Zeitschrift: Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und

Hygiene = Travaux de chimie alimentaire et d'hygiène

Herausgeber: Bundesamt für Gesundheit

Band: 73 (1982)

Heft: 3

Artikel: Bestimmung der Aflatoxine B, B, G und G = Determination of the

aflatoxins B, B, G und G

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-983458

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Bestimmung der Aflatoxine B₁, B₂, G₁ und G₂

Determination of the Aflatoxins B₁, B₂, G₁ und G₂

Arbeitsgruppe «Toxine» 2 der Eidgenössischen Lebensmittelbuch-Kommission

Einleitung

Die Gefahr der Aflatoxinkontamination besteht bei vielen pflanzlichen Produkten wie Erdnüssen, Mandeln, Pistazien, Mais usw. Daher sind viele Kontrollanalysen erforderlich und eine einfache und schnelle Analytik erwünscht.

Die von der Lebensmittelbuch-Kommission gebildete Arbeitsgruppe für Toxine 2 überprüfte eine von *H. Guggisberg* (Kantonales Laboratorium Thurgau) modifizierte Methode (1, 2) in 2 Ringversuchen an natürlich kontaminierten Proben. Im ersten Ringversuch wurde unter Beteiligung von neun Laboratorien Aflatoxin B₁ in Polenta-Mais bestimmt, im zweiten Ringversuch mit leicht modifizierter Methode eine Erdnußpaste von 10 Laboratorien analysiert.

Das hier beschriebene Verfahren wird von den Laboratorien routinemäßig auf folgende Produkte angewandt: Erdnüsse, Erdnußbutter, Haselnüsse, Mandelkerne, Pinienkerne, Pistazien, Öle, Bier, Konfitüren und gewisse Tierfutter, z.B. Erdnußschrot.*

Die Methode wurde der Lebensmittelbuch-Kommission vorgelegt und von dieser zur amtlichen Methode erklärt.

Analytik

Prinzip

Die Aflatoxine B₁, B₂, G₁ und G₂ werden extrahiert, angereichert und durch Dünnschichtchromatographie mit 2 Fließmitteln weiter gereinigt und aufgetrennt. Das gleichzeitige Auftragen von Standardlösungen ermöglicht eine fluorodensitometrische, quantitative Auswertung.

Reagenzien

Standardmischung Aflatoxine B_1 , B_2 , G_1 , G_2 (je 0,5 μ g/m ℓ in Benzol/Acetonitril (98 : 2), Gehalt überprüft nach 3). Chloroform p. a.

^{*} Für Gewürze, rohe und geröstete Kaffeebohnen, Schokolade, Leber und Grasmehlwürfel sollte eine aufwendigere Methode in Betracht gezogen werden.

Dichlormethan p. a.

Methanol p. a.

Petrolether tiefsiedend.

Fließmittel: a) Diethylether, wasserfrei, peroxidfrei.

b) Chloroform/Aceton/Wasser (88:12:1,5).

Natriumchlorid

Natriumsulfat, wasserfrei

Geräte und Materialien

Mixer oder verschließbares Glas (250-500 ml).

250-ml-Scheidetrichter.

Faltenfilter SS 593 1/2, 24 cm.

Dünnschichtchromatographie: Kieselgel 60 auf Alufolie, ohne F (Merck, Kat. Nr. 5553) Gerät zur fluorodensitometrischen Auswertung von Dünnschichtplatten (366 nm).

Ausführung der Bestimmung

40 g gemahlene Probe werden in einen Mixer oder in ein verschließbares Gefäß eingewogen. Nach Zufügen von 100 ml Methanol und 10 ml Wasser wird 3 min gemixt bzw. 15 min geschüttelt. Anschließend werden 30 ml Wasser zugege-

ben und noch einmal 3 min gemixt bzw. 10 min geschüttelt.

Die Probe wird durch einen Faltenfilter, wenn nötig mit Celite, in einen 100ml-Meßzylinder filtriert und 70 ml Filtrat in einen 250-ml-Scheidetricher transferiert. 50 ml Petrolether und 55 ml Wasser werden zum Spülen des Meßzylinders verwendet und in den Scheidetrichter gegeben. Nach Zugabe von 5 g Natriumchlorid wird 1 min geschüttelt und die wässerige Phase in einen zweiten Scheidetrichter überführt. Dazu werden 20 ml Wasser und 90 ml Dichlormethan* zugefügt und die Probe 2 min geschüttelt. Die Dichlormethanphase* wird in einen 300-ml-Erlenmeyer abgelassen, der 10 g Natriumsulfat enthält. Nach mehrmaligem Umschwenken wird die getrocknete Lösung in einen 250-m/ Birnkolben filtriert, der Erlenmeyer mit 2 x 10 ml Dichlormethan* gespült und die Probe bei ca. 30-40 °C unter Vakuum auf 2-4 ml eingeengt. Der Extrakt wird in ein kleines, verschließbares Gefäß transferiert und zur Trockne eingedampft. Der Rückstand wird in 1,0 ml Toluol/Acetonitril (98:2) oder Benzol/Acetonitril (98 : 2) aufgenommen. 50 µl des Extraktes (entsprechend 1 g Probe) sowie je 2, 5 und 10 µl der Standardmischung werden in 12 cm Höhe auf eine Dünnschicht-Alufolie aufgetragen. Die erste Entwicklung in Richtung a) (vgl. Abb. 1) erfolgt in Diethylether. Die Folie wird nach Prüfung unter einer schwachen UV-Lampe ca. 1 cm oberhalb der Aflatoxine (gestrichelte Linie) entzweigeschnitten.

Die zweite Entwicklung in Richtung b) erfolgt in Chloroform/Aceton/Wasser 88:12:1,5. Die Lösungsmittel sollen den Plattenrand jeweils knapp erreichen. Die quantitative Auswertung geschieht fluorodensitometrisch bei 366 nm.

^{*} Im ersten Ringversuch wurde Chloroform verwendet.

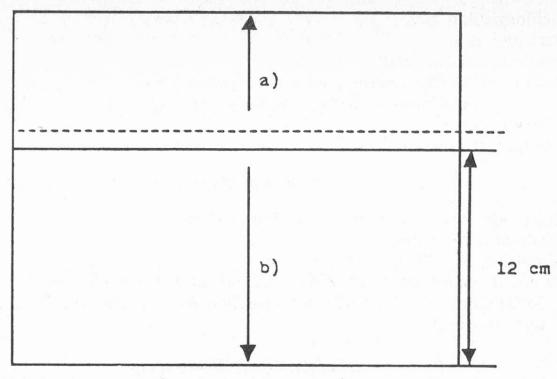


Abb. 1. Entwicklungsschema

Resultate und Diskussion

Aflatoxin-B₁-Bestimmung in natürlich kontaminiertem Polenta-Mais

Tabelle 1 gibt B₁-Einzelwerte aus 5 Polenta-Mais-Extraktionen, den Mittelwert mit Standardabweichung und Variationskoeffizient wieder. Am Tabellenfuß sind der Mittelwert aller Labors, die Standardabweichung und der Variationskoeffizient der Labormittelwerte angegeben.

Labor 8 erhielt aus 5 Aufarbeitungen aus dem gleichen Rohextrakt denselben Mittelwert wie bei der Aufarbeitung von 5 Einzelproben, hingegen einen Variationskoeffizienten von 2,8% gegenüber 19,2% bei den separat extrahierten Proben. Die Streuung der Resultate dürfte somit zum Teil auf Inhomogenität der versandten Proben zurückzuführen sein (vgl. auch die Variationskoeffizienten im folgenden Versuch).

Aflatoxin-B₁-Bestimmung in natürlch kontaminierter Erdnußpaste

Aus Tabelle 2 sind die Einzelwerte von 5 B₁-Bestimmungen aus Erdnußpaste-Extrakten, die Mittelwerte, Standardabweichungen und Variationskoeffizienten ersichtlich. Sämtliche Laboratorien führten beim zweiten Ringversuch noch eine Ausbeutebestimmung durch, zum Teil mit externem, zum Teil mit internem Standard. Beim geringsten Zusatz (Labor 1) wurde die schlechteste Ausbeute erhalten. Am Tabellenfuß sind wiederum der Mittelwert aller Labors, die Standardabweichung und der Variationskoeffizient der Labormittelwerte angegeben.

Tabelle 1. Resultate des Ringversuches mit Mais

Labor		Einze	lwerte* (ppb	\bar{x}	S	VK (%)		
1	3,9	6,0	4,1	4,6	7,1	5,14	1,37	26,7
2	6,3	5,7	6,5	11,1***	7,1	6,40	0,58	9,1
3	5,1	5,2	5,5	6,4	5,2	5,48	0,54	9,9
4	5,7	5,2	4,2	5,4	4,8	5,06	0,58	11,5
5**	3,5	5,0	5,0	5,0	4,0	4,50	0,71	15,8
6	3,3	3,6	4,3	5,0	5,0	4,24	0,78	18,4
7	9,1	8,2	6,5	9,1	8,5	8,28	1,07	12,9
8	3,8	5,1	4,8	6,3	6,0	5,20	1,00	19,2
9	7,4	7,9	4,8	6,3	6,2	6,52	1,20	18,4
	Mittel	wert aller	5,65	i bonk				
	Standardabweichung der Mittelwerte						1,24	
Shalling.	Variat	ionskoeffi	zient der	Mittelwerte	un d d	n Kili eve		21,9

^{*} Ohne Berücksichtigung der Ausbeute

Tabelle 2. Resultate des Ringversuches mit Erdnußpaste

Labor	Einzelwerte* (ppb) μg/kg					\bar{x}	s	VK (%)	Aus- beute %	Zusatz ¹ (ppb) µg/kg	
1	1,4	1,4	1,3	1,4	1,4	1,38	0,04	2,9	64	1,2.	5 intern
2	1,2	1,3	1,3	1,4	1,3	1,30	0,07	5,4	89	2	extern
3	1,3	1,4	1,3	1,3	1,3	1,32	0,04	3,0	86	10	extern
4	2,3	2,0	2,4	2,0	2,0	2,14	0,19	8,9	85	5	intern
5**	2,0	2,0	2,5	2,0	2,5	2,20	0,27	12,3	90	4	extern
6	2,0	2,3	2,3	2,2	2,0	2,16	0,15	6,9	78	5	intern
7	1,7	1,7	1,5	1,6	1,6	1,62	0,08	4,9	80	5	intern
8	2,4	2,4	2,3	2,3	1,6***	2,35	0,06	2,6	>100	2	intern
9	1,4	1,5	1,3	1,4	1,6	1,44	0,11	7,6	70	2	extern
10	1,3	1,2	1,2	1,4	1,5	1,32	0,13	9,8	78	2,5	intern
Mitte	lwert	aller La	abors	y pillir.	about tog	1,72	5 527 L	110 000	rigo ar ri	ry Shoul	1900 4.3
Standardabweichung der Mittelwerte						0,43			2 4		
Variationskoeffizient der Mittelwerte					virums Z		25,0		4-1		

^{*} Ausbeute berücksichtigt

^{**} Visuelle Auswertung

^{***} Wert für Berechnungen nicht verwendet

^{**} visuelle Auswertung

^{***} Wert für Berechnung nicht verwendet

¹ intern: Ausbeute an Ringversuchsprobe bestimmt, extern: Ausbeute an einer selbst gewählten Probe bestimmt

Der Variationskoeffizient der Labormittelwerte zeigte bei beiden Ringversuchen etwa denselben Wert: 21,9% bzw. 25,0%.

Mit der untersuchten Methodik zur Aflatoxin-B₁-Bestimmung (5fach Bestimmung) muß also im Vergleich zu anderen Laboratorien ein Variationskoeffizient

von ca. 25% in Betracht gezogen werden.

Auf die quantitative Bestimmung der Aflatoxine B_2 , G_1 und G_2 wurde verzichtet, da die Mengen durchwegs unter 1 ppb lagen. Von praktischer Bedeutung ist ohnehin die quantitative Bestimmung von Aflatoxin B_1 , da es i. a. in wesentlich höherer Konzentration in Lebensmitteln vorliegt, als die Aflatoxine B_2 , G_1 und G_2 .

Zusammenfassung

Eine einfache Methode zur quantitativen Aflatoxin B₁, B₂, G₁ und G₂-Bestimmung wurde in zwei Ringversuchen mit 9 bzw. 10 Laboratorien an natürlich kontaminierten Proben (Polenta-Mais und Erdnußpaste) erprobt. Bei Polenta-Mais wurde ein Gehalt von 5,7 ppb B₁ mit einem Variationskoeffizienten der Labormittelwerte von 21,9% ermittelt, bei der Erdnußpaste wurden 1,7 ppb B₁ mit einem Variationskoeffizienten von 25,0 gefunden. Die Gehalte der Aflatoxine B₂, G₁ und G₂ lagen alle unter 1 ppb und wurden nicht ausgewertet. Die Methode wird routinemäßig angewendet für Erdnüsse, Erdnußbutter, Haselnüsse, Mandelkerne, Pinienkerne, Pistazien, Öle, Bier, Konfituren und gewisse Tierfutter wie Erdnußschrot.

Dieses Analysenverfahren zur Bestimmung der Aflatoxine B₁, B₂, G₁ und G₂ gilt in der Schweiz als amtliche Methode.

Résumé

Une méthode simple d'analyse des aflatoxines B_1 , B_2 , G_1 et G_2 a été testée par 9 respectivement 10 laboratoires lors de deux analyses circulaires sur des échantillons de maïs pour polenta et de pâte d'arachides naturellement contaminés. Dans le maïs, il a été trouvé 5,7 ppb d'aflatoxine B_1 avec un coefficient de variation de la moyenne des résultats de 21,9% et dans la pâte d'arachides 1,7 ppb d'aflatoxine B_1 avec un coefficient de variation de la moyenne des résultats de 25,0%. Les résultats obtenus pour les aflatoxines B_2 , G_1 et G_2 n'ont pas été exploités, les teneurs étant toutes inférieures à 1 ppb.

La technique décrite est utilisée pour analyser en série arachides, beurre d'arachides, noisettes, amandes, pignons, pistaches, huiles, bières, confitures et certains aliments pour

bétail, p. ex. tourteaux d'arachides.

La méthode est reconnue en Suisse comme méthode officielle pour l'analyse des aflatoxines B_1 , B_2 , G_1 et G_2 .

Summary

A simple method for the quantitative determination of the aflatoxins B_1 , B_2 , G_1 and G_2 was tested in naturally contaminated food samples. Nine laboratories determinated

ned the aflatoxins in «Polenta» (maize) and ten in peanut butter. The results for maize were 5.7 ppb B_1 with a coefficient of variation of 21.9% between laboratories. Peanut butter gave 1.7 ppb with a coefficient of variation of 25.0%. The values of the aflatoxins B_2 , G_1 and G_2 were below 1 ppb and were not quantified.

The method is used routinely with peanuts, peanut butter, hazelnuts, almonds, pine-kernels, pistachio-nuts, oils, beer, jams and certain animal feeds, e. g. defatted peanut cake.

This determination of the aflatoxins B_1 , B_2 , G_1 and G_2 has been accepted as the official method in Switzerland.

Literatur

- 1. Liem, D. H. and Beljaars, P. R.: Note on a rapid determination of aflatoxin in peanuts and peanut products. J. Assoc. Offic. Analyt. Chemists 53, 1064-1066 (1970).
- 2. Arnold, H.: Eine dünnschichtchromatographische Reiningungsmethode zur Bestimmung der Aflatoxine B₁, B₂, G₁, G₂. Fleischwirtschaft 55, 985 (1974).
- 3. Methods of Analysis AOAC, thirteenth edition. Natural poisons, mycotoxins pp. 414–416. Washington, D. C. 1980.

Arbeitsgruppe Toxine 2

Dr. R. Battaglia, Kantonales Laboratorium Zürich (Präsident)

Dr. U. P. Buxtorf, Kantonales Laboratorium Basel-Stadt

Dr A. Etournaud, Laboratoire cantonal vaudois

Dr. A. Guggisberg, Kantonales Laboratorium Thurgau

Dr. U. Leuenberger, Kantonales Laboratorium Bern

Dr. J. Lüthy, Institut für Toxikologie, Schwerzenbach

*Dr. W. Steiner, Kantonales Laboratorium Zürich

Dr. W. Stutz, Kantonales Laboratorium Basel-Land

Dr F. Tripet, Laboratoire cantonal, Genève

C. Wyß, Nestec, La Tour-de-Peilz

^{*} Korrespondenzadresse: Postfach, CH-8030 Zürich