als 45% ackerbaulich genutzter Fläche wurden im Schnitt 16 mg NO<sub>3</sub> /l im Grundwasser gefunden. In Gebieten mit mehr als 45% ackerbaulich genutzter Fläche erhöhen sich die Durchschnittswerte auf 20 mg NO<sub>3</sub> /l. Das Quellwasser wird stärker beeinflusst als das Grundwasser. Die entsprechenden Werte sind 18 mg NO<sub>3</sub> /l für Gebiete mit mehr als 45% Ackerfläche.

Einige Beispiele aus unserer Umfrage (14) sollen diese Situation verdeutlichen. (Das Datenmaterial stammt, soweit nicht anders erwähnt, von den jeweils

zuständigen kantonalen Laboratorien.)

- Eine 1984 erstellte Karte der mittleren Nitratwerte in Trinkwässern des Kantons Waadt zeigt die Gebiete mit erhöhten Nitratgehalten vor allem im Moyen-Pays Vaudois, speziell im Molassen-Plateau zwischen Neuenburgerund Murtensee und in der Basse-Broye, zwischen Vallée de l'Orbe und Vallée de la Broye. In einigen Sektoren dieses Territoriums werden Werte über 40 mg Nitrat/l erreicht. Die kritischen Gebiete decken sich mit den Zonen, die den grössten Anteil offener Ackerfläche aufweisen (z. B. in der Basse-Broye 55% der landwirtschaftlich genutzten Fläche). Andererseits zeigt das vorwiegend bewaldete Gebiet um den Mont Jorat durchwegs Nitratwerte im Trinkwasser unter 10 mg/l, desgleichen die Distrikte am Jurafuss. Der Grund, weshalb die Bezirke am Ufer des Lac Léman trotz intensiven Rebbaus fast durchwegs Werte unter 10 mg Nitrat/l aufweisen, liegt darin, dass sie ihr Trinkwasser aus Seewasser oder aus seewasserinfiltriertem Grundwasser aufbereiten, das im allgemeinen niedrige Nitratgehalte aufweist (vgl. auch 152).

Im zugerischen Reusstal steigen die Nitratgehalte im Grundwasser unter einem landwirtschaftlich intensiv genutzten Gebiet (hoher Anteil Maisanbau) von 2 mg NO3/1 in der flusswasserinfiltrierten Uferzone grundwasserstromabwärts auf über 20 mg NO3/1, und das auf einer Strecke von nur knapp anderthalb

Kilometern (153).

- Eine ähnliche Situation zeigt sich im acker- und rebbaulich intensiv genutzten Klettgau (SH). Die im Bereich Enge gemessenen Grundwasserwerte von 20 mg Nitrat/l steigen stromabwärts auf einer Strecke von 14 km auf über 40 mg Nitrat/l. Ganz extrem zeigt sich der Einfluss des Rebbaus z. B. im Gebiet Wilchingerberg. Während die Quellwässer oberhalb der Rebhänge zwischen 2 und 9 mg NO<sub>3</sub> /l aufweisen, zeigen die zwei Quellen am Fuss des Rebberges 28 und 64 mg NO<sub>3</sub> /l (14. 5. 1984).

 Die 15 (von 250) Gemeinden des Kantons Freiburg, die Trinkwasser mit mehr als 40 mg NO<sub>3</sub> /l verteilen, liegen ausschliesslich im Gebiet intensiver Landwirtschaft. Die maximalen Gehalte in privaten Quellen liegen bei 150-160 mg

 $NO_{\frac{1}{3}}/1!$ 

- Erhöhte Nitratwerte sind im Kanton Wallis nicht ausgeschlossen - mindestens in Teilen des Rhonetals, wo intensive Obst-, Wein- und Gemüsekultu-

ren vorhanden sind. So zumindest dürfte eine kritische Wertung der Aussagen der zuständigen Amtsstelle dieses Kantons lauten, wonach kein Zahlenmaterial veröffentlicht werden könne, weil «die Trinkwässer im Besitztum der Gemeinden sind».

- Auch im Kanton Aargau wurde eine Nitratkarte erstellt (Grund- und Quellwässer, mit Daten bis Ende 1983). Alle Quellfassungen, deren Einzugsgebiet vollständig bewaldet ist, liefern Wasser mit Gehalten unter 10 mg Nitrat/l. Quellen, deren Einzugsgebiet ackerbaulich genutzt wird, zeigen unterschiedliche Gehalte, z. T. auch Werte, die weit über 40 mg Nitrat/l liegen. Bei den Grundwasserfassungen zeigt sich neben der landwirtschaftlichen Nutzung eine starke Beeinflussung des Anteils an Flusswasserinfiltration. Die problematischen Gebiete liegen dort, wo keine nennenswerte Infiltration vorliegt, sei es, weil kein Fluss (oder auch kein See) im Einzugsgebiet liegt, oder sei es, weil der Grundwasserspiegel höher als der Flusswasserspiegel liegt. Diese kritischen Fassungen liegen vorwiegend in gewissen Teilen des Reuss- und des Bünztals.

Die Beobachtung des Einflusses der Oberflächenwasser wurde auch von Fachleuten anderer Kantone gemacht. So kann man, verallgemeinert, sagen: Abgesehen von massiven Punktverschmutzungen liegen die problematischen Gebiete dort, wo starke landwirtschaftliche Nutzung oder grossflächige Waldrodung zusammenfallen mit fehlender Oberflächenwasserinfiltration oder fehlender Durchmischung aus wenig belasteten Einzugsgebieten.

In der Gewässerschutzstatistik (154) sind die Nitratgehalte von in 173 Wasserwerken durchgeführten Kontrollmessungen des erfassten Trinkwassers für knapp 3 Millionen Einwohner auf die Gesamtbevölkerung der Schweiz (6,5 Millionen Einwohner) hochgerechnet worden. Es lässt sich daraus herauslesen, dass einerseits 3,5 Millionen Schweizer Trinkwasser mit einem mittleren Nitratgehalt von weniger als 10 mg pro Liter konsumieren. Andererseits beträgt der mittlere Nitratgehalt im Trinkwasser von 30 000 Einwohnern mehr als 40 mg pro Liter.

Für die Beurteilung allfälliger Risiken einer Belastung mit mehr als 40 mg pro Liter ist jede Statistik nur bedingt aussagekräftig. Wie die Resultate unserer Umfrage (14) zeigen, können regionale Bevölkerungsgruppen oder Bewohner abgelegener Einzelgehöfte Spitzenbelastungen ausgesetzt sein, die durch Mittelwerte nicht

widerspiegelt werden.

Die Qualität des Trinkwasserangebots aus den einzelnen Wasserwerken ist einem dynamischen Prozess unterworfen. So zeigt ein Vergleich der Untersuchungsergebnisse der Jahre 1980/81 und 1984 im Kanton Thurgau, dass die Zahl der Versorgungen mit Nitratkonzentrationen zwischen 30 und 40 mg/l im Trinkwasser von 18 auf 29 angestiegen ist. Andererseits können von den bisher 14 Versorgungen mit zu hohem Nitratgehalt im Trinkwasser deren 7, nach erfolgter Sanierung, heute einwandfreies Trinkwasser liefern (166). Wir schätzen, dass heute ein Prozentsatz zwischen 0,5 und 2% der schweizerischen Bevölkerung Trinkwasser mit mehr als 40 mg Nitrat im Liter konsumieren muss. Sowohl bei der Gewässerschutzstatistik als auch in den einzelnen Kantonen wird zur Zeit versucht, zu weiteren aktuellen Zahlen zu gelangen.

Interessant wäre es, aus fallspezifischen, langzeitlichen Erhebungen auf die Entwicklungstendenz zu schliessen, doch dazu ist das verfügbare Datenmaterial zu lückenhaft. Die bis heute verfügbaren Daten weisen – pauschal gesagt – auf eine steigende Tendenz der Nitratgehalte im Trinkwasser hin. Diese Tendenz gilt aber nicht allgemein: Problemgebiete sind lokal begrenzt. In vielen Gebieten wurden erfolgreich Sanierungen durchgeführt (Nutzungsänderungen, Düngeberatung usw., vgl. Anhang B). Andererseits werden steigende Nitratgehalte oft dadurch verschleiert, dass der Endverbraucher Mischwasser aus verschiedenen Einzugsgebieten erhält.

# Massnahmen zur Bewältigung des Nitratproblems

Die Forderung nach reinem und gesundheitlich unbedenklichem, Trinkwasser steht im Raum. Dazu gehört ein tiefer Nitratgehalt. In den Anhängen C und D dieser Standortbestimmung sind die Detailbegründungen für die Notwendigkeit der Erreichung eines solchen Zieles zu finden.

Der Stand des Wissens über die Herkunft des Nitrates im Trinkwasser ist heute sehr gross (siehe Anhang A). Sowohl Modellversuche als auch unter Praxisbedingungen erhobene Forschungsresultate (Anhang B) haben die Gesamtheit (nicht nur die Düngung) der modernen intensiven Landwirtschaftsmethoden als Hauptursache des Nitratproblems erhellt und bestätigt. Die Zusammenarbeit der Wissenschaft mit der praktischen Landwirtschaft im Rahmen von Naturlabors und Sanierungsprojekten hat gezeigt, dass sich eine grosse Mehrheit der Landwirte den ökologischen Konsequenzen ihres Handelns bewusst ist und dass die Bereitschaft für Änderungen der heutigen Praxis vorhanden ist.

Die Probleme können nicht gegen, sondern nur mit den Landwirten (und Gemüse-, Reb- und Obstbauern) gelöst werden. Dazu gehört auch eine aufgeklärte Konsumentenschaft, die bereit ist, sich gemäss Kriterien der langfristigen Umwelterhaltung statt nach kurzfristigen Bedürfnissen von Luxus und Bequemlichkeit zu verhalten. Die Verbreitung dementsprechender Informationen ist gezielt zu fördern.

Für den einzelnen Landwirt bedeutet die Verwirklichung der Massnahmen – nebst der Umstellung von Gewohnheiten – oft beträchtlichen zeitlichen und finanziellen Mehraufwand, der entweder über die Preise (jedoch differenziert!) oder über geeignete fiskalische Massnahmen (siehe hinten: Abschnitt Subventionen, Lenkungsabgaben) abzugelten ist. Undiskutabel jedoch wäre in diesem Zusammenhang die Erhebung einer Abgabe auf Trinkwasser, die als Subvention zum Schutze des Grundwassers vor zuviel Nitrat verwendet würde (in der BRD bekannt unter dem Namen «Wasserpfennig»; gemeint sind einige Pfennige pro m³ Trinkwasser zur Finanzierung von Massnahmen gegen überhöhte Nitratwerte, vgl. 170). Solche Massnahmen wirken undifferenziert und stellen überdies eine präzise Umkehrung des im Artikel 2 des Umweltschutzgesetzes (56) verankerten Verursacherprinzips dar!

Durch die enorme Komplexität aller zusammenwirkender Faktoren ist der einzelne Landwirt zudem bald wissenschaftlich überfordert. Zu fordern ist daher ein wirksamer und bedeutender Ausbau der düngemittelindustrieunabhängigen, an ökologischen und agronomischen Erkenntnissen orientierten, hofspezifischen Betriebsberatung von seiten der eidg. landwirtschaftlichen Forschungsanstalten und der kant. Ausbildungszentren (Landwirtschaftsschulen) bzw. Beratungsdienste.

Eine wichtige Voraussetzung für die Kontrollbehörden, um Massnahmen und Auflagen aller Art wirksam durchsetzen zu können, ist, dass dem im Schweizerischen Lebensmittelbuch enthaltenen Toleranzwert von 40 mg Nitrat/l Trinkwasser Verbindlichkeit auf Verordnungsstufe zukommt, als Höchstkonzentration gemäss Artikel 7 a der Lebensmittelverordnung. Denn ohne diese Rechtsverbindlichkeit bleiben die Auflagen an verantwortliche Gemeindebehörden oder Verursacher vielenorts lediglich Empfehlungen ohne Zwang zum Handeln.\*

# Ursachenbekämpfung

Viele der für den Bereich Landwirtschaft vorgeschlagenen Massnahmen sind noch Gegenstand intensiver Untersuchungen durch die landwirtschaftlichen Forschungsanstalten. Beim Einsatz in der Praxis, wo stets vielfältige Prozesse ineinander greifen, ergeben sich je nach Einfluss anderer Faktoren zum Teil neue Probleme (ökologischer und/oder ökonomischer Art). Auf die Behandlung von Details wie Sortenwahl, Bodenart usw. wird daher in den folgenden Ausführungen der Kürze wegen verzichtet. Auskünfte für konkrete Situationen können die Spezialisten der Forschungsanstalten und Landwirtschaftsschulen bieten.

# Landwirtschaftliche Bodenbewirtschaftung

Alle Versuche und Praxisbeobachtungen haben gezeigt, dass die wichtigste, wirksamste und dringendste Massnahme zur Vermeidung von Nitratverlusten ins Grundwasser eine möglichst lückenlose Begrünung des Bodens ist (21–23). Im Akkerbau sind Brachperioden durch Zwischenfutteranbau und Gründüngung nach Möglichkeit auszuschalten. Bei spät geernteten Kulturen (z. B. Mais) kann die Herbstbrache nur durch in die Hauptkultur eingesäte Untersaaten vermieden werden (22, 24). Winterweizen als möglicher Bodenbedecker vermag Stickstoffverluste in den Untergrund nicht ausreichend zu verhindern (25). Brachperioden im Frühjahr sind dadurch zu vermeiden, dass das Zwischenfutter möglichst bis zum Start der neuen Kultur erhalten bleibt. Dies kann, beispielsweise bei schweren Böden, Konflikte mit den Bedürfnissen der Bodenbearbeitung geben, wo die für die Bodengare vorteilhafte Herbstfurche geschätzt wird. Solche Probleme sind teilweise durch eine Änderung der Fruchtfolge zu lösen. Polizeivorschriften bringen in solchen Fällen aus Gründen mangelnder Durchsetzbarkeit und Ver-

<sup>\*</sup> Durch den Erlass der FIV (159) vom 27. Februar 1986 ist dieser Schritt erfolgt. Diese Verordnung ist am 1. Mai 1986 in Kraft getreten.

hältnismässigkeit nichts. Zu fordern ist aber ein bedeutender Ausbau der neutralen, hofspezifischen landwirtschaftlichen Beratung. Ohne Zweifel bedeutet dies eine zusätzliche Belastung des Steuerzahlers, die sich aber in Form nitratarmen Trinkwassers, hochstehender Qualität landwirtschaftlicher Erzeugnisse und langfristiger Erhaltung der Bodenfruchtbarkeit mehr als auszahlen wird.

Eine möglichst lückenlose, dauernde Begrünung des Bodens ist für die Landwirte mit einem Aufwand an Zeit und Mitteln verbunden. Dieser Aufwand scheint aber gerechtfertigt, denn ausser einer stark verminderten Nitratauswaschung hat eine Dauerbegrünung weitere positive Auswirkungen (23, 26):

- Humusgehalt: Wurzeln und Pflanzenrückstände liefern Humus. Dadurch werden Puffer-, Speicher- und Austauschkapazität des Bodens verbessert.

 Bodenstruktur: Eine üppige Pflanzendecke verbessert die Krümelstabilität, vermindert die Verschlämmung und Erosion, verbessert die Wasser- und Luftdurchlässigkeit und verstärkt die Tragfähigkeit des Bodens.

 Biologische Aktivität: Jede Pflanzendecke liefert Nahrung für die Bodenlebewesen, fördert die Regenwürmer, beschleunigt und vermehrt den Abbau orga-

nischer Schadstoffe (Pestizide) und reguliert den Stickstoffumsatz.

Für den Rebbau ist allenorts eine Dauerbegrünung (evtl. nur wechselreihig) zu fordern. Das bedingt für eine ökonomische Bearbeitung teilweise Änderungen der Reihenabstände, auf die bei Neubestockungen hinzuweisen wäre. Auch im Gemüsebau sind Anstrengungen zu unternehmen, für gewisse Kulturen geeignete Unter- und Zwischensaaten zu finden. In diesen beiden Bereichen ist ebenfalls eine Intensivierung der landwirtschaftlichen Forschung und Beratung angezeigt.

Dem Zeitpunkt und der Art der mechanischen Bodenbearbeitung ist vermehrt Beachtung zu schenken. Besonders auf sandigen und stark humosen Böden kann tiefes Pflügen im Herbst die Stickstoffmineralisierung derart fördern, dass enorme Nitratmengen ausgewaschen werden, vor allem, wenn danach kein überwinterndes Zwischenfutter angebaut wird. Wo immer möglich, soll nur eine flache Bodenbearbeitung durchgeführt werden. Diese ist oft noch im Frühjahr statt im Spätherbst möglich (Ausnahme: schwere Böden). Besondere Vorsicht ist beim Umbruch von Grünland und Gründüngungen geboten. Diese können nach dem Unterpflügen enorme Nitratauswaschungen zur Folge haben (vgl. Abb. 3), wenn nicht anschliessend eine schnellwachsende Kultur angesät wird.

Bei Gebieten mit organischen Böden (moorige und anmoorige) ist zu fragen, ob nicht eine Umstellung der Nutzung angezeigt sei. Auf diesen nährstoffreichen Böden wird vor allem Gemüse angebaut, was immer einen hohen Anteil an Teilund Zwischenbrachen sowie meist noch intensive Düngung mit sich bringt. Da diese Böden zudem nur wenig über dem Grundwasserspiegel liegen (z. B. Juragewässerkorrektionen!), findet man in solchen Gegenden fast immer sehr hohe Nitratgehalte im Grund- und Trinkwasser. Solche Umstellungen können allerdings nur langfristig ins Auge gefasst werden, denn sie bedingen einen Eingriff in traditionelle Betriebsstrukturen ganzer Regionen. Zudem wäre abzuklären, wie stark der durch Nutzungsumstellungen (Richtung Graswirtschaft) entstandene Beitrag zur Milchschwemme ins Gewicht fiele.

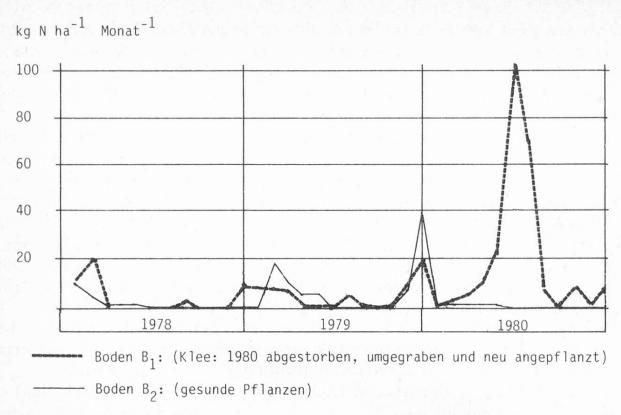



Abb. 3. N-Auswaschung in Lysimetern mit Kleegras; Einfluss von Zwischenbrache, verursacht durch Umbruch und Neueinsaat von Kleegras aus:: Furrer et al., 1983 (22)

# Düngung: Zeitpunkt

Grundsätzlich soll so gedüngt werden, dass die Pflanze den Stickstoff dann aufnehmen kann, wenn sie ihn benötigt. Je nach Situation sind mehrere kleine Gaben einer einmaligen Ausbringung vorzuziehen, besonders auf flachgründigen, sandigen Böden (= Mehraufwand). Um den optimalen Zeitpunkt einer Nachdüngung zu ermitteln, bieten Düngerindustrie und landwirtschaftliche Beratungsstellen Nitrat-Schnelltest-Sets an; womit der Nitratvorrat im wachsenden Pflanzenmaterial bestimmt werden kann (Spross- und Blattanalysen) (28). In Ergänzung zu Bodenanalysen vor Vegetationsbeginn (N<sub>min</sub>-Methode, siehe Seite 254) bietet sich hier eine Möglichkeit, die Höhe und den Zeitpunkt der N-Düngung möglichst pflanzengerecht zu bestimmen, was positive Auswirkungen sowohl auf Ertrag und Qualität der Pflanzen als auch auf die Nitratauswaschung haben kann (27, 28). Besonders beim Mais, der sich bei ungünstiger Witterung extrem langsam entwickelt, ist die übliche, breitflächige N-Gabe bei der Saat zu früh und sollte auf eine minime Gabe in die Saatreihe beschränkt werden. Weitere Düngungen sollten frühestens ab Juni erfolgen.

Eine Düngung von Brachflächen, insbesondere im Spätherbst und Winter, ist zu unterlassen. Das Ausbringen von Klärschlamm auf durchnässte, schneebedeckte, gefrorene und unbewachsene Böden ist verboten bzw. eingeschränkt (Klärschlammverordnung vom 8. 4. 1981 (29), Art. 11 und 12) und sollte auch für Gülle weiter eingeschränkt werden (siehe Anhang E). Dabei ist eine Differenzierung

durchaus angebracht, denn dieser Weg bedingt insbesondere genügend Lagerkapazitäten für diese Stoffe zu schaffen (Güllelagerung für über 4 Monate). Für
Klärschlamm ist zu prüfen, inwieweit er in eine stapelbare, feste Form übergeführt werden kann. Auch bezüglich der Gülle werden sich Aufbereitungsmethoden finden, die ihre Ver-wertung im grossem Massstab sinnvoll machen. Auf jeden Fall sind aber Frachtüberschreitungen beim Abtragen der Lager zu vermeiden. besonders was Phosphat und Schwermetalle anbelangt.

Bäuerliche Betriebe haben die Nutztierzahl gemäss pflanzenbaulichen Bedürfnissen und Bodenbelastbarkeit der bewirtschafteten Fläche anzupassen. In diesem Punkt ist die Wegleitung für den Gewässerschutz in der Landwirtschaft (30) zu revidieren. Besondere Probleme ergeben sich mit der bodenunabhängigen Fleisch- und Eierproduktion. Zum mindesten sollten für die enormen Mengen anfallender Hofdünger ausreichende Abnahmeverträge bestehen (und kontrolliert werden), so dass diese Nährstoffe nach ökologischen Kriterien eingesetzt werden können. Mittelfristig ist eine Beschränkung des Futterzukaufes pro Hektare landwirtschaftlicher Nutzfläche ins Auge zu fassen. Auch aus der Sicht des Nitratproblems ist die bundesrätliche Verordnung über Höchsttierbestände unbefriedigend. Der weitere Bau von Schwemmentmistungsanlagen ist wegen des enormen Anfalls an Flüssigdüngern stark einzuschränken. Dagegen sind kostengünstige Festentmistungsanlagen zu entwickeln und zu fördern. Generell sollte Gülle nicht länger als lästiger Abfall betrachtet, sondern wieder vermehrt als vollwertiger Mehrkomponentendünger in das Düngungskonzept der Landwirte integriert werden. Kriterien für einen zielgerechten Einsatz der Gülle auch im Ackerbau sind erarbeitet worden (31-33).

# Düngung: Menge

Die von den landwirtschaftlichen Institutionen herausgegebenen Düngungsrichtlinien werden laufend überprüft und den neuesten Forschungsergebnissen angepasst. Trotzdem lassen sich nach wie vor viele Landwirte verleiten, zum Teil massiv zu überdüngen, was durch den immer noch relativ billigen Preis der Mineraldünger und den anhaltenden Zwang zu Höchsterträgen bedingt ist (34). Will man auf schwerlich zu kontrollierende Düngevorschriften verzichten («Düngervogt»), dann drängt sich auch hier eine Intensivierung der düngemittelindustrieunabhängigen, landwirtschaftlichen Beratung auf. Insbesondere beim Reb-und Gemüsebau ergeben sich noch vielfältige Möglichkeiten zu massiven Düngereinsparungen, auch durch - eine teilweise schon erfolgte - Anpassung der entsprechenden Richtlinien (12, 35-37). Grössere Probleme als die Mineraldüngung bringen - auch betreffend Düngermenge - in der Schweiz die Hofdünger. aus den bereits genannten Gründen: Fehlende Lagerkapazität und flächenunangepasste Nutztierhaltung (zwei Drittel der in der Schweiz den landwirtschaftlichen Böden zugeführten Stickstoffmenge stammen aus der Tierhaltung (22)). Obwohl das Ausbringen auch sehr hoher Düngermengen bezüglich Nitratauswaschung nicht ins Gewicht fällt, sofern der Boden dicht bewachsen ist (Anhang A), sind Überdüngungen zu vermeiden. Denn erstens können gewisse Nahrungs- und

Futterpflanzen überschüssiges Nitrat in hohem Masse akkumulieren, was zu unerwünschter Nitratbelastung von Menschen und Tieren führt (38, 39). Zweitens führen die im Stickstoffreservoir des Bodens (Wurzelmaterial, Humus, Mikroorganismen) festgelegten Stickstoffmengen zu massiven Nitratschüben, wenn

später ein solcher Boden umgebrochen oder brach gelegt wird.

Die regelmässige Berechnung eines exakten Düngeplanes ist ein geeignetes und erforderliches Hilfsmittel, um grössere Nährstoffverluste zu vermeiden (Düngung am richtigen Ort, zur richtigen Zeit, in der richtigen Menge und Form). Insbesondere müssen bei der Mengenberechnung auch die Stickstoffanteile aus den Hofdüngern Gülle und Mist mitberücksichtigt werden. Beim Maisanbau (langsamwachsende Kultur) sollte zu Beginn der Vegetationsperiode höchstens in den Saatreihen gedüngt werden; auf keinen Fall sollte Gülle zu früh (z. B. im Mai) auf Maisfelder (Halbbrache) ausgebracht werden. Die sachgerechte Dosierung der Stickstoffdüngung setzt hinreichend genaue Kenntnis des N-Angebots des Bodens voraus. Diesem Ziel dient unter anderem die

#### N<sub>min</sub>-Methode:

Zu Beginn der Vegetationsperiode oder zur Zeit der ersten Düngung wird die Menge an mineralisiertem, kurzfristig pflanzenverfügbarem Stickstoff im Wurzelraum des Bodens ermittelt. Üblicherweise geschieht die Probenahme in drei Schichten von 0-90 cm Tiefe. Der grösste Teil des mineralisierten Stickstoffs (= N<sub>min</sub>) liegt in Form von Nitrat vor, ein kleiner Teil als Ammonium. Diese gemessene Stickstoffmenge sowie die geschätzte Menge, die durch Mineralisationsprozesse (Anhang A) im Laufe der Wachstumsperiode im Boden mobilisiert wird (= N<sub>mob</sub>), werden zum Stickstoffbedarf der Pflanze in Beziehung gesetzt. Daraus berechnet sich die effektiv benötigte Menge an Stickstoffdünger. Als Faustregel für Winterweizen hat sich z. B. die Menge (120 kg N minus Anzahl kg N<sub>min</sub>) als optimale Düngermenge zum Saatzeitpunkt herausgestellt (40, 41). Als Hilfsmittel für eventuelle Folgedüngungen erfreut sich der Nitrat-Schnelltest zunehmender Beliebtheit, insbesondere im Gemüsebau (vgl. vorgehenden Abschnitt). Obwohl die Eichungsarbeiten an der N<sub>min</sub>-Methode für verschiedene Kulturpflanzen, Bodenarten, Witterungsbedingungen usw. noch intensiv betrieben werden, hat sich dieses Hilfsmittel auch in der Praxis bereits einen festen Platz erobert. Ausser dem ackerbaulichen Einsatz wird die Methode zunehmend auch im Gemüsebau als nützlich erkannt. Umfragen und Praxiserhebungen haben gezeigt, dass immer mehr Landwirte sich dieses Hilfsmittels bedienen und dass dessen Einsatz sowohl aus ökonomischer als auch aus ökologischer Sicht lohnend sein kann (41-44, 169).

# Düngung: Form

Der Stickstoff in den verschiedenen Hof- und Handelsdüngern liegt in unterschiedlichen chemischen Formen vor (z. B. als Nitrat, Ammoniak, Ammonium, Harnstoff, Calciumcyanamid u. a.). Nitrat und Ammonium werden von den

Pflanzen direkt aufgenommen, die anderen Verbindungen müssen zuerst chemisch/mikrobiell umgesetzt werden, bevor sie pflanzenverfügbar sind (vgl. Anhang A). Eine solche Wirkungsverzögerung kann durch besondere chemische und physikalische Massnahmen (Kondensation und Einhüllung) zusätzlich ausgeprägt werden. Das Düngemittel Kalkstickstoff, bestehend aus Calciumcyanamid (Ca(CN)<sub>2</sub>), entwickelt bei seiner Umsetzung Stoffe, die als Nitrifikationshemmer wirken (siehe Anhang A) und zeigt dadurch eine besonders starke Wirkungsverzögerung (167). Natürliche nitrifikationshemmende Stoffe entstehen auch bei der Verwendung von Düngestoffen aus Abfällen der Zellstoffindustrie und von Kompost (substituierte Chinone; (26, 45). Im übrigen hängt die Pflanzenverfügbarkeit verschiedener Stickstofformen wesentlich von den Bodeneigenschaften ab (pH-Wert, Puffer- und Anlagerungskapazität). Damit der Pflanze der Stickstoff in optimaler Menge und zum richtigen Zeitpunkt zugeführt wird, ist - in Forschung und Beratung - dem Zusammenspiel von Bodeneigenschaften, Pflanzenphysiologie und Düngerform vermehrt Beachtung zu schenken. Dem Nachteil Mehraufwand stehen wiederum die Vorteile bessere Ertragsqualität und -quantität, verminderte Nitratauswaschung und verbesserte Bodeneigenschaften gegenüber.

### Fruchtwahl und -folge

Besondere Probleme bezüglich Nitratauswaschung ergeben sich mit dem Anbau von Mais (ohne Untersaat), Gemüse, Kartoffeln und Zuckerrüben, sei es infolge späten Wachstumstermins (Brache im Frühjahr) oder wegen spätem Erntezeitpunkt (kein Zwischenfutteranbau möglich). Die Lösung dieser Probleme bedarf zunächst verstärkter Forschungsanstrengungen. In Gebieten mit ungünstigen Boden- und/oder geologischen Verhältnissen ist zu prüfen, ob der Anbau dieser Pflanzen aus Gewässerschutzgründen nicht verboten oder eingeschränkt werden sollte. Zu vermeiden ist auf jeden Fall ein undifferenzierter Ausbau der Anbaufläche für Zuckerrüben.

Generell sollte einer geeigneten *Fruchtfolge* unter dem Gesichtspunkt verminderter Nitratauswaschung grössere Beachtung geschenkt werden. Auch in diesem Punkt ist eine Intensivierung der landwirtschaftlichen Beratung angezeigt.

# Grossflächige Schutzzonen

Die Kantone sind angehalten, die Arbeiten zur Ausscheidung von Grundwasserschutzzonen und -arealen voranzutreiben (Bundesgesetz vom 8. 10. 1971 über den Schutz der Gewässer gegen Verunreinigung (46) und entsprechende Wegleitung (47)). Schutzareale sollen zukünftige Fassungen für Trink- und Brauchwasser gewährleisten. Allerdings können Schutzzonen und -areale nur einen kleinen Beitrag zur Milderung, nicht aber zur Lösung eines Nitratproblems in einem bestimmten Gebiet bieten. In exponierten Lagen sind grossflächige Schutzzonen (mehrere km²) mit abgestuften Nutzungsbeschränkungen im gesamten Einzugsgebiet von Grundwasservorkommen anzustreben und die dazu notwendigen gesetzlichen Grundlagen auf Bundesebene zu schaffen. Offene Fragen wegen allfäl-

liger Ersatzforderungen oder Steuererleichterungen infolge Nutzungsumstellungen betroffener Landwirte sollen kein Grund für Verzögerungen sein (vgl. Anhang B, Sanierungsprojekt Dottikon, AG). Wo keine Schutzzonen ausgeschieden werden, z. B. bei Einzelbrunnen abgelegener Höfe, sind vermehrte Kontrollen durchzuführen.

# Meliorationen, forstliche Nutzung

Die Melioration von Feuchtgebieten kann das Nitratproblem verschärfen. Auch bei anderen baulichen Eingriffen in die Landschaft (Strassen, Flurwege, Wasser- und Abwasserleitungen usw.) ist der Nutzen gegen den möglichen Schaden vermehrter Nitratauswaschung in den Untergrund abzuwägen.

Die gleichen Überlegungen sind bei der Nutzung des Waldes anzustellen. Kahl-

schläge beispielsweise in Quelleinzugsgebieten sind zu unterlassen.

### Subventionen, Lenkungsabgaben

Anbauprämien für Körnermais sollen an die Forderung für eine bodenbedekkende Untersaat geknüpft werden. Langfristig sollte das gesamte Subventionswesen schrittweise so geändert werden, dass ökologisch geeignete Produktionsweisen eher gefördert werden als andere und dass die sozialen Kosten übermässiger Nitratauswaschung in Rechnung gestellt werden. Neben Anreizsystemen sollen auch Abreize geschaffen werden, wie z. B. Lenkungsabgaben auf Handelsdüngern oder Grossvieheinheiten, die das erträgliche Mass pro Hektar landwirtschaftlicher Nutzflächen übersteigen (gemäss Nutzungsart und Bodenbelastbarkeit). Wegen der Komplexität der Zusammensetzung landwirtschaftlicher Einkommen und des Aufbaus des Subventionswesens im allgemeinen ist es vordringlich, Studien in diese Richtung zu veranlassen.

#### Abwasser

Die Forderung nach vermehrtem Bau von Denitrifikationsanlagen im Bereich der Abwasserreinigung (vgl. z. B. EDI (3) und BUS (13)) ist zur Verminderung des Nitratproblems unangemessen. Selbst in nitrifiziertem kommunalem Abwasser (in welchem das Ammonium zu Nitrat oxidiert wurde) beträgt der Nitratgehalt weniger als 70 mg NO $_3$  /l. Wird dieses Abwasser im Vorfluter zehnmal verdünnt, dann beträgt der zusätzliche Nitratgehalt entsprechend nur noch 7 mg/l. Dieser Nitratgehalt wäre selbst zur Verdünnung nitratreichen Grundwassers noch günstig. Andere bedenkliche Stoffe werden längst vor dem Nitrat limitierend. (Gründe für eine Denitrifizierungsstufe sind eher betriebsökonomischer Art: Nitrat als Oxidationsmittel kann helfen, Belüftungskosten einzusparen.)

Auch die Versickerung häuslicher Abwässer, die heute ohnehin nur noch in Gebieten mit sehr tiefer Besiedelungsdichte vorkommt, liefert unter diesen Umständen nur einen bedeutungslosen Beitrag zum Nitratproblem (Grössenordnung

4 mg NO<sub>3</sub>/1 Sickerwasser).

Mit diesen Bemerkungen soll allerdings nicht bestritten werden, dass Einzelfälle vorkommen können, wo defekte Güllenlöcher oder Abwasserleitungen hy-

gienische Probleme ergeben. In solchen Fällen sind Sanierungsmassnahmen selbstverständlich dringend, wenn auch primär aus anderen Gründen als denen des Nitratproblems.

#### Korrosionsschutz

Einwandfrei hergestelltes und verzinktes Rohrmaterial (DIN 2444) und fachgerechte Installation der Leitungsnetze nach den Richtlinien des SVGW (48) bieten eine erhöhte Sicherheit gegen Korrosionsschäden, welche auf die Wasserbeschaffenheit (u. a. hohe Nitratwerte) zurückgeführt werden können (vgl. Anhang D).

### Symptombekämpfung

Bei der Bekämpfung überhöhter Nitratgehalte im Grundwasser ist grundsätzlich Massnahmen der Vorrang zu geben, die bei den Ursachen ansetzen. Solche Massnahmen versprechen langfristige und dauerhafte Erfolge und stehen im Einklang mit ökologischen Gesetzmässigkeiten. Technologische Symptombekämpfung birgt die Tendenz, die Probleme zu verschleiern, die Verantwortung zu entpersonifizieren und von ursächlichen Massnahmen abzulenken. Ausserdem besteht die Gefahr der Pannenanfälligkeit und des Einbringens neuer, unerwünschter Stoffe ins Trinkwasser und die Möglichkeit zusätzlichen Energieverbrauches. Jedenfalls zeugt es nicht von tiefem ökologischem Verständnis, wenn im Zusammenhang mit Wasseraufbereitungstechnologien Formulierungen verwendet werden wie: «... ein erst kürzlich erkanntes Umweltproblem in den Griff zu bekommen» (49). Da aber ursächliche Massnahmen oft erst mittel- bis langfristig Erfolg zeitigen, sind in einzelnen Fällen dennoch Massnahmen der Symptombekämpfen.

fung angezeigt.

- Einsatz von künstlichen Nitrifikationshemmern im Pflanzenbau: Neben den in Kapitel «Ursachenbekämpfung» erwähnten Stoffen, die auf dem Wege natürlicher Umsetzung gewisser Düngestoffe im Boden entstehen, wird auch der Einsatz künstlicher Nitrifikationshemmer erwogen. Die bekanntesten dieser Stoffe sind: N-Serve, Didin, Etridiazol und Thioharnstoff. Sie wirken hemmend auf Bakterien, die den Prozess der Nitrifikation vollführen (Anhang A). Positiven Resultaten bezüglich Nitratgehalten in Pflanzen und Sickerwasser (50), auf die sich Firmen bei ihrer Werbung stützen, steht eine Reihe von je nach Stoff unterschiedlichen - negativen Auswirkungen und Unsicherheiten gegenüber (51), so dass diese Stoffe in der Schweiz noch nicht offiziell bewilligt sind. Die künstlichen Nitrifikationshemmer können unerwünschte Nebenwirkungen auf die Bodenmikrofauna und die pflanzlichen Stoffwechselvorgänge ausüben und zu Rückständen in der Pflanze führen. Eine gewisse Wirkung scheint der Zusatz von Hemmstoffen zu Herbstgülle zu haben. Allerdings ist von Nitrifikationshemmern längerfristig wenig zu erwarten, wenn die Stickstoffzufuhr zum Boden zu hoch ist, da die Nitratbildung im Boden lediglich zeitlich hinausgeschoben wird. Betriebe mit ungenügenden Lagerkapazitäten für Gülle oder mit zu hohem Viehbestand müssen nach anderen Lö-

sungen suchen.

Nutzung neuer Wasserbezugsorte oder Bezug von anderen Wasserwerken ist für die betroffenen Gemeinden im wesentlichen eine Kostenfrage. Es gilt aber im Auge zu behalten, dass die Aufsalzung von Grundwässern auch dann im Widerspruch zu den entsprechenden Gesetzen steht, wenn diese Grundwässer nicht zur Trinkwasserschöpfung genutzt werden. Besondere Vorsicht ist geboten, wenn bei der Planung der Wasserversorgung die Nutzung von Waldquellen ins Auge gefasst wird, denn es gibt mehrere Hinweise, dass zunehmende Walderkrankung zu erhöhter Nitratauswaschung führen wird (18).

Generell sind bei der Planung neuer Wasserbezugsorte bessere hydrogeologische Abklärungen vorzunehmen, da das hydrogeologische Einzugsgebiet eines Grundwassers oft nicht identisch mit dessen topologischem Einzugsgebiet ist. Somit können z. B. unter einem Gebiet, das landwirtschaftlich nicht intensiv genutzt wird, trotzdem hohe Nitratgehalte im Grundwasser vorhanden sein, die durch unterirdische horizontale Zuflüsse eingeschleppt werden (vgl. 52). Wo möglich und wirtschaftlich tragbar, ist auf eine grosse Entnahmetiefe des Trinkwassers hinzuwirken, da bei geeignetem Untergrund ein beachtlicher chemisch-mikrobieller Nitratabbau stattfindet (vgl. Anhang D).

Mischung von Wässern verschiedener Qualität oder Anreicherung des Grundwasservorkommens mit Oberflächenwasser zum Erreichen einer vertretbaren Nitratkonzentration. Die sich dabei stellenden qualitativen Probleme, die allen Mischwässern eigen sind, bedürfen einer sorgfältigen Abklärung (z. B. Änderung der Härte, Änderung der korrosionschemischen Eigenschaften). Zudem besteht die Möglichkeit, dass andere Schadstoffe (z. B. Pestizidrückstände) an Bezugsorte verschleppt werden, die vor dem Mischen in dieser Hinsicht einwandfreies Wasser lieferten. In bestimmten Fällen wird es unumgänglich sein, ein Grundwasservorkommen wegen zu hohen Nitratgehaltes zur

Nutzung als Trinkwasser aufzugeben.

- Wasseraufbereitung: Im wesentlichen stehen drei Denitrifikationsverfahren zur Auswahl, die u. a. in einem einjährigen praxisnahen Pilotversuch in Zollikofen (BE) getestet wurden (11, 49):

1. Umkehrosmose: Nitratreiches Wasser (d. h. eine verdünnte Salzlösung) wird mittels Druck, der höher als der osmotische Druck ist, durch Membranen aus Celluloseacetat oder Polyamid gepresst. Die Wassermoleküle diffundieren dann wesentlich schneller durch die Membran als die Nitrat- (und andere) Ionen. Die so erhaltene umgekehrte Osmose ist eigentlich eine Art Filtration (Hyperfiltration). Die Umkehrosmose wurde bisher zur

Entsalzung von Meer- und Brackwasser angewendet.

2. Ionenaustausch: Dieses Verfahren beruht auf einem Austausch von Ionen aus dem Wasser gegen eine äquivalente Anzahl von gleichsinnig geladenen Ionen, die am Polymergerüst eines Kunstharzes angelagert sind. Diese Verfahren wurden bisher zur Brauwasseraufbereitung und Abwasserbehandlung eingesetzt.

3. Biologische Verfahren: Das Nitrat wird entweder mit Hilfe von organischen Nährstoffen (Methanol, Ethanol u. a.) als Energiequelle oder mit Hilfe von Wasserstoff und Kohlendioxid durch Mikroorganismen zu molekularem Stickstoff (N2) reduziert. Notwendig ist aber in jedem Fall eine Nachbehandlung des denitrifizierten Wassers zur Entfernung von Bakterien und/oder Restgehalten an organischer Substanz. Diese Verfahren wurden bisher in der Abwasserbehandlung eingesetzt. Diskutiert werden auch Verfahren der Nitratelimination durch höhere Pflanzen in Hydrokulturen (53) oder die gezielte Förderung der natürlichen Nitratreduktion im Sikker- und Grundwasser (Anhang D) durch Zugabe von organischem Kohlenstoff wie Melasse oder Acetat (54).

Jedes dieser Verfahren hat seine spezifischen Vor- und Nachteile, die je nach den zusätzlichen Bedingungen variieren. Differenzierte Betrachtungen und Untersuchungen über wassertechnologische Massnahmen finden sich im Schrifttum der Schweizerischen und Deutschen Vereine des Gas- und Wasserfaches (SVGW, Zürich; DVGW, Eschborn). Die Kosten betragen gemäss der Pilotstudie in Zollikofen inkl. Kapitalkosten je nach Verfahren zwischen 20 bis 40 Rp. je m³ Trinkwasser. Dabei wurde ausgegangen von einer Mischwasserproduktion von 800 000 m<sup>3</sup>/Jahr und einer Nitratreduktion von 45 mg NO<sub>3</sub> /1 im Rohwasser auf 25 mg NO<sub>3</sub> /1 im Mischwasser. Dieser Preis gilt jedoch nur für die Denitrifikation und nicht auch für die dadurch bedingte nötige Nachbehandlung (49). Eine Studie für die Wasserversorgung Ingelheim (BRD) kommt bei vergleichbarer Jahresproduktion und einer Reduktion von 80 auf 35 mg NO<sub>3</sub>/l auf Kosten (inkl. Kapitalkosten) von DM 1.10 bis DM 1.90 je m<sup>3</sup> Mischwasser. Diese erhöhen sich mit den notwendigen Nachbehandlungsverfahren auf DM 1.30 bis DM 2.30 je m<sup>3</sup> Mischwasser (55). Zum Vergleich: Ein m<sup>3</sup> Wasser kostet den Bezüger in der Schweiz zwischen 45 Rp. (dörfliche Quelle) bis Fr. 1.30 (städtische Agglomeration). Heute auf dem Markt angebotene Haushaltgeräte zur Entfernung des Nitrates aus dem Trinkwasser verursachen Kosten im Bereich von Fr. 200. – bis Fr. 500. – pro m<sup>3</sup> Wasser.

# Vorgehen der Behörden

«Im Sinne der Vorsorge sind Einwirkungen, die schädlich oder lästig werden könnten, frühzeitig zu begrenzen» (Umweltschutzgesetz vom 7. 10. 1983, Art. 1 Abs. 2 (56)). Diesen Grundsatz gilt es in Erinnerung zu rufen, wenn daran gegangen werden soll, die in diesem Bericht geschilderten Schlussfolgerungen und Massnahmen in die Praxis umzusetzen. Wie aus diesem Bericht hervorgeht, kann es sich hier nicht darum handeln, allgemein konkrete Ratschläge und Tips zu erteilen, denn dazu sind die Einflussfaktoren Bodenart, geologische Beschaffenheit, Klima und Nutzungsart viel zu komplex und stellen sich bei jedem Problemgebiet wieder anders. Vielmehr geht es darum, nach einem groben Raster der Nitratgehalte im Trinkwasser (und in für Trinkwassernutzung vorgesehenen

Grundwässern) die zu treffenden besonderen Massnahmen für das Eingreifen der verantwortlichen Behörden aufzulisten.

Als langfristiges und oberstes Ziel kann formuliert werden, die Nitratauswaschung in sämtlichen gefährdeten Gebieten der Schweiz sei innert angemessener Frist auf ein tolerierbares Mass zu reduzieren. Die beiden Zielgrössen «angemessene Frist» und «tolerierbares Mass» bedürfen selbstverständlich einer Konkretisierung in politischen Entscheidungsprozessen, denen aber zum jetzigen Zeitpunkt noch stark spekulative Züge anhaften dürften. Ansteigende Tendenzen der Nitratgehalte in Grund- und Trinkwässern sind zu brechen und schliesslich soll die Belastung sämtlicher Trinkwässer mit Nitrat konstant unter einem Wert von 40 mg NO3/gehalten werden. Auf der Ebene kurativen Handelns würde eine entsprechende Zielsetzung lauten, die Zahl der Einwohner, die Trinkwasser mit mehr als 40 mg NO3/l konsumieren, sei innert jeweils 10 Jahren um die Hälfte zu reduzieren. Auch hier trägt die Zahl von «10 Jahren» spekulative Züge und kann erst im Verlaufe zukünftiger Diskussions- und Entscheidungsprozesse konkret festgelegt werden.

Bezogen auf die Nitratgehalte im Trinkwasser und in für zukünftige Trinkwassernutzung bezeichnete Grundwässer können folgende Vorgehensweisen vorgeschlagen werden:

| Gehalt an NO3 mg/l                                                                                  | Massnahmen                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A 30-40<br>(bei steigender Tendenz auch<br>schon bei tieferen Gehalten)                             | Präventiver Stabilisierungsplan<br>(Vorsorgeprinzip) mit der Absicht,<br>den Trend zu brechen                                                                                                                                                                                                                                 |
| B 40-100                                                                                            | Sperren für die Zubereitung von<br>Säuglingsnahrung (öffentliche Be-<br>kanntgabe). Als befristete Massnahme<br>Verteilen von nitratarmem Trink-<br>wasser. Genaue Erfassung der<br>Ursachen. Verbindlicher Sanierungsplan<br>mit intensivierter landwirtschaftlicher<br>Beratung und wissenschaftlicher<br>Erfolgskontrolle. |
| C 100<br>(tolerierbarer Maximalwert der WHO<br>den «European Standards for Drinkin<br>Water») (168) | 18일에                                                                                                                                                                                                                                                                                                                          |

#### Zur Herkunft des Nitrates im Trinkwasser

#### Allgemeines

### Der Stickstoffkreislauf

Stickstoff (chemisches Symbol: N) ist ein unentbehrlicher Grundnährstoff für die Pflanzen. Er bewegt sich in verschiedenen Formen in einem qualitativ gut bekannten, aber komplizierten Kreislauf durch Luft, Boden, Gewässer und Organismen aller Art (Abb. 4).

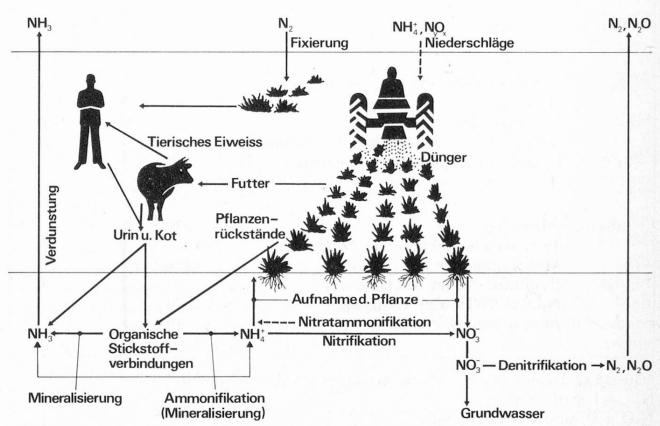



Abb. 4. Der N-Kreislauf, vereinfacht, nach NAS, 1978 (5)

Fast der gesamte (bio-)chemisch relevante Stickstoff unseres Planeten befindet sich in molekularer Form (N<sub>2</sub>) in der Atmosphäre (99,4%) und gelöst in den Meeren (0,5%). In der organischen Substanz der Böden sind ca. 0,05% gebunden und in Lebewesen zirkuliert ein verschwindend kleiner Teil von etwa 0,0005% (57). Der Nitratanteil im Gesamtstickstoffhaushalt eines Bodensystems beträgt etwa 1–3% (NAS, 1978 (5)). Die Bedeutung des Nitrats in der Gesamtbilanz ist also rein qualitativer Art, aber für den Stickstofftransport ins Grundwasser entscheidend. Im engen Produktionssystem Boden-Pflanze stellt dieses Ion die Haupttransport-

form, die Hauptwirkform und die Hauptauswaschform dar. Die uns letztlich betreffenden Wirkungen des Nitrats hängen ausschliesslich von der aktuellen Konzentration dieses Ions in der Bodenlösung und von der Sickerwassermenge ab (Anreicherung im Grundwasser und übermässige Akkumulation in gewissen Nahrungs- und Futterpflanzen), was eng mit der land- bzw. forstwirtschaftlichen Bewirtschaftungsweise gekoppelt ist.

# Stickstoffbilanz

Die Stickstoffbilanz eines landwirtschaftlichen Bodens, d. h. eines Teilbereiches des ganzen N-Kreislaufes, sieht für schweizerische Mittellandverhältnisse überschlagsmässig wie folgt aus (Tabelle 2):

Tabelle 2. Stickstoffbilanz (kg N/ha landwirtschaftlicher Nutzfläche) (Schweiz 1980, geschätzter Durchschnitt von insgesamt ca. 1 Mio ha)

| Vorrat: | Im Boden (zu 98% organisch gebunden)                     |      | 1 1 | 10 000 |
|---------|----------------------------------------------------------|------|-----|--------|
| Zufuhr: | Hofdünger (inkl. 5 kg Klärschlamm-N)                     | 160* | )   |        |
|         | Handelsdünger                                            | 60   |     |        |
|         | Niederschläge                                            | 20   | }   | 450    |
|         | Biologische N <sub>2</sub> -Fixierung (bes. Leguminosen) | 60   |     |        |
|         | N-Mobilisierung (N-Mineralisierung)                      | 150  | J   |        |
| Abgang: | Pflanzen geerntet                                        | 220  | )   |        |
|         | Temporare Immobilisierung (Wurzeln,                      |      |     |        |
|         | Mikroorganismen usw.)                                    | 150  |     |        |
|         | Denitrifikation (zu den Gasen N2,                        |      |     | 450    |
|         | N <sub>2</sub> O) und NH <sub>3</sub> -Verflüchtigung    | 70   |     |        |
|         | Auswaschung (Nitrat-N)                                   | 10   | )   |        |

<sup>\* 30-35</sup> kg davon stammen indirekt aus importierten Futtermitteln

 $N_2$  = Luftstickstoff

 $N_2O = Distickstoffoxid (Lachgas)$ 

 $NH_3 = Ammoniak$ 

nach Stadelmann et al., 1981 (21)

Die im Durchschnitt pro ha ausgewaschene Nitratmenge entspricht etwa 2,5% des Gesamtumsatzes an Stickstoff. Bei einseitiger Bodennutzung, übermässiger Bodenbearbeitung, ungünstigen Bodenverhältnissen und/oder unangepasster Düngerwirtschaft können sich beträchtliche Abweichungen von den überschlagsmässigen Mittelwerten ergeben, die sich in viel grösseren Auswaschungsund Verflüchtigungsverlusten niederschlagen (bis zum zwanzigfachen oder noch mehr).

Die dominierende Stellung des Hofdüngers kann als schweizerischer Sonderfall beschrieben werden. Im Jahre 1977 entfielen von durchschnittlich 210 kg N, die auf eine ha landwirtschaftliche Nutzfläche im Jahr ausgebracht worden sind, 155 kg auf Hofdünger (= 74%), 50 kg auf Handelsdünger (= 24%) und 5 kg auf Klärschlamm (= 2%). Etwa 8% wurde als Nitrat-N, 38% als organischer N und 54% als Ammonium-N gedüngt (21). Einen Vergleich des Verbrauches an Handelsdüngern in verschiedenen europäischen Ländern gibt Tabelle 3.

Tabelle 3. N-Handelsdüngerverbrauch in verschiedenen europäischen Ländern in kg N/ha landwirtschaftlicher Nutzfläche (21)

| Jahr | СН | A  | F  | BRD | DDR | NL  |
|------|----|----|----|-----|-----|-----|
| 1976 | 44 | 39 | 57 | 100 | 120 | 207 |
| 1979 | 64 | 46 | 65 | 120 | 124 | 202 |

Stickstofformen und -mengen des Bodens

Stickstoffverbindungen des Bodens können grob eingeteilt werden in zwei Gruppen:

- Wasserunlösliche Formen: organische N-Verbindungen und an Tonminera-

lien angelagertes Ammonium (NH<sub>4</sub>).

 Wasserlösliche Formen: Nitrit, Nitrat und ein Teil des Ammoniums, welche direkt pflanzenverfügbar sind. Die Hauptaufnahmeform für die meisten Pflanzen ist das Nitrat (57).

Die nicht direkt pflanzenverfügbaren, organischen N-Formen machen einen Anteil von weit über 90% (normalerweise 98%) des Bodenstickstoffes aus (58) und werden kaum ausgewaschen. Verluste können aber durch oberflächliche Abschwemmung entstehen. Pro Hektar sind in der durchwurzelten Bodenschicht etwa 10 t organisch gebundener Stickstoff vorhanden (3 bis 50 t, sehr grosse Mengen v. a. in Moorböden); der grösste Teil (50-70%) liegt als schwer abbaubarer Dauerhumus vor (Stickstoff eingebaut in z. T. aromatischen, heterozyklischen Huminstoffen). Die leicht abbaubaren organischen N-Verbindungen des Nährhumus (Eiweisse, Aminosäuren u. ä.) stammen aus Ausscheidungen und Rückständen von Mikroben, Pflanzen und Tieren. Die Ausscheidungen gelangen als Hofdünger, Klärschlamm oder (Müll-)kompost in den Boden. Pflanzen liefern organischen Stickstoff in Form von Ernterückständen. Besonders ergiebige Lieferanten von organischem Stickstoff sind Leguminosen, die zusammen mit symbiotisch lebenden Bakterien Wurzelknöllchen bilden. Diese sind fähig, pro Jahr 50-300 kg Luftstickstoff (N<sub>2</sub>) /ha zu fixieren, d. h. in organische Verbindungen einzubauen (59). Dieser Stickstoffgewinn ist ein wesentlicher Beitrag zur N-Versorgung der Pflanzen, kann aber – bei Umbruch – zu einer wichtigen Ursache der Nitratbelastung von Grundwasser werden (Abb. 3).

In der wasserlöslichen Fraktion des Bodenstickstoffes macht Nitrat in der Regel einen Anteil von 97-99% aus (21). Je nach Bodenart, Bepflanzung und Dün-

gung können lösliche organische N-Verbindungen oder Ammonium (saure Böden) stärker ins Gewicht fallen. Nitrat wird entweder als Handelsdünger eingebracht oder es bildet sich aus organischen Formen oder Ammonium durch mikrobielle Prozesse (Nr. [3] und [4] in Abb. 5). Nitrat wird von den Bodenkomponenten nicht festgehalten und daher, Sickerwasser vorausgesetzt, leicht ausgewaschen. Es ist aber auch jene N-Form, die von den Pflanzen bevorzugt aufgenommen wird. Daher ist der Nitratgehalt (und folglich die Nitratauswaschung) eines gut bewachsenen Bodens niedrig und beträgt meist nicht mehr als 10 bis 30 kg NO<sub>3</sub>-N/ha. In Brachperioden oder bei Kulturen mit hohem Bracheanteil (Mais, Reben, Gemüse) kann der Nitratgehalt aber je nach Bodenart und Düngung rasch auf mehrere 100 kg N/ha ansteigen (60).

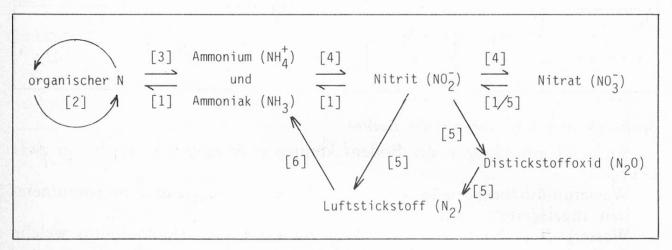



Abb. 5. Vereinfachter biologischer N-Kreislauf (5)

Die bei den Reaktionspfeilen stehenden Zahlen bedeuten folgende, z. T. komplexen Prozesse:

- [1] Assimilation anorganischer N-Formen (Einbau von Stickstoff in die pflanzliche Biomasse in Form von Eiweissen, DNS u. a. m.)
- [2] Heterotrophe Umwandlungen
- [3] Ammonifikation (= N-Mineralisation = N-Mobilisierung)
- [4] Nitrifikation
- [5] Denitrifikation
- [6] N-Fixierung (biologisch oder technisch mittels Haber-Bosch-Verfahren)

Nitrit kommt in Böden meist nur in geringen Spuren vor. Es entsteht während der Nitrifikation aus Ammonium oder Ammoniak ([4] in Abb. 5), wird aber sofort zu Nitrat weiter oxidiert. Durch mikrobielle Abbauprozesse entsteht über verschiedene Zwischenstufen Ammonium (Ammonifikation = [3] in Abb. 5). Die durchschnittlich jährlich produzierten Mengen liegen zwischen 100 und 200 kg N/ha, in Extremfällen (kalkreiche Niedermoorböden) bis zu 1000 kg N/ha (5, 59). Ammonium ist vor allem nach Ammonium-, Harnstoff- und Gülledüngung und in sauren Böden in nennenswerten Mengen vorhanden und ist überdies ein Abbauprodukt des Düngemittels Kalkstickstoff (21). Ammonium wird an Tonminerale und an Sorptionsstellen des Humus adsorbiert (angelagert) und daher viel weniger ausgewaschen als Nitrat. Unter alkalischen Bedingungen und bei Trok-

kenheit sowie direkt beim Gülleausbringen kann es als Ammoniak (NH<sub>3</sub>) gasförmig in die Luft entweichen. Dieser Verlust kann gelegentlich recht hoch sein und somit ein Umweltrisiko (auch für Wälder) darstellen (164).

N-Umsetzung im System Boden - Pflanze - Luft

Einen Überblick gibt ein vereinfachtes Schema des biologischen N-Kreislaufes (Abb. 5).

Die für das Nitratproblem relevanten Prozesse sind die N-Mineralisation und die Nitrifikation, die im folgenden näher beschrieben werden (nach 21 und 22).

#### Erster Schritt: N-Mineralisation

Eine Vielzahl von Mikroorganismen ist befähigt, aus dem organischen Bodenstickstoff in einem relativ langsam ablaufenden Vorgang Ammoniak zu bilden. Der Prozess verläuft über mehrere Zwischenstufen. In der Praxis stammt der grösste Teil der mobilisierten N-Menge aus leicht abbaubarem Nährhumus. Man rechnet mit einer Nettomineralisierungsrate von 1–2% pro Jahr, das entspricht im Schnitt ca. 100–200 kg mineralisiertem N proha, in Extremfällen (kalkreiche Niedermoorböden) bis ca. 1000 kg N/ha und Jahr. In solchen Fällen muss mit grossen N-Verlusten durch Nitratauswaschung sowie Denitrifikation und Verflüchtigung (N<sub>2</sub>, N<sub>2</sub>O, NH<sub>3</sub>) gerechnet werden.

Das pH-Optimum liegt um pH 8. In sauren Böden ist die Mineralisierung deutlich gehemmt, im alkalischen Bereich kann der Stickstoff als Ammoniak gasförmig entweichen. Einen wichtigen Einfluss übt auch die Temperatur aus. Dabei werden verschiedene Optima gefunden, die sich vermutlich mit verschiedenen Mikroorganismenpopulationen decken: 1) 10-15 °C, 2) 40-50 °C, 3) über 65 °C (in unseren Regionen nicht relevant). Auch bei 0 °C, wenn die Pflanzen keinen N-Bedarf aufweisen, findet noch eine Mineralisierung statt (10–20% der bei 40 °C beobachteten Intensität). Zwischen 0 und 10 °C hat eine kleine Bodentemperaturerhöhung eine starke Steigerung der Mineralisierung zur Folge. Düngen mit Hof- und Abfalldüngern und Umbruch von Kleematten (N-Fixierer) im Herbst und Winter stellen daher eine starke Grundwassergefährdung dar (21). Auch im Bereich 30-40 °C hat eine leichte Temperaturerhöhung eine starke N-Mobilisierung zur Folge. Solche Bodentemperaturen können hierzulande im Sommer bei Brache und Teilbrache (Reben, Mais, Gemüse ohne Untersaat) auftreten. Fördernd auf die Mineralisierung wirkt auch ein Austrocknen und Wiederbefeuchten (im Sommer auf Ackern) sowie Gefrieren und Wiederauftauen des Bodens. Das ist darauf zurückzuführen, dass a) durch diese Prozesse Aggregate zerfallen und eingeschlossene organische Stoffe den Mikroorganismen zugänglich werden und b), dass organische Stoffe durch Desorption freigesetzt werden (58). Wasserund Sauerstoffmangel wirken hemmend, obwohl eine N-Mineralisierung auch unter anaeroben Bedingungen (= ohne Sauerstoff) stattfindet.

Für die potentiellen Mineralisierungsraten und -mengen sind die Bodennutzung und die Gesamtheit aller Bodeneigenschaften von Bedeutung. So haben Wiesenböden wegen ihres höheren Anteils an Nährhumus (abgestorbene Pflan-

zenwurzeln usw.) ein stärkeres N-Nachlieferungsvermögen als Ackerböden, während diese stärker reagieren auf Schwankungen von Temperatur, Wasserverhältnisse und Sauerstoff (Bodenlockerung). Die häufig geäusserte Ansicht, es müsse dem Boden soviel N zugeführt (gedüngt) werden, wie ihm durch die Pflanze entzogen wird, trägt dem Phänomen der natürlichen N-Nachlieferung keine Rechnung (vgl. Kapitel «Ursachenbekämpfung», N<sub>min</sub>-Methode, Seite 254).

Eine weitere wichtige Einflussgrösse ist das Verhältnis von organischem Kohlenstoff (C) zu Stickstoff (N) in einem Boden. Je enger das C:N-Verhältnis, desto ergiebiger fällt Ammonium an. Ist das C:N-Verhältnis grösser als 20, so profitiert die Pflanze kaum mehr von der N-Mineralisation, da die Mikroorganismen das gebildete Ammonium zum Aufbau ihrer eigenen Zellsubstanz benötigen (= biologische N-Sperre). Für den Landwirt ist es nicht nur aus Gewässerschutz-, sondern auch aus ökonomischen Gründen wichtig, dem Boden mit der N-Düngung – egal ob Hof- oder Handelsdünger – eine adäquate Zufuhr an C zu sichern (Huminstoffe in Form von Stroh, Streu, Kompost u. ä.). Man spricht in diesem Zusammenhang von Bodenverbesserung oder vom Humuseffekt. Die bioregulatorische Wirkung der Huminstoffe auf Nährstoffangebot und -verwertung, ferner auf Bodengefüge, Feuchtigkeitsgehalte usw. wirkt sich dabei auf die Ertragsbildung um so günstiger aus, je ungünstiger die übrigen Wachstumsbedingungen sind (26).

# Zweiter Schritt: Nitrifikation

In unseren klimatischen Zonen vollziehen sog. Salpeterbakterien den zweiten Schritt, die zweistufige Oxidation von Ammonium über Nitrit (insbesondere durch Nitrosomonas) zu Nitrat (insbesondere durch Nitrobacter). (Unter anderen Bedingungen ist auch Photonitrifikation möglich.) Die Nitrifikation läuft im Gegensatz zur N-Mineralisation im Boden sehr schnell ab.

Ammonium, das durch N-Mineralisation im Boden gebildet oder durch Gülle oder Handelsdünger in den Boden gelangt, wird normalerweise innerhalb von wenigen Tagen oder Wochen zu Nitrat oxidiert. Aus diesem Grunde sind ammoniumhaltige Düngemittel (also auch Gülle) bezüglich Nitratauswaschung fast ebenso gefährlich wie nitrathaltige. Die optimalsten Nitrifikationsbedingungen liegen in einem Boden-pH-Bereich von 8,3–9,3; in alkalischen Böden besteht also die höchste Auswaschungsgefahr. Unter einem pH-Wert von 5 wird kaum mehr Nitrat gebildet (Abb. 6). In den meisten sauren Böden stellt das Ammonium die Endstufe der N-Mobilisierung dar, es wird kaum Nitrat ausgewaschen. Werden aber solche Böden aufgekalkt, besteht eine grosse Gefahr von Nitratverlusten.

Die optimale Temperatur liegt zwischen 25-35 °C. Über 40 °C wird nur noch wenig NH<sup>+</sup><sub>4</sub> und NO<sup>-</sup><sub>2</sub> oxidiert. Die Minimaltemperatur liegt bei 0 °-4 °C, weshalb auch im Winter Nitrat gebildet und ausgewaschen werden kann, was besonders beim Angebot von ammonium- und eiweisshaltigen Düngern (z. B. Gülle) im Spätherbst und Winter vorkommt (61).

Die Nitrifikation erfordert eine hohe Sauerstoffversorgung. Unter anaeroben Bedingungen findet keine Nitrifikation statt. Im Ackerboden läuft die Nitrifika-

tion wegen der besseren Durchlüftung schneller ab als im Grünlandboden. Die Lockerung des Bodens kann die Nitrifikation um ein Mehrfaches steigern. Bei einer geschlossenen Pflanzendecke (Grasland) treten wegen der hohen Wurzelatmung im Boden partiell anaerobe Zonen auf, die die Nitrifikation und somit die Nitratauswaschung reduzieren. In gut durchlüfteten Sandböden werden, im Gegensatz zu schweren Böden, die Ammoniumionen schnell nitrifiziert. Die stärkste Nitrifikation findet bei einem Wassergehalt von 60-80% der maximalen Wasserkapazität statt; in wassergesättigten Böden wird die Nitrifikation eingestellt.

Beim Verrotten von verholztem Material, z. B. bei der Kompostierung, entstehen Stoffe (phenolische Spaltprodukte des Lignins), die auf die Nitrifikation hemmend wirken (45, 62). Auch von der Düngemittelindustrie werden (künstliche) Nitrifikationshemmer zur Eindämmung des Nitratproblems angeboten. Über deren Einsatz wird im Kapitel «Symptombekämpfung», Seite 257 diskutiert.

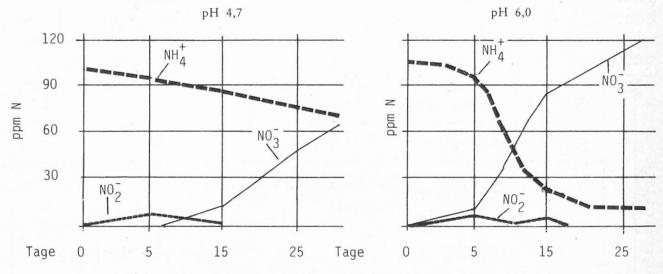



Abb. 6. Nitrifikation in Abhängigkeit des Boden-pH (23)

# Prozesse im System Boden - Luft

Diese Prozesse sind neben der Nitratauswaschung die zweite wichtige Quelle von Stickstoffverlusten. Einerseits wird aus Ammonium Ammoniak gebildet, und zwar desto mehr, je höher der Boden-pH-Wert ist. Mit steigender Temperatur nimmt die Verdunstung von Ammoniak zu. Beim Ausbringen von Gülle in der warmen Jahreszeit können so Ammoniakverluste bis zu 70% entstehen, das entspricht 50% oder mehr der gesamten in Gülle enthaltenen Stickstoffmenge (Lit. bei 25). Andererseits kann bei einem Boden-pH über 5 und tiefem Sauerstoffgehalt eine Denitrifikation durch fakultativ anaerobe Bakterien stattfinden: Nitrat wird zu elementarem Stickstoff (N<sub>2</sub>), «Lachgas» (N<sub>2</sub>O) oder Stickstoffmonoxid (NO) reduziert. Vor allem die N<sub>2</sub>O-Bildung kann wegen des zerstörerischen Einflusses auf die Ozonschicht der Stratosphäre ein weiteres Umweltrisiko darstellen (5, 63). Neuere Felduntersuchungen lassen vermuten, dass die gasförmigen Stickstoffverluste (NH<sub>3</sub>, N<sub>2</sub>, N<sub>2</sub>O) viel grösser sind als bisher angenommen wurde, z. B. 55 kg N<sub>2</sub>O-N/ha und Jahr auf mineralisch gedüngten Wiesen (Lit. bei 25).

Der Anteil des aus Landwirtschaftsböden (inkl. Alpweiden) stammenden N2O, welches im Zusammenhang mit dem Ozonabbau in der Stratosphäre diskutiert wird, beträgt in der Schweiz etwa 75% der gesamten denitrifizierten N2O-Menge (oder 22 000 t N2O-N jährlich). Demgegenüber sind die Verluste von NO und NO2 aus der Landwirtschaft vernachlässigbar, sie betragen etwa 3% der in der Schweiz jährlich emitierten Menge von 180 000 t NO2-Aequivalenten (64).

### Einflüsse auf die Nitratauswaschung

Fast alles Grundwassernitrat wurde ursprünglich im Boden gebildet oder hat ihn zumindest passiert. Rund 90% des Nitrats wird im Boden aus Ammonium und organischen Verbindungen mikrobiell gebildet (Mineralisierung und Nitrifikation), nur etwa 10% gelangen durch Dünger und Niederschläge direkt in den Boden (21). Die für die Auswaschung relevanten Einflussgrössen werden für mittel- und westeuropäische Klimaverhältnisse wie in Abbildung 7 dargestellt eingestuft (65).

| A | Sickerwassermenge                                                                                  |
|---|----------------------------------------------------------------------------------------------------|
| В | Art und Dauer des Bewuchses                                                                        |
| С | Bodenart und -durchlässigkeit<br>- Humusgehalt                                                     |
|   | - Biologische Aktivität (N-Fixierung und N-Minerali-<br>sierung), Melioration und Bodenbearbeitung |
| D | Aktuelle N-Düngung (organisch und / oder mineralisch)                                              |

Abb. 7. Einflussgrössen auf die Nitratauswaschung ins Grundwasser nach Ceratzki 1973 (65)

Diese Reihenfolge darf natürlich nicht mechanisch interpretiert werden, denn alle Faktoren, die zum Teil schon in sich komplex strukturiert sind, stehen in einem dynamischen Wechselverhältnis. So muss z. B. bei ungünstigen Boden- und Witterungsverhältnissen der Düngung in der heute üblichen Dosis ein grösserer Einfluss zugeordnet werden (52); vgl. Abschnitt «Einfluss der Düngung», Seite 270 ff.).

# Einfluss der Sickerwassermenge (A)

Obwohl im Sommer die meisten Niederschläge zu verzeichnen sind, tritt in jener Zeit wegen starker Evapotranspiration (Verdunstung plus Transpiration durch Pflanzen), insbesondere auf bewachsenen Böden, kaum Sickerwasser auf. Die grössten Mengen an Nitrat werden daher in den Monaten November bis Mai ausgewaschen (Abb. 8). Eine Verminderung der Sickerwassermenge, aber auch eine verstärkte Aufnahme von Nitrat aus dem Boden, lässt sich in den Wintermonaten durch Zwischenfutteranbau, z. B. durch Raps, erreichen (32).

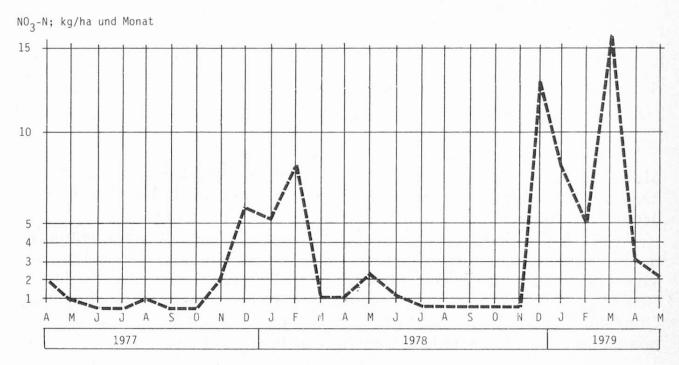



Abb. 8. Nitratauswaschung aus einem Ackerbaugebiet mit Maulwurfdrainage (Schwanden) nach Versuchen der FAC Liebefeld/Bern (3)

# Einfluss des Bewuchses (B)

Im allgemeinen kann eine Abnahme der N-Auswaschung in der Reihenfolge Mais, Gemüse oder Reben (ohne Untersaaten), Hackfrucht, Getreide, Grünland, Wald angenommen werden (siehe auch Schema auf Seite 230 der «Übersicht»).

Neben den Unterschieden in Düngung und Bracheanteil spielen die Unterschiede in der Art der Bepflanzung eine Rolle. Der Verbrauch an Wasser für die Transpiration ist bei Dauergrünland und Wald grösser als beim Ackerland, was eine kleinere Sickerwassermenge und somit auch eine geringere Nitratauswaschung zur Folge hat. Der Verbleib an mineralisierbaren Ernterückständen ist bei Gemüse, Hackfrucht und Getreide gross. Der in den Rückständen eingebaute Stickstoff wird mineralisiert und – besonders bei Brache im Winter – als Nitrat ausgewaschen. Der Verbrauch von Nitrat durch Assimilation und Denitrifikation in stark durchwurzelten Böden bei Dauergrünland ist gross. Aber auch Gras kann nicht unbegrenzte Düngermengen aufnehmen, wie jüngste Versuche bestätigt haben (Tabelle 4). Zudem können überhöhte Stickstoffgaben auf Grasland zu toxikologisch bedenklich hohen Nitratgehalten im Futter führen (39).

Neue Feldversuche in der Schweiz ergaben, dass die Nitratauswaschung bei Grünland und bei Wald nicht unbedingt unterschiedlich zu sein brauchen. Die Messungen erfolgten in einem ganz bewaldeten und in einem Gebiet mit 30% Wald und 70% Weide im Emmental. Die Nitratauswaschung betrug im 6jährigen

Tabelle 4. Nitratauswaschung unter Gras in Abhängigkeit steigender Stickstoffdüngung. Es fällt auf, dass im ersten Jahr, wo das Wurzelsystem offenbar noch nicht voll entwickelt war, die Nitratauswaschung deutlich höher war als später (67)

| N-Gaben               | N-Auswaschung (kg N/ha) |         |         |  |
|-----------------------|-------------------------|---------|---------|--|
| Ammonnitrat (kg N/ha) | 1978/79                 | 1979/80 | 1980/81 |  |
| 250                   | 6                       | 2       | 1       |  |
| 500                   | 103                     | 12      | 11      |  |
| 900                   | 376                     | 168     | 196     |  |

Mittel bei 100% Wald 13,5 kg NO<sub>3</sub>-N/ha und bei 70% Weide 14 kg NO<sub>3</sub>-N/ha. Zum Vergleich: In landwirtschaftlichen Gebieten mit hohem Bracheanteil beträgt die Auswaschfracht 50–200 kg NO<sub>3</sub>-N/ha und Jahr (95).

Ausser der Bepflanzung spielt in obiger Reihenfolge die Bodenbearbeitung eine Rolle: Steigerung der Mineralisierung/Nitrifikation durch Zunahme des Sauerstoffgehaltes infolge Bodenbewegung bei Gemüse/Reben, Hackfrucht und Getreide. Der Umbruch von Leguminosen (N<sub>2</sub>-Fixierung, «Gründüngung»), Grünland und Brache führen zu einer vorübergehenden, teilweise massiven Erhöhung der Nitratauswaschung (vgl. Abb. 3, Seite 252).

### Einfluss der Bodeneigenschaften (C)

Mit Zunahme des Feinkornanteils (Ton 2  $\mu$ m, Schlufffraktion 2-20  $\mu$ m) der Böden nimmt die Nitratauswaschung in der folgenden Reihenfolge ab:

Die Ursache liegt in der Verringerung der Wasserdurchlässigkeit und der Zunahme der Bodenfeuchte mit steigendem Feinkornanteil, was verbunden ist mit einer Verringerung des Sauerstoffgehaltes sowie des Redox-Potentials des Bodenwassers. In Tonböden wird zudem Ammonium adsorbiert (festgelegt), und die Denitrifikationsrate erhöht sich. Linear mit dem Humusgehalt steigt die mineralisierte N-Menge, und die Nitratauswaschung nimmt in der folgenden Reihe abstark humos > schwach humos > Mineralboden (68).

Die Einflüsse auf die mikrobiellen Prozesse, die dem Humusabbau zugrunde liegen (N-Mineralisierung und Nitrifikation), wurden im vorgehenden Abschnitt abgehandelt.

# Einfluss der Düngung (D)

# Handelsdünger

Oft wird die Nitratauswaschung ausschliesslich dem exponentiell steigenden Einsatz von Handelsdüngern («Kunstdünger», vgl. Abb. 9) angelastet. Sicher hat der Handelsdüngereinsatz – verbunden mit dem Zwang zu ständiger Mehrpro-

duktion und Rationalisierung in der Landwirtschaft – seinen direkten Anteil am Nitratproblem, was in den EG-Ländern noch viel stärker ausgeprägt ist als in der Schweiz ((7); vgl. auch Tabelle 3). Dennoch ist die oben erwähnte, oft gehörte Behauptung in dieser Ausschliesslichkeit falsch. In der Schweiz stammen im Schnitt nur etwa 24% der den landwirtschaftlichen Böden zugesetzten N-Menge aus Handelsdüngern (74% aus Hofdüngern und 2% aus Klärschlamm) (21). Bei Vergleichen des N-Düngereinsatzes gegenüber früher sollten zudem auch die heutigen, erhöhten N-Entzüge (Pflanzenerträge) – allerdings teilweise in der unerwünschten Form von Nitrat im Pflanzengewebe – mit in die Rechnung einbezogen werden.

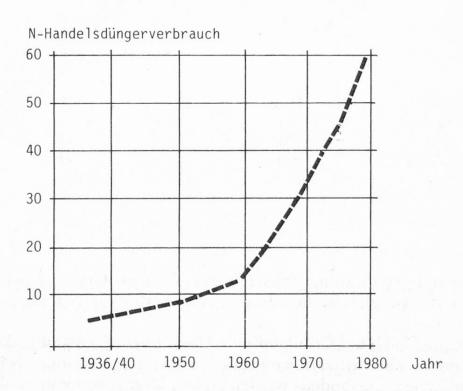



Abb. 9. N-Handelsdüngerverbrauch in der Schweiz von 1936 bis 1980 (in kg N/ha landwirtschaftliche Nutzfläche und Jahr)
nach Stadelmann et al., 1981 (21) und Angaben des Schweiz. Bauernsekretariates

Dass auch ökonomische Überlegungen den Landwirt dazu führen, mit Handelsdüngern eher sparsam umzugehen, muss angesichts des immer noch relativ billigen Preises dieser Produkte eher als Zweckaussage gewertet werden. So sind in einigen EG-Ländern gewisse Aspekte der Handelsdüngerproduktion steuerfrei (z. B. keine Abgaben auf Erdölprodukten) (7). Diese Wertung wird auch unterstützt durch Erhebungen in der Praxis.

Eine Untersuchung über den Düngereinsatz in der Westschweiz kommt zum Schluss, dass die von den Forschungsanstalten herausgegebenen Normen zwar ungefähr dem Optimum entsprechen, dass aber die in der Praxis verabreichten Mineraldüngermengen in vielen Fällen weit über dieser Empfehlung liegen (34). Untersucht wurden 380 Betriebe mit einer Anbaufläche von insgesamt ca. 22 ha über einen Zeitraum von 3 Jahren.

Es zeigte sich, dass die durchschnittlichen Düngerkosten bei jeder Kultur höher lagen als die durchschnittlichen Kosten einer Düngung nach den Normen. Dies, obwohl bei der Berechnung von einer Düngung nur mit Handelsdüngern ausgegangen wurde, während in der Praxis auch Hofdünger zur Anwendung gelangten. Würden die Landwirte den Empfehlungen der Forschungsanstalten folgen, sollten deshalb die durchschnittlichen Düngekosten tiefer liegen als die in der ersten Kolonne von Tabelle 5 angeführten Vergleichswerte.

Tabelle 5. Vergleich zwischen den ermittelten Düngerkosten in der Praxis und den errechneten Düngerkosten nach den Normen (34)

|                  | Durchschnittliche<br>Kosten nach den<br>Normen | Höchstmögliche<br>Kosten nach den<br>Normen | Durchschnittliche<br>Kosten in der<br>Praxis | Maximale<br>Kosten in der a<br>Praxis |
|------------------|------------------------------------------------|---------------------------------------------|----------------------------------------------|---------------------------------------|
|                  | Fr.                                            | Fr.                                         | Fr.                                          | Fr.                                   |
| Brotgetreide     | 240.—                                          | 315.—                                       | 296.—                                        | 800.—                                 |
| Futtergetreide   | 205.—                                          | 245.—                                       | 227.—                                        | 775.—                                 |
| Körnermais       | 360.—                                          | 395.—                                       | 332.—                                        | 775.—                                 |
| Speisekartoffeln | 410.—                                          | 585.—                                       | 450.—                                        | 1 350.—                               |
| Zuckerrüben      | 405.—                                          | 530.—                                       | 469.—                                        | 1 325.—                               |
| Raps             | 320.—                                          | 390.—                                       | 390.—                                        | 1 000.—                               |

Bei dauernd geschlossener Pflanzendecke, was bei Grasland der Fall ist, muss eine N-Überdüngung nicht unbedingt zu einer erhöhten Nitratbelastung führen, vgl. Abbildung 10.

Dennoch ist auch bei Grünland eine Überdüngung unsinnig, da grosse Mengen N<sub>2</sub>O durch Denitrifikationsvorgänge entweichen können. Nach Umbruch eines überdüngten Grasbodens werden zudem Unmengen von Stickstoff mobilisiert, die bei genügend Sickerwasser ausgewaschen werden (vgl. auch Tabelle 4).

Bei nicht ganz bodenbedeckenden Kulturen (Hackfrüchte, Getreide) können überhöhte Mineraldüngergaben zu Nitratauswaschung führen. In einem Zweijahresversuch (1973 Zuckerrüben, 1974 Winterweizen) wurden folgende Ergebnisse erzielt:

Düngung 0 kg N/ha und Jahr: Auswaschung 3,6 kg NO<sub>3</sub>-N/ha und Jahr Düngung 90 kg N/ha und Jahr: Auswaschung 3,9 kg NO<sub>3</sub>-N/ha und Jahr Düngung 180 kg N/ha und Jahr: Auswaschung 9,2 kg NO<sub>3</sub>-N/ha und Jahr (Düngung als Kalkammonsalpeter)

In einem Parallelversuch wurde einmal mehr die katastrophale Wirkung von Schwarzbrache (ob gedüngt oder nicht!) auf die Nitratauswaschung festgestellt (nach (70)):

Düngung 0 kg N/ha und Jahr: Auswaschung 62,9 kg NO<sub>3</sub>-N/ha und Jahr Düngung 180 kg N/ha und Jahr: Auswaschung 109,9 kg NO<sub>3</sub>-N/ha und Jahr Düngung 180 kg N/ha und Jahr: Auswaschung 90,4 kg NO<sub>3</sub>-N/ha und Jahr

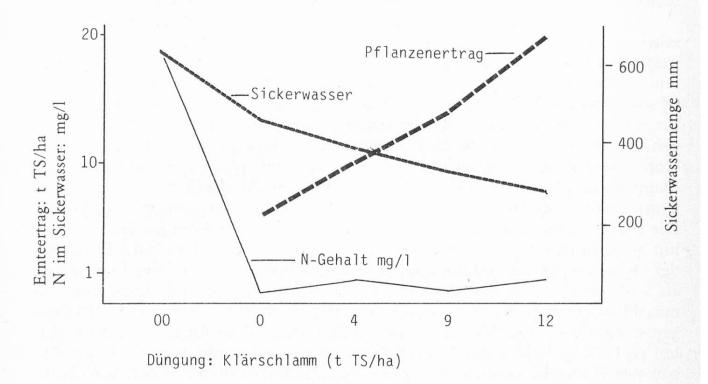



Abb. 10. Ergebnisse eines Lysimeterversuches mit steigenden Klärschlammgaben (KS) auf sandigem Lehm mit Raygras. N-Gehalt des KS: 60 kg/t TS. Niederschläge: 970 mm. Mittelwerte 1974 und 1975 (00 = unbepflanzt, ungedüngt) nach Furrer, 1978 (69)

Einen grossen Bracheanteil und zudem häufig eine starke Düngung (grossteils Mineraldüngung) weisen Gemüsekulturen und Maisanbau auf. In solchen Gebieten - wenn zudem eine hydrogeologisch ungünstige Situation vorliegt (keine Durchmischung mit nitratarmem Wasser) - tauchen denn auch sozusagen gesetzmässig massive Nitratprobleme auf. Unter- und Zwischensaaten mildern diese Probleme stark (vgl. Kapitel «Massnahmen zur Bewältigung des Nitratproblems», Seiten 250, 251). Immense Nitratauswaschungen ergeben sich mit der heutigen Dünge- und Anbaupraxis auch beim Rebbau (ohne Begrünung grosse Bracheanteile, wenig intensive Durchwurzelung, i. a. geringe Wasserspeicherungskapazität der Böden). Obwohl Ertragseinbussen durch Unterlassung der N-Düngung im Weinbau nur mit 7-18% angegeben werden, ergeben sich Differenzen aus dem tatsächlichen Bedarf des Rebstocks zu den Düngemittelempfehlungen von bis zu 300 (!) kg N pro ha und Jahr. Der überschüssige Stickstoff wird entweder denitrifiziert, an den N-Pool im Boden gebunden oder in das Grundwasser ausgewaschen. Weinbaulich genutzte Flächen weisen daher Auswaschverluste, bezogen auf die jährliche N-Zugabe, von über 100% auf (12). Diese Zahlen stammen zwar aus Untersuchungen in der BRD; es gibt aber Hinweise, dass die Verhältnisse in der Schweiz genauso liegen (35, 108). Durch Leguminoseneinsaat könnte ganz

oder fast ganz auf die N-Düngung im Weinbau verzichtet werden. Nach Perret (79) ist im ostschweizerischen Rebbau bei einer sachgerechten Umstellung auf Begrünung mit keiner negativen Beeinflussung von Ertrag und Qualität zu rechnen, die die Vorteile der Begrünung in Frage stellen würde.

Bei der heute beobachteten, zunehmenden Differenzierung der Landwirtschaft in «reine» Ackerbau- und «reine» Viehwirtschaftsbetriebe muss noch auf weitere, indirekte Folgen des Mineraldüngerverbrauches hingewiesen werden. Die allgemeine Verfügbarkeit und der immer noch relativ billige Preis von «Kunstdüngern» fördern diesen, insgesamt ökologisch ungünstigen Differenzierungsprozess in der Landwirtschaft zusätzlich und tragen dazu bei, dass Hofdünger als Abfall betrachtet werden. Der gegenüber biologischer N-Fixierung oder Hofdüngerprodukten beträchtliche Energieaufwand (plus Transportenergie) für «Kunstdünger» wird in Diskussionen meist gar nicht erwähnt (Faustregel: die Synthese von 1 kg Stickstoff in Form von Mineraldüngern benötigt 2 kg Erdöl). Die erhöhte Mineraldungeranwendung führt zwar zu grösseren Erträgen und somit auch zu einem grösseren Anteil an Ernterückständen, die für die Erhaltung der organischen Bodensubstanz verwertbar sind - sofern sie nicht verbrannt oder als Streu entzogen werden. Andererseits stimuliert die Mineraldüngung den Humusabbau durch Bodenmikroorganismen. (Das N-Angebot aktiviert die Mikroorganismen. Da sie zum Wachstum auch Kohlenstoff (C) benötigen und der C-Anteil im C:N-Verhältnis durch die N-Gabe vermindert wurde, kommt es zum Abbau von Humusbestandteilen: C-Zehrung.) Die Bilanz dieser beiden gegenläufigen Prozesse scheint für eine Vielzahl von Böden bei den gegenwärtig angewendeten Produktionssystemen negativ zu sein. Das heisst, es zeichnet sich vielerorts ein langsam fortschreitender Abbau der organischen Bodensubstanz ab, was neben erhöhter Nitratauswaschung zu einer Reihe weiterer ökologisch bedenklicher Prozesse führt, z. B. gehemmter Abbau von Schadstoffen, Abnahme der Wasserspeicherfähigkeit, zunehmende Erosionsgefährdung usw. (7, 26, 52, 71).

# Hof- und Abfalldünger

Hofdünger (Mist, vor allem aber Gülle) und Abfalldünger (Müllkompost, vor allem aber Klärschlamm) stellen für die Grundwasserbelastung mit Nitrat generell eine grössere Gefahr dar als Mineraldünger. Besonders die viel Ammonium (bzw. Ammoniak) und leicht abbaubaren Stickstoff enthaltenden Flüssigdünger Gülle und Klärschlamm werden, infolge mangelnder Lagerkapazitäten, nach wie vor häufig zu einer Unzeit (Herbst, Winter) ausgebracht. Der organische Stickstoff von Hofdüngern, Klärschlamm und Kompost wird auch zu einer Zeit mobilisiert, wenn die Ptlanzen keinen N-Bedarf haben, und kann daher bei Vegetationsruhe ausgewaschen werden. Wird Dünger im Herbst oder Winter ausgebracht, so geht der darin vorhandene Stickstoff zu einem grossen Teil durch Auswaschung und Verflüchtigung verloren (Abb. 11 und Abb. 12).

Die flüssigen Hofdunger (Gülle) müssten zur Erzielung einer optimalen Düngewirkung und Minimalisierung der Nitratauswaschung zu den gleichen Zeiten ausgebracht werden wie Mineraldunger, weil mehr als die Hälfte des in ihnen enthaltenen Stickstoffs leicht löslich ist (73).

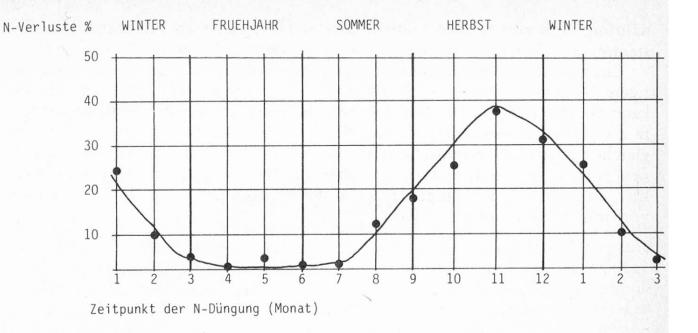



Abb. 11. Verlust an Düngerstickstoff in Abhängigkeit vom Zeitpunkt des Ausbringens nach Kolenbrander, 1969 (72)

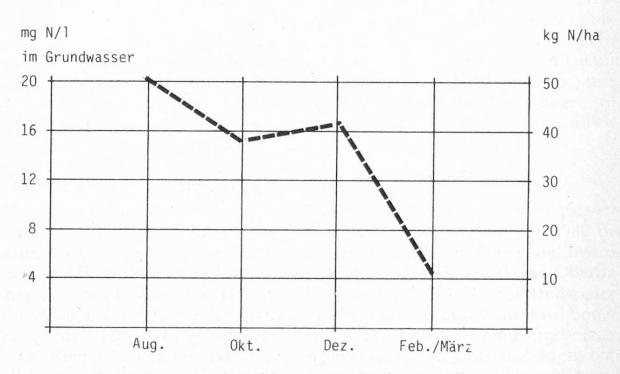



Abb. 12. Stickstoffversickerung nach Zufuhr von 30 m³ Schweinegülle mit ca. 180 kg N/ha zu unterschiedlichen Zeitpunkten (Vergleich zu ohne Gülledüngung) nach Vetter et al., 1984 (73)

Dazu kommt, dass die Tierhaltung nicht gleichmässig über das Land verteilt ist, sondern in verschiedenen Gebieten starke Konzentrationen an Rindvieh, Schweinen und Geflügel auftreten (insbesondere bei industrieller Tierhaltung). Dies führt dazu, dass lokal viel mehr Hofdünger anfallen als für die Pflanzener-

nährung verwertet werden können. Dieser Überschuss an Pflanzennährstoffen stammt aus den grossen Mengen an importierten Futtermitteln (vgl. (22)).

Ein weiterer Nachteil der Hofdünger, insbesondere von Gülle, ist die schwierigere Dosierbarkeit. Der Stickstoffgehalt verschiedener Güllearten variiert und kann nur durch chemische Analyse festgestellt werden. Vor dem Ausbringen sollte die Gülle homogenisiert werden, damit vom ersten bis zum letzten Fass die gleichen Nährstoffkonzentrationen vorliegen. Güllewagen erlauben im allgemeinen nur eine sehr grobe Dosierung über die Veränderung der Fahrgeschwindigkeit, während Handelsdüngerstreuer in der Mengenverteilung eine Abweichung von nur ± 10% aufweisen (73).

# Naturlabors und wissenschaftlich begleitete Sanierungsprojekte

Der Stickstoffkreislauf der Natur ist durch Labor- und Modellversuche (Lysimetergefässe) bis in viele Details erforscht (Anhang A). Quantitative Voraussagen für die Praxis sind aber aus diesen wissenschaftlichen Erkenntnissen wegen der Vielzahl der beeinflussenden Faktoren nur möglich, wenn die relevanten Randbedingungen in die Abschätzung einbezogen werden, was i. a. grossen Aufwand bedeutet (bodenbezogene, hydrogeologische, klimatologische Einflüsse, vgl. Seite 244). Um die tatsächlichen Zusammenhänge «draussen im Felde» zu überprüfen, wurden vom Bundesamt für Umweltschutz in Zusammenarbeit mit landwirtschaftlichen Forschungsanstalten und kantonalen Laboratorien sowie Gewässerschutzämtern sog. Naturlabors eingerichtet, die diese Überprüfung in hydrogeologisch abgegrenzten und bodenkundlich charakterisierten Gebieten mit rein landwirtschaftlicher Bewirtschaftungsweise vornahmen. Neben wissenschaftlichen Interessen ist es Ziel solcher Untersuchungen, die im Eidg. Gewässerschutzgesetz vom 8. Oktober 1971 (46) geforderte Sorgfaltspflicht sowie das Versickerungs- und Abschwemmungsverbot für jedermann (Art. 13 und 14) - und somit auch für Landwirte – zu verdeutlichen und exemplarische, praxisgerechte Sanierungsvorschläge zu erarbeiten. Eine wichtige Voraussetzung für das Gelingen solcher Vorhaben ist daher auch das entgegenkommende Verständnis der Landwirte, die das Untersuchungsgebiet nutzen.

# Naturlabor auf dem Buechberg (Thayngen SH)

Die Stickstoffdynamik dieses etwa 30 ha grossen, landwirtschaftlich konventionell genutzten Gebietes wurde im Rahmen einer Dissertation von 1980 bis 1984 untersucht (25). Vorerst wurden topologische, bodenkundliche und hydrologische Einflussgrössen abgeklärt. Das wannenförmige Plateau (keine Oberflächenabflüsse) wird durch drei Hauptquellen entwässert, bei denen Fremdwassereinflüsse ausgeschlossen werden können. Die Verweilzeit des Wassers im Boden beträgt 2 bis 5 Jahre. Die gesamtörtlichen Verhältnisse wurden mit Ergebnissen von vier Kleinparzellen mit Lysimeteranlagen im gleichen Untersuchungsgebiet verglichen, wobei eine hohe Übereinstimmung mit dem gesamten Untersuchungsgebiet festgestellt wurde. Mit Hilfe von fein differenzierten Düngeprotokollen, die von den Landwirten ausgefüllt wurden, konnten jährliche N-Bilanzen für das gesamte Gebiet erstellt werden. Diese stimmten mit den gemessenen Werten gut überein; die N-Vorräte im Boden blieben während der Untersuchungszeit konstant.

Während der gesamten Messperiode von 4 Jahren schwankten die Nitratkonzentrationen des Quellwassers nicht stark, waren aber tendenziell steigend. Die jährliche Nitratfracht wurde weitgehend durch die Sickerwassermenge bestimmt, die von den Niederschlägen abhängig war. Dieser Einfluss war um so grösser, je höher die durchschnittliche Nitratkonzentration des Grundwassers lag. Änderungen der Quellschüttungen konnten aber nicht mit Änderungen der Nitratkonzentration korreliert werden. Mit grosser Wahrscheinlichkeit steht dies im Zusammenhang mit der relativ langen Verweilzeit des Wassers im Boden bis zu seinem Austritt aus der Quelle, wodurch saisonal schwankende Nitrateinträge ausgeglichen werden (vgl. auch (52)). Das Quellwasser im Einzugsgebiet unter Ackerflächen werden (vgl. auch (52)). Das Quellwasser im Einzugsgebiet unter Ackerflächen wies durchschnittliche Konzentrationen von 70 mg NO $_3$ /l auf, während unter Naturwiesen 30 mg NO $_3$ /l gemessen wurden. Je nach Niederschlagsmenge wurden unter Ackerflächen zwischen 70 und 130 kg N/ha und Jahr und unter Natur- und Kunstwiesen ca. 20 kg N/ha und Jahr ausgewaschen. Die Vergleichsgrössen aus den Lysimeterparzellen lauten: 105 ± 20 kg N/ha und Jahr Auswaschung unter Brache und 20 kg N/ha und Jahr unter Klee/Gras-Mischung.

Ackerfläche um ca. 13% erhöht. Der Einfluss von Mistgaben kurz vor dem Umbruch im Spätherbst/Winter konnte in einer Kleinparzelle während 2 Monaten nach der Applikation bis zu 70 cm Bodentiefe gesichert nachgewiesen werden. Durch zusätzliche Stickstoffbestimmungen in Bodenproben wurden weitere Aspekte der Stickstoffdynamik erhellt: Unter brachliegenden Flächen wurden im Zeitraum Dezember 1982 bis Anfang Mai 1983 ca. 80 kg N/ha mobilisiert. Die berechnete Denitrifikation (gasförmige N-Verluste) unter einer Kunstwiese betrug im gleichen Zeitraum ca. 35 kg N/ha. Die aus den Arbeiten am Naturlabor Buechberg gewonnenen Erkenntnisse für praktische Massnahmen werden in Ka-

pitel «Massnahmen zur Bewältigung des Nitratproblems» geschildert.

# Naturlabor Weienbrunnen (Müswangen LU)

Im Gebiet des Lindenbergs wurde ein Einzelgehöft fernab gewichtiger Fremdeinflüsse, mit einer hofeigenen Quelle, für einen Versuch ausgewählt. Durch Markierungsversuche mit Farbstoffen wurde deren Einzugsgebiet näher abgegrenzt; es beträgt ca. 1 ha und liegt ganz im Bereich der bewirtschafteten Fläche. Die gesamte bewirtschaftete Fläche umfasst 19 ha (2–3 ha Getreide- und Maisanbau) und weist einen Viehbestand von 2,9 Düngergrossvieheinheiten/ha auf, was gemäss «Wegleitung» (30) als üblich bewertet wird (74). Ab 1978 wurde der Nitratgehalt der Quelle Weienbrunnen regelmässig verfolgt und mit Untersuchungsergebnissen zweier Drainageabflüsse der gleichen Gemarkung sowie mit einer benachbarten Quelle mit reinem Waldeinzugsgebiet verglichen. Ausserdem wurden betriebliche Daten (detaillierte Düngepläne, Bodenproben, Gülleanalysen usw.) in die Untersuchung einbezogen.

Im Jahre 1978 wurde im Einzugsgebiet nur Graswirtschaft betrieben. 1979 wurde auf einer entfernten Parzelle Mais angepflanzt und geerntet. 1980 wurde das gleiche Maisfeld wegen Wachstumsmangel im Juli umgepflügt und wieder als Wiese genutzt. Im Frühjahr 1981 wurde im eigentlichen Einzugsgebiet der Quelle

absichtlich ein Maisfeld angelegt.

Die Nitratkonzentrationen lassen sich seit Beginn der Messungen deutlich in zwei Abschnitte unterteilen. In einer ersten Periode vom Juni 1978 bis zum Dezember 1979 lagen die Nitratwerte in einem ausgeglichenen schmalen Band zwischen 18 und 24 mg NO $_3$ /l. In der darauf folgenden Messperiode vom Januar 1980 bis zum Februar 1982 war ein langsamer, aber stetiger Anstieg der Nitratkonzentration um 17 mg NO $_3$ /l bis gegen 40 mg/l in der Quelle Weienbrunnen feststellbar. In der Periode Juni 1978 bis Februar 1980 wurde bei der Quelle Weienbrunnen ein Stickstoffaustrag von 30 kg N/ha und Jahr, in den folgenden zwei Jahren aber 40 kg N/ha und Jahr ermittelt. Zu Vergleichszwecken wurde auch eine Quelle untersucht, deren Einzugsgebiet bewaldet ist. Der Stickstoffaustrag betrug hier 17 kg N/ha und Jahr (Konzentration ca. 13 mg NO $_3$ /l), was für eine Waldquelle relativ hoch ist. Dieser Sachverhalt sollte durch Forstfachleute weiter abgeklärt werden (Bestockung, Bodenverhältnisse usw.), was leider nie geschah.

Der erwähnte Anstieg der Nitratkonzentration in der Quelle Weienbrunnen stand in engem Zusammenhang mit der Bewirtschaftung im Einzugsgebiet. Dies zeigten auch Bodenanalysen auf. So wurden im November 1981, nach dem Pflügen des Maisackers, bis zu 600 mg NO $\frac{1}{3}$ /l im Bodenwasser festgestellt. Mit Hilfe der Betriebsangaben, des Nutztierbestandes und der Nutzfläche wurde für den Hof Weienbrunnen eine Nährstoffbilanz berechnet, dabei konnte ein Nährstoff-

überschuss (inklusive Handelsdünger) festgestellt werden.

Nach dem letzten internen Zwischenbericht (74) wurde das Messnetz (in geringerer Dichte) weitergeführt und mit den Betriebsanalysen in Beziehung gebracht. Es wurde versucht, die Betriebsführung so anzupassen, dass der Nitratgehalt im Quellwasser vermindert werden konnte, ohne die Wirtschaftsweise unverhältnismässig zu ändern und ohne Ertragseinbussen zu verursachen. Der Schlussbericht über dieses Naturlabor wird 1987 erwartet.

## Sanierungsprojekt Dottikon (AG)

Dieses Projekt hatte seinen Ursprung in einem Auftrag der aargauischen Regierung, das Problem «Nitrat im Grundwasser» umfassend und im Rahmen von konkreten Bewirtschaftungsmassnahmen anzupacken. Es wird durchgeführt von der kantonalen Abteilung Gewässer des Baudepartementes Kt. AG in Zusammenarbeit mit dem kantonalen Laboratorium, dem Bundesamt für Umweltschutz, der Gemeinde Dottikon, der Landwirtschaftlichen Schule Muri, der aargauischen Zentralstelle für Pflanzenschutz und der Forschungsanstalt (FAC) in Liebefeld-Bern (113). Im Zusammenhang mit den Grundwasseruntersuchungen werden auch Pestizidanalysen im Abströmbereich einer Baumschule durchgeführt. Wie bei ähnlichen Projekten auch, wurden vorgängig umfangreiche hydrogeologische Abklärungen vorgenommen.

Diese Untersuchungen (Bohrungen, Sickerversuche mit Farbstoffen) ergaben, dass das etwa 1,5 x 2 km grosse Einzugsgebiet der betreffenden Fassung ein hydrogeologisch abgeschlossenes System (Mulde) darstellt und sich somit als Modellfall eignet. Ausserdem wurde ermittelt, dass bezüglich Versickerung relativ komplizierte Verhältnisse vorliegen (zwei Grundwasserstockwerke, verschiedene horizontale und vertikale Fliesswege und -geschwindigkeiten). Das wird eine grosse Rolle bei der Ausscheidung von Schutzzonen spielen, die in diesem Falle zweckmässigerweise nicht konzentrisch um die Fassung herum angeordnet zu liegen

kommen, sondern nach den Erfordernissen der hydrogeologischen Gegebenheiten. Ergänzend zu diesen Untersuchungen wurde durch eine grosse Anzahl untiefer Handbohrungen das Sickerverhalten ermittelt und das Gebiet in entsprechende Zonen eingeteilt, was als Grundlage für Düngungskonzepte und Bodenbelastbarkeitspläne dient. Zudem wird geprüft, ob in gewissen Gebieten durch das Erstellen von Drainagen der Nitrateintrag ins Grundwasser vermindert werden könne.

Seit 2 Jahren läuft eine Studie, die sämtliche 12 Landwirtschaftsbetriebe und eine Grossgärtnerei/Baumschule des Einzugsgebietes umfasst. Einer detaillierten Bestandesaufnahme bezüglich Kulturarten, Fruchtfolgen, Bracheanteil, Düngerverbrauch (nach Art, Menge, Zeitpunkt) folgte eine gezielte und intensive Beratung über Bewirtschaftungs- und Düngemassnahmen. Mit dieser verbunden sind die Beobachtung meteorologischer Daten, N<sub>min</sub>-Untersuchungen, quantitative N-Bilanzen, Ertragserhebungen sowie flächendeckende Nitratanalysen im Sickerund Grundwasser. Soweit bis jetzt gesehen werden kann, haben diese Massnahmen eine sinkende Tendenz des Nitratgehaltes im Grundwasser bewirkt, von vorher ca. 50–80 mg auf ca. 40–50 mg NO $\frac{1}{3}$ /l.

Ziel der Bemühungen ist es, eine Schutzzonenausscheidung nach relevanten Kriterien der Hydrogeologie und Bodenbeschaffenheit vorzunehmen und durch Beratung der Landwirte zu einer boden- und pflanzengerechten Düngung bzw. Bodenbearbeitung und Fruchtfolge anzuhalten. Diesbezügliche rechtsverbindliche Verfügungen sollen umgehend erlassen werden. Ausserdem wird angestrebt, in stark gefährdeten Gebieten eine permanente kantonale Beratung einzu-

richten.

Dieses Vorgehen hat modellhaften Charakter, denn es gilt, einen praktisch gangbaren Weg zwischen der geforderten Sorgfaltspflicht für jedermann bzw. dem Versickerungsverbot (Art. 13 und 14 des Gewässerschutzgesetzes vom 8. 10. 1971 (46)) einerseits und eventuellen Entschädigungsforderungen der betroffenen Landwirte andererseits zu finden.

Ein Gutachten des Rechtsdienstes des Kt. AG (113) kommt zum Schluss, dass es zwar nicht möglich sei, restlos klärende Regeln für Entschädigungsfälle aufzuzeigen (z. B. infolge Nutzungsbeschränkungen mit Ertragseinbussen bei Schutzzonenausscheidungen). Das Risiko, dass dem Gemeindewesen aus solchen Massnahmen Entschädigungspflichten aus materieller Enteignung erwachsen, wird jedoch als relativ gering eingestuft, da z. B. gewisse Düngungsbeschränkungen und auch die Unterlassung gewisser Feldarbeiten schon von Bundesrechts (GSchG) wegen zwingend vorgeschrieben sind. Das Gutachten hält überdies konkretisierende Ausführungsbestimmungen über gewässerschutzrechtliche Düngebeschränkungen auf Bundesebene für wünschenswert, da bei kantonalen Vorschriften die Gefahr sachwidriger Eingriffe in das komplizierte Gefüge der eidgenössischen Landwirtschaftsgesetzgebung bestünde und konkurrenzverzerrende Auswirkungen haben könnte. Da Grundwasserschutzmassnahmen in Einzelfällen eindeutig zu einer Schmälerung des Betriebseinkommens führen können, werden die Steuerbehörden Regelungen zur Vermeidung von Ungerechtigkeiten finden müssen. Der Schlussbericht über den Modellfall Dottikon wird 1986 erwartet.

## Sanierungs- und Forschungsprojekt Bachenbülach (ZH)

Die Gemeinde Bachenbülach musste wegen der Neuordnung der Bauzone und wegen zu hoher Nitratgehalte (60 bis max. 90 mg NO $_3$ /l) den Betrieb eines Trinkwasserpumpwerkes einstellen. Die Forschungsanstalt Reckenholz untersuchte im Frühling und Herbst 1982 die Böden im unmittelbaren Einzugsgebiet nach der N<sub>min</sub>-Methode (vgl. «Ursachenbekämpfung», Seite 254). Im Frühling lagen die N<sub>min</sub>-Gehalte bei allen untersuchten Flächen zwischen 20 und 60 kg N/ha. Im Herbst wiesen die untersuchten Feldkulturen mehrheitlich tiefere Gehalte auf als im Frühling. Im Einzugsgebiet befindet sich auch ein grösserer Gemüsebaubetrieb. Die N<sub>min</sub>-Analysen von drei untersuchten Gemüseparzellen zeigten mit 73, 104 und 110 kg N/ha sehr hohe Gehalte.

Obwohl aus diesen wenigen Daten noch nicht auf ursächliche Zusammenhänge geschlossen werden darf, deuten die im Vergleich zum Feldbau hohen Stickstoffgaben und die langen Brache- und Teilbracheperioden darauf hin, dass unter Gemüsebauflächen erhebliche Nitratmengen ausgewaschen werden. Auch Topfversuche und Beobachtungen in anderen Gemüsebauregionen im In- und Ausland weisen in diese Richtung (36, 75–78). Da sich der erwähnte Gemüsebaubetrieb strikte an die Düngungsempfehlungen der Forschungsanstalt Wädenswil hält, ist es notwendig, diese Empfehlungen bezüglich N-Düngung und anderer Kulturmassnahmen kritisch zu überprüfen, besonders auch, weil die meisten der guten Gemüsebauböden auf Grundwassereinzugsgebieten und Mooren anzutreffen sind (37).

Die geplanten Versuche sollen immer praxisnahe gemüsebauliche Kulturfolgen umfassen und Topf- sowie Felduntersuchungen kombinieren. Das Spannungsfeld «guter Ertrag – geringe Nitratanreicherung im Gemüse – geringe Nitratauswaschung ins Grundwasser» bedingt die Prüfung von sich z. T. gegenseitig beeinflussenden Faktoren wie Düngermenge, -form und -zeitpunkt, Bodenverhältnisse, Fruchtfolge, Bodenbearbeitung, Nitrifikationshemmer u. a. m. Für den späteren Einsatz in der Praxis sollen verschiedene Routinebodenuntersuchungsmethoden erarbeitet und geleistet werden.

Das Projekt steht unter der Leitung der Forschungsanstalt für Obst-, Weinund Gartenbau, Wädenswil; beteiligt sind ausserdem die Gemeinde Bachenbülach, das Amt für Gewässerschutz (ZH), die Forschungsanstalt Reckenholz (ZH) und die Professur für Bodenphysik (ETH Zürich). Vorversuche wurden bereits 1977 bis 1980 durchgeführt; das eigentliche Projekt dauert von 1984 bis 1988.

## Gemüsebaugebiet Berner Seeland

Viele Gemeinden dieses Moorbodengebietes mit einem hohen Anteil an intensivem Gemüsebau haben sich seit Jahren mit hohen Nitratgehalten des Trinkwassers auseinanderzusetzen (ca. 40–80 mg NO<sub>3</sub>/l). Beobachtungen der landwirtschaftlichen Schule Seeland in Ins haben die wissenschaftlichen Erkenntnisse der Forschungsanstalten über Herkunft und Verhalten von Nitrat im Boden bestätigt (vgl. Anhang A).

Noch zu wenig abgeklärt sind die Auswirkungen einzelner Bewirtschaftungsmassnahmen unter Praxisbedingungen. Obwohl es ausserhalb der Möglichkeiten der landwirtschaftlichen Schule liegt, diese Frage umfassend abzuklären, wird versucht, durch Auswertung von Bodenanalysen und kleinen Praxisversuchen im Zusammenhang mit Vorkulturen, Untersaaten und Düngungsfragen den Nutzen bestimmter Strategien abzuschätzen.

Die Versuchstätigkeit kann sich dabei auf bereits vorhandene Ergebnisse über den Zusammenhang von Niederschlagsintensität und -verteilung sowie Nitratgehalte des Wassers in Abhängigkeit der landwirtschaftlichen Nutzung bei einzelnen Wasserfassungen abstützen. Einen wichtigen Schwerpunkt bilden Versuche über die praktische Anwendbarkeit des Nitratschnelltestes mittels Teststäbchen, die Aussagen über das Ausmass von Folgedüngungen ergeben können.

### Weitere Projekte

Die bis jetzt gewonnenen Erkenntnisse im Rahmen von Naturlabors und ähnlichen Einrichtungen haben die aus Lysimeter- und anderen Modellversuchen gewonnenen wissenschaftlichen Zusammenhänge vollauf bestätigt. Hohe Nitratverluste treten vor allem auf bei unbedeckten Böden (Voll-, Teil- oder Zwischenbrache), bei hohen Sickerwassermengen in den Wintermonaten sowie beim Umbruch von Wiesen und flächenhaften Rodungen von Wäldern; darüberhinaus bei humusreichen Böden mit starker Mineralisation und bei empfehlungswidriger Düngung, sei es mit Handels- oder Hofdüngern. Daher sollten ab jetzt keine Gelder mehr in Naturlaborprojekte gesteckt werden, die umfangreiche hydrogeologische Abklärungen und ein engmaschiges Analysennetz erfordern, was immer finanziell und zeitlich hohen Aufwand bedeutet. Die bis jetzt erreichten und in naher Zukunft zu erwartenden Resultate aus solchen Grossprojekten haben genügend Durchschlagskraft, einen weiteren Schritt in Richtung Praxis zu tun und so grössere Breitenwirkungen anzustreben.

Die im Rahmen von Naturlabors gemachten Erfahrungen haben gezeigt, dass ein Grossteil der Landwirte genügend Umweltbewusstsein besitzt und bereit ist, ihre Anbautechniken nach ökologischen Kriterien zu ändern. Dazu nötig sind aber nicht akademische Belehrungen oder moral-ökologische Doktrinen, sondern eine intensive, örtlich angepasste Betriebsberatung, die von Kräften ausgeführt wird, die von den Bauern als «ihresgleichen» anerkannt werden. Als Träger solcher Beratungen kommen in der heutigen schweizerischen Landwirtschaft vor allem die Landwirtschaftlichen Schulen und Beratungsdienste in Frage. Die wissenschaftliche Begleitung von praxisnahen Sanierungsprojekten, die, wie das «Nitratproblem» als solches, meist lokal begrenzt sind, sollte in enger Zusammenarbeit mit den betroffenen Gewässerschutzämtern bzw. kantonalen Laboratorien erfolgen. An Projekten in diesem Rahmen wären, neben den bereits beschriebenen, zu erwähnen:

- Seuzach/Hettlingen ZH
- Stammheimertal ZH
- Klettgau SH (118)
- Niedergösgen SO
- Fischbach-Göslikon AG
- Lattenbuck ZH
- Rafzerfeld ZH (geplant)
- Oberkirch LU (140, 165)
- Niederwil AG
- Hünenberg-Drälikon ZG

Diese Liste ist wegen ungenügender Datenlage (vgl. «Heutige Situation und Tendenzen») nicht vollständig. An dieser Stelle ist zu erwähnen, dass wegen mangelnder Rechtsverbindlichkeit des im Schweizerischen Lebensmittelbuches festgehaltenen Toleranzwertes von 40 mg NO<sub>3</sub> /l Trinkwasser viele Gemeinden bis heute keine Einsicht zeigen, die von Gewässerschutzämtern und kantonalen Laboratorien empfohlenen Sanierungsmassnahmen zu befolgen!

## Toxikologische Aspekte

#### Nitrat und Nitrit

Nitrat

Oral aufgenommenes Nitrat wird im oberen Darmabschnitt rasch und nahezu vollständig aufgenommen, im Blut und Gewebe verteilt und zu 80% innert 4–12 Stunden durch die Nieren ausgeschieden, wobei starke artabhängige und auch individuelle Schwankungen beobachtet werden. Erst die Zufuhr grösserer Mengen (über 2 g) führt zu Reizungen der Magen- und Darmschleimhaut, die sich in Brechreiz, Diarrhoe und blutigem Stuhl äussern. Die akut tödliche Dosis für den erwachsenen Menschen liegt bei etwa 15 g Nitrat (80). Durch Tierversuche ermittelten die FAO/WHO eine duldbare tägliche Aufnahme (ADI-Wert = acceptable aaily antake) von 5 mg Natriumnitrat pro kg Körpergewicht, was bei einem 60 kg schweren Erwachsenen einer Menge von ca. 220 mg Nitrat/Tag (NO $\frac{1}{3}$ ) entspricht (81).

#### Nitrit

Etwa 20% des aufgenommenen Nitrats verbleiben im Organismus und werden vermutlich vorwiegend im Darm zu Ammoniumverbindungen umgesetzt. Auch die umgekehrte Reaktion, das heisst die Oxidation von Ammoniumverbindungen zu Nitrat, ist möglich. Sie findet vor allem im Gewebe statt. In einem Nebenkreislauf werden 10–20% des aufgenommenen Nitrats ständig zu den Speicheldrüsen befördert, im Speichel aufkonzentriert und wieder der Mundhöhle zugeführt. Etwa 20% des Nitrates in der Mundhöhle werden durch dort physiologisch angesiedelte Bakterien – und nur durch diese – zum weit toxischeren Nitrit reduziert (Speichel direkt aus den Parotisdrüsen entnommen ist nitritfrei. In keimfiltriertem Speichel findet keine Nitritbildung statt.) Insgesamt werden etwa 3–6% des aufgenommenen Nitrats zu Nitrit umgewandelt (82–85).

Die Nitratausscheidung mit dem Speichel und die Reduktion zu Nitrit verlaufen (zeitlich verschoben) parallel mit der aufgenommenen Nitratmenge (82), wobei bei hoher Nitratkonzentration im Verhältnis zur absoluten Menge weit mehr Nitrit gebildet wird als bei tieferen Konzentrationen (83). Die normalerweise im menschlichen Organismus zirkulierenden Nitratmengen bewirken eine Grundkonzentration von etwa 5–10 mg NO½/l und eine etwa zehnmal höhere Konzentration an NO¾ im Speichel. Verschiedene Studien ergaben, dass erst ab einer Nitrataufnahme von ca. 50 mg an (82) bzw. bei Blutplasmawerten oberhalb von 3 mg NO¾/l (85) eine wesentliche Zunahme der Nitritproduktion im Speichel gemessen werden kann (Schwellenwertphänomen). Eine Rolle spielt auch die Art der Verabreichung: Wird das Nitrat über Gemüsesäfte oder Trinkwasser aufge-

nommen, dann erfolgt der Nitritanstieg im Speichel schneller als bei Aufnahme in fester Form von Spinat usw. (82, 85). Mit steigendem Lebensalter erhöht sich die im Speichel nachweisbare Nitritmenge (86). Die durch diese Umsetzung erfolgende durchschnittliche Zufuhr von täglich etwa 6–10 mg Nitrit übertrifft die durchschnittliche exogene Belastung um ein Vielfaches. (Die exogene Belastung, d. h. Nitritaufnahme über die Nahrung, beträgt gemäss Untersuchungen in der BRD etwa 3 mg NO<sub>2</sub>/Person und Tag (87, 88). Für die Schweiz liegen die entsprechenden Zahlen etwas tiefer.)

Bakterielle Nitritbildung ist auch im Magen möglich, vor allem bei Säuglingen oder älteren Menschen mit naturgemäss geringerer Säuresekretion oder bei Vorliegen von Verdauungsstörungen (Dyspepsien) (89). Aber auch im gesunden Magen können sich – unter physiologischer pH-Erhöhung z. B. während den Nachtstunden – zum Teil erhebliche Keimzahlen einstellen. Dabei werden Nitritkonzentrationen auch im schwach sauren Bereich produziert, die etwa sechsmal so hoch sind wie die mit dem Speichel in derselben Zeit zugeführten Mengen (90, 91). Neuere Arbeiten zur Pharmakokinetik des Nitrats haben diese Studien in der Hauptsache bestätigt sowie weitere Randbedingungen und Einzelheiten untersucht (85, 92).

Nitrit kann degenerative Veränderungen an verschiedenen Organen bewirken, allerdings erst bei Konzentrationen, die in der menschlichen Nahrung normalerweise nicht vorkommen – ausserdem hat es eine schwache erbgutverändernde (mutagene) Wirkung (84, 89). Bei Ratten traten bei täglicher Dosierung von 66 mg NOz/kg Körpergewicht z. T. über 3 Generationen hinweg keine cancerogenen und teratogenen (Missbildungen beim Embryo hervorrufende) Effekte auf (93). Zahlreiche Autoren beobachteten bei Tieren während chronischer Zufuhr von Nitrat und Nitrit in entsprechender Dosierung Störungen der Schilddrüsenfunktion, Wachstumshemmungen, zelluläre Schäden an verschiedenen Organen und bei hohen Dosierungen (1-2% Nitrit zum Futter) Abortraten bis zu 80% (zit. in 89). Natriumnitrit in Tagesdosen bis 300 mg wird als gefässerweiterndes Medikament eingesetzt. Die letale (tödliche) Dosis für Erwachsene liegt um 4 g (80). Der ADI-Wert wurde von der WHO provisorisch – bis zur Auswertung weiterer Resultate - auf 0,2 mg NaNO<sub>2</sub>/kg Körpergewicht festgesetzt, das entspricht für einen 60 kg schweren Menschen einer Menge von ca. 8 mg Nitrit (NO<sub>7</sub>)/Tag (81). Bei den ADI-Werten für Nitrat und Nitrit sind die möglichen Konsequenzen einer endogenen Nitrosaminsynthese nicht berücksichtigt (siehe Anhang C, Seite 291).

## Tägliche Nitrat- und Nitritaufnahme

Aufgrund der vom Bundesamt für Industrie, Gewerbe und Arbeit (BIGA) 1977 veröffentlichten Verbrauchsmengen von Nahrungsmitteln und Getränken wurde die durchschnittliche tägliche Nitrataufnahme durch Lebensmittel berechnet (94). Von den zugeführten 91 mg NO<sub>3</sub> /l pro Person und Tag stammen 70% (64 mg) aus Gemüsen und 21% (19 mg) aus Trinkwasser und Getränken. Fleischwaren steuern ca. 6% bei. Bestimmend für die hohe Nitratzufuhr über Gemüse sind die Blattsalate, vor allem der Kopfsalat, die mit ca. 30 mg NO<sub>3</sub> etwa einen Drittel

der gesamten Nitrataufnahme ausmachen (alle Zahlen bei einem Trinkwassergehalt von 10 mg NO<sub>3</sub>/l). Wie sich die Nitrataufnahme durch erhöhte Gehalte im Trinkwasser oder beispielsweise durch verdoppelten Gemüseverzehr verändert, geht aus Tabelle 6 hervor.

Tabelle 6. Der Einfluss des Nitratgehaltes des Trinkwassers auf die durchschnittliche tägliche Nitratbelastung in der Schweiz in mg NO<sub>3</sub> pro Tag und Person. Zum Vergleich: Der ADI-Wert der WHO beträgt 220 mg Nitrat (für einen 60 kg schweren Menschen) (38)

| Nitratkonzentration<br>im Trinkwasser | Gesamtaufnahme von Nitrat pro<br>Kopf und Tag bei einem Konsum von<br>täglich 1,85 l Trinkwasser |          | Gesamtaufnahme von Nitrat pro<br>Kopf und Tag bei doppeltem<br>Gemüseverzehr und einem Konsum<br>von täglich 1,85 l Trinkwasser |          |
|---------------------------------------|--------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------|----------|
| mg NO <sub>3</sub> /l                 | mg NO <sub>3</sub> /1                                                                            | Faktor** | mg NO <sub>3</sub> /l                                                                                                           | Faktor** |
| < 1                                   | 72*                                                                                              | 1        | 136                                                                                                                             | 1,9      |
| 10                                    | 90,5                                                                                             | 1,25     | 154,5                                                                                                                           | 2,1      |
| 20                                    | 109                                                                                              | 1,5      | 173                                                                                                                             | 2,4      |
| 30                                    | 127,5                                                                                            | 1,75     | 191,5                                                                                                                           | 2,7      |
| 40***                                 | 146                                                                                              | 2,0      | 210                                                                                                                             | 2,9      |
| 50                                    | 164,5                                                                                            | 2,25     | 228,5                                                                                                                           | 3,2      |
| 75                                    | 210                                                                                              | 2,9      | 274                                                                                                                             | 3,8      |
| 100                                   | 257                                                                                              | 3,6      | 321                                                                                                                             | 4,5      |

<sup>\*</sup> Basiswert aus der Arbeit von Tremp (1981).

Die in ausländischen Studien (West- und Osteuropa, USA) errechneten Werte stimmen ungefähr mit den schweizerischen Zahlen überein, für Japan liegen sie um das zwei-bis vierfache darüber (ref. in 96).

Die statistische tägliche Aufnahme von Nitrit beträgt 3,3 mg pro Person in der BRD (für die Schweiz liegen die Zahlen etwas tiefer). Dabei stammen 55% aus Fleisch- und Wurstwaren (deren Verzehr in der BRD vermutlich höher liegt als in der Schweiz), 27% stammen aus Getreideprodukten und 17% aus Gemüsen, v. a. aus Kartoffeln (87).

## Endogene (im Körper stattfindende) Nitratsynthese

Neben der Einnahme von Nitrat über Nahrungsmittel und Trinkwasser wird eine weitere Nitratbelastungsquelle des Menschen diskutiert. *Tannenbaum* et al. (83) und *Green* et al. (97) fanden in Nitratbalance-Studien mit speziellen Diäten (nitrat«frei»/-reich, proteinfrei/-reich) Nitratausscheidungen im Urin, welche die Einnahme über die Nahrung übertrafen, wobei allerdings riesige individuelle Variationen festgestellt wurden. Die Autoren schlossen aus diesen Experimenten

<sup>\*\*</sup> Mehraufnahme gegenüber <1 – Variante bei einfachem Gemüseverzehr.

<sup>\*\*\*</sup> Toleranzwert des Schweizerischen Lebensmittelbuches.

auf eine endogene Nitratsynthese beim Menschen in der Grössenordnung von etwa 50 mg NO<sub>3</sub>/Tag. Die von den Autoren geäusserte Hypothese, diese Nitratsynthese fände durch mikrobielle Vorgänge im Darm statt, ist mittlerweise durch eine grosse Anzahl von Untersuchungen widerlegt worden (ref. in 96), was auch einleuchtet, wenn man die streng anaeroben Bedingungen in diesem Organ betrachtet.

Ellen et al. (96) kommen – nach einer umfassenden Literaturübersicht und eigenen experimentellen Arbeiten – zum Schluss, dass bis dato kein direkter Beweis für eine endogene Nitratsynthese in Säugern vorliege. Das einzige, was man wisse, sei, dass unter Umständen analytisch mehr Nitrat im Urin nachweisbar sei als in der entsprechenden Diät. Die Autoren diskutieren dann eine Reihe von Faktoren, die - abgesehen vom Postulat einer endogenen Nitratsynthese - diese Ergebnisse erklären könnten. Viele Studien vernachlässigen z. B. die Aufnahme von Nitrat und Stickoxiden über die Atmungsluft oder durch das Tabakrauchen, was allerdings höchstens einen Anteil von ca. 20% des im Urin gefundenen Nitratüberschusses ausmachen kann. Analytische Irrtümer, die ernsthaft in Betracht gezogen werden müssen, bestehen z. B. darin, dass in der Diät nicht alles Nitrat gemessen wird, weil es eventuell nicht mit Wasserdampf extrahierbar ist oder dass gewisse Substanzen im Urin bei den Messungen einen «background level» verursachen, der nicht dem Nitrat zugeordnet werden darf (vgl. auch 98).

Andere Autoren, nebst den bereits genannten, zweifeln aufgrund ihrer pharmakokinetischen Untersuchungen nicht mehr daran, dass eine Nitratsynthese im Stoffwechsel des Menschen möglich ist (92, 85). Über den Ort dieser Synthese liegen allerdings keine Angaben vor. Die Menge des endogen produzierten Nitrats beträgt gemäss diesen Untersuchungen am Menschen ca. 50-90 mg täglich. Die Umwandlung von Nitrat zu Nitrit setzt nach diesen Autoren erst bei einer Nitratkonzentration im Plasma von 3 mg/l messbar ein. Das entspricht einer Schwellenkonzentration für die Bildung von Nitrit. Weil die Menge des möglicherweise endogen produzierten Nitrats im Verhältnis zu der exogen aufgenommenen Menge für die meisten Fälle klein ist, ist von allenfalls stattfindenden en-

dogenen Prozessen keine toxische Wirkung zu erwarten.

## Methämoglobinämie

Nitrit ist vor allem für den Säugling bis zum Alter von drei Monaten (= erstes Trimenon) akut toxisch. Durch Oxidation des roten Blutfarbstoffes Hämoglobin (Hb) kann eine Methämoglobinämie hervorgerufen werden. Dabei ist die Fähigkeit der roten Blutkörperchen, Sauerstoff zu transportieren, vermindert. Die Krankheit kann bei einem Met-Hb-Gehalt von über 70% tödlich verlaufen, wobei starke individuelle Schwankungen der Empfindlichkeit beobachtet werden (99, 100). Das klinische Bild ist gekennzeichnet durch eine charakteristisch graublaue Färbung der Haut, die durch die braune Tönung des Met-Hb-reichen Blutes verursacht wird (Cyanose, «Blausucht»). Blutdruckabfall und Pulsbeschleunigung setzen ein; in schweren Fällen treten Ohnmacht und Krämpfe auf. Die Therapie erfolgt durch Beseitigung der Krankheitsursache bzw. Noxe. In schweren Fällen muss ein Reduktionsmittel, z. B. Methylenblau, appliziert werden, während Ascorbinsäure (Vit. C) nur in leichten Fällen hilft (101, 100).

Die erhöhte Empfindlichkeit des Säuglings im ersten Trimenon hat seine Ur-

sachen in folgenden Gegebenheiten:

- Das bei Neugeborenen noch zu 80% vorhandene fetale Hämoglobin (Hb F) wird durch Nitrit schneller oxidiert als das sich später entwickelnde Erwachsenen-Hämoglobin.

- Das enzymatische Reduktionssystem (Diaphorase), das Met-Hb in Hb zu-

rückverwandelt, ist noch ungenügend entwickelt.

 Die schwache Magensäureproduktion begünstigt das Wachstum von nitratreduzierenden, sonst aber apathogenen Keimen, die aus Nitrat Nitrit produzieren.

Zudem ist beim Säugling die Wasseraufnahme im Verhältnis zum Körpergewicht grösser als beim Erwachsenen, so dass bei Verwendung stark nitrathaltigen Wassers zur Nahrungszubereitung relativ hohe Nitratbelastungen pro kg Körpergewicht auftreten können. Drei mögliche Intoxikationsmechanismen, die unabhängig voneinander oder in Kombination eine Rolle spielen können, werden diskutiert (84):

1. Aufnahme von exogen in der Nahrung gebildetem Nitrit. Voraussetzung: Erhöhte Nitratgehalte und erhöhte Keimzahlen (<106/ml) in der Nahrung (z. B. vor-

kommend bei Warmhalten und Aufwärmen von Spinatbrei).

2. Aufstieg von Keimen aus dem Dünndarm in den Magen und gleichzeitig einsetzende Reduktion von zugeführtem Nitrat zu Nitrit. Auslösende Ursachen können Verdauungsstörungen (Dyspepsien) verschiedenen Ursprungs, Allgemeininfekte oder auch Diätfehler sein.

3. Mit der Nahrung zugeführte Keime vermehren sich während der Verweilzeit des Speisebreis unter Nitritbildung im Magen. Ursache können u. a. unsachgemäss hergestellte oder zubereitete Pulvermilch- oder Gemüsepräparate sein. In solchen Fällen ist die Hauptquelle der Nitrataufnahme übermässig nitrathaltige pflanzliche Nahrung (bei Säuglingsnahrung vor allem Spinat) und in

geringerem Masse das nitrathaltige Trinkwasser.

Eine neue Studie (102) postuliert, dass Diarrhoe die Hauptursache für die meisten Fälle der Säuglingsmethämoglobinämie sei. Die Autoren beobachteten über Jahre akute, hospitalisierte Fälle und stellten fest, dass durchwegs Nahrung und Trinkwasser mit niederen Nitrat- und Nitritgehalten verwendet worden waren und zeigten, dass sich alle Erkrankungsfälle durch hohe Nitratblutspiegel auszeichneten und dass bis zu 10mal mehr Nitrat ausgeschieden wurde als aufgenommen worden war. Die hohen Blutnitratwerte werden mindestens teilweise erklärt als Produkt der Reaktion von Nitrit mit Hämoglobin (dabei entsteht Methämoglobin und Nitrat). Eine Voraussetzung der erhaltenen Resultate wäre eine bakterielle, durch die Diarrhoe begünstigte, de novo Synthese von Nitrit und/oder Nitrat aus anderen Stickstoffverbindungen, z. B. Aminosäuren im Verdauungstrakt, wie das Tannenbaum et al. (103) postuliert haben (vgl. Seite 284). Weitere, und bezüglich schweren Fällen viel wichtigere Ursachen als Nitrate für

eine Methämoglobinämie können genetisch bedingte Defekte der reduzierenden Mechanismen in den roten Blutkörperchen (104) oder indirekte Effekte gewisser aromatischer Amino- oder Nitroverbindungen sein, die in Farbstoffen oder Medikamenten vorkommen, z. B. Aminophenol, Benzocain, Phenacetin (heute aus dem Handel gezogen), Phenazopyridin, Resorcin usw. (101).

In der Weltliteratur wurden zwischen 1945 und 1972 etwa 2000 Fälle von Säuglingsmethämoglobinämie beschrieben, wobei jedoch eine hohe Dunkelziffer zu berücksichtigen ist (105). Eine Tabelle, die etwa 10% der in der Welt beobachteten Fälle enthält, die durch Nitrat im Trinkwasser verursacht wurden, findet sich bei *Sattelmacher* (106). Nach *Petri* (107) lässt sich für die bis 1962 in der BRD beobachteten Erkrankungen mit 17 Todesfällen (8%) folgende Beziehung zum Nitratgehalt des Trinkwassers herstellen (Tabelle 7):

Tabelle 7. Erkrankungen an Methämoglobinämie in Beziehung zum Nitratgehalt der entsprechenden Trinkwässer (107)

| mg NO <sub>3</sub> /l | 0-40 | 41-80 | 81-100 | >100 | Ohne Angaben |
|-----------------------|------|-------|--------|------|--------------|
| Anzahl der Fälle      | 4    | 3     | 4      | 65   | 100          |

Ein ähnlicher Zusammenhang wurde für die Verhältnisse in den USA ermittelt (5). Aus den drei letztgenannten Übersichten, aber auch aus aktuellen Feldstudien (109), geht hervor, dass Methämoglobinämie-Erkrankungen durch Trinkwasser im allgemeinen erst ab Nitratgehalten von mehr als 100 mg NO<sub>3</sub> /l auftreten. Zwischen dem Nitratgehalt des Trinkwassers und den (subklinischen, nicht sichtbaren) Methämoglobinwerten wurde in einer Feldstudie in Rheinhessen mit 96 Säuglingen ein deutlicher Zusammenhang festgestellt, wobei die Frage der klinisch-gesundheitlichen Relevanz dieser Befunde offen bleibt (Tabelle 8).

Tabelle 8. Met-Hb-Werte von sechs Säuglingsgruppen in Beziehung zum Nitratgehalt der entsprechenden Trinkwässer (110)

| mg NO <sub>3</sub> /l              | Durchschnittliche Met-Hb % |  |  |
|------------------------------------|----------------------------|--|--|
| A CHARLES AS CHARLO TENERAL PLOS S | 1.7                        |  |  |
| that of more spirit a supersuppor  | u rockitkubodu sa 1, 1     |  |  |
| 6- 10                              | 1,7                        |  |  |
| 11- 30                             | 2,3                        |  |  |
| 31- 50                             | 2,4                        |  |  |
| 51-100                             | 3,5                        |  |  |
| 100                                | 6,6                        |  |  |

Eine Umfrage in bekannten nitratreichen Regionen der Schweiz ergab, dass sich keiner der befragten Ärzte an einen Methämoglobinämiefall erinnern konnte (111). Wie aus den oben zitierten, zusammenfassenden Berichten klar wird, stellt sich das Problem vor allem bei stark kontaminierten, flachen Einzelbrun-

nen abgelegener Gehöfte. Dass in der Schweiz keine Intoxikationsfälle zu vermelden sind, kann neben dem möglichen Fehlen extremer Nitratgehalte (weit über 100 mg/l im Trinkwasser) auch am hohen Prozentsatz über mehrere Monate hinweg stillender Mütter liegen und im Umstand, dass auf Aussenhöfen oft eine ausgewählte Milchkuh zur Versorgung von Säuglingen herangezogen wird. Nur in vereinzelten Fällen wird tatsächlich Milchpulver benutzt, um zusammen mit Leitungswasser Flaschenmilch für Säuglinge zuzubereiten.

Zusammenfassend lässt sich sagen, dass das Risiko für Säuglinge, an trinkwasserverursachter Methämoglobinämie zu erkranken, in der Schweiz als sehr gering eingestuft werden kann. Über die mögliche Bedeutung dieses Einflusses auf die frühkindliche Entwicklung (z. B. in nitratreichen Trinkwasserregionen) liegen zur Zeit keine Untersuchungen vor, was auch andernorts als Mangel empfunden

wird (7, 8, 84, 112).

Auch bei Tieren, vor allem bei Wiederkäuern, kann Methämoglobinämie auftreten. Smith et al. (115) haben die Empfindlichkeit verschiedener Tierarten untersucht. Besonders gefährdet sind die Wiederkäuer (z. B. Rinder, Schafe, Ziegen) wegen derer intensiver Mikroorganismentätigkeit im Pansen, aber auch wegen leichterer Oxidierbarkeit ihres Hämoglobins. Andererseits sind Rinder, wegen des Vorkommens vieler Bakterienstämme im Verdauungstrakt, in der Lage, das gebildete Nitrit schnell weiter zu Ammoniak zu reduzieren. Stark gefährdet ist auch das Schwein, weil bei ihm die Reduktion von Met-Hb in normales Hämoglobin relativ langsam verläuft. Die minimalen akut-letalen Dosen werden wie folgt angegeben (116):

Rind 550-1500 mg  $NO_{\overline{3}}$ /kg Lebendgewicht Schwein 120 mg  $NO_{\overline{3}}$ /kg Lebendgewicht Pferd 75 mg  $NO_{\overline{3}}$ /kg Lebendgewicht

Die Grenze für eine Gesundheitsgefährdung wird mit 0,5 bis 0,7% NO<sub>3</sub> in der Futtertrockensubstanz angegeben. Auf keinen Fall sollen die Tiere (Kühe) mehr als 100 g Nitrat pro Tag aufnehmen (31, 117). Wesentlich ist eine allmähliche Umstellung auf Grünfütterung, um es der Mikroflora des Pansens zu ermöglichen, ihre Leistungsfähigkeit so weit zu steigern, dass die aus dem Nitrat reduzierten Nitritmengen sofort zu Ammoniak weiterverarbeitet werden können. Besondere Gefährdungen bestehen bei Fütterung von beschädigtem (gehäckseltem) Pflanzenmaterial, da in solchen Materialien der Nitratgehalt durch Bakterien und pflanzeneigene Enzyme (Reduktasen) ausserordentlich schnell ansteigt (119). Wenn gemähtes Grünfutter in dichten Haufen gelagert wird und sich erhitzt, dann werden diese Prozesse zusätzlich beschleunigt. Auch bei der Schweinefütterung können sich Gefährdungen ergeben, vor allem, wenn stark nitrathaltiges Futter längere Zeit warm gehalten wird (120).

Bei der Beurteilung erhöhter Nitratgehalte in Futtermitteln stehen allerdings weniger die akuten Vergiftungsgefahren im Vordergrund, sondern die Beeinträchtigung der Produktivität von Nutztieren, die sich aus den Störungen des Wirkstoffhaushalts (Vitamine A und E, Schilddrüsenfunktion) ergeben, auch wenn noch keine äusserlich sichtbare Symptome auftreten. Über die zu tolerierenden Nitratgehalte in Futtermitteln herrscht beim heutigen Stand der For-

schung noch Unklarheit. So fanden z. B. Kemp et al. (121) bei Verfütterung täglicher Nitratmengen an Kühe, dass nach der ersten Dosis bedeutend weniger Nitrit im Pansen vorhanden war als nach Gabe gleich hoher Dosen an weiteren aufeinanderfolgenden Tagen. Diese Befunde wurden interpretiert durch einen Wechsel in der Aktivität der reduzierenden Pansenmikroorganismen und erklären mindestens teilweise die stark kontroversen Daten über akzeptierbare Nitratmengen in Futtermitteln.

## N-Nitrosoverbindungen und Carcinogenese

Einen viel grösseren Stellenwert als die Methämoglobinämie besitzt die Problematik der krebserzeugenden N-Nitrosoverbindungen, was sich auch in der Zahl der wissenschaftlichen Publikationen zu diesem Thema ausdrückt: In den Jahren 1972-1982 wurden im Rahmen eines Schwerpunktprogramms der Deutschen Forschungsgemeinschaft (DFG) über 16 000 Arbeiten erfasst, der Trend ist weiterhin eklatant steigend (122). (Die Literaturhinweise in diesem Kapitel beziehen sich denn auch meistens auf Übersichtsreferate, wo dann die entsprechenden Originalarbeiten in grosser Zahl aufgeführt sind.) Die wichtigsten Gründe für diese Entwicklung sind:

die potente carcinogene organspezifische Wirkung dieser Verbindungsgrup-

das Vorkommen bestimmter N-Nitrosoverbindungen in der menschlichen Umwelt, so unter anderem in verschiedenen Lebensmitteln, in Tabakrauch, Kosmetika und in der Luft, v. a. am Arbeitsplatz der gummi-, leder-, metallverarbeitenden und chemischen Industrie (123),

die Möglichkeit einer In-vivo-Bildung dieser Carcinogene aus der Vorstufe Nitrat/Nitrit und den in der Nahrung weit verbreiteten Aminen, Amiden oder

Aminosäuren auch im menschlichen Organismus (122),

- die erleichterte Zugänglichkeit vieler flüchtiger N-Nitrosoverbindungen und die Tatsache, dass mit der von Fine et al. (124) entwickelten Methode (TEA-Detektor = thermal energy analyser) eine äusserst empfindliche Analytik (bis zum Milliardstelgramm) zur Verfügung steht.

## Zur Bildung von N-Nitrosoverbindungen

N-Nitrosoverbindungen werden, aufgrund unterschiedlicher chemischer Merkmale, eingeteilt in Nitrosamine und Nitrosamide, wobei die Nitrosamine aufgrund ihrer für diese Diskussion grösseren Bedeutung oft pauschal für beide Stoffklassen genannt werden. Diese Verbindungen entstehen aus Aminen oder Amiden, die praktisch in sämtlichen Lebensmitteln natürlicherweise vorkommen (125), in einer Reaktion mit Nitrit, wobei Nitrit im Überschuss vorliegen muss, weil der eigentliche Reaktionspartner das Anhydrid der salpetrigen Säure ist, das gemäss folgendem Schema gebildet wird:

$$H^{+}$$
 $2 \text{ NO}_{2}^{-}$ 
 $2 \text{ HNO}_{2}$ 
 $N_{2}^{0}$ 
 $N_{2}^{0}$ 
 $N_{3}$ 
 $N_{2}^{0}$ 
 $N_{2}^{0}$ 
 $N_{3}$ 
 $N_{2}^{0}$ 
 $N_{3}$ 
 $N_{3}^{0}$ 
 $N_{3}^{0}$ 

Daraus geht hervor, dass bei niedrigen bis sehr niedrigen Nitritkonzentrationen die Bildung von Nitrosaminen praktisch zu vernachlässigen ist, bei höheren Nitritkonzentrationen aber ein überproportionales Risiko durch vermehrte Nitrosaminbildung besteht (126). Aus dieser Tatsache ergibt sich die Bedeutung der toxikologischen Forderung, wonach Spitzenbelastungen im Nitratkonsum zu vermeiden sind. Dies gilt vor allem auch deshalb, weil im Speichel die Nitritbildung aus Nitrat mit hohen Nitratdosen ebenfalls überproportional zunehmen kann ((83); vgl. Seite 284, Abschnitt «Nitrit»).

Die Nitrosierungsreaktion eines sekundären Amins läuft schematisch folgendermassen ab:

Auch primäre und tertiäre Amine können unter Umständen nitrosiert werden. Das Ausbeutemaximum der Nitrosaminsynthese liegt etwa zwischen pH 3 und pH 3,5 (pH des leeren Magens ca. 1,5). Im neutralen Bereich wird aus Nitrit keine salpetrige Säure mehr gebildet (Röper in 129).

Eine wichtige Rolle für das Ausmass der Reaktion spielt auch die Struktur des reagierenden Amins. Stark basische Amine liegen im sauren Bereich weitgehend protoniert vor und können kaum mit dem Nitrosierungsmittel reagieren. Zwischen stark und schwach basischen Aminen bestehen Unterschiede in der Geschwindigkeit der Nitrosaminbildung bis zu etwa einer Million (bei jeweils optimalem pH).

Durch die Wirkung von Katalysatoren kann die Reaktion auch bei pH-Werten erfolgen, wie sie im menschlichen Magen vorliegen (siehe Tabelle 9). Darunter finden sich u. a. natürliche Bestandteile des Speichels, z. B. Thiocyanat, das bei Rauchern in stark erhöhten Konzentrationen vorhanden ist. Eine durch Bakterien bedingte In-vivo-Synthese von Nitrosaminen wurde auch bei pH-Werten im Neutralbereich vorgefunden, wie sie beispielsweise bei Magenentzündungen

Tabelle 9. Katalyse und Hemmung der N-Nitrosierung (126)

| Katalyse                            | Hemmung                                   |  |  |
|-------------------------------------|-------------------------------------------|--|--|
| Thiocyanat                          | Ascorbinsäure (Vit. C)                    |  |  |
| Bromid                              | α-Tocopherol (Vit. E)                     |  |  |
| Chlorid                             | Sulfit, Schwefeldioxid                    |  |  |
| Formaldehyd                         | Azid                                      |  |  |
| Pyridoxal (Vit. B <sub>6</sub> )    | Bromat                                    |  |  |
| Phenole (wenn NO, im Überschuss)    | Harnstoffe                                |  |  |
| Lecithin und andere micellbildende, | Amidosulfonsäure                          |  |  |
| ammoniumhaltige, oberflächenaktive  | Cystein und andere Sulfhydrylverbindunger |  |  |
| Substanzen                          | Gallussäure                               |  |  |
| Zellwände von Mikroorganismen       | Phenole (wenn NO, im Unterschuss)         |  |  |

oder Blaseninfektionen vorliegen (ref. in 38 und 128). Auch Formaldehyd gestattet eine Nitrosierungsreaktion bei neutralem oder gar alkalischem pH (bei anderem Wirkungsmechanismus). Einer der wichtigsten Hemmer der Nitrosaminbildung ist die Ascorbinsäure (Vitamin C), wobei eine relativ hohe Konzentration vorhanden sein muss. Das heisst, dass eine einmalige hohe Vitamin-C-Aufnahme die langandauernde Nitritbildung im Speichel nicht völlig ausgleichen kann (126). Das mit der Nahrung gleichzeitig aufgenommene Vitamin C steht wegen der verzögerten Nitritbildung im Speichel für eine allfällige Reduktion im Magen nicht mehr zur Verfügung.

## In-vivo-Synthese von N-Nitrosoverbindungen

Alle oben angeführten sowie viele weitere Fakten (siehe 129) sprechen dafür, dass es sich bei Nitrosierungsreaktionen, erst recht bei denjenigen im lebenden Organismus, um sehr komplexe Vorgänge handelt. Cancerogene N-Nitrosoverbindungen werden in vivo nach den gleichen chemischen Gesetzen gebildet, wie sie in vitro gelten, werden jedoch durch physiologische Faktoren stark beeinflusst. So haben mehrere Forschergruppen durch Verfütterung von Nitrit und Aminen oder Amiden im Tierversuch Tumoren erzeugt, und es ist in gewissen Fällen möglich, die In-vivo-Nitrosaminsynthese quantitativ zu bestimmen (130). Allerdings verliert diese quantitative Beurteilung ihre Aussagekraft, wenn niedrige Nitritdosen appliziert werden, was für eine toxikologische Risikoabschätzung aber wichtig wäre.

Versuche an der ETH Zürich haben gezeigt, dass für das in Lebensmitteln häufig vorkommende Dimethylamin die Menge des (in der Ratte) endogen gebildeten, stark cancerogenen Dimethylnitrosamins etwa 20 000mal geringer ist als die im Durchschnitt aus Nahrungsmitteln aufgenommene Menge (131, 132). Diese Versuche sind zwar wichtig wegen der starken Cancerogenität der gebildeten N-Nitrosoverbindung, andererseits ist das Dimethylamin zur Abschätzung einer allgemeinen Gefährdung durch In-vivo-Bildung von N-Nitrosaminen ein ungeeignetes Substrat, da es als stark basisches Amin unter den sauren Bedingungen

des Magens nur extrem langsam umgesetzt wird. Zudem kommt es zwar in vielen Lebensmitteln – meistens aber nur in sehr geringen Mengen – vor und über die quantitative Aufnahme dieser N-Nitrosovorstufe durch den Menschen existieren zur Zeit nur grobe, theoretische Abschätzungen (125).

Es gibt heute keine Zweifel mehr, dass Nitrosierungsreaktionen auch im menschlichen Körper ablaufen, was u. a. Ohshima et al. (133) unter Verwendung von Prolin bewiesen haben, welches zu einer nicht cancerogenen N-Nitrosoverbindung führt, die quantitativ im Urin ausgeschieden wird (vgl. 130). Obwohl sich diese Methode auch für mengenmässige Abschätzungen eignet, zeigt sie doch nur die Nitrosierungspotenz dieser einen N-Nitrosovorstufe, die ein untypisches Nitrosierungsverhalten aufweist, eignet sich aber nicht für generelle Risikoabschätzungen. Dieser Nachteil des Prolins kann durch Verwendung der Methyl- und Ethylester des Prolins umgangen werden, die ebenfalls zu nichtcancerogenen Produkten führen, wie neueste Untersuchungen ergeben haben (134).

In diesem Zusammenhang verdient auch Beachtung, dass Fine et al. (135) im Blut von Testpersonen nach Verzehr eines (nordamerikanischen) Mittagsmahls, bestehend aus Schinken-Spinat-Tomaten-Sandwich und einem Glas Bier die sehr starken Cancerogene Dimethyl- und Diethylnitrosamin nachgewiesen haben. Diese Studie, der allerdings etliche methodische Mängel anhafteten, wurde von einer englischen Forschergruppe nachvollzogen (136). Aufgrund eingehender Untersuchungen der Randbedingungen des Experimentes und Einbezug von Kontrollgruppen wurde ausgeschlossen, dass präformierte Nitrosamine oder Artefakte die Messergebnisse beeinflussten. Der Effekt der Testmahlzeit auf den Gehalt an Dimethylnitrosamin im Blut der Probanden war ähnlich wie bei der Untersuchung von Fine et al. (135); andere Nitrosamine wurden jedoch nicht nachgewiesen. Auch eine japanische Forschergruppe kam zum Schluss, dass gewisse Mahlzeiten eine endogene Produktion von Nitrosaminen im Menschen bewirken (137).

Eine umfassende Antwort auf die Frage nach der Gesundheitsgefährdung durch die In-vivo-Bildung von Cancerogenen aus nitrosierbaren Stickstoffverbindungen und Nitrat/Nitrit beim Menschen wird wohl erst in einigen Jahren möglich sein. Vordringlich ist jetzt die Aufgabe, die Nitrosierungspotenz relevanter, in Nahrungsmitteln und Medikamenten normal vorkommender Vorstufen unter physiologischen Bedingungen zu testen, was u. a. die Entwicklung neuer analytischer Methoden bedingt (125, 126, 132). Möglicherweise gefährliche Stoffklassen sind Guanidine und andere Harnstoffderivate und gewisse aromatische Amine. Eine Literaturübersicht und theoretische Risikoberechnungen aufgrund der In-vivo-Nitrosierbarkeit verschiedener Substanzen wurden am Institut für Toxikologie der ETH und Universität Zürich ausgeführt (125), weitere Untersuchungsergebnisse finden sich bei Neurath (138).

Das folgende Schema (Abb. 13), das allerdings mangels genügender Daten noch sehr unvollständig ist, kann eine Vorstellung möglicher Grössenordnungen und Hinweise für die Priorität weiterer Forschungen geben.

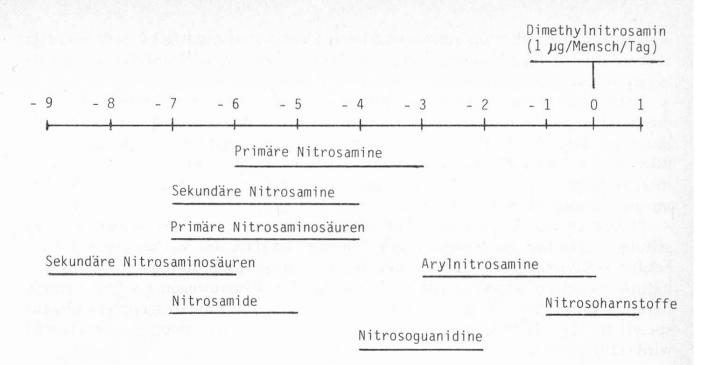



Abb. 13. Relatives Gesundheitsrisiko durch in vivo nitrosierte Stickstoffverbindungen, verglichen mit aufgenommenem Dimethylnitrosamin (Log. Skala) (125)

## Zur Carcinogenität von N-Nitrosoverbindungen

Obwohl N-Nitrosoverbindungen akut leberschädigende (ref. in 128), mutagene (= erbgutändernde) und teratogene (= Missbildungen am Embryo hervorrufende) Aktivität zeigen (139), so ist doch die krebserzeugende Wirkung die wichtigste biologische Eigenschaft dieser Verbindungsklasse. Die ausserordentlich umfangreiche Literatur zu diesem Thema ist in verschiedenen Monographien und Sammelwerken zusammengefasst worden (ref. in 128, 139). Die wichtigsten Versuchsergebnisse lassen sich wie folgt skizzieren:

 Mehr als 300 verschiedene N-Nitrosoverbindungen wurden auf carcinogene Wirkung untersucht. Etwa 90% dieser Verbindungen erzeugen Tumoren in Versuchstieren.

 Die carcinogene Wirkung ist durch eine ausgeprägte Organspezifität charakterisiert (Organotropie).

 Diese Organotropie wird wesentlich durch die chemische Struktur der entsprechenden Verbindungen geprägt, weitere Einflussfaktoren sind die verwendete Tierspecies, die Applikationsart, die Dosierung und die Dauer der Behandlung.

- Typische Lokalisationen der Tumorinduktion sind Gehirn und Nervensystem, Mundhöhle, Speiseröhre, Magen, Darmtrakt, Leber, Niere, Harnblase, Pancreas, blutbildendes System, Herz und Haut.

N-Nitrosoverbindungen sind aktive Carcinogene in 39 verschiedenen Tierspecies (inkl. Primaten); bis jetzt ist keine gegen die carcinogene Wirkung resistente Tierspecies bekannt geworden.

 Die zur Tumorerzeugung notwendigen Dosen sind niedrig bis sehr niedrig; bereits einmalige Verabreichung ist in vielen Fällen zur Tumorerzeugung ausreichend.

Viele experimentelle Untersuchungen haben den Beweis erbracht, dass nicht die N-Nitrosoverbindungen als solche, sondern erst deren biologische Umwandlungsprodukte die Carcinogenese hervorrufen. Der Aktivierungsmechanismus führt zu alkylierenden Agenzien, die sich dann mit DNS (und anderen Biopolymeren) verbinden und somit sog. genotoxische Effekte auslösen, die mit der Tu-

morinitiierung zusammenhängen.

Neben diesen aktivierenden Mechanismen existieren auch verschiedene Entgiftungsreaktionen im Stoffwechselgeschehen, so dass das Vorhandensein oder Fehlen krebserzeugender Wirkungen bei N-Nitrosoverbindungen auf dem Verhältnis zwischen aktivierenden und entgiftenden Abbauwegen im Organismus beruhen kann. Noch komplexere Faktoren beeinflussen die ausgeprägte Organspezifität der Nitrosamin-Carcinogenese, die zurzeit intensiv untersucht wird (129).

### Epidemiologische Hinweise

#### Nitrat

Viele epidemiologische Studien zeigten signifikante positive Korrelationen zwischen hohem Nitratgehalt in Trinkwasser oder hohem Verbrauch nitrathaltiger Düngemittel und dem Auftreten (Inzidenz) von Magenkrebs (ref. in 96). Diese Hinweise besitzen zwar nicht Beweiskraft, denn die Magenkrebsinzidenz korreliert auch mit vielen anderen Ernährungs-, Lebensstil- und Umweltfaktoren, wobei die aktuellen Ursachen nicht klar zu eruieren sind. Aus den gleichen Gründen darf aus dem gegenwärtig beobachtbaren, weltweiten Absinken der Magenkrebsinzidenz nicht geschlossen werden, dass hohe Nitrataufnahme keine Bewandtnis mit der Erzeugung von Krebs habe. Auf diesem Gebiet tätige Epidemiologen erklären, dass die Hypothese, hohe Nitrataufnahme sei eine der Ursachen im Auftreten von Magenkrebs, nicht leichthin verworfen werden sollte (Fraser et al., 1980, zit. in 96). Für andere Krebsarten fehlen derzeit ähnlich gelagerte Untersuchungen über Zusammenhänge mit der Nitrataufnahme.

Da Untersuchungen am Tier gezeigt haben, dass ein Nitrosamin je nach Tierart einen Tumor in verschiedenen Organen auslösen kann, ist es falsch, einen Zusammenhang der Reaktionskette Nitrat – Nitrit – Nitrosamine nur mit Magen-

krebs zu suchen.

# N-Nitrosoverbindungen

Stark suggestiv in Richtung einer Carcinogenese durch N-Nitrosoverbindungen auch beim Menschen weisen die Befunde, wonach bei Krebsbehandlung mit cytostatischen N-Nitrosoharnstoffen sekundäre Tumoren aufgetreten sind (ref. in 139). Eine direkte Verbindung zwischen N-Nitrosamin-Exposition und dem Auftreten von Krebs beim Menschen wurde erstmals 1984 bei Tabakkauern (snuff

dipping) in einigen Südstaaten der USA entdeckt (ref. in 128). In diesen Fällen treten Tumoren üblicherweise dort auf, wo der Priem im Mund behalten wird. Da keine anderen chemischen Carcinogene in diesem «snuff» gefunden wurden ausser tabakspezifischen Nitrosaminen (in 100fach höheren Konzentrationen als in anderen Tabakprodukten), ist in dieser spezifischen Situation eine eindeutige, beweiskräftige Beziehung zwischen Nitrosaminexposition und Krebserzeugung beim Menschen hergestellt. Ähnlich starke Beziehungen sind etabliert zwischen Mundkrebs und Betelnusskauen (oft mit Tabak kombiniert) in Indien und südostasiatischen Ländern, wo gezeigt wurde, dass ein Betelnussalkaloid in vitro zu im Tierversuch cancerogenen N-Nitrosoverbindungen führt (ref. in 128).

Weitere epidemiologische Hinweise auf eine Nitrosamin-Carcinogenese beim Menschen könnten sich in Zukunft aus Untersuchungen der beruflichen Belastung mit diesen Stoffen (v. a. gummi- und metallverarbeitende Industrie) erge-

ben.

## Tier-Mensch-Extrapolation

Ausser in den oben erwähnten, speziellen Fällen scheint es derzeit unmöglich, eine eindeutig kausale Beziehung zwischen Exposition gegenüber niedrigen Konzentrationen von Nitrosaminen bzw. deren Vorläufern (Nitraten) und dem Auftreten bestimmter Tumoren beim Menschen herzustellen. Bei dieser Faktenlage ist es nötig, Daten aus Tierversuchen auf den Menschen zu extrapolieren – auch wenn dieses Verfahren mit vielen Unsicherheiten behaftet ist.

Es soll noch einmal rekapituliert werden, dass sich N-Nitrosoverbindungen als aktive Carcinogene bei 39 verschiedenen Tierarten – inkl. Primaten – erwiesen haben und dass bis jetzt keine Art bekannt ist, die resistent gegen diese Wirkung ist. Es erscheint daher sehr unwahrscheinlich, dass die Spezies Mensch resistent sein sollte.

In Zellkulturen menschlicher und tierischer Gewebe wie Luft- und Speiseröhre, Harnblase und Darm wurde nachgewiesen, dass die Abbauprodukte von N-Nitrosaminen in beiden Fällen identische DNS-Addukte bilden. Sowohl in menschlichen Leberzellkulturen als auch bei zwei analysierten Giftmordversuchen wurde gezeigt, dass N-Nitrosodimethylamin den identischen Abbauweg aufweist und dass gleiche DNS-Addukte entstehen wie bei Nagern (ref. in 139). Die zahlreichen toxikologischen und biochemischen Beobachtungen ergeben starke Hinweise darauf, dass die Extrapolation von Tierdaten auf den Menschen in diesem Fall wissenschaftlich gerechtfertigt ist.

# Dosis-Wirkungs-Beziehungen und Risikoabschätzungen

Zur Erfassung der biologischen Wirksamkeit einer Substanz wird die Wirkungsintensität eines Schadstoffes in Abhängigkeit von der Dosis am Versuchstier geprüft. Für Stoffe, die akute Toxizität aufweisen, kann auf diese Art ein

Schwellenwert bestimmt werden. Das heisst, dass eine Stoffdosis, die unterhalb diesem Wert liegt, keinen Effekt mehr zeigt. Für viele Schadstoffe mit chronischer Wirkung (z. B. Krebsbildung über genotoxische Mechanismen) kann ein Schwellenwert nicht bestimmt werden. Bei der Cancerogenese sind einige Gründe dafür:

- Zwischen der Aufnahme eines Stoffes und dem Auftreten von Symptomen besteht eine oft sehr lange Latenzzeit (beim Menschen bis zu Jahrzehnten). Bei den kurzlebigen Versuchstieren (Ratte ca. 2 Jahre) kann diese Zeit länger sein als die Lebenszeit. Man ist also gezwungen, mit höheren als für den Menschen relevanten Umweltkonzentrationen zu arbeiten (Erhöhung der Tumorhäufigkeit) und daraus Abschätzungen auf niedrigere Konzentrationen zu treffen.
- Hat die Krebsbildung einmal begonnen, vergrössert sich der Tumor auch ohne weitere Schadstoffaufnahme.

Zusätzliche Schwierigkeiten in der Ermittlung von Grenzwerten ergeben sich daraus, dass es sich bei Versuchstieren um genetisch einheitliche Populationen handelt, während Menschen genetisch sehr inhomogen sind und auch Kranke, Säuglinge, Greise und andere eventuell hoch empfindliche Individuen einem Risiko ausgesetzt sind. Darüber hinaus ist der Mensch nicht nur einem, sondern einer Vielzahl von Cancerogenen ausgesetzt. Das Zusammenwirken dieser Stoffe (= synergistische Effekte) zeigt aber oft nicht nur additive, sondern auch multiplikative, sich potenzierende oder sich gegenseitig vermindernde resp. aufhebende Effekte.

Die Daten einer Reihe von Dosis-Wirkungs-Untersuchungen sind in Tabelle 10 zusammengefasst.

Tabelle 10. Niedrigste carcinogene Dosen von N-Nitrosoverbindungen in Futter oder Trinkwasser (Angaben in  $\mu$ g/kg) (139)

| N-Nitroso-    |      | Ratte | Maus               |
|---------------|------|-------|--------------------|
| -dimethylamir | NDMA | 33    | 10                 |
| -diethylamin  | NDEA | 33    | THE REST OF STREET |
| -pyrrolidin   | NPYR | 5 000 | is were brown much |
| -piperidin    | NPIP | 350   |                    |

Diese Daten zeigen, dass der «Sicherheitsfaktor» zwischen den niedrigsten wirksamen Dosen im Tierversuch und der durchschnittlichen menschlichen Belastung mit solchen Stoffen nur gering ist. So wurde die menschliche NDMA-Exposition durch dessen Vorkommen in Lebensmitteln allein auf 1–2 µg pro Tag und Person für das Jahr 1979 bestimmt (139). Gemäss dem Ernährungsbericht 1984 der Deutschen Gesellschaft für Ernährung, Frankfurt a/Main, betrug die im Jahre 1981 gemessene durchschnittliche tägliche Gesamtaufnahme von Dimethylnitrosamin bei Männern nur noch 0,5 µg und bei Frauen 0,4 µg, was auf die in

der Zwischenzeit erfolgte Änderung der Herstellungstechnologie für Bier (Darrprozess) zurückgeführt wird. Raucher (20 Zigaretten pro Tag) nehmen diesem Be-

richt zufolge täglich etwa 15 µg Nitrosamine zu sich.

Eine andere Risikoabschätzung kommt zu ähnlichen Ergebnissen (zit. in 139). Die Gesamtexposition durch N-Nitrosoverbindungen aus Umwelt und durch endogene Bildung wird auf 10  $\mu$ g/Tag geschätzt (konservative Abschätzung). Daraus berechnet sich eine Gesamtaufnahme während 70 Jahren von etwa 240 mg Nitrosamin oder 4 mg/kg Körpergewicht. Da im Tierversuch mit dem allerdings stark cancerogenen NDMA mit einer Gesamtdosis von 20 mg/kg Körpergewicht, über die Lebenszeit verteilt, Tumoren erzeugt werden, wird der Abstand zwischen cancerogenen Dosen im Tierversuch und der abzuschätzenden menschlichen Belastung für gering gehalten. Dabei sind aber nur Nitrosamine berücksichtigt und synergistische Effekte mit anderen Umweltchemikalien ausser acht gelassen. Besonders schwer wiegt in diesem Zusammenhang die Tatsache, dass es bis dato bei keinem krebserzeugenden Stoff gelungen ist, eine niedrigste, unwirksame Dosis (= Schwellenwert) zu bestimmen.

## Schlussfolgerungen

Aus all diesen harten Fakten aus dem Tierexperiment, aus Messungen in der Umwelt und aus Risikoabschätzungen ergibt sich nach wie vor die toxikologische Forderung: Die Belastung mit Nitrat/Nitrit ist so gering als möglich zu halten. Da die Nitritproduktion in der Mundhöhle erst ab einer Nitrataufnahme von etwa 50 mg NO3 wesentliche Mengen erreicht bei höheren (einmaligen) Aufnahmen aber überproportional ansteigen kann und vor allem, weil die Geschwindigkeit der Nitrosaminbildung im Magen vom Quadrat der Nitritkonzentration abhängt, ergibt sich eine zusätzliche Forderung aus toxikologischer Sicht, die speziell bei hohem Blattsalat-, Randen- und Fleischwarenverzehr ins Gewicht fällt: Auch vereinzelte Spitzenbelastungen der Nitrat-/Nitritaufnahme sind zu vermeiden.

## Weitere Auswirkungen übermässiger Nitratauswaschung

Nur am Rande sei vermerkt, dass alle in Anhang A geschilderten Prozesse, die übermässige Nitratauswaschung ins Sickerwasser zur Folge haben, auch eine der wesentlichen Ursachen für erhöhte Nitratkumulation in Futterpflanzen und Gemüsen darstellen. Der Verzehr solcher Pflanzen stellt die Hauptquelle für die Belastung mit Nitraten aus Nahrungsmitteln dar (für den Durchschnitt der Bevölkerung, vgl. Anhang C, «Tägliche Nitrataufnahme»). Diese Problematik wird in einer besonderen Arbeitsgruppe der Kommission «Nitrate in Nahrungsmitteln» des BAG behandelt. Der vorliegende Bericht beschränkt sich auf Probleme, die direkt mit dem Wasser zu tun haben.

## Leitungskorrosion

Die im Laufe der siebziger Jahre beobachteten Korrosionsschäden in verzinkten Wasserleitungen wurden damals mit dem Ansteigen des Nitratgehaltes im Grundwasser in Zusammenhang gebracht (3). Bei normalen Bedingungen wird die Zinkschicht in Leitungsrohren mit der Zeit abgetragen, wobei allmählich eine natürliche Rostschutzschicht entsteht. Wird die Zinkschicht zu rasch oder ungleichmässig abgetragen, dann äussert sich dies durch das Auftreten von Zinkgeriesel und Rostfarbe im Trinkwasser. In den Rohren kann Lochfrass entstehen.

Im Auftrag des Bundesamtes für Umweltschutz (BUS) führten die Eidg. Materialprüfungsanstalt (EMPA) in Dübendorf und die Universität Bern seit 1978 mehrjährige, sich ergänzende Untersuchungen über den Einfluss von Nitrat auf das Korrosionsverhalten verzinkter Stahlrohre durch. Obwohl an der EMPA einige Versuche aus wissenschaftlichem Interesse noch laufen, lässt sich der Einfluss erhöhter Nitratgehalte auf die Korrosionsvorgänge in verzinkten Wasserleitungen für praktische Belange heute abschliessend beurteilen (141–145). Als hauptsächlichste Ergebnisse dieser Untersuchungen können gelten:

- Die Raten des Zinkabtrages in den Laborversuchen lassen nicht unmittelbar auf eine aktive Beteiligung des Nitrats schliessen. Der Beitrag des Nitrats bewegt sich im Rahmen dessen, was bei einer entsprechenden Erhöhung der Leitfähigkeit zu erwarten ist.
- Ungünstige Konzentrationsverhältnisse von Chlorid, Sulfat und Nitrat im Wasser können einen ungleichmässigen Abtrag der Zinkschicht fördern.
- Andere Faktoren, wie Betriebsbedingungen, Werkstoffqualität, Bemessung der Leitungen und Ausführung der Arbeiten am Leitungsnetz (SVGW, 1976 (48)) haben einen grösseren Einfluss auf das Korrosionsverhalten als der Gehalt an Neutralsalzen einschliesslich des Nitrats. Insbesondere bei nicht ein-

wandfrei (nach DIN 2444) verzinkten Rohren ist der schädliche Einfluss un-

günstiger Neutralsalzverhältnisse sehr stark.

Die Untersuchungen an der Universität Bern zeigten, dass die Einwirkung von Zink auf nitrathaltige Wässer zur Bildung von Nitrit führt. Zwar ist nicht anzunehmen, dass diese Nitritbildung in älteren Leitungssystemen mit abgetragener Zinkschicht noch erheblich ist. In Neubauten, bei mangelhaft verzinkten Rohren, kann die Nitritbildung aber einen echten Risikofaktor darstellen. Praxiserhebungen und Risikoabschätzungen über diese mögliche (punktuelle) Nitritbelastung existieren keine in der Schweiz. Das Problem stellt sich vor allem bei längerer Stagnation des Wassers in den Leitungsrohren, z. B. am Morgen oder bei Ferienhäusern, wenn Trinkwasser ohne Vorlaufenlassen entnommen wird. In praxisnahen Versuchen in der BRD wurden während einer 16stündigen Stagnation immerhin bis zu 9 mg NO<sub>2</sub> /l nachgewiesen (ref. bei 151). 9 mg NO<sub>2</sub> pro Tag entspricht gerade dem ADI-Wert (duldbare tägliche Aufnahme) der WHO für einen 60 kg schweren Menschen (81). Zusammenfassend lässt sich sagen, dass der Nitratgehalt eines Wassers nur

Zusammenfassend lässt sich sagen, dass der Nitratgehalt eines Wassers nur von untergeordneter Bedeutung für die Korrosion von verzinkten Stahlrohren ist.

Eine wesentliche Rolle spielt Nitrat erst dann, wenn noch andere Neutralsalze vorhanden sind und in bestimmten Konzentrationsverhältnissen eine bezüglich Korrosion ungünstige Wasserzusammensetzung bilden. Aber selbst dann sind andere Faktoren wie einwandfreie Verzinkung und fachmännische Installation der Wasserleitungen sowie andere Betriebsbedingungen von grösserem Einfluss auf die Korrosion in den Rohren (Vorschriften bei SVGW, 1976 (48)).

## Veränderungen im Grundwasser-Chemismus

Fast alle Substanzen, die aus dem Boden ausgewaschen werden, erfahren im Laufe der Versickerung und während ihrer Verweilzeit im Grundwasser vielfältige Stoffumsetzungen, die entweder rein chemischer Art oder durch Boden-Mikroorganismen bedingt sein können. Mit zunehmender Entnahmetiefe verringern sich in der Regel die Nitratkonzentrationen des Grundwassers. Ursachen können sein:

a) Zunehmende Erfassung von älteren Wasserschichten, die noch aus Zeiten geringerer Nitratauswaschung stammen,

b) Durchmischung mit nitratarmen Grundwasserströmungen in der Tiefe,

c) Ein mikrobiologischer Nitratabbau.

Durch Messungen der komplexen Strömungs-und Schichtungsverhältnisse von Grundwasserkörpern sowie durch Vergleiche mit Substanzen, die keinen Stoffumwandlungen im Wasser unterliegen (z. B. Chlorid), wurden in speziellen Fällen in der BRD Denitrifikationsleistungen des Untergrundes festgestellt, die weit über 50% der Nitratauswaschung ausmachen können (52, 54, 146–150). Entsprechende geologische Verhältnisse (z. B. Gley-Gebiete) sind in der Schweiz höchstens sehr lokal zu erwarten.

Die Fähigkeit zur Nitratreduktion ist bei Mikroorganismen weit verbreitet. Auch in über 90 m Tiefe wurden noch Koloniezahlen von Bakterien von Tau-

send pro Gramm Boden nachgewiesen (Selenka, 1983 (151)). Das Ausmass der Nitratreduktion lässt sich u. a. als Stickstoffübersättigung des Wassers nachweisen, da unter den reduzierenden (sauerstoffarmen) Bedingungen des Untergrundes das Nitrat schliesslich zu gasförmigem Stickstoff (N<sub>2</sub>) reduziert wird (149). Die Mikroorganismen nutzen die an Bodenkörnern angelagerte organische Substanz (partikuläre Kohlenstoffverbindungen) oder schwefelhaltige Komponenten (v. a. Pyrit, FeS2) als Nährstoffquelle (bzw. Reduktionsäquivalente). Wo solche Prozesse stattfinden, muss mit einer allmählichen Verringerung der organischen Substanz im Untergrund gerechnet werden. Die Folgen sind schliesslich ein Zusammenbruch des natürlichen Selbstreinigungsvermögens bezüglich Nitrat und ein schneller Anstieg der Nitratwerte im betreffenden Grundwasser (Nitratdurchbruch). Indizien weisen darauf hin, dass der mancherorts in der BRD beobachtete, steile Anstieg der Nitratkonzentration in den letzten Jahren nicht nur Auswirkungen der Landbewirtschaftung bzw. Düngung in der Vergangenheit darstellt, sondern dass das mit dem für Nitrat veränderten Selbstreinigungsvermögen in bestimmten Einzugsbereichen von Wasserwerken zusammenhängt (148). In Ausnahmefällen sind solche Phänomene auch für kleinere Einzugsgebiete in der Schweiz zu erwarten.

Die mancherorts in der BRD beobachteten sekundären Nitrateffekte, wie Härteanstieg oder Oxidation von Pyrit zu Sulfat (150), dürften für die in der Schweiz vorherrschenden geologischen Verhältnisse kaum von Bedeutung sein (163).

## Rechtliche Aspekte

### Rechtslage

Folgende Gesetze und Empfehlungen des Bundes sind hinsichtlich des Stickstoffaustrags in die Umwelt – und somit mittelbar zum Vermeiden von Nitratanreicherungen – anwendbar:

- Bundesgesetz vom 8. Oktober 1971 über den Schutz der Gewässer gegen Verunreinigung (GSchG, Art. 13 und 14) sowie die auf die Artikel 3 und 22 des Gesetzes abgestützte Klärschlammverordnung vom 8. April 1981 (29, 46). Die generelle Sorgfaltspflicht (Art. 13 GSchG) und das Versickerungsverbot (Art. 14 GSchG) verpflichten die Anwender von stickstoffhaltigen Düngern, diese so einzusetzen, dass für Gewässer weder eine Verunreinigung noch eine konkrete Gefährdung entstehen. Zudem darf bei der eigentlichen Bodenbearbeitung nicht vergessen werden, dass dadurch erhebliche Mengen Stickstoff freigesetzt werden können, die bei ungünstigen Verhältnissen so im Herbst oder Winter zur Nitratanreicherung im Grundwasser führen. Die Klärschlammverordnung enthält in den Artikeln 10 bis 12 Bestimmungen, die direkt mit dem Verhindern von Stickstoffverlusten ins Grundwasser im Zusammenhang stehen (z. B. kein Ausbringen von Klärschlamm auf Brache). Der Vollzug liegt bei den Kantonen.
  - Am 21. Oktober 1985 fällte das Bundesgericht einen wegweisenden Entscheid (155). Es schützte eine kantonale Behörde, die auf Grund von Artikel 37 GSG (46) einen Landwirt wegen eines Verstosses gegen das Versickerungsverbot anzeigte. Dieser Landwirt hatte auf schneebedecktem Wiesland Gülle verteilt. Im betroffenen Gebiet befindet sich in ca. 5 m Tiefe Grundwasser, welches seit längerem einen sehr hohen Nitratgehalt aufweist. Der Boden war zum Zeitpunkt des Güllenausbringens zudem noch gefroren. Das Ausbringen von Gülle auf gefrorene, schneebedeckte oder durchnässte Böden (Vegetationsruhe) ist nach diesem höchstrichterlichen Spruch eine konkrete Gewässergefährdung und verstösst somit gegen das Gewässerschutzgesetz. Die Vollzugsorgane haben somit neuerdings eine gute Handhabe, sich in dieser Hinsicht besser durchzusetzen.
- Bundesgesetz vom 7. Oktober 1983 über den Umweltschutz (USG) (56). Artikel 28 USG enthält die grundsätzliche Bestimmung zur umweltgerechten Anwendung von Stoffen im Sinne des Gesetzes. Verdeutlicht wird dieser Grundsatz durch detailliertere Bestimmungen zum Düngen in der kommenden Verordnung über umweltgefährdende Stoffe, die sich auf Artikel 29 USG abstützt. Wer Dünger verwendet, muss die im Boden vorhandenen Nährstoffe und die Bedürfnisse der Pflanzen sowie die Boden- und Witterungsverhältnisse zum

Zeitpunkt des Düngereinsatzes berücksichtigen. Dabei muss sich der Anwender auf die eigene Erfahrung und die Empfehlungen von Fachleuten abstützen. Positive Auswirkungen auf die Verminderung des Stickstoffeintrags in tiefere Bodenschichten sind zu erwarten. Im übrigen hat der Bundesrat gestützt auf Artikel 32 Absatz 4 Buchstabe g die Kompetenz, zur Verhinderung übermässiger Belastungen des Bodens und der Gewässer Vorschriften über die Verwendung von Abfällen aus der Tierhaltung usw. zu erlassen. Der Vollzug liegt bei den Kantonen.

Bundesgesetz vom 14. Dezember 1979 über Bewirtschaftungsbeiträge an die Landwirtschaft mit erschwerten Produktionsbedingungen sowie Vollziehungsverordnung vom 16. Juni 1980 (156). Voraussetzung, um solche Bewirtschaftungsbeiträge zu erhalten, ist nach Artikel 6 dieses Gesetzes, dass Grundeigentümer die Bewirtschaftung und die Pflege von Brachland dulden. Diese Duldung hat zu geschehen, wenn u. a. das Brachliegen die Umwelt erheblich beeinträchtigt. Der Bundesrat hat gestützt darauf in der Verordnung vom 16. Juni 1980 beschlossen, dass Beiträge nur dann ausgerichtet werden, wenn eine sachgerechte Bewirtschaftung vorausgesetzt werden kann, welche u. a. der Umwelt nicht schadet (Art. 6 der Verordnung). Widrigenfalls kann ein zeitlich begrenzter Ausschluss von der Beitragsberechtigung verfügt werden (Art. 9 des Gesetzes). Bewirtschaftungsanforderungen sind beispielsweise dann nicht erfüllt, wenn im Übermass gedüngt und somit der Stickstoffaustrag in die Gewässer hoch ist. Der Vollzug liegt bei den Kantonen.

Schweizerisches Milchlieferungsregulativ vom 18. Oktober 1971 (157). Bestimmungen dieses Regulativs haben Auswirkungen auf die Düngung und somit auf den gezielten Einsatz der Stickstoffdünger. In den Artikeln 5 und 6 wird jedes unzweckmässige, d. h. übertriebene, einseitige und zur unrichtigen Zeit ausgeführte Düngen untersagt. Das vom Bundesrat mit Datum vom 1. Januar 1973 in Kraft gesetzte Regulativ richtet sich nur an Milchviehhalter; das sind etwa 72 000 Betriebe von total 125 000. Das Milchlieferungsregulativ wird hinsichtlich seiner Düngungsbestimmungen nicht streng vollzogen, könnte aber ebenfalls positive Auswirkungen auf die Nitratentlastung haben. Der Vollzug liegt bei den Organisationen der Milchproduzenten und Milchverwerter so-

wie beim milchwirtschaftlichen Kontroll- und Beratungsdienst.

Bundesgesetz vom 1. Juli 1966 über den Natur- und Heimatschutz sowie dessen Vollziehungsverordnung vom 27. Dezember 1966 (158). Gestützt auf Artikel 18 des Gesetzes und Artikel 25 der Verordnung sind die Kantone ermächtigt, ergänzende Vorschriften zu erlassen, soweit es der Schutz einzelner Pflanzen oder Tiere erfordert. Dies kann grundsätzlich auch Auflagen zur Düngung besonders schützenswerter Pflanzenstandorte betreffen, so dass in solchen Fällen zumindest indirekt eine Extensivierung hinsichtlich des Stickstoffaustrages erwartet werden kann. Der Vollzug liegt bei den Kantonen.

- Erläuternde behördliche Vollzugshilfen beim Gewässerschutz, wie die Düngungsrichtlinien aus dem Jahre 1972 über den Acker- und Futterbau, die Wegleitung des BUS über Schutzzonenausscheidungen (47), die Wegleitung für den Gewässerschutz in der Landwirtschaft (30) sowie allgemeine Empfehlungen und

Veröffentlichungen von Bundesstellen und kantonalen Fachbehörden (Luzerner Merkblatt vom 8. Oktober 1981 für den Gewässerschutz in der Landwirtschaft, Aargauer Merkblatt über Nitrat und Landwirtschaft usw.) zu Fragen des umweltgerechten Düngens haben langfristig ohne Zweifel positive Auswirkungen auf den gezielteren Einsatz von stickstoffhaltigen Düngern und auf die geordnete Bodenbewirtschaftung.

## Qualitätsziele beim Trinkwasser

Nach wie vor besteht kein rechtlich verbindlicher Grenzwert für den Nitratgehalt des Trinkwassers. Zwar wird der im Lebensmittelbuch (15) enthaltene Toleranzwert von 40 mg NO<sub>3</sub> /l Wasser zunehmend bei der Beurteilung der Trinkwasserqualität anerkannt, ohne dass aber dabei eine Verpflichtung zum Einschreiten anerkannt würde. Derzeitige behördliche Bestrebungen haben zum Zweck, diesem Toleranzwert im Jahre 1986 Verbindlichkeit auf Verordnungsstufe\* zukommen zu lassen (159). Im übrigen bestehen entsprechende Absichten im EG-Raum, wo in den Mitgliederstaaten ein Grenzwert von 50 mg NO<sub>3</sub> /l Wasser in Kraft treten soll. Für einzelne Trinkwasserversorgungsverbände mit hohen Nitratgehalten in ihrem Trinkwasser wird dies einschneidende Folgen haben.

Detailliertere Angaben zu rechtlichen Aspekten des Nitratproblems finden sich in einer Lizentiatsarbeit der Universität Bern (160).

### Weitere Aspekte

Erwähnenswert ist ein Bundesgerichtsfall neueren Datums (161), wonach das Bundesgericht den Entscheid des Verwaltungsgerichts des Kantons Bern gestützt und die Beschwerde der betroffenen Gemeinde abgewiesen hat. In jenem Entscheid (162) wurde einem Wasserbezüger zugestanden, nur 90% des geforderten Wasserzinses zu bezahlen, weil im gelieferten Wasser wiederholt Richtwertüberschreitungen (40 mg NO $_3$ /l) und Werte im kritischen Bereich (30–40 mg NO $_3$ /l) gemessen worden waren. Das Wasser wurde also als nicht einwandfrei im Sinne des Wasserversorgungsreglementes befunden. Die Reduktion um 10% erklärt sich daraus, dass nur 10% des gelieferten Wassers als Trinkwasser gebraucht worden und möglicherweise gesundheitsschädigend gewesen seien. Die restlichen 90% konnte der Wasserbezüger für Gebrauchszwecke ohne weiteres und uneingeschränkt verwenden.

## Zusammenfassung

Nitrat ist als die oxidative Endstufe des Stickstoffkreislaufes in der Natur zu bezeichnen. Die Stellung dieses Stoffes im Boden wird beschrieben, insbesonders die Mechanismen, die zu seiner Auswaschung ins Grundwasser führen.

\* Die entsprechende Verordnung ist auf den 1. Mai 1986 in Kraft getreten.

Aufgrund der heutigen Erkenntnisse soll aus gesundheitlichen Erwägungen die Nitrataufnahme der Bevölkerung so gering wie möglich sein. Ebenfalls ist aus Gründen der Vorsorge eine weitere Aufsalzung von Grundwasser nicht erwünscht.

Es werden Mittel und Wege aufgezeigt, wie man die in bestimmten Regionen der Schweiz beobachteten hohen Nitratkonzentrationen im Trinkwasser vermindern könnte. Auf der Erkenntnis von praxisorientierten Versuchsreihen (Naturlabors) lassen sich Massnahmenbündel herleiten, um den Trend zu höheren Nitratgehalten im Grundwasser zu brechen.

#### Résumé

Le nitrate représente le degré d'oxydation le plus élevé du cycle de l'azote dans la nature. La place occupée par l'ion nitrate dans le sol et en particulier les mécanismes qui conduisent à sa pénétration dans les eaux souterraines sont décrits.

Sur la base des connaissances toxicologiques actuelles, l'absorption de nitrate par la population doit être aussi minime que possible. De même, du point de vue prophylactique, une augmentation de la teneur des eaux souterraines en sels est indésirable.

Diverses directives et moyens ayant pour fin de réduire les teneurs élevées de l'eau de boisson en nitrate observées en Suisse, dans certaines régions sont indiqués. Les mesures sont la conclusion tirée d'une série d'essais pratiques, effectués avec la collaboration d'agriculteurs (laboratoires «naturels»), en vue de mettre fin à l'augmentation de la concentration du nitrate dans les eaux souterraines.

### Summary

Nitrate is the most oxidated form of nitrogen substances that are related to the complex web of biogeochemical processes generally known as nitrogen cycle. The position of this ion in soils, and particularly the mechanisms that lead to its washing-out into ground- and well-water, are described.

According to the actual state of toxicological knowledge, human intake of nitrate should be as low as possible. From the point of view of prophylaxis a further salting-up of groundwater is not desirable either.

Directions and measures are listed up how to reduce the high nitrate concentrations in drinking-water that are observed in certain regions of Switzerland. These directions have been derived from results of experiments in practice-simulated situations together with farmers in so-called nature-laboratories.

#### Literatur

- 1. Schweizerische Bundeskanzlei (Hrsg.): Lebensmittelverordnung vom 26. Mai 1936. Eidg. Drucksachen- und Materialzentrale, Bern 1985.
- 2. BAG (Bundesamt für Gesundheitswesen): Nitrate in Nahrungsmitteln. Bern 1979.
- 3. EDI (Eidg. Departement des Innern): Nitrat im Trinkwasser. Bern 1979.
- 4. WHO (World Health Organization): Nitrates, nitrites and N-nitroso compounds. Environmental Health Criteria 5. Geneva 1978.

- 5. National Academy of Sciences: Nitrates: an environmental assessment. A report prepared by the panel on nitrates of the coordinating committee for scientific and technical assessment of environmental pollutants. Washington, D. C. 1978.
- 6. Durfor, C. N. and Becker, E.: Public water supplies of the 100 largest cities in the United States. Water Supply Papers Nr. 1812. Washington, D. C., Geological Survey 1964.
- 7. OECD (Organization for Economic Cooperation and Development): Environment committee, water management policy group. Diffense sources of water pollution: Agricultural activities, fertilizer and animal wastes. ENV/WAT/82.2., Paris 1984.
- 8. WHO (World Health Organization), Regionalbüro für Europa: Kurzbericht der Tagung (Kopenhagen 5. bis 9. 3. 1984) der Arbeitsgruppe über Gesundheitsgefährdungen durch Nitrat in Trinkwasser. ICP/CWS 002/m 05 (S), 6293L (1984).
- 9. Bundesgesundheitsamt (Hrsg.): Atlas zur Trinkwasserqualität der Bundesrepublik Deutschland (BIBIDAT). Verlag E. Schmidt, Berlin 1980.
- 10. Aurand, K., Hässelbarth, U. und Wolter, R.: Nitrat- und Nitritgehalte von Trinkwässern in der Bundesrepublik Deutschland. In: DFG (Deutsche Forschungsgemeinschaft), Selenka, F. (Hrsg.): Nitrat Nitrit Nitrosamine in Gewässern. Verlag Chemie, Weinheim 1982.
- 11. DVGW (Deutscher Verein des Gas- und Wasserfaches, Hrsg.): Nitrat ein Problem für unsere Trinkwasserversorgung? ZfGW-Verlag, Frankfurt/Main 1984.
- 12. Darimont, T.: Analyse und Bewertung von Nitrat im Trinkwasser. Wasser und Abwasser in Forschung und Praxis, Bd. 18. E. Schmidt Verlag, Bielefeld 1983.
- 13. BUS (Bundesamt für Umweltschutz): Problemskizze über Nitrate im Trinkwasser. Diskussionsgrundlage für die Arbeitsgruppe «Nitrat». Nr. 356-80. Bern 1980.
- 14. Arbeitsgruppe Nitrate in Nahrungsmitteln und Kantonales Laboratorium Schaffhausen: Umfrage bei den Kantonschemikern der Schweiz über die Nitratgehalte im Trinkwasser. Interner Rapport 9. 1. 1985.
- 15. Schweiz. Lebensmittelbuchkommission: Schweiz. Lebensmittelbuch, zweiter Band spezieller Teil, Kap. 27, S. 5-8. Eidg. Drucksachen- und Materialzentrale, Bern 1985.
- 16. Kickuth, R.: Nitrate in der Stickstoffbilanz. In: Nitrat in Gemüsebau und Landwirtschaft. Gottlieb Duttweiler Institut, Rüschlikon/Zürich 1981.
- 17. Quinche, J. P.: Les teneurs en nitrates des eaux de fontaines et sources en Suisse romande. Rev. Suisse agric. 13, 21-24 (1981).
- 18. Kreutzer, K.: Stickstoffaustrag in Abhängigkeit von Kulturart und Nutzungsintensität in der Forstwirtschaft. In: Nitrat ein Problem für unsere Trinkwasserversorgung? DVGW-Schriftenreihe, Wasser 38. Deutscher Verein des Gas- und Wasserfaches, Frankfurt/Main (1984).
- 19. Massarotti, A.: Zur Qualität des Trinkwassers im Tessin. Gas Wasser Abwasser 61. 171–182 (1981) sowie pers. Korrespondenz (14).
- 20. Pierce, R. S., Hornbeck, J. W., Linkens, G. E. and Bormann, F. H.: Effects of elimination of vegetation on stream water quantity and quality. Proceedings IASH Symp. Results, Res. Represent and Exp. Basins (New Zealand), 311–328 (1970). (zit. in EDI, 1979, Ref. (3)).
- 21. Stadelmann, F. X., Furrer, O. J. und Stauffer, W.: Der Einfluss von Stickstoffmobilisierung, Nitrifikation und Düngung auf die Nitratauswaschung ins Grundwasser. In: Nitrat in Gemüsebau und Landwirtschaft, S. 49–84. Gottlieb Duttweiler Institut, Rüschlikon/Zürich 1981.
- 22. Furrer, O. J., Stadelmann, F. X. und Stauffer, W.: Grundwasserqualität und Landwirtschaft. «Wiener Mitteilungen», Band 51, S. X1-X33, (18. Seminar des ÖWWV). Hrsg.: Inst. für Wasserwirtschaft, Abt. für Siedlungswasserbau und Gewässerschutz, Wien 1983.

- 23. Furrer, O. J.: Nitratbelastung des Grundwassers durch die Landschaft. Schriftenreihe des Österreichischen Wasserwirtschaftsverbandes Wien. Heft 61, 71–103 (1984).
- 24. Kläy, R.: Untersaaten im Mais. Diss. Forschungsanstalt für biologischen Landbau, Oberwil 1983.
- 25. Bosshart, U.: Einfluss der Stickstoffdüngung und der landwirtschaftlichen Bewirtschaftungsweise auf die Nitratauswaschung ins Grundwasser (am Beispiel Naturlabor Buechberg). Beiträge zur Geologie der Schweiz-Hydrologie Nr. 32. Kommissionsverlag Kümmerly & Frey, Bern 1985.
- 26. Flaig, W.: Fortschritte auf dem Gebiet der Biochemie des Bodens im Bezug zur pflanzlichen Produktion (Übersicht). Rheinisch-Westfälische Akademie der Wissenschaften, Vorträge N 271, Westdeutscher Verlag, Opladen 1978.
- 27. Agro-Bulletin 2/84 und 3/84. Landwirtschaftlicher Beratungsdienst. Lonza AG, Basel 1984.
- 28. Wollring, J. und Wehrmann, J.: Der Nitrat-Schnelltest Entscheidungshilfe für die N-Spätdüngung. DLG (Deutsche Landwirtschafts-Gesellschaft) Mitteilungen 8/1981, 448–449.
- 29. Schweizerische Bundeskanzlei (Hrsg.): Klärschlammverordnung vom 8. April 1981. Eidg. Drucksachen- und Materialzentrale, Bern 1985.
- 30. Wegleitung für den Gewässerschutz in der Landwirtschaft. Hrsg.: Bundesämter für Landwirtschaft und für Umweltschutz, Eidg. Meliorationsamt und Eidg. landw. Forschungsanstalten. Bern 1979.
- 31. Vetter, H. und Steffens, G.: Ursachen zu hoher Nitratgehalte in Zwischenfrüchten. Landwirtschaftsblatt Weser-Ems (Oldenburg) 7, 18-20 (1977).
- 32. Walther, U.: Möglichkeiten und Empfehlungen zur Verhinderung von Nährstoffverlusten aus düngungs- und anbautechnischer Sicht. Mitt. Schweiz. Landw. 29, 225–234 (1981).
- 33. Walther, U.: Gezielter Einsatz von Gülle im Ackerbau. Schweizer Landtechnik 46, 131-135 (1984).
- 34. Hofer, E.: Untersuchungen über das wirtschaftliche Optimum des Düngereinsatzes. Mitt. Schweiz. Landw. 22, 64-71 (1974).
- 35. Baumgartner, H.: Weniger Stickstoff weniger Traubenfäulnis? Schweiz. Z. für Obst- u. Weinbau 118, 235–237 (1982).
- 36. Gysi, C. und Ryser, J. P.: Düngung der Gemüse. Flugschrift Nr. 91. Eidg. Forschungsanstalt für Obst-, Wein- und Gartenbau, Wädenswil 1977.
- 37. Gysi, C.: Optimierung der Stickstoffdüngung im Gemüsebau und Belastung des Grundwassers. Projektskizze für Forschungskredit. Eidg. Forschungsanstalt für Obst-, Weinund Gartenbau, Wädenswil 1983.
- 38. Biedermann, R., Leu, D. und Vogelsanger, W.: Nitrate in Nahrungsmitteln. Eine Standortbestimmung. Deut. Lebensm.-Rdschau 76, 149-156 und 198-207 (1980).
- 39. Stadelmann, F. X., Furrer, O. J., Lehmann, V. und Moeri, P. B.: Die Wirkung steigender Gaben von Klärschlamm und Schweinegülle auf den Nitratgehalt von ein- und mehrjährigem Kleegras. Landw. Forschung, Sonderheft 41 (Kongressband 1984), 188–200 (1985).
- 40. Scharpf, H. C.: Der Mineralstickstoffgehalt des Bodens als Massstab für den Stickstoffdüngerbedarf. Diss. Universität Hannover 1977.
- 41. Wehrmann, G.: N<sub>min</sub>-Antworten zu Fragen aus der Praxis. Neue Ergebnisse und langjährige Erfahrungen. DLG-Mitteilungen (Deutsche Landwirtschafts-Gesellschaft) Nr. 2/1983, 66–69 (1983).

- 42. Walther, U. und Jaeggli, F.: Erfahrungen mit der N<sub>min</sub>-Methode in der Schweiz. In: Landwirtsch. Forschung 36, 57-71 (1983).
- 43. SLV (Pflanzenbaukommission des Schweiz. Landw. Vereins): Gezielte Stickstoffdüngung im Ackerbau. Sonderdruck aus der «Grünen» Nr. 5, 10, 15/84, 1-67 (1984).
- 44. ZVG (Zentralverband Gartenbau, BRD): Blickpunkt Nitrat. I-XX, (1984).
- 45. Flaig, W.: Die organische Bodensubstanz als nachliefernde Stickstoffquelle zur Ernährung der Pflanze und einige Modelle zur technischen Verwirklichung. Landbauforsch. Völkenrode 26, 117–121 (1976).
- 46. Schweiz. Bundeskanzlei (Hrsg.): Bundesgesetz über den Schutz der Gewässer gegen Verunreinigungen vom 8. Oktober 1971. Eidg. Drucksachen- und Materialzentrale, Bern.
- 47. BUS (Bundesamt für Umweltschutz): Wegleitung zur Ausscheidung von Gewässerschutzbereichen, Grundwasserschutzzonen und Grundwasserschutzarealen. Bern 1982.
- 48. SVWG: Leitsätze für die Erstellung von Wasserinstallationen vom 7. Oktober 1976. Schweiz. Verein des Gas- und Wasserfaches, Zürich 1976.
- 49. Gros, H., Müller, U., Lienhard, U. und Berdat, F.: Nitratentfernung aus dem Trinkwasser. Untersuchungen von 3 Verfahren in einer Pilotanlage in Zollikofen. Kurzbericht Juni 1982. Wasser- und Energiewirtschaftsamt des Kantons Bern (Hrsg.).
- 50. Amberger, A., Vilsmeyer, K., Kick, H., Poletschny, H., Gutser, R. und Solansky, S.: Fachsymposium über den N-Stabilisator SKW-Didin für Flüssigmist. Sonderdruck aus Bayrisches Landwirtsch. Jb. 845–891 (1981).
- 51. Neyroud, J. A.: Nitrifikationshemmer eine Möglichkeit die N-Ausnützung durch Akkerkulturen zu verbessern? In: SLV. 1984 (= 43).
- 52. Obermann, P.: Hydrochemische/hydromechanische Untersuchungen zum Stoffgehalt von Grundwasser bei landwirtschaftlicher Nutzung. Bes. Mitt. zum dt. gewässerkundlichen Jahrbuch Nr. 42. Ministerium für Ernährung, Landwirtschaft und Forsten des Landes Nordrhein-Westfalen (Hrsg.), Düsseldorf 1981.
- 53. Ryvarden, G. und Getreuer, H.: Nitratelimination durch höhere Pflanzen als Möglichkeit der Trinkwasseraufbereitung. Gas/Wasser/Wärme 35, 257-259 (1981).
- 54. Sontheimer, H., Cornel, P., Fettig, J. und Rohmann, U.: Grundwasserverunreinigungen Bedrohung für die öffentliche Wasserversorgung? gwf (das Gas- und Wasserfach) Wasser-Abwasser 123, 521–530 (1982).
- 55. Rhenag (Rheinische Energie Aktiengesellschaft): Wasserversorgung Ingelheim. Studie über die Nitratentfernung aus dem Grundwasser. Köln 1981.
- 56. Schweiz. Bundeskanzlei (Hrsg.): Bundesgesetz über den Umweltschutz vom 7. Oktober 1983. Eidg. Drucksachen- und Materialzentrale, Bern 1985.
- 57. Matile, P.: Nitrat im Stoffhaushalt der Pflanze. In: Nitrat in Gemüsebau und Landwirtschaft. Gottlieb Duttweiler Institut, Rüschlikon/Zürich 1981.
- 58. Scheffer, F. und Schachtschabel, P. (Hrsg.): Lehrbuch der Bodenkunde (11. Auflage). F. Enke, Stuttgart 1984.
- 59. Ettlinger, L.: Biologische Stickstoff-Fixierung: Stand der Forschung und Zukunftsperspektiven. Schweiz. landw. Forschung 19, 165-178 (1983).
- 60. Stauffer, W. und Furrer, O. J.: Nitratauswaschung aus landwirtschaftlich genutzten Gebieten. Bulletin der Bodenkundlichen Gesellschaft der Schweiz 6, 57-62 (1982).
- 61. Stadelmann, F. X., Furrer, O. J., Gupta, S. K. und Lischer, P.: Einfluss von Bodeneigenschaften, Bodennutzung und Bodentemperatur auf die N-Mobilisierung von Kulturböden. Z. Pflanzenernähr. Bodenk. 146, 228–242 (1983).
- 62. Bundy, L. G. and Bremer, J. M.: Effects of substituted p-benzoquinones on urease activity in soils. Soil Biol. Biochem. 5, 847-853 (1973).

- 63. Crutzen, P. J. and Enhalt, D. H.: Effects of nitrogen fertilizer and combustion on the stratospheric ozone layer. Ambio 6, 112-117 (1977).
- 64. Stadelmann, F. X.: Forschungsanstalt für Agrikulturchemie und Umwelthygiene, Liebefeld/Bern. Natürliche Denitrifikations- bzw. Stickoxidverluste in der Schweiz. Internes Papier F 84.6 der EFAC Liebefeld/Bern, 1984.
- 65. Czeratzky, W.: Die Stickstoffauswaschung in der landwirtschaftlichen Pflanzenproduktion. Landbauforschung Völkenrode 23, 1–18 (1973).
- 66. Furrer, O. J. und Gächter, R.: Beitrag der Landwirtschaft zur Eutrophierung der Gewässer in der Schweiz. Z. Hydrol. 34, 71–93 (1972).
- 67. Barraclough, D., Geens, E. L. and Maggs, J. M.: Fate of fertilizer nitrogen applied to grassland. J. Soil Sci. 35, 191-199 (1984).
- 68. *Ulrich*, B.: Beitrag zur Frage der Stickstoffdüngerbedürftigkeit: Stickstoffzufuhr aus der Luft und Stickstoffumsatz im Boden. Landw. Forsch. 31, 111–118 (1978).
- 69. Furrer, O. J.: Abschwemmung und Auswaschung von Nährstoffen. Informationstagung «Landwirtschaft und Gewässerschutz» der Eidg. Forschungsanstalt für Agrikulturchemie und Umwelthygiene, Liebefeld/Bern 31–52 (1978).
- 70. Feger, U.: Einfluss von Düngungsmassnahmen auf die Auswaschung von N, P und K unter Berücksichtigung der Sickerwassermenge auf Brache und landwirtschaftlich genutzten Flächen. Diss. Universität Göttingen 1975.
- 71. Ohlendorf, W.: Lysimeteruntersuchungen über den Verbleib der Düngernährstoffe, insbesondere des mit <sup>15</sup>N markierten Stickstoffs. Diss. Universität Giessen 1976.
- 72. Kolenbrander, G. J.: Nitrate content an nitrogen loss in drain water. Neth. J. agric. Sci. 17, 246-255 (1969).
- 73. Vetter, H. und Steffens, G.: Stickstoffaustrag aus vorwiegend organisch gedüngten Flächen, insbesondere mit Gülle. In: Nitrat ein Problem für unsere Trinkwasserversorgung? Deutscher Verein des Gas- und Wasserfaches (Hrsg.). DVWG-SchrifteneiheNr. 38. DLG-Verlag, Frankfurt am Main 1984.
- 74. Bundesamt für Umweltschutz, Forschungsanstalt für Agrikulturchemie und Umwelthygiene, Liebefeld/Bern, Kantonales Amt für Gewässerschutz LU und Kantonales Laboratorium Luzern: Nitrat-Naturlabor Weienbrunnen. Zwischenbericht Oktober 1982.
- 75. Dubois, J. P., Jelmini, G. et Dubois, D.: Influence du type de culture sur la migration des éléments dans un tourbe entrophe. PED 10, Lab. de Pédologie de l'Ecole Polytechnique fédérale, Lausanne 1983.
- 76. Gysi, C. und Ryser, J. P.: Düngung der Gemüse. Flugschrift 91 der Eidg. Forschungsanstalt für Obst-, Wein- und Gartenbau, Wädenswil 1977.
- 77. Böhmer, M.: Der Mineralstickstoffgehalt von Böden mit Feldgemüsebau und seine Bedeutung für die Stickstoffernährung der Pflanze. Diss. Universität Hannover 1980.
- 78. Welte, E. und Timmermann, F.: Über den Nährstoffeintrag in Grundwasser und Oberflächenwasser aus Boden und Düngung. VDLUFA (Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten), Heft 5, Darmstadt 1982.
- 79. Perret, P.: Ertrags- und Qualitätsbeeinflussung durch die Begrünung im Weinbau Ergebnisse eines 10jährigen Versuches. Schweiz. Z. Obst- u. Weinbau 118, 470–480 (1982).
- 80. Moeschlin, S.: Klinik und Therapie der Vergiftungen, 6. Aufl. G. Thieme, Stuttgart und New York 1980.
- 81. WHO (World Health Organization): Toxicological evaluation of certain food additives with a review of general principles and of specifications. WHO Technical Report Series Nr. 539 WHO, Geneva 1974.

- 82. Spiegelhalder, B., Eisenbrand, G. and Preussmann, R.: Influence of dietary nitrate on nitrate content of human saliva: Possible relevance to in-vivo-formation of N-nitroso compounds. Food Cosmet. Toxicol. 14, 545-548 (1976).
- 83. Tannenbaum, S. R., Weismann, M. and Fett, D.: The effect of nitrate intake on nitrite formation in human saliva. Food Cosmet. Toxicol. 14, 549-552 (1976).
- 84. Selenka, F.: Gesundheitliche Beurteilung des Nitrats im Trinkwasser. Zbl. Bakt. Hyg., I. Abt. Orig. B 172, 44–48 (1980).
- 85. Hüppe, R.: Biokinetische Untersuchungen über das Nitration beim Menschen. Diss. Justus-Liebig-Universität Giessen 1984.
- 86. Spiegelhalder, B. und Preussmann, R.: Vorkommen und Bewertung von Nitrat, Nitrit und Nitrosaminen im Trinkwasser. In: Aurand, L. (Hrsg.): Bewertung chemischer Stoffe im Wasserkreislauf. E. Schmidt, Berlin 1981.
- 87. Selenka, F. und Brand-Grimm, D.: Nitrat und Nitrit in der Ernährung des Menschen. Kalkulation der mittleren Tagesaufnahme und Abschätzung der Schwankungsbreite. Zbl. Bakt. Hyg., I. Abt. Orig. B 162, 449-466 (1976).
- 88. Möhler, K.: Nitrat- und Nitritgehalt der Nahrungsmittel. In: DFG (Deutsche Forschungsgemeinschaft): Nitrat Nitrit Nitrosamine in Gewässern. Verlag Chemie, Weinheim 1982.
- 89. Sander, J. und Schweinsberg, F.: Wechselbeziehungen zwischen Nitrat, Nitrit und kanzerogenen N-Nitrosoverbindungen (1. Mitteilung). Zbl. Bakt. Hyg., I. Abt. Orig. B 156, 299-320 (1972).
- 90. Mueller, R. L., Hagel, H. J., Greim, G., Ruppin, H. und Domschke, W.: Die endogene Synthese kanzerogener N-Nitrosoverbindungen: Bakterienflora und Nitritbildung im gesunden menschlichen Magen. Zbl. Bakt. Hyg., I. Abt. Orig. B 178, 297-315 (1983).
- 91. Mueller, R. L., Hagel, H. J., Greim, G., Ruppin, H. und Domschke, W.: Dynamik der endogenen bakteriellen Nitritbildung im Magen. Zbl. Bakt. Hyg., I. Abt. Orig. B 179, 381–396 (1984).
- 92. Kübler, W. und Hüppe, R.: Bewertung des Nitratproblems für die menschliche Ernährung. 96. VDLUFA Kongress, Karlsruhe. VDLUFA-Schriftenreihe, Darmstadt (Verband Deutscher Landwirtschaftlicher Forschungs- und Untersuchungsanstalten), Heft 10, Anhang (1984).
- 93. Druckrey, H., Steinhoff, D. und Beuthner, H.: Prüfung von Nitrit auf toxische Wirkung an Ratten. Arzneimittel-Forsch. 13, 320–323 (1963).
- 94. Tremp, E.: Der Beitrag der einzelnen Nahrungsmittel zur täglichen Nitrataufnahme des Menschen. In: Nitrat in Gemüsebau und Landwirtschaft. Gottlieb Duttweiler Institut, Rüschlikon/Zürich 1981.
- 95. Stauffer, W. und Furrer, O. J.: Auswaschung von Pflanzennährstoffen aus ganz und teilweise bewaldeten Gebieten. Schweiz. landw. Forsch. 23, 285-293 (1984).
- 96. Ellen, G. and Schuller, P. L.: Nitrate, origin of continuos anxiety. In: DFG Preussmann, R. (Hrsg.).: Das Nitrosamin-Problem, S. 97-134. Verlag Chemie, Weinheim 1983.
- 97. Green, L. C., De Luzuriaga, K. R., Wagner, D. A., Rand, W., Istfan, N., Young, V. R. and Tannenbaum, S. R.: Nitrate biosynthesis in man. Proc. Natl. Acad. Sci. USA 78, 7764—7768 (1981).
- 98. Bartholomew, B. and Hill, M. J.: The pharmacology of dietary nitrate and the origin of urinary nitrate. Food Chem. Toxicol. 22, 789-795 (1984).
- 99. Jaffé, E. R. and Heller, P.: Methemoglobinemia in man. In: Moore, C. V. und Brown, E. B.: Progress in Hematology, Vol. 4. Grune Stratten, New York 1964.

- 100. Jaffé, R. E.: Methemoglobinemia. Clinics in Hematology 10, 99-122 (1981)
- 101. Wintrobe, M. M. et al.: Clinical hematology, 8th ed. Lea & Febiger, Philadelphia 1981.
- 102. Hegesh, E. and Shiloah, J.: Blood nitrates and infantile methemmglobinemia. Clin. Chim. Acta 125, 107-115 (1982).
- 103. Tannenbaum, S. R., Fett, D. and Young, V. R.: Nitrite and nitrate are formed by endogenous synthesis in the human intestine. Science 200, 1487-1489 (1978).
- 104. Schwartz, J. M. and Jaffé, E. R.: Hereditary methemoglobinemia with deficiency of NADH-Dehydrogenase. In: Stanbury, J. B. et al. (eds.): The metabolic basis of inherited disease, 1452–1464. Mc Graw-Hill, New York 1978.
- 105. Shuval, H. I. and Gruener, N.: Epidemiological and toxicological aspects of nitrates and nitrites in the environment. Am. J. Publ. Health 62, 1045–1052 (1972).
- 106. Sattelmacher, P. G.: Methämoglobinämie durch Nitrate im Trinkwasser. Schriftenreihe des Vereins für Wasser-, Boden- und Lufthygiene Nr. 20. G. Fischer, Stuttgart 1962.
- 107. Petri, H.: Nitrate und die Trinkwasser-Verordnung. In: Aurand, K. et al. (Hrsg.): Die Trinkwasser-Verordnung. Einführung und Erläuterungen für Wasserversorgungsunternehmungen und Überwachungsbehörden 75-91. E. Schmidt, Berlin 1976.
- 108. Gysi, C.: Stickstoffdüngung im Weinbau; wieviel verträgt die Rebe? Wieviel braucht die Rebe? Schweiz. Zeitschrift Obst- u. Weinbau 118, 233-235 (1982).
- 109. Borneff, G.: Hygiene Ein Leitfaden für Studierende und Ärzte. G. Thieme, Stuttgart 1974.
- 110. Würkert, K.: Feldstudie über Einflüsse methämoglobinbildender Faktoren in Rheinhessen. Die Methämoglobinkonzentration bei Säuglingen des 1. Trimenons. Zbl. Bakt. Hyg. I. Abt. Orig. B 166, 361–374 (1978).
- 111. Dettwiler, J.: Telephonische Umfrage über die Epidemiologie der nitratverursachten Methämoglobinämie (Cyanose) bei Säuglingen im 1. Trimenon. Interner Rapport, Bundesamt für Umweltschutz, 18. Oktober 1983. Bern 1983.
- 112. Toussaint, W. und Würkert, K.: Methämoglobinämie im Säuglingsalter. In: DFG (Deutsche Forschungsgemeinschaft) 1982 (= 127).
- 113. Müller, H. P.: Abteilung Gewässer des kantonalen Baudepartementes des Kantons Aargau. Pers. Mitt. 10. Mai 1985.
- 114. Adam, F.: Kantonales Amt für Gewässerschutz und Wasserbau, Zürich. Pers. Mitt. 28. November 1984.
- 115. Smith, J. E. and Beutler, E.: Methemoglobin formation and reduction in man and various animal species. Am. J. Physiol. 210, 347-350 (1966).
- 116. Wiesner, E.: Wieviel Nitrat verträgt das Tier? 96. VDLUFA-Kongress, Karlsruhe. VDLUFA-Schriftenreihe (Verband Deutscher Landw. Untersuchungs- und Forschungsanstalten) 1–2 (1984).
- 117. Becker, M. und Nehring, K.: Handbuch der Futtermittel, Bd. I, 5, 56-57 und 109. Parey-Verlag, Berlin 1969.
- 118. Suter, H. und Hufschmied, N.: Agrarökologisches Projekt Klettgau, Zwischenbericht des FIBL. Oberwil, November 1985.
- 119. Mézarós, L.: Toxizität und Nachweis von Nitrat in Zwischenfrüchten Ergebnisse zweijähriger Untersuchungen. Kali-Briefe (Büntehof) 14, 281–294 (1978).
- 120. Becker, M.: Nitrat und Nitrit in der Tierernährung Ein Übersichtsreferat. Qual. Plant. Mater. Veg. 15, 48-64 (1967).
- 121. Kemp, A., Geurink, J. H., Haalstra, R. T. and Malestein, A.: Nitrate poisoning in cattle. 2. Changes in nitrite in rumen fluid and methemoglobin formation in blood after high nitrate intake. Neth. J. agric. Sci. 25, 51–62 (1977).

- 122. Preussmann, R. und Stolte, E.: Der Literaturdienst über Analytik, Entstehung und biologische Wirkungen von N-Nitrosoverbindungen. DFG (Deutsche Forschungsgemeinschaft), 319-322 (1983).
- 123. Spiegelhalder, B.: Vorkommen von Nitrosaminen in der Umwelt. DFG (Deutsche Forschungsgemeinschaft) 1983 (= 129).
- 124. Fine, D. H., Rufeh, F., Lieb, D. and Rounbehler, D. P.: Description of the thermal energy analyser (TEA) for trace determination of volatile and non-volatile N-nitroso compounds. Analyt. Chem. 47, 1186–1191 (1975).
- 125. Shephard, S.: Nitrosatable compounds in the diet. Institut für Toxikologie der ETH und Universität Zürich, Schwerzenbach. Interner Rapport, Februar 1984.
- 126. Preussmann, R.: Metabolismus von Nitrat und Nitrit beim Menschen und dessen Relevanz zur endogenen Nitrosamin-Bildung. Bericht anlässlich der 38. Plenarsitzung der Eidg. Ernährungskommission, Bern 22. November 1983.
- 127. DFG (Deutsche Forschungsgemeinschaft): Nitrat Nitrit Nitrosamine in Gewässern, Selenka, F. (Hrsg.). Verlag Chemie, Weinheim 1982.
- 128. Bartsch, H. and Montesano, R.: Relevance of nitrosamines to human cancer. Carcinogenesis 5, 1381–1393 (1984).
- 129. DFG (Deutsche Forschungsgemeinschaft): Das Nitrosamin-Problem, Preussmann, R. (Hrsg.). Verlag Chemie, Weinheim 1983.
- 130. Sander, J.: In-vivo Bildung von N-Nitrosoverbindungen. In: DFG (Deutsche Forschungsgemeinschaft) 1983 (= 129).
- 131. Meier-Bratschi, A. und Schlatter, Ch.: Alkylierung von DNS durch in-vivo gebildetes Dimethylnitrosamin. Mitt. Gebiete Lebensm. Hyg. 72, 71-77 (1981).
- 132. Schlatter, Ch.: Wieviel Nitrat verträgt der Mensch? Landw. Forschung, Sonderheft 41 (Kongressband 1984), 1985, im Druck.
- 133. Ohshima, H. und Bartsch, H.: Quantitative estimation of endogenous nitrosation in humans by monitoring N-nitrosopoline excreted in the urine. Cancer Res. 41, 3658–3662 (1981).
- 134. Preussmann, R.: Inst. für Toxikologie und Chemotherapie des Deutschen Krebsforschungszentrums, Heidelberg. Pers. Mitt. 1985.
- 135. Fine, D. H., Ross, R., Rounbehler, D. P., Sievergleid, A. and Song, L.: Formation in-vivo of volatile N-nitrosamines in man after ingestion of cooked bacon and spinach. Nature 265, 753-755 (1977).
- 136. Gough, T. A. and Swann, P. F.: An examination of human blood for the presence of volatile nitrosamines. Food. Chem. Toxic. 21, 151–156 (1983).
- 137. Suzuki, K. and Mitsuoka, T.: Increase in faecal nitrosamines in Japanese individuals given a western diet. Nature 294, 453-456 (1981).
- 138. Neurath, G.: Amine in Wasser, Boden und Lebensmitteln. In: DFG (Deutsche Forschungsgemeinschaft) 1983 (= 129).
- 139. Preussmann, R.: Biologische Wirkungen, Metabolismus, Dosis-Wirkungsbeziehungen und Risikobetrachtungen (von N-Nitrosoverbindungen, d. Verf.). In: DFG (Deutsche Forschungsgemeinschaft) 1983 (= 129).
- 140. Wicki, J.: Bericht über die Nitratverhältnisse der Wasserversorgung Oberkirch. Laboratorium des Kantonschemikers, Luzern 1983.
- 141. EMPA (Eidg. Materialprüfungsanstalt, Dübendorf): Nitrat im Trinkwasser/Korrosionsversuche. Zusammenfassung und Beurteilung der Ergebnisse nach 18 Monaten. EMPA 38 190, 1980.

- 142. Theiler, F.: Der korrosionsfördernde Einfluss von Nitrat im Trinkwasser. In: Nitrate, Phosphate und Trinkwasserqualität. SVGW (Schweiz. Verein des Gas- und Wasserfaches), Zürich, 9/1–9/28 (1980).
- 143. Theiler, F.: Projektleiter der EMPA Dübendorf: pers. Mitt. 1985.
- 144. Michel, P.: Nitrateinfluss auf Korrossion von Wasserleitungen kleiner als erwartet. BUS-Bulletin 1/82. Bundesamt für Umweltschutz, Bern 1982.
- 145. Köppel, H.: Der Einfluss von Nitrat auf die Korrosion von Zink und verzinkten Trinkwasserleitungen. Diss. Universität Bern 1981.
- 146. Otto, A.: Fremdstoffbelastung der Gewässer in der Bundesrepublik Deutschland durch Land- und Forstwirtschaft. Landwirtschaft Angewandte Wissenschaft, H. 214, 1978.
- 147. Bundermann, G.: Hydrogeologisch-hydrochemische Untersuchungen der Grundwasserveränderungen durch landwirtschaftliche Nutzung im Einzugsgebiet des Wasserwerkes Mussum der Stadtwerke Bocholt GmbH (Westf.). Diss. Ruhr-Universität, Bochum 1978.
- 148. Sontheimer, H. und Rohmann, U.: Grundwasserbelastung mit Nitrat Ursachen, Bedeutung, Lösungswege. gwf (Das Gas- und Wasserfach) Wasser Abwasser 125, 599–608 (1984).
- 149. Böckle, R., Rohmann, U. und Sontheimer, H.: Die Bedeutung eines natürlichen Nitratabbaus im Untergrund für die Grundwasserqualität und dessen Nachweis mit Hilfe eines einfachen Verfahrens zur Bestimmung der Stickstoffkonzentration in Grundwässern. Vom Wasser 62, 25–37. Verlag Chemie, Weinheim 1984.
- 150. Kölle, W.: Auswirkungen von Nitrat in einem reduzierenden Grundwasserleiter. In: DVGW 1984 (= 11).
- 151. Selenka, F.: Nitrat und Nitrit in Wasser und Boden. In: DFG (Deutsche Forschungsgemeinschaft) 1982 (= 127).
- 152. Bosset, E.: Evolution des concentrations en nitrates des eaux souterraines du Moyen-Pays vaudois. In: Nitrate, Phosphate und Trinkwasserqualität, SVGW (Schweiz. Verein des Gas- und Wasserfaches, Zürich, Hrsg.). Referate des Seminars vom 20./21. März 1980 in Biel.
- 153. Kempf, T.: Geologisch-hydrologischer Bericht über die Grundwasseruntersuchungen im zugerischen Reusstal, Abschnitt Drälikon, Gemeinde Hünenberg. Geologisches Büro H. Jäckli AG, 3. August 1981, im Auftrag des Tiefbauamtes des Kantons Zug, Abt. Gewässer- und Umweltschutz.
- 154. Bundesamt für Umweltschutz: Gewässerschutzstatistik. Schriftenreihe Umweltschutz Nr. 46, BUS, Bern 1985.
- 155. BGE: Urteil des Schweizerischen Bundesgerichts vom 31. Oktober 1985, Nr. P 4071/85, Lausanne 1985.
- 156. Schweiz. Bundeskanzlei (Hrsg.): Bundesgesetz über Bewirtschaftungsbeiträge an die Landwirtschaft mit erschwerten Produktionsbedingungen. Eidg. Drucksachen- und Materialzentrale, Bern 1979.
- 157. Schweiz. Milchkommission: Schweiz. Milchlieferungsregulativ vom 18. Oktober 1971. Eidg. Drucksachen- und Materialzentrale, Bern 1971.
- 158. Schweiz. Bundeskanzlei (Hrsg.): Bundesgesetz über den Natur- und Heimatschutz (NHG) vom 1. Juli 1966 und Vollzugsverordnung zum NHG vom 27. Dezember 1966. Eidg. Drucksachen- und Materialzentrale, Bern 1985.
- 159. Eidg. Departement des Innern: Verordnung über Fremd- und Inhaltsstoffe in Lebensmitteln (FIV) vom 27. Februar 1986. Eidg. Drucksachen- und Materialzentrale, Bern 1986.

- 160. Tanner, J.: Das Problem des Nitrates im Trinkwasser aus rechtlicher Sicht. Lizentiatsarbeit, eingereicht bei Prof. F. Gygi, Juristische Fakultät der Universität Bern 1983.
- 161. BGE: Urteil des Schweiz. Bundesgerichts vom 5. Januar 1984, Nr. P 496/83, Lausanne 1984.
- 162. VGB (Verwaltungsgericht des Kantons Bern): Urteil vom 7. April 1983, Nr. 16287. Bern 1983.
- 163. Zobrist, J.: Eidg. Anstalt für Wasserversorgung, Abwasserreinigung und Gewässerschutz (EAWAG), Dübendorf. Pers. Mitt. 9. Juli 1985.
- 164. Nihlgard, B.: The ammonium hypothesis an additional to the forest dieback in Europe. Ambio 14, 2–8 (1985).
- 165. Stadelmann, P., Häcki, A. und Troxler, H.: Nitratbelastung im Grundwasservorkommen der Gemeinde Oberkirch. Kantonales Amt für Umweltschutz, Luzern 1985.
- 166. BAG (Bundesamt für Gesundheitswesen). Die Durchführung der Lebensmittelkontrolle in der Schweiz im Jahre 1984. Mitt. Gebiete Lebensm. Hyg. 76, 420-421 (1985).
- 167. Mengel, K.: Ernährung und Stoffwechsel der Pflanze (5. Aufl.). VEB G. Fischer Verlag, Jena 1979.
- 168. WHO (World Health Organization): European standards for drinking-water, 2nd ed. WHO, Geneva 1970.
- 169. Walther, U.: Einfluss des Mineralstickstoffgehaltes des Bodens und der N-Düngung auf den Ertrag und die Ertragsstruktur von Winterweizen. Mitt. Schweiz. Landwirtschaft 31, 102-112 (1983).
- 170. Frankfurter Allgemeine Zeitung vom 19. März 1986, S. 6, und Chemische Rundschau vom 14. März 1986, S. 2.

Prof. Dr. J. Hoigné\* EAWAG Überlandstrasse 133 CH-8600 Dübendorf

Dr. F. X. Stadelmann\*
Eidg. Forschungsanstalt für Agrikulturchemie und Umwelthygiene
Schwarzenburgstrasse 155
CH-3097 Liebefeld

Dr. D. Leu Dr. R. Biedermann\* Kantonales Laboratorium Postfach 37 CH-8204 Schaffhausen (Kontaktadresse)

H. Dettweiler\*
Bundesamt für Umweltschutz
Hallwylstrasse 4
CH-3003 Bern

<sup>\*</sup> Mitglieder der erweiterten Arbeitsgruppe Nitrate in Nahrungsmitteln des BAG