Zeitschrift: Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und

Hygiene = Travaux de chimie alimentaire et d'hygiène

Herausgeber: Bundesamt für Gesundheit

Band: 77 (1986)

Heft: 1

Artikel: Détermination par GC-MS des produits de thermo-oxydation des

revêtements en polystyrène d'emballages alimentaires fabriqués par thermoformage = GC-MS determination of thermo-oxidation products from a new polystyrene food packing processed by thermoforming

Autor: Vu Duc, T. / Huynh, C.K. / Bergerioux, C.

DOI: https://doi.org/10.5169/seals-983372

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

T. Vu Duc et C.K. Huynh, Institut de médecine du travail et d'hygiène industrielle, Le Mont-sur Lausanne et C. Bergerioux, Tetra Pak, Romont Assistance technique: P. Boiteux

Détermination par GC-MS des produits de thermo-oxydation des revêtements en polystyrène d'emballages alimentaires fabriqués par thermoformage

GC-MS Determination of Thermo-Oxidation Products from a new Polystyrene Food Packing Processed by Thermoforming

Introduction

De nos jours, le polystyrène (PS) est très largement utilisé dans l'industrie alimentaire. Les usages que l'on fait dans ce domaine vont de l'emballage en rayons aux conteneurs pour le transport et le stockage des produits dont la gamme est des plus diverses. On trouvera dans la référence (1) un excellent condensé sur le sujet.

Etant donné le contact direct entre l'aliment ou la boisson et le polymère, une connaissance précise des substances pouvant migrer dans le contenu est nécessaire. Dans ce contexte, la détermination des substances transférées de l'emballage vers le produit alimentaire peut s'effectuer de façon globale, auquel cas on recherche l'ensemble des produits connus et inconnus. Par contre la détermination de la migration spécifique consiste à rechercher un à deux composés dont la toxicité présente un intérêt particulier ou parce qu'ils sont indicateurs du mécanisme de cette migration (2).

Ces substances migrantes sont de trois types:

- monomères et oligomères à bas poids moléculaire
- additifs (antioxydants, plastifiants, catalyseurs, etc . . .)
- produits de dégradation thermique et de thermo-oxydation.

Les substances correspondantes aux deux premiers types sont bien connues tant du point de vue des quantités (3,4) que de leurs propriétés toxicologiques (5, 6) ou encore de leur contribution au goût («off- flavor»). En général les principaux risques des plastiques sont associés aux monomères (7) et à la grande variété des additifs (8) qui sont utilisés avec eux.

Les substances appartenant au 3^e type ont été décrites (cf. tableaux 1 et 2), mais leur présence est fonction du procédé de fabrication et des additifs utilisés.

Tableau 1. Produits de thermodégradation des polymères à base de styrène (μg/g de polymère)*

Produits	PS (255 °C)	PS (260 °C)	PSC** (240 °C)	PSC** (260 °C)
Hydrocarbures aromatiques			Nan as	11.00
Toluène	<10	<10	<10	<10
Styrène	330	520	390	290
Ethylbenzène	24	38	39	24
Di-méthylbenzène	, -	-		
α-Méthylstyrène	<10	<10	<10	<10
β-Méthylstyrène	<10	<10	<10	<10
3-Phényl-1-propène	-	_	- 7 50	
n-Propylbenzène	<10	19	<10	23
Iso-propylbenzène	11	25	25	18
Ethyl-méthylbenzène	<10	15	<10	20
Phénylcyclohexène	_	_	-	_
1,3-Di-phénylpropène	<10	<10	11	<10
1,3-Di-phénylpropane	<10	<10	<10	<10
	1 1 1 1 1 1			10.8%
Styrène dimères	81			all Famel
A	29	43	50	<10
В	14	26	15	24
C	120	250	100	180
47				. stroudes
Alcools				242
Phénol		F		z do la consideración
Crésol			T doub	Constant 2
Aldéhydes	Victoria de la compansión de la compansi			
Benzaldéhyde	_	_	_	- CANONS
			250	yrida' (parasi)
Cétones	House Harrison	and the market and the		
Acétophénone	_	-		_

^{*} cf réf. (3)

^{**} PSC = polystyrène choc. Les tirets signifient inférieur à la limite de détection ou inexistant.

Tableau 2. Produits de thermooxydation des polymères à base de styrène (μ g/g de polymère)*

Produits	PS (240 °C)	PS (250 °C)	PSC** (224 °C)	PSC** (250 °C)
Hydrocarbures aromatiques				44 12 1 1
Benzène	<10	14	<10	<10
Toluène	<10	<10	<10	<10
Styrène	520	740	310	280
Ethylbenzène	37	24	32	26
Di-méthylbenzène	_	_	_	_
α-Méthylstyrène	13	29	<10	<10
β-Méthylstyrène	<10	13	<10	<10
3-Phényl-1-propène	_	Sec. +		_
n-Propylbenzène	16	<10	<10	14
Iso-propylbenzène	23	<10	19	14
Ethylméthylbenzène	17	<10	<10	17
Phénylcyclohexène	_	_	-	i -
1,3-Di-phénylpropène	<10	11	<10	<10
1,3-Di-phénylpropane	<10	12	<10	<10
Styrène dimères			9 4-2	
A	51	74	48	17
В	50	40	14	27
С	260	110	100	200
Alcools				
Phénol	50	120	17	27
Crésol	_	_ /	_	_
Benzyl alcool	18	34	11.12 - 12vava	i la po s eral
2-Phényl-2-propanol	S	_	Le amendes p	beautie
Aldéhydes			to MARA Sept of	la parti
Ethanal	_	L / "	20	32
Acroléine	_	-	22	80
Benzaldéhyde	810	2300	130	300
Cinnamaldéhyde	16	55	_	-
Cétones				100000000000000000000000000000000000000
Acétophénone	180	380	44	58
Acide				ta Teoretti)
Acide benzoïque	300	570	80	160

^{*} cf réf. (3) ** PSC = polystyrène choc.

En effet, les procédés de mise en forme des thermoplastiques que ce soit par extrusion-couchage, extrusion-injection ou par thermoformage sont tous suscepti-

bles de conduire à la formation de ces produits.

Le but de ce travail est d'examiner la séparation chromatographique des différents produits de thermodégradation et de thermo-oxydation du polystyrène. De par la présence possible de nombreux isomères, nous avons étudié les conditions de leur détermination par la chromatographie en phase gazeuse sur colonne capillaire et par spectrométrie de masse. Le procédé analytique a été appliqué à la détermination des produits de thermo-oxydation résultant du thermoformage d'un nouveau type d'emballage.

Partie expérimentale

Thermoformage

L'emballage alimentaire est produit à partir d'un laminé de polystyrène choc ou de polystyrène expansé. La couche de contact est constituée par du PS choc ayant 8% de polybutadiène, approuvée pour le contact direct avec les aliments, c'est-à-dire ayant moins de 500 ppm de styrène monomère résiduel. Le laminé est thermoformé après avoir été chauffé par de l'air à 370 °C pendant environ 0,8 seconde. L'opération se déroule selon un procédé entièrement automatique. L'emballage terminé a une surface interne d'environ 240 cm² pour une contenance de 250 ml.

Extraction

Une fois les emballages fermés et assemblés, 2 ml de solvant ont été injectés dans ceux-ci. On s'assure que le solvant ait mouillé toute la surface interne des parois et après un temps de contact de 30 min, on le recueille dans un flacon capsulé par une membrane en téflon. Pour une première série d'emballages, le solvant utilisé était le méthanol p. a. distillé alors que pour la deuxième série on a utilisé l'hexane. Les extractions ont été effectuées à température ambiante. Les extraits sont successivement injectés dans le chromatographe couplé au spectromètre de masse.

Séparation chromatographique

Un mélange de substances de référence (cf. fig. 1) comprenant des hydrocarbures aromatiques, des dérivés du styrène, des alcools et des composés carbonylés est constitué. La séparation est effectuée sur plusieurs colonnes capillaires de polarité différente dont les caractéristiques sont: A: Colonne en silice fondu (Chrompack), 15 m x 0,25 mm Ø int., phase CP-Sil 5 (100% de méthylpolysiloxane).

B: Colonne verre (de notre fabrication), 34 m x 0,25 mm Ø int., phase Carbowax

20 M (polyéthylèneglycol).

C: Colonne en silice fondu (Chrompack), 25 m x 0,22 mm Ø int., phase CP-Sil 8

(5% phényl – 95% méthylpolysiloxane).

D: Colonne en silice fondu (Supelco), 60 m x 0,32 mm Ø int., phase SPB-5 (5% diphényl - 94% diméthyl - 1% vinylpolysiloxane).

Couplage chromatographie en phase gazeuse-spectrométrie de masse (GC-MS)

Un chromatographe Carlo Erba (modèle 4160) équipé d'un injecteur en mode diviseur de débit («split-splitless») est muni de la colonne CP-Sil 5 dont une extrêmité aboutit directement dans la source d'ion du spectromètre de masse (Nermag R 10-10), pourvu d'un logiciel d'acquisition et de traitement des données par ordinateur (SIDAR).

La séparation chromatographique est effectuée en programmation de température. La température de l'injecteur est de 250 °C, l'interface est à 275 °C. Le gaz

porteur est l'hélium au débit de 2 ml/min.

La température de la source d'ion est de 200 °C. L'ionisation est effectuée en mode impact électronique positive (EI+) avec l'énergie des électrons fixée à 70 eV. Les spectres sont balayés de m/z 35 à 450. La durée d'un balayage est de 0,3 seconde.

La quantification est effectuée par fragmentographie de masse sur l'ion le plus intense par rapport aux mêmes produits de référence externe. Lorsque ceux-ci n'existent pas (dimères du styrène), on leur assigne une réponse identique à celle du styrène monomère.

Résultats et discussion

Séparation chromatographique et spectres de masse

La figure 1 montre typiquement la séparation chromatographique du mélange des produits de dégradation sur la phase CP-Sil 5. Le tableau 3 résume les séquences de séparation sur les différentes colonnes en exprimant le temps de rétention relativement à celui du styrène monomère. Etant donné la présence de nombreux isomères, aucune colonne seule n'a le pouvoir de les séparer entièrement. La combinaison de la colonne Carbowax 20 M avec l'une des CP-Sil permet de tourner la difficulté en particulier pour les produits no 14-15-16, étant entendu qu'aucune des 3 colonnes ne sépare les stéréoisomères (no 17-18). On note que la Carbowax 20 M résoud bien la paire m- et p-styrène de même que les m- et p-crésols (no 23-24). Entre les deux CP-Sil, on constate des inversions d'élution intéressantes entre les produits no 9-10, 14-15 et 20-21. Les pics 25 et 26 ne font pas partie des produits de dégradation connus et ont été testés comme standards internes éventuels.

Les produits de thermodégradation et de thermo-oxydation montrés dans le tableau 4 ont été identifiés sur la base de leur temps de rétention et de leurs spectres de masse comparés à ceux des substances de référence.

Les dimères A, B et C du styrène, pour lesquels il n'y avait pas de standards, ont été identifiés par comparaison avec les spectres publiés dans la littérature (2). Par ailleurs, le fragmentogramme de masse à m/z 312 (poids moléculaire du trimère) montre 3 pics de temps de rétention différents (fig. 2). Leurs spectres de masse affichent des caractéristiques très proches de ceux des dimères avec un

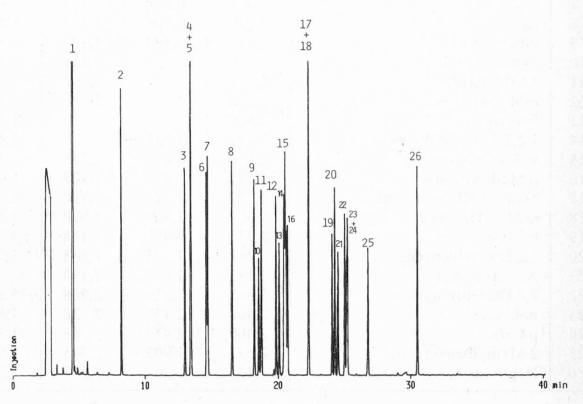


Fig. 1. Séparation des produits de dégradation thermique et de thermooxydation sur CP-Sil 5 (conditions: voir tableau 3)

	(- /	
No	Produits		
1 =	Benzène	14 =	1,2,4-Triméthylbenzène
2 =	Toluène	15 =	m-Méthylstyrène
3 =	Ethylbenzène	16 =	p-Méthylstyrène
4 =	m-Xylène	17 =	Trans β -Méthylstyrène
5 =	p-Xylène	18 =	ω-Méthylstyrène
6 =	Styrène	19 =	o-Crésol
7 =	o-Xylène	20 =	1,2-Diéthylbenzène
8 =	Isopropylbenzène	21 =	Acétophénone
9 =	n-Propylbenzène	22 =	2,6-Diméthylstyrène
10 =	Benzaldéhyde	23 =	m-Crésol
11 =	4-Ethyltoluène	24 =	p-Crésol
12 =	α-Méthylstyrène	25 =	2-Méthylbenzofuran
13 =	Phénol	26 =	Naphtalène

Tableau 3. Temps de rétention relatif des produits de thermodégradation et de thermooxydation sur 4 phases stationnaires (voir texte)

No	produits	A	В	С	D
1	Benzène	0,251	0,341	0,333	0,422
2	Toluène	0,462	0,498	0,479	0,608
2 3	Ethylbenzène	0,855	0,691	0,859	0,891
4	m-Xylène	0,907	0,723	0,895	0,919
5	p-Xylène	0,907	0,709	0,895	0,919
6	Styrène	1	1	1	1
7	o-Xylène	1,026	0,826	1,010	1,009
8	Isopropylbenzène	1,240	0,804	1,197	1,135
9	n-Propylbenzène	1,443	0,889	1,394	1,257
10	Benzaldéhyde	1,348	1,558	1,436	1,291
11	4-Ethyltoluène	1,513	0,922	1,460	1,298
12	α-Méthylstyrène	1,628	1,173	1,598	1,380
13	Phénol	1,679	2,353	1,624	1,380
14	1,2,4-Triméthylbenzène	1,731	1,057	1,668	1,433
15	m-Méthylstyrène	1,708	1,230	1,683	1,433
16	p-Méthylstyrène	1,731	1,230	1,707	1,452
17	Trans β-Méthylstyrène	1,957	1,329	1,910	1,580
18	ω-Méthylstyrène	1,957	1,329	1,910	1,580
19	o-Crésol	2,225	2,353	2,148	1,710
20	1,2-Diéthylbenzène	2,262	1,173	2,168	1,744
21	Acétophénone	2,145	1,801	2,198	1,771
22	2,6-Diméthylstyrène	2,365	1,329	2,208	1,807
23	m-Crésol	2,400	2,492	2,238	1,807
24	p-Crésol	2,400	2,459	2,245	1,807
25	2-Méthylbenzofuran	2,571	1,703	2,495	1,960
26	Naphtalène	3,121	1,962	2,997	2,311

Colonne A: $40 \,^{\circ}\text{C}$ (4 min), $2 \,^{\circ}\text{C/min}$ $220 \,^{\circ}\text{C}$ (t_R styrène: 8,90 min). Colonne B: $40 \,^{\circ}\text{C}$ (4 min), $3 \,^{\circ}\text{C/min}$ $220 \,^{\circ}\text{C}$ (t_R styrène: 25,68 min). Colonne C: $40 \,^{\circ}\text{C}$ (3 min), $1 \,^{\circ}\text{C/min}$ $300 \,^{\circ}\text{C}$ (t_R styrène: 17,29 min). Colonne D: $50 \,^{\circ}\text{C}$ (4 min), $2 \,^{\circ}\text{C/min}$ $220 \,^{\circ}\text{C}$ (t_R styrène: 17,09 min).

fragment intense à m/z 91 à côté de l'ion moléculaire 312. Les faibles différences entre les trois spectres désignés par A, B et C sur la figure 3 résident dans l'intensité des ions 312, 208, 207, 129 et 104. Nous pensons être en présence de trois formes de trimères du styrène qui sont séparées par chromatographie. Cette assignation est une tentative d'identification et demande à être confirmée par des procédés plus solides. De même que pour les dimères, l'élucidation de leur structure est en dehors du cadre de ce travail.

Grâce à la spectrométrie de masse, il a pu être identifié l'ionol (2,6-diterbutyl p-crésol), un antioxydant, dont la présence a été confirmée par la suite par le fabricant de granulés de PS.

Tableau 4. Niveaux des produits de thermodégradation et de thermooxydation dans les extraits organiques à la suite du thermoformage et du soudage des emballages (ng/échantillon). Moyenne des déterminations sur 3 échantillons

Benzène Toluène Ethylbenzène m + p-Xylène o-Xylène Styrène Isopropylbenzène 4-Ethyltoluène n-Propylbenzène 1,3,5-Triméthylbenzène 2-Ethyltoluène 1,2,4-Triméthylbenzène 1,2,5-Triméthylbenzène α-Méthylstyrène m-Méthylstyrène p-Méthylstyrène φ- + trans β-Méthylstyrène 1,2-Diéthylbenzène 2,6-Diméthylstyrène Dimères du styrène: dimère A dimère B dimère C		- - 3 - 270 - - - - - - - - - - - - - - - - - - -
Benzène Toluène Ethylbenzène m + p-Xylène o-Xylène Styrène Isopropylbenzène 4-Ethyltoluène n-Propylbenzène 1,3,5-Triméthylbenzène 2-Ethyltoluène 1,2,4-Triméthylbenzène 1,2,5-Triméthylbenzène α-Méthylstyrène m-Méthylstyrène p-Méthylstyrène p-Méthylstyrène 1,2-Diéthylbenzène 2,6-Diméthylstyrène Dimères du styrène: dimère A dimère B dimère C	250 27200 2550 1150 1900 80 50 15 — 60 80 25 290 — 1550 280	- 270 - - - - - - - - - - - - - - 100
Toluène Ethylbenzène m + p-Xylène o-Xylène Styrène Isopropylbenzène 4-Ethyltoluène n-Propylbenzène 1,3,5-Triméthylbenzène 2-Ethyltoluène 1,2,4-Triméthylbenzène 1,2,5-Triméthylbenzène m-Méthylstyrène m-Méthylstyrène m-Méthylstyrène p-Méthylstyrène 0- + trans β-Méthylstyrène 1,2-Diéthylbenzène 2,6-Diméthylstyrène Dimères du styrène: dimère A dimère B dimère C	250 27200 2550 1150 1900 80 50 15 — 60 80 25 290 — 1550 280	- 270 - - - - - - - - - - - - - - 100
Ethylbenzène m + p-Xylène Styrène Isopropylbenzène 4-Ethyltoluène n-Propylbenzène 1,3,5-Triméthylbenzène 2-Ethyltoluène 1,2,4-Triméthylbenzène 1,2,5-Triméthylbenzène α-Méthylstyrène m-Méthylstyrène p-Méthylstyrène p-Méthylstyrène 2,6-Diméthylstyrène Dimères du styrène: dimère A dimère B dimère C	250 27200 2550 1150 1900 80 50 15 — 60 80 25 290 — 1550 280	- 270 - - - - - - - - - - - - - - 100
m + p-Xylène Styrène Isopropylbenzène 4-Ethyltoluène n-Propylbenzène 1,3,5-Triméthylbenzène 2-Ethyltoluène 1,2,4-Triméthylbenzène 1,2,5-Triméthylbenzène α-Méthylstyrène m-Méthylstyrène p-Méthylstyrène ψ- + trans β-Méthylstyrène 1,2-Diéthylbenzène 2,6-Diméthylstyrène Dimères du styrène: dimère A dimère B dimère C	250 27200 2550 1150 1900 80 50 15 — 60 80 25 290 — 1550 280	- 270 - - - - - - - - - - - - - - 100
o-Xylène Isopropylbenzène 4-Ethyltoluène n-Propylbenzène 1,3,5-Triméthylbenzène 2-Ethyltoluène 1,2,4-Triméthylbenzène 1,2,5-Triméthylbenzène α-Méthylstyrène m-Méthylstyrène p-Méthylstyrène φ- + trans β-Méthylstyrène 1,2-Diéthylbenzène 2,6-Diméthylstyrène Dimères du styrène: dimère A dimère B dimère C	27200 2550 1150 1900 80 50 15 — 60 80 25 290 — 1550 280	- - - - - - - - - - 100
Styrène Isopropylbenzène 4-Ethyltoluène n-Propylbenzène 1,3,5-Triméthylbenzène 2-Ethyltoluène 1,2,4-Triméthylbenzène 1,2,5-Triméthylbenzène α-Méthylstyrène m-Méthylstyrène p-Méthylstyrène φ- + trans β-Méthylstyrène 1,2-Diéthylbenzène 2,6-Diméthylstyrène Dimères du styrène: dimère A dimère B dimère C	27200 2550 1150 1900 80 50 15 — 60 80 25 290 — 1550 280	- - - - - - - - - - 100
Isopropylbenzène 4-Ethyltoluène n-Propylbenzène 1,3,5-Triméthylbenzène 2-Ethyltoluène 1,2,4-Triméthylbenzène 1,2,5-Triméthylbenzène α-Méthylstyrène m-Méthylstyrène p-Méthylstyrène p-Méthylstyrène 1,2-Diéthylbenzène 2,6-Diméthylstyrène Dimères du styrène: dimère A dimère B dimère C	2550 1150 1900 80 50 15 — 60 80 25 290 — 1550 280	- - - - - - - - - - 100
4-Ethyltoluène n-Propylbenzène 1,3,5-Triméthylbenzène 2-Ethyltoluène 1,2,4-Triméthylbenzène 1,2,5-Triméthylbenzène α-Méthylstyrène m-Méthylstyrène p-Méthylstyrène ψ- + trans β-Méthylstyrène 1,2-Diéthylbenzène 2,6-Diméthylstyrène Dimères du styrène: dimère A dimère B dimère C	1150 1900 80 50 15 — 60 80 25 290 — 1550 280	The second secon
n-Propylbenzène 1,3,5-Triméthylbenzène 2-Ethyltoluène 1,2,4-Triméthylbenzène 1,2,5-Triméthylbenzène α-Méthylstyrène m-Méthylstyrène p-Méthylstyrène ω- + trans β-Méthylstyrène 1,2-Diéthylbenzène 2,6-Diméthylstyrène Dimères du styrène: dimère A dimère B dimère C	1900 80 50 15 — 60 80 25 290 — — 1550 280	The second secon
1,3,5-Triméthylbenzène 2-Ethyltoluène 1,2,4-Triméthylbenzène 1,2,5-Triméthylbenzène α-Méthylstyrène m-Méthylstyrène p-Méthylstyrène ω- + trans β-Méthylstyrène 1,2-Diéthylbenzène 2,6-Diméthylstyrène Dimères du styrène: dimère A dimère B dimère C	80 50 15 — 60 80 25 290 — 1550 280	The second secon
2-Ethyltoluène 1,2,4-Triméthylbenzène 1,2,5-Triméthylbenzène α-Méthylstyrène m-Méthylstyrène p-Méthylstyrène ω- + trans β-Méthylstyrène 1,2-Diéthylbenzène 2,6-Diméthylstyrène Dimères du styrène: dimère A dimère B dimère C	50 15 — 60 80 25 290 — 1550 280	The second secon
1,2,4-Triméthylbenzène 1,2,5-Triméthylbenzène α-Méthylstyrène m-Méthylstyrène p-Méthylstyrène ω- + trans β-Méthylstyrène 1,2-Diéthylbenzène 2,6-Diméthylstyrène Dimères du styrène: dimère A dimère B dimère C	15 - 60 80 25 290 - - 1550 280	The second secon
1,2,5-Triméthylbenzène α-Méthylstyrène m-Méthylstyrène p-Méthylstyrène ω- + trans β-Méthylstyrène 1,2-Diéthylbenzène 2,6-Diméthylstyrène Dimères du styrène: dimère A dimère B dimère C	- 60 80 25 290 - 1550 280	The second secon
 α-Méthylstyrène p-Méthylstyrène p-Méthylstyrène ω- + trans β-Méthylstyrène 1,2-Diéthylbenzène 2,6-Diméthylstyrène Dimères du styrène: dimère A dimère B dimère C 	80 25 290 — 1550 280	The second secon
m-Méthylstyrène p-Méthylstyrène ω- + trans β-Méthylstyrène 1,2-Diéthylbenzène 2,6-Diméthylstyrène Dimères du styrène: dimère A dimère B dimère C	80 25 290 — 1550 280	The second secon
p-Méthylstyrène ω- + trans β-Méthylstyrène 1,2-Diéthylbenzène 2,6-Diméthylstyrène Dimères du styrène: dimère A dimère B dimère C	25 290 — — — 1550 280	The second secon
 ω- + trans β-Méthylstyrène 1,2-Diéthylbenzène 2,6-Diméthylstyrène Dimères du styrène: dimère A dimère B dimère C 	290 - 1550 280	The second secon
 ω- + trans β-Méthylstyrène 1,2-Diéthylbenzène 2,6-Diméthylstyrène Dimères du styrène: dimère A dimère B dimère C 	1550 280	The second secon
1,2-Diéthylbenzène 2,6-Diméthylstyrène Dimères du styrène: dimère A dimère B dimère C	280	The second secon
2,6-Diméthylstyrène Dimères du styrène: dimère A dimère B dimère C	280	The second secon
Dimères du styrène: dimère A dimère B dimère C	280	The second secon
dimère B dimère C		The second secon
Alcools		30
	6820	680
Phénol	1 - 1 - 1 - 1 - 1 - 1	
m + p-Crésol		
2,6-Diterbutyl p-Crésol (ionol)*	6250	320
2,0-Diterbutyr p-Cresor (101101)	6230	320
Aldéhydes		
Benzaldéhyde	the state of the s	100 (1 00
Cinnamaldéhyde		-
	THE THE REPORT OF	1.101.4
Cétones		
Acétophénone		

^{*} Antioxydant de départ dans le polymère.

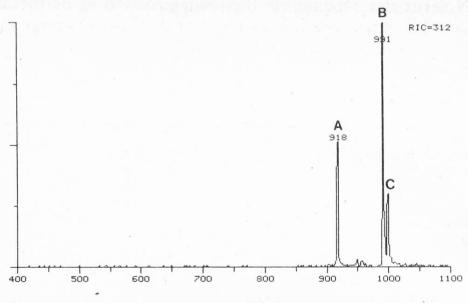


Fig. 2. Chromatogramme de masse à m/z 312

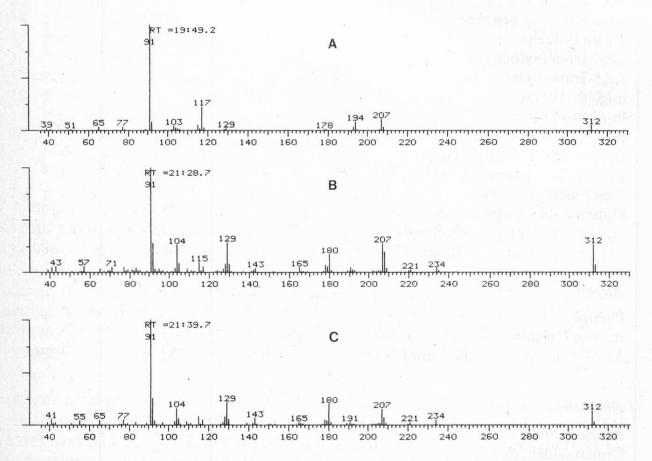


Fig. 3. Spectres de masse des composés assimilés aux trimères A, B et C

Etant donné que l'aliment est une matrice complexe et variable en composition chimique par rapport aux polymères, les expériences sur la migration sont souvent menées en utilisant des simulants à la place du produit alimentaire réel

pour simplifier la détermination analytique. Nous avons choisi l'hexane et le méthanol qui figurent parmi les nombreux solvants organiques utilisés dans les études sur la migration.

Les produits de thermodégradation et de thermo-oxydation contenus dans les extraits hexane et méthanolique sont présentés dans le tableau 4. Nous avons renoncé à quantifier les trimères car leur identification est par trop incertaine. On constate une grande différence entre les deux solvants, l'hexane possédant un pouvoir extractant beaucoup plus important quel que soit le mécanisme de transfert des composés: diffusion, lessivage ou une combinaison des deux. La présence de dimères et sans doute de trimères indique un certain degré d'attaque du polymère de base par le solvant.

Nous pensons que l'extraction par le méthanol reflète beaucoup plus la quantité des substances adsorbées à la surface de la couche de contact alors que l'extraction par l'hexane simule plutôt la quantité de substances pouvant migrer dans une boisson à fort pouvoir extractant comme le jus d'orange ou les boissons chocolatées.

La quantité de substances extraites par le méthanol est en fait très faible. Elle pourrait être liée en partie aux opérations de thermoformage et de soudure (fermeture) des emballages par ultra-sons. Il est intéressant de noter que le thermoformage ainsi que les opérations annexes dans les conditions expérimentales décrites ne conduisent pas à la formation de quantités mesurables de produits de thermo-oxydation susceptibles de contribuer au «off-flavor» comme l'éthanal, la benzaldéhyde, la cinnamaldéhyde, l'acétophénone ou l'acide benzoïque.

Par ailleurs, il a aussi pu être montré qu'aucune augmentation notable de la quantité de styrène monomère et des différents dimères n'était décelable comme le montre le tableau 5.

Les études sur la migration se font généralement au moyen d'un simulant par une extraction de plus longue durée à la température appropriée et non sur 30 minutes. Dans notre cas, le choix de ces solvants a été dicté par les impératifs suivants:

- rapidité du test
- possibilité d'avoir d'une part des renseignements sur la quantité de substances adsorbées en surface et, d'autre part de simuler une boisson contenant des substances pouvant pénétrer le polymère.

Tableau 5. Extraction de monomère et dimères du styrène

	Styrène monomère (ppm)	Dimères du styrène			
		A (ppm)	B (ppm)	C (ppm)	
Avant Après	230 ± 20 235 ± 20	245 ± 10 230 ± 20	50 50	1410 ± 80 1420 ± 100	

Résumé

La séparation des dérivés du styrène et des produits de thermo-oxydation a été étudiée par chromatographie en phase gazeuse sur colonne capillaire et par spectrométrie de masse. Seule une combinaison de 2 phases stationnaires permet de séparer les nombreux isomères. La technique a été appliquée à la détermination des produits de thermodégradation et de thermo-oxydation des emballages en polystyrène obtenus par un nouveau procédé de thermoformage. Les spectres de masse des supposés trimères du styrène sont présentés.

Zusammenfassung

Die Trennung von Styrolderivaten und thermo-oxydierten Produkten wurde mittels Kapillargaschromatographie und Massenspektrometrie untersucht. Die zahlreichen Isomeren konnten erst durch eine Kombination von zwei stationären Phasen getrennt werden. Die Methode wurde zur Bestimmung der durch thermischen Abbau und Thermo-oxidation entstehenden Produkte aus einem neuen heissverformten Polystyrolverpackungsmaterial eingesetzt. Die Massenspektren der vermuteten Styroltrimeren werden vorgestellt.

Summary

The separation of the styrene derivatives and thermo-oxidative products has been examined by capillary GC and MS. It appeared that one single column could not separate the numerous isomers. The procedure has been applied to the determination of thermal degradation and thermo-oxidative products of a new polystyrene packing processed by thermoforming. Mass spectra of tentatively identified trimers of styrene are presented.

Bibliographie

- 1. Ministry of Agriculture, Fisheries and Food: Survey of styrene levels in food contact materials and in foods. The eleventh report of the steering goup on food surveillance. The working party on styrene. Food surveillance paper no 11. Her Majesty's Stationery Office, London 1983.
- 2. Botrel, J.: Problèmes posés par le contrôle de la migration des matériaux plastiques au contact des aliments (1). Ann. Fals. Exp. Chim. 75 (805), 75–80 (1982).
- 3. Hoff, A. and Jacobsson, S.: Degradation products of plastics. Polyethylene and styrene-containing thermoplastics Analytical occupational and toxicologic aspects II. Analysis of volatile products. Scand. J. Work. Environm. Health 8, 12–27 (1982).
- 4. Rigby, L. J.: The collection and identification of toxic volatiles from plastics under thermal stress. Ann. Occup. Hyg. 24 (4), 331–345 (1981).
- 5. Withey, J. R.: Mutagenic, carcinogenic and teratogenic hazards arising from human exposure to plastic additives. In: Hiatt, H. H. Watson, J. D. and Winsten J. A. (eds), Origins of human cancer, book A, pp. 219–240. Cold Spring Harbor, NY, Cold Spring Harbor Laboratories 1983.
- 6. Nicholson, W. J. and Tarr, D.: Occupational hazards in production and processing of sty-

rene polymers-epidemiologic findings in «Industrial hazards of plastics and synthetic elastomers», pp. 263–277. Proceedings of the international symposium on occupational hazards related to plastics and synthetic elastomers, Espoo Finland, Nov 22–27, 1982. Järvisolo, J., Pfäffli, P., Vainio, H. and Alan, R. Liss Inc., New-York, NY 1984.

- 7. Withey, J. R.: Quantitative analysis of styrene monomer in polystyrene and foods including some preliminary studies of the uptake and pharmacodynamics of the monomer in rats. Environm. Health Perspect. 17, 125–133 (1976).
- 8. Stepek, J. and Daoust H.: Additives for plastics. Polymers properties and applications 5. Springer-Verlag, Berlin 1983.

Dr C. Bergerioux Tetra Pak SA CH-1680 Romont Dr T. Vu Duc Dr C. K. Huynh Institut de médecine du travail et d'hygiène industrielle CH-1052 Le Mont-sur-Lausanne