Zeitschrift: Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und

Hygiene = Travaux de chimie alimentaire et d'hygiène

Herausgeber: Bundesamt für Gesundheit

Band: 74 (1983)

Heft: 2

Artikel: Eine rationelle Methode zur Bestimmung von Aflatoxin M in Milch und

Milchpulver im unteren ppt-Bereich = An efficient method for the determination of aflatoxin M in milk and milk powder in the lower ppt

region

Autor: Steiner, W. / Battaglia, R. / Romann, E.

DOI: https://doi.org/10.5169/seals-983007

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Eine rationelle Methode zur Bestimmung von Aflatoxin M₁ in Milch und Milchpulver im unteren ppt-Bereich

An Efficient Method for the Determination of Aflatoxin M₁ in Milk and Milk Powder in the Lower ppt Region

W. Steiner und R. Battaglia Kantonales Laboratorium, Zürich (Direktor: Dr. E. Romann)

Einleitung

In der Milch ist ca. 1% der von einer Kuh aufgenommenen Aflatoxin-B₁-Men-

ge als Aflatoxin M_1 zu finden (1, 2).

Tierversuche und Messungen des kovalenten Bindungsindex (CBI) in Ratten zeigten, daß Aflatoxin M₁, obwohl weniger karzinogen als Aflatoxin B₁, als starkes Hepatokarzinogen einzustufen ist (3, 4). Weil Milch (vor allem bei Kleinkindern!) eines der Hauptnahrungsmittel darstellt, ist ein tiefer Aflatoxin-M₁-Gehalt erstrebenswert. In der Schweiz gilt für Lieferantenmilch ein Grenzwert von 50 ng/kg, für trinkfertige Kindernährmittel inklusive Säuglingsmilch ein solcher von 10 ng/kg. Zur Ermittlung dieses Gehalts existieren verschiedene Methoden (5–8). Die hier beschriebene Methode zeichnet sich durch einen sehr sparsamen Verbrauch an Lösungsmitteln, einen hohen Probendurchsatz und eine tiefe Nachweisgrenze (3–5 ng/kg) aus. Der Extraktionsschritt beruht auf einer Publikation von Winterlin und Mitarbeitern (9).

Experimenteller Teil

Prinzip

Eine Sep-Pak-C₁₈-Kartusche dient zur Isolierung von Aflatoxin M₁ aus verdünnter Milch. Mit einem Gemisch von Acetonitril und Wasser wird das Aflatoxin M₁ eluiert und mit Dichlormethan aus dem Eluat extrahiert. Der Extrakt wird dünnschichtchromatographisch aufgetrennt und der Gehalt an Aflatoxin M₁ densitometrisch ermittelt.

Reagenzien

Standardlösung M_1 (0,05 μ g/ml in Toluol/Acetonitril [9 + 1], Gehalt überprüft nach 10), Bezugsquelle: Prof. Leistner, Bundesanstalt für Fleischforschung, 8650 Kulmbach/BRD

Sämtliche übrigen Reagenzien (vorwiegend Lösungsmittel) wiesen p.a.-Qualität auf.

Geräte und Materialien

20-ml-Einmalspritzen (Once, Luer)

Sep-Pak C₁₈ Cartridges (Waters)

Gerät zur gleichzeitigen Verwendung von 6 Sep-Pak-Kartuschen, mit stufenloser Geschwindigkeitseinstellung (Abb. 1)

Dünnschichtchromatographie: Kieselgel 60 auf Alufolie, ohne F (Merck,

Kat. Nr. 5553). Auftraggerät: CAMAG Linomat III Densitometer: DC/HPDC-Scanner 76500 (CAMAG)

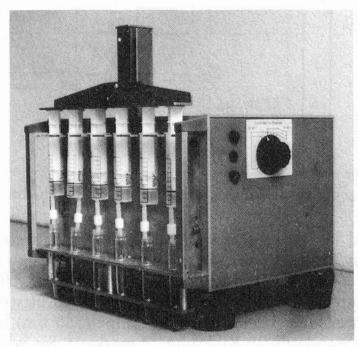


Abb. 1. Gerät zur gleichzeitigen Verwendung von 6 Sep-Pak-Kartuschen (Eigenkonstruktion)

Ausführung der Bestimmung

Aufarbeitung

Eine Sep-Pak-C₁₈-Kartusche wird mit 5 ml entionisiertem Wasser und darauf mit 5 ml Acetonitril gespült.

20 ml Milch (oder rekonstituierte Milch) werden mit entionisiertem Wasser auf 50 ml verdünnt und mit einer Einmalspritze durch die vorbereitete Kartusche

gepreßt (Fließgeschwindigkeit: 5 ml/min). Die Kartusche wird darauf mit 5 ml entionisiertem Wasser und 20 ml Acetonitril/Wasser (1+9, v/v) gespült. Aflato-xin M₁ wird anschließend mit 4 ml Acetonitril/Wasser (3+7, v/v) in ein verschließbares 15-ml-Zentrifugenglas eluiert. Mit 4 ml Dichlormethan wird das Eluat 1 min lang geschüttelt und die Emulsion zentrifugiert (3 min, 4000 rpm). Die organische Phase wird über wenig Watte in ein 10-ml-Spitzkölbchen pipettiert, die wässerige Phase noch einmal mit 2 ml Dichlormethan extrahiert und erneut zentrifugiert. Im Wasserstrahlvakuum werden die vereinigten organischen Phasen bei 40 °C gerade bis zur Trockne eingedampft und der Rückstand in 100 µl Toluol/Acetonitril (9+1, v/v) aufgenommen.

Dünnschichtchromatographie

 $50~\mu l$ des Extraktes (entsprechend 10 ml Milch) sowie 3mal $10~\mu l$ Standardlösung (für 50~ng/kg) bzw. 3mal $5~\mu l$ Standardlösung (für 10~ng/kg) werden in 12~cm Höhe mit einer Bandbreite von 8~mm (Linomat) auf eine Kieselgel-Alufolie aufgetragen (Abb. 2).

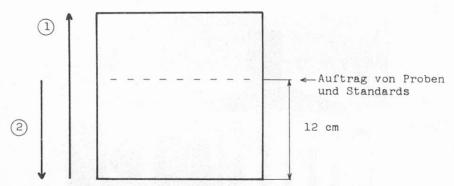


Abb. 2. Auftrags- und Entwicklungsschema für die Dünnschichtchromatographie

Die Platte wird in Diethylether (Richtung ①, ungesättigte Kammer) entwikkelt. Nach kurzem Trocknen bei Raumtemperatur wird sie in Toluol/Ethylacetat/Ameisensäure (6+3+1, v/v, ungesättigte Kammer) in Richtung ① entwickelt. Die Folie wird nun 3–5 min im ca. 40 °C warmen Luftstrom getrocknet, einige Sekunden unter einer schwachen UV-Lampe (360 nm) betrachtet und 4–6 mm oberhalb der Standards (in Richtung ①) markiert. Sie wird parallel zur Auftragslinie entzweigeschnitten und in Chloroform/Aceton/Propanol-2 (87+10+3, v/v, ungesättigte Kammer) in Richtung ② entwickelt.

Die Quantifizierung erfolgt densitometrisch mit Fluoreszenzmessung (Anregung: 365 nm, Emission 435 nm; verwendet wurde ein zwischen 400 und 500 nm durchlässiges Kantenfilter).

Bestätigung von Aflatoxin M₁(11)

Nach der densitometrischen Auswertung werden die M_1 -Standards und die Flecken (bzw. Banden) mit gleichem R_f -Wert mit Bleistift markiert. 3–5 μ l Tri-fluoressigsäure werden strichförmig auf die markierten Flecken aufgetragen, die

Tabelle 1. Resultate der Zusatzversuche von Aflatoxin M₁ zu Milch und Milchpulver

Probe	Zusatz ng/kg	Nicht derivatisiert			Als Trifluoracetylderivat		
		ng/kg	<u>x</u> *	Ausbeute % $(\bar{x} \pm s)$	ng/kg	<u>x</u> *	Ausbeute*' $\% (\bar{x} \pm s)$
Vollmilch	50	31 49 36 37 34	37	75 ± 14	27 37 32 36 23	31	62 ± 12
Vollmilchpulver	50	41 39 43 43	42	83 ± 4	42 41 44 43	43	85 ± 3
Vollmilch	10	8 10 10 12 11	10	102 ± 15	12 11 11 11 10	11	110± 7
Vollmilchpulver	10	5 12 11 11 8	9	94 ± 29	4 9 7 8 7	7	70 ± 19

^{*} Werte gerundet

Folie zwischen zwei in einem Trockenschrank auf 75 °C geheizte Glasplatten gelegt und 10 min bei dieser Temperatur belassen. Die überschüssige Trifluoressigsäure wird 5–10 s mit einem Fön weggeblasen, die Folie 4–6 mm unterhalb der markierten Standards und Proben entzweigeschnitten und in Chloroform/Methanol/Essigsäure/Wasser (92+8+2+0,8, v/v, ungesättigte Kammer) entwickelt. Die densitometrische Messung wird analog der nicht derivatisierten Probe durchgeführt.

^{**} Als Gesamtausbeute berechnet

Resultate und Diskussion

Milch und Vollmilchpulver wurden je mit 50 ng/kg und 10 ng/kg Aflatoxin M1 kontaminiert. Tabelle 1 gibt die wiedergefundenen Mengen mit Mittelwert und Ausbeuten an, Abbildung 3 zeigt Densitogramme der Extrakte von Milch-

pulver, welchen 10 ng/kg Aflatoxin M₁ zugesetzt wurden.

Die Werte wurden durch Fluoreszenzmessung von Aflatoxin M₁ und dessen Trifluoracetylderivat bestimmt. Normalerweise dient das auf der Dünnschichtfolie gebildete Derivat zur qualitativen Bestätigung des Vorliegens von Aflatoxin M₁. In einigen Fällen mußte es jedoch densitometrisch ausgewertet werden, weil die Quantifizierung von Aflatoxin M1 durch Substanzen mit gleichem R6-Wert verunmöglicht wurde.

Für Aflatoxin-M₁-Zusätze von 50 ng/kg sind in der Tabelle 1 mittlere Ausbeuten von 75% (für Milch) und 83% (für Milchpulver) wiedergegeben. Diese Werte entsprechen den Resultaten von vielen weiteren Versuchen, die je nach Matrix

der untersuchten Proben Ausbeuten zwischen 70% und 90% ergaben.

In der mit 10 ng/kg kontaminierten Milch wurde für das Aflatoxin M, wie für das Derivat eine zu hohe Ausbeute erhalten. Vermutlich enthielt die Milch na-

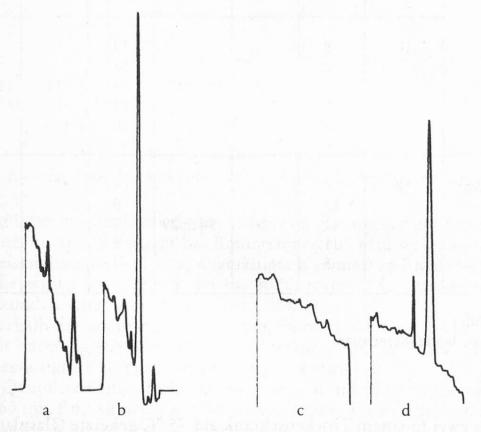


Abb. 3. Densitogramme der Extrakte von Milchpulver. Die aufgetragene Menge entspricht jeweils 10 ml Milch

a = Probe, nicht kontaminiert, nicht derivatisiert

b = Probe, kontaminiert mit 10 ng/kg, nicht derivatisiert

c = Probe, nicht kontaminiert, derivatisiert

d = Probe, kontaminiert mit 10 ng/kg, derivatisiert

türlicherweise Aflatoxin M₁ in einer Konzentration, die unterhalb dem Erfassungsbereich dieser Methode liegt (3 ng/kg). Für das mit 10 ng/kg kontaminierte Milchpulver wurden für Aflatoxin M₁ ebenfalls einzelne Werte über 10 ng/kg gefunden. Die Quantifizierung des Derivates hingegen ergab Werte, die alle unter 10 ng/kg lagen. Bei der empfindlichen Einstellung des Densitometers zur Messung von 0,1 ng Aflatoxin M₁ können auch geringe Mengen fluoreszierender Substanzen mit gleicher Wanderungsstrecke wie Aflatoxin M₁ das Resultat verfälschen. Eine zusätzliche Quantifizierung des Trifluoracetylderivates ist daher in diesem tiefen Nachweisbereich unbedingt erforderlich.

Mit der beschriebenen Methodik und dem in Abbildung 1 gezeigten Gerät, das in unserem Labor entwickelt wurde, können von einer geübten Person 12 Analysen pro Tag durchgeführt werden. Das Verfahren wird bei uns seit zwei Jahren routinemäßig auf Milch angewandt. Es eignet sich ebenfalls für rückstands-

frei rekonstituierbare Milchpulver.

Dank

Wir danken Fräulein Rüegger, Fräulein Leimbacher und Herrn Müller für die sorgfältige Durchführung der Analysen. Herrn Demauer danken wir für die Konstruktion des Gerätes zur gleichzeitigen Elution von 6 Sep-Pak-Kartuschen.

Zusammenfassung

Aflatoxin M_1 in Milch und Milchpulver wurde nach Reinigung über Sep-Pak C_{18} und Dünnschichtchromatographie, unverändert und als Trifluoracetylderivat densitometrisch bestimmt. Bei einer Aflatoxin- M_1 -Konzentration von 50 ng/kg wurden Ausbeuten ($\bar{x} \pm s$, in % des Zusatzes) von 83 ± 4 bzw. 85 ± 3 (Trifluoracetylderivat) für Milchpulver und $75 \pm 14\%$ bzw. 62 ± 12 (Trifluoracetylderivat) für Milch erhalten. Für Aflatoxin- M_1 -Konzentrationen von 10 ng/kg betrugen die Ausbeuten 94 ± 29 bzw. 70 ± 19 (Derivat) für Milchpulver und 102 ± 15 bzw. 110 ± 7 (Derivat) für Milch. Die Methode ist schnell und sparsam im Lösungsmittelverbrauch. Ihre Nachweisgrenze beträgt 3-5 ng/kg.

Résumé

Une méthode (rapide et économisant les solvants) pour doser l'aflatoxine M_1 dans le lait est décrite. Après passage du lait (ou de lait reconstitué) à travers une cartouche Sep-Pak C 18, l'éluat est extrait avec du dichlorométhane et l'extrait est chromatographié sur couche mince. Le dosage est effectué par densitométrie de la toxine libre et de son dérivé avec l'acide trifluoroacétique (TFA). Les rendements suivants (% de l'addition) ont été obtenus pour des échantillons de lait frais et de lait en poudre, additionnés de 10 ppt et de 50 ppt d'aflatoxine M_1 (premier résultat = toxine libre, deuxième résultat = dérivé TFA): 102 ± 15 , 110 ± 7 (n = 5, 10 ppt, lait); 94 ± 29 , 70 ± 19 (n = 5, 10 ppt, lait en poudre); 75 ± 14 , 62 ± 12 (n = 5, 50 ppt, lait); 83 ± 4 , 85 ± 3 (n = 4, 50 ppt, lait en poudre). La limite de détection est de 3 à 5 ppt.

Summary

An efficient method for the determination of aflatoxin M_1 in the low ppt range in milk and milk powder is described. Milk or reconstituted milk is passed through a Sep-Pak C_{18} cartridge, the toxin is eluted and the extract of the eluate is chromatographed on Silica thin layer plates. Densitometric quantitation is carried out before and after derivatisation with trifluoracetic acid. Milk and milk powder were spiked with 10 ng/kg and 50 ng/kg aflatoxin M_1 . The recoveries (% of addition) were (first figure as free toxin, second figure as derivative): 102 ± 15 , 110 ± 7 (n = 5, 10 ppt, milk); 94 ± 29 , 70 ± 19 (n = 5, 10 ppt, milk powder); 75 ± 14 , 62 ± 12 (n = 5, 50 ppt, milk); 83 ± 4 , 85 ± 3 (n = 4, 50 ppt, milk powder). The detection limit is 3 to 5 ppt; the method is well suited for large sample numbers.

Literatur

- 1. Kiermeier, F., Reinhardt, V. und Behringer, G.: Zum Vorkommen von Aflatoxin in Rohmilch. Dtsch. Lebensm. Rundsch. 71, 35-38 (1975).
- 2. Sieber, R. und Blanc, R.: Zur Ausscheidung von Aflatoxin M₁ in die Milch und dessen Vorkommen in Milch und Milchprodukten eine Literaturübersicht. Mitt. Gebiete Lebensm. Hyg. **69**, 477–491 (1978).
- 3. Schlatter, Ch.: Zur Karzinogenität der Aflatoxine. Arbeitstagung Gesundheitsgefährdung durch Aflatoxine, Zürich, 21.—22. 3. 1978. Eigenverlag Institut für Toxikologie der ETH und der Universität Zürich, Schwerzenbach, S. 51—64 (1978).
- 4. Lutz, W.: In vivo covalent binding of aflatoxin B₁ and aflatoxin M₁ to liver DNA of pig and rat. Arbeitstagung Gesundheitsgefährdung durch Aflatoxine, Zürich, 21.—22. 3. 1978. Eigenverlag Institut für Toxikologie der ETH und der Universität Zürich, Schwerzenbach, S. 65—71 (1978).
- 5. Knutti, R., Sutter, K. und Schlatter, Ch.: Aflatoxinrückstände in der Milch. Swiss Food 1 (6), 17–21 (1979).
- 6. Gauch, R., Leuenberger, U. und Baumgartner, E.: Rapid and simple determination of aflatoxin M₁ in milk in the low parts per 10¹² range. J. Chromatogr. 178, 543-549 (1979).
- 7. Tripet, F., Riva, C. et Vogel, J.: Recherche des aflatoxines et dosages de l'aflatoxine M₁ dans les produits laitiers. Trav. chim. aliment. hyg. 72, 367-379 (1981).
- 8. Tuinstra, L. and Bronsgeest J.: Determination of aflatoxin M₁ in milk at the parts per trillion level. J. Chromatogr. 111, 448-451 (1975).
- 9. Winterlin, W., Hall, G. and Hsieh, D.: On column chromatographic extraction of aflatoxin M₁ from milk and determination by reversed phase high performance liquid chromatography. Anal. Chem. 51, 1873–1874 (1979).
- 10. Official methods of analysis of the AOAC, 13th edition. Natural poisons, mycotoxins, pp. 414—416. Association of Official Analytical Chemists, Washington, D. C. 1980.
- 11. Egmond, H., Paulsch, W. and Schuller, P.: Confirmatory test for aflatoxin M₁ on a thin layer plate. J. Assoc. Off. Anal. Chem. 61, 809-812 (1978).

Dr. W. Steiner
Dr. R. Battaglia
Kant. Laboratorium Zürich
Postfach
CH-8030 Zürich