Zeitschrift: Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und

Hygiene = Travaux de chimie alimentaire et d'hygiène

Herausgeber: Bundesamt für Gesundheit

Band: 77 (1986)

Heft: 4

Artikel: Verhalten des Niacins bei verschiedenen Kochprozessen von

Gartenbohnen (Phaseolus vulgaris L.) = Changes in the niacin content of dry beans (Phaseolus vulgaris L.) as a result of different cooking

processes

Autor: Colakoglu, M. / Oetles, S.

DOI: https://doi.org/10.5169/seals-983406

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Kurze Mitteilung - Communication brève

Verhalten des Niacins bei verschiedenen Kochprozessen von Gartenbohnen (Phaseolus vulgaris L.)

Changes in the Niacin Content of Dry Beans (Phaseolus vulgaris L.) as a Result of Different Cooking Processes

M. Colakoglu und S. Oetles Ordinariat für Lebensmittelchemie der Ege Universität, Izmir (Leitung: Prof. Dr. M. Colakoglu)

Einleitung

Niacin oder Nicotinsäure ist ein lebensnotwendiges Vitamin (PP-Faktor), bei dessen Mangel Pellagra auftritt. Die National Academy of Sciences, USA, empfiehlt eine tägliche Aufnahme von 6,6 mg pro 100 kcal. In vorhergehenden Publikationen wurden die Veränderungen an Niacin in gekochten Bohnen beschrieben. Trotzdem gehören die ins Einweich- und Kochwasser übergegangenen Mengen an Niacin zu den am wenigsten untersuchten und am meisten umstrittenen Aspekten der Alterung (1–8).

Experimentelles

In dieser Arbeit wurde daher der Übergang von Niacin aus Gartenbohnen (Phaseolus vulgaris L.) ins Einweich- und Kochwasser untersucht. Für unsere Versuche verwendeten wir während der Sommermonate 1984 trockene Gartenbohnen des Handels. Alle Analysen wurden 3- bis 5mal, die Kochversuche je 3mal wiederholt. Der Wassergehalt der Bohnen betrug 11,2%. Bezogen auf Trockenmasse enthielten die Bohnen 22,3% Protein (N x 6,25), 4,99% Asche und 2,42 mg/100 g Niacin. Die Gehalte an Wasser, Protein und Asche wurden nach den AOAC-Vorschriften bestimmt (10). Die Niacinbestimmung beruht auf der Königschen Reaktion. Der Pyridinring des Niacins wurde mit Bromcyan aufgespalten, das Spaltprodukt mit Sulfanilsäure zu einem gelben Polymethinfarbstoff gekuppelt und die Extinktion bei 470 nm gemessen (9).

Für die Kochversuche auf einem Gasherd wurden Kochtöpfe aus Edelstahl und aus Aluminium verwendet. Der obere Durchmesser betrug 20 cm, am Boden 17 cm, die Höhe 7–8 cm, die Wandstärke 0,9–1,1 mm.

Ergebnisse

Beim Einweichen von 150 g Bohnen über Nacht in 1050 ml destilliertem Wasser ist der Wassergehalt von ursprünglich 11,2 auf 54,8% angestiegen (11). In 100 ml Einweichwasser wurde 1 g Trockensubstanz festgestellt. Bei den Kochversuchen wurden jeweils 150 g eingeweichte Bohnen in 300 ml Wasser (in Edelstahlgefäss) bzw. 450 ml Wasser (in Aluminiumgefäss) gekocht. Jeweils 150 g gewaschene Bohnen wurden in 400 ml (Edelstahlgefäss) bzw. 550 ml Wasser (Aluminiumgefäss) gekocht. Nach dem Kochen betrug das Gewicht der Bohnen 217—220 g. Die Menge des abgegossenen Kochwassers schwankte zwischen 39 und 62 ml.

Die Wassergehalte der gekochten Bohnen bewegten sich im Bereich von 56,8 bis 59,6%. Ob die Bohnen vorher eingeweicht oder nur gewaschen wurden, hatte keinen signifikanten Einfluss auf den Wassergehalt. Auch das Kochgeschirr war ohne Einfluss. Im Kochwasser betrug die Trockenmasse bei den über Nacht eingeweichten Bohnen 1,4–2,4%, bei den gewaschenen 3,5–5,5%. Durch das Einweichen soll die Kochzeit wesentlich verkürzt werden (12–15). In unseren Versuchen betrug die Kochzeit für die eingeweichten Bohnen 30–35 min, für die gewaschenen 68–76 min. Beim Einweichen über Nacht gingen 0,07 mg/100 g oder 2,9% des Niacins verloren. Im Einweichwasser konnte kein Niacin nachgewiesen werden.

Einfluss des Kochens

In der Tabelle 1 sind die nach 4 verschiedenen Kochmethoden erhaltenen Niacingehalte sowie die ins Kochwasser übergegangenen Niacinmengen angegeben. Die Werte in der Kolonne PP-Faktor in % beziehen sich auf die Vitaminausbeute berechnet auf das Ausgangmaterial (= 100%). Die ins Kochwasser übergegangenen Niacinmengen zeigen keine grossen Unterschiede (13,9–19,3%). Andere Autoren (6, 16) haben Werte von 8 bis 41% gefunden. Bei den gewaschenen Bohnen nahm der Niacingehalt beim Kochen etwas stärker ab als in den eingeweichten. Auch der Niacinverlust (%PP) war bei den gewaschenen Bohnen mit 17,7–19,6% grösser als in den eingeweichten Bohnen (6,7–8,7%). Das Material des Kochgeschirres hatte praktisch keinen Einfluss auf die Niacinverluste.

Zusammenfassung

Es wurden 4 Kochversuche mit Bohnen unter verschiedenen Bedingungen durchgeführt und die Niacingehalte sowohl in den Bohnen als auch im Kochwasser bestimmt. Die

Tabelle 1. Niacingehalte der nach verschiedenen Methoden gekochten Bohnen (in TM)

	Niacin in Bohnen		Niacin im Kochwasser		Niacin- verluste	
	mg/100 g TM	PP-Faktor	mg/100 ml	PP-Faktor	PP-Fakto	
Rohe Bohnen	2,42	100	_	-	-	
In den eingeweichten gekochten Bohnen	1.70	74.0	1.0	10.2	(7	
gekocht in Edelstahlgefäss gekocht in Aluminiumgefäss	1,79	74,0 73,6	1,8 1,46	19,3 17,7	6,7 8,7	
In den gewaschenen gekochten Bohnen					iya.	
gekocht in Edelstahlgefäss gekocht in Aluminiumgefäss	1,61	66,5 64,9	0,9 1,02	13,9 17,4	19,6 17,7	

vor dem Kochen in Wasser eingeweichten Bohnen enthielten etwas mehr Niacin als die entsprechenden vor dem Kochen gewaschenen Bohnen. Ins Kochwasser gelangten 14–19% des Niacins. Die verschiedenen Kochtöpfe (aus Aluminium und Edelstahl) hatten keinen signifikanten Einfluss auf die Resultate.

Résumé

Après 4 différents essais de cuisson effectués sur des haricots secs, le contenu en niacine a été déterminé d'une part, dans les haricots et, d'autre part, dans l'eau de cuisson. Les haricots trempés dans de l'eau préalablement à la cuisson présentaient une teneur un peu plus élevée en niacine que ceux qui avaient été simplement lavés avant d'être cuits. On a trouvé 14–19% de la niacine dans l'eau de cuisson. Les différentes casseroles utilisées (en aluminium et en acier inoxydable) n'ont eu aucun effet notable sur les résultats obtenus.

Summary

Beans were cooked in 4 different ways and the niacin content of the beans and the cooking water was determined. If, before cooking, the beans were soaked in water, they were found to contain somewhat more niacin than beans which were merely washed. The cooking water contained 14–19% of the niacin. The used different cooking utensils (aluminium and stainless steel) had no significant effect on the results obtained.

Literatur

1. Rockland, L. D., Miller, C. F. and Hahn, D. M.: Thiamine, pridoxine, niacin and folacin in quick-cooking beans. J. Food Sci. 42, 25–28 (1977).

- 2. Masters, H.: Dried legumes, and investigation of the methods employed for cooking vegetables, with special reference to the losses occurred. Biochem. J. 12, 231–234 (1918).
- 3. Hewston, E. M., Dawson, E. H., Alexander, L. M. and Keiles, E. D.: Vitamin and mineral content of certain foods as affected by home preparation. U. S. Dept. Agr. No. 628. Misc. Pub., Washington, D. C. 1948.
- 4. Harris, R. S. and Levenberg, R. K.: Effects of home preparation on nutrient content of foods of plant origin. In: Harris, R. S. and Von Loesecke, H. (eds), Nutritional evaluation of food processing. AVI Publishing Co., Westport, Conn. 1960.
- 5. Kylen, A. M. et al.: Microwave cooking of vegetables. J. Am. Dietet. Assoc. 39, 321–324 (1961).
- 6. Harris, R. S.: Effects of large-scale preparation on nutrients of foods of plant origin. In: Harris, R. S. and Von Loesecke, H. (eds.), Nutritional evaluation of food processing. AVI Publishing Co., Westport, Conn. 1960.
- 7. Onate, L. U., Arago, L. L., Garcia, P. C. and Abdon, I. C.: Nutrient composition of some raw and cooked philippine vegetables. Philip. J. Nutr. 23, 33-48 (1970).
- 8. Augustin, J., Beck, C. B., Kalbfleish, G., Kagel, L. C. and Matthews, R. H.: Variation in the vitamin and mineral content of raw and cooked commercial phaseolus vulgaris classes. J. Food Sci. 46, 1701–1706 (1981).
- 9. American Association of Cereal Chemists. Approved methods, p. 40. AACC, Minnesota 1969.
- 10. Association of Official Analytical Chemists. Official methods of analysis, 11th ed. AOAC, Washington, D. C. 1970.
- 11. Lowe, B.: Experimental cookery from the chemical and physical standpoint. 4th ed. John Wiley Inc., New York 1961.
- 12. Snyder, E. B.: Some factors affecting the cooking quality of the pea and Great Northern types of dry beans. Nebraska Agr. Expt. Sta. Research Bull. 85, 5–31 (1936).
- 13. Rockland, L. B. and Metzler, E. A.: Quick-cooking lima and other dry beans. Food Technol. 21, 344–348 (1967).
- 14. Kon, S.: Effects of soaking temperature on cooking and nutritional quality of beans. J. Food Sci. 44, 1329–1334 (1979).
- 15. Silva, C. A. B., Bates, R. P. and Deng, J. C.: Influence of soaking and cooking upon the softening and eating quality of black beans (Phaseolus vulgaris). J. Food Sci. 46, 1716—1720 (1981).
- 16. Brush, M. K., Hinman, W. F. and Halliday, G.: The nutritive value of canned foods. V. Distribution of water soluble vitamins between solid and liquid portions of canned vegetables and fruits. J. Nutr. 28, 131–134 (1944).

Prof. Dr. M. Colakoglu Ass. S. Ötles Ege Universitesi Mühendislik Fakültesi Gida Mühendisliği Bölümü Bornova-Izmir, TÜRKEI

Tabelle 30. Kosten der Lebensmittelkontrolle in den Kantonen im Jahre 1985

	Bruttokosten					**	1	
	Betriebskosten Neu- anschaffungen	Besoldungen	Reisespesen	Instruk- tionskurse	Zusammen	Einnahmen	Ausgaben netto	Bundes- beitrag
	Fr.	Fr.	Fr.	Fr.	Fr.	Fr.	Fr.	Fr.
Zürich	655 967	7 120 682	69 095	930	7 846 674	1 093 953	6 752 721	60 372
Bern	591 670	3 210 167	94 908	441	3 897 186	519 693	3 377 493	103 124
Luzern	310 115	1 035 270	15 513	2 149	1 363 047	523 010	840 037	65 059
Urkantone	266 960	1 010 564	45 941		1 323 465	482 595	840 870	49 621
Glarus	64 070	213 487	8 474	_	286 031	21 290	264 741	10 259
Zug	165 965	929 702	13 307	765	1 109 739	218 166	891 573	12 033
Fribourg	168 238	796 934	15 531	1 648	982 351	147 208	835 143	45 594
Solothurn	143 473	1 311 474	21 426	3 254	1 479 627	72 655	1 406 972	33 858
Basel-Stadt	349 038	3 035 500	7 961	4 723	3 397 222	175 047	3 222 175	21 326
Basel-Landschaft	323 502	1 131 956	14 306		1 469 764	271 653	1 198 111	11 154
Schaffhausen	145 999	656 544	19 930	2 2-1	822 473	76 453	746 020	18 889
Appenzell A. Rh.	56 657	118 747	9 448	_	184 852	18 237	166 615	11 974
Appenzell I. Rh.	15 099	8 321	874	_	24 294	2 810	21 484	4 3 5 5
St. Gallen	263 567	1 379 178	29 695	18 143	1 690 583	316 024	1 374 559	46 049
Graubünden	120 066	1 020 008	15 344	2 108	1 157 526	144 508	1 013 018	18 476
Aargau	284 401	2 037 366	67 305		2 389 072	325 992	2 063 080	44 85
Thurgau	202 620	1 681 739	40 072	_	1 924 431	196 748	1 727 683	42 534
Ticino	302 275	1 557 621	26 952	-	1 886 848	141 673	1 745 175	33 41:
Vaud	983 602	3 449 159	57 113	-	4 489 874	359 486	4 130 388	91 010
Valais	216 626	1 117 516	32 111	2 180	1 368 433	513 720	854 713	45 422
Neuchâtel	235 113	1 320 296	17 197	768	1 573 374	111 708	1 461 666	72 12
Genève	621 375	2 151 623	2 935	2 5 5 0	2 778 483	196 369	2 582 114	38 66
Jura D. A.	18 187	219 086	7 171	700	245 144	3 296	241 848	6 87
Jura Eaux	8 371	245 362	1 315	-	255 048	1 046	254 002	2 726
Total	6 512 956	36 758 302	633 924	40 359	43 945 541	5 933 340	38 012 201	889 77
1984	6 546 372	35 510 244	619 331	19 525	42 695 472	5 862 182	36 833 290	816 68
1983	6 618 779	32 460 080	615 466	35 514	39 729 841	5 695 106	34 034 735	807 44
1982	6 136 364	30 153 631	601 000	25 188	36 916 184	5 364 422	31 551 761	684 60

Kosten der Lebensmittelkontrolle

(Nachtrag zum Bericht «Die Durchführung der Lebensmittelkontrolle in der Schweiz im Jahre 1985», Heft 3, Seite 402, 1986)

Anschaffungen durch die Kantone

23 (22) Kantone haben Apparate im Wert von Fr. 930 034.— (1 460 856.—) angeschafft.

Bundessubventionen und Aufwand

Für Bauten wurden den Kantonen (Zürich, Bern, Fribourg, Basel-Stadt, Basel-Landschaft) Fr. 642 553.— (293 150.–) ausgerichtet.

Die ordentlichen Subventionen sowie der Aufwand für die Durchführung der Lebensmittelkontrolle sind in Tabelle 30 wiedergegeben.

Prüfungen für Lebensmittelchemiker

Zwei weitere Kandidaten (Michel Cuttat, Neuchâtel; Jean-Marie Pasquier, Fribourg) haben die Fachprüfung bestanden und das eidgenössische Diplom eines Lebensmittelchemikers erworben.