Zeitschrift: Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und

Hygiene = Travaux de chimie alimentaire et d'hygiène

Herausgeber: Bundesamt für Gesundheit

Band: 72 (1981)

Heft: 4

Artikel: Chromatographie sur couche mince des émulsifiants = Thin layer

chromatography of emulsifiers

Autor: Martin, E.

DOI: https://doi.org/10.5169/seals-984623

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Chromatographie sur couche mince des émulsifiants

Thin Layer Chromatography of Emulsifiers

E. Martin*
Laboratoire cantonal de chimie, Genève

Introduction

De nombreux articles ont déjà été publiés sur les séparations par chromatographie sur couche mince d'émulsifiants pour denrées alimentaires (1—3). Les méthodes proposées diffèrent généralement par les milieux de migration et les révélateurs. Elles ont fait l'objet d'essais interlaboratoires au sein de la sous-commission 23, pour les émulsifiants, du Manuel suisse des denrées alimentaires. Ces essais ont permis de choisir 3 milieux de migration et 8 révélateurs. Ces méthodes sont déjà incorporées dans le projet de chapitre 58 du Manuel, en cours d'élaboration. Le but de cet article est de faire connaître ces milieux et ces révélateurs aux laboratoires qui sont confrontés avec le problème de la séparation des émulsifiants.

Les laboratoires suivants ont participé aux essais interlaboratoires de la méthode décrite ci-après:

EMPA, St-Gall

Hoffmann-La Roche & Co., Département des vitamines, Bâle

Laboratoire cantonal, Bâle-Ville

Laboratoire cantonal, Genève

Nestec, La Tour-de-Peilz

Roco Conserven, Rorschach

Suchard-Tobler AG, Berne

Zentrallaboratorium des Migros-Genossenschafts-Bundes, Zurich

Méthode appliquée

Réactifs

Ethanol 96 % vol.

Ether de pétrole rectifié (40-60 °C)

^{*} Membre de la sous-commission 23 et de la commission du Manuel suisse des denrées alimentaires.

Ether diéthylique rectifié Méthanol p. a. Acétone p. a. Acide acétique glacial p. a. Chloroforme rectifié

Milieux de migration

- F 1: Ether de pétrole / éther diéthylique / acide acétique (60 : 40 : 1). (Mesurer le volume de l'acide acétique avec précision!)
- F 2: Chloroforme / méthanol / eau (65:25:4)
- F 3: Chloroforme / acétone / acide acétique (94:6:1)

Révélateurs

- S 1: Solution d'éosine jaunâtre, C. I. No 45 380 (par exemple Merck No 1345).
 - Dissoudre 0,2 g dans 100 ml d'éthanol.
- S 2: Solution d'acide phosphomolybdique.

 Dissoudre 20 g de H₃[P(Mo₃O₁₀)₄] · xH₂O (par exemple Merck No 532) dans l'éthanol et compléter à 100 ml avec de l'éthanol (Stahl No 158 C) (4).
- S 3: Solution de vert de bromocrésol.

 Dissoudre 0,04 g de C₂₁H₁₄Br₄O₅S (Par exemple Merck No 8121) dans l'éthanol et compléter à 100 ml avec de l'éthanol. Ajouter une solution de NaOH 0,1 n jusqu'à virage au bleu (Stahl No 31) (4).
- S 4: Solution de periodate / anisidine d'après *Halvarson* et *Qvist* (5). Solution 1: KIO₄ à 0,1 % dans l'eau.
 - Solution 2: Dissoudre 2,8 g de p-anisidine (par exemple Merck No 800 458) dans 80 ml d'éthanol, ajouter 70 ml d'eau, 30 ml d'acétone et 1,5 ml d'HCl 1 n. Le réactif ainsi préparé doit être conservé au réfrigérateur. Il est utilisable tant qu'il n'est pas coloré en brun.
- Pulvériser d'abord la solution 1 puis la solution 2.
- S 5: Réactif de *Dittmar* et *Lester* (6).

 Solution 1: Dissoudre 10,03 g de MoO₃ dans 250 ml d'H₂SO₄ 25 n en chauffant.

 Solution 2: Dissoudre 445 mg de molybdène, en chauffant, dans 125 ml de solution 1.
 - Mélanger des parties égales (poids) de solution 1 et de solution 2. Pour rendre le mélange plus fluide il est recommandé, au moment de l'emploi, de le chauffer jusqu'à 40 °C.
- S 6: Solution de naphtorésorcinol / acide sulfurique. Dissoudre 0,2 g de naphtorésorcinol dans 100 ml d'éthanol. Au moment de l'emploi mélanger avec un volume égal d'H₂SO₄ à 20 % (Stahl No 175) (4).
- S 7: Réactif de Dragendorff modifié (3). Solution 1: Mettre en suspension 0,85 g de nitrate de bismuth (BiONO₃)

dans 110 ml d'acide acétique glacial, ajouter 20 g d'iodure de potassium et compléter à 250 ml avec de l'eau distillée. Garder dans un flacon en verre brun, à l'obscurité. Cette solution est stable.

Solution 2: Préparer une solution de chlorure de baryum à 20 % (poids /

poids). Cette solution est stable.

Préparation du réactif de Dragendorff: Mélanger dans l'ordre

10 ml de solution 1

1 ml d'acide phosphorique à 85 %

10 ml d'éthanol (96 % vol.)

5 ml de solution 2

Le réactif ainsi préparé est utilisable 48 heures.

S 8: Solution d'anthrone.

Dissoudre 1,5 g d'anthrone dans 50 ml d'acide acétique glacial en chauffant. Ajouter 100 ml d'éthanol, 15 ml d'acide phosphorique à 85 % et 5 ml d'eau. Cette solution est stable quelques semaines au réfrigérateur.

Substances témoins*

Tristéarine puriss. (Fluka No 93 401)
Acide stéarique puriss. (Fluka No 85 680)
Mono-/diglycérides d'acides gras
Palmitate d'ascorbyle (Fluka No 76 183)
Stéarate de polyoxyéthylène sorbitane
Sucro-esters
Polyricinoléate de polyglycérol
Lécithine de soja
Stéaroyllactylate de sodium

Appareillage

Cuves de développement à fond plat 5 x 20 x 20 cm avec couvercle Poudriers avec couvercle à vis, 1250—1500 ml pour la chromatographie sur plaques de 5 x 20 cm Plaques prêtes à l'emploi, silicagel 60 (Merck No 5721, 5724 ou équivalentes), 20 x 20, 10 x 20, 5 x 20 cm Micropipettes Pulvérisateurs Etuve Lampe UV (de préférence 366 nm)

^{*} Produits disponibles auprès de l'Office fédéral de la santé publique, division du contrôle des denrées alimentaires, 3001 Berne, case postale 2644.

Mode opératoire

Pour le développement des chromatogrammes avec les milieux F1 et F2 et la révélation avec les différents réactifs (S1—S7) préparer 2 plaques de 10 x 20 cm (No 1a, 1b du tableau 1) et 12 plaques 5 x 20 cm (No 2a, 2b, . . . jusqu'à 7a, 7b du tableau 1) de la façon suivante:

Laver les plaques: Laisser migrer jusqu'au bord supérieur un mélange chloro-

forme / méthanol (2 : 1).

Eliminer le solvant: 15 minutes à 105 °C. Laisser refroidir à la température ambiante.

Ligne de départ: 20 mm au-dessus du bord inférieur de la plaque.

Bande latérale: Laisser de chaque côté de la plaque une bande de 10 mm.

Espace entre chaque dépôt: 10 mm.

Distance de migration à partir de la ligne de départ: 12,5 cm; gratter soigneuse-

ment la ligne où doit s'arrêter le solvant.

Dissoudre les échantillons dans le mélange chloroforme / méthanol (2 : 1); chauffer légèrement si nécessaire. L'insoluble, représentant moins de 5 % de l'échantillon, doit être centrifugé ou filtré et jeté. Les solutions n'ont pas une stabilité illimitée en raison de l'interestérification. Les solutions de stéaroyllactylate de calcium ont tendance à se troubler en surface si le flacon n'est pas fermé de façon étanche; il se forme du carbonate de calcium avec le gaz carbonique de l'atmosphère.

Ajuster la concentration de l'échantillon dissous de telle sorte qu'il soit possible d'effectuer des dépôts de 25, 100 et 400 μ g sur chacune des deux plaques. Dissoudre également les témoins dans le mélange chloroforme / méthanol (2 : 1) et les déposer sur les plaques comme indiqué dans le tableau 1. Afin d'obtenir une meilleure séparation il est recommandé de déposer les solutions en plusieurs fois de façon à ce que le diamètre des dépôts soit de 3–4 mm et reste en tous cas infé-

rieur à 5 mm.

Une des deux plaques est développée avec le milieu F1, la seconde avec le milieu F2. Dans les deux cas la cuve doit être saturée (recouvrir l'intérieur de la cuve, sur 3 faces, avec du papier filtre arrivant jusqu'à 2 cm du bord supérieur de la cuve). Avant de pulvériser les réactifs, sécher les plaques 15 minutes à 105 °C et les laisser refroidir à la température ambiante. Les témoins doivent réagir avec les révélateurs correspondants (tableau 1). Les taches qu'ils donnent servent à identifier les échantillons analysés.

Appréciation des résultats

Des réactions négatives avec les révélateurs sélectifs S 3—S 7 permettent d'exclure certaines classes d'émulsifiants. Des réactions positives avec plusieurs de ces révélateurs indiquent la présence d'un mélange d'émulsifiants. Si la chromatographie ne donne qu'une tache ou un nombre limité de taches (monoglycérides distillés, dodécylsulfate de sodium, dioctylsulfosuccinate, acide cholique et acide

Trav. chim. aliment. hyg. Vol. 72 (1981) 1981)

Tableau 1. Chromatographie sur couche mince des émulsifiants

Plaque No	Substances témoins	Quantité déposée µg	Révélateurs et réactions
1a, 1b	Tristéarine Acide stéarique Mono-/diglycérides Palmitate d'ascorbyle	20 20 40 20	S 1: Taches blanches à rose pâle sur fond rose peu distinctes, fluorescentes jaunes ou violettes très visibles sous lumière UV 366 nm
2a, 2b,	Polyricinoléate de polyglycérol	80	S 2: Réaction non sélective comme S 1: Taches jaunes, jaune vert, bleu pâle ou bleu foncé selon la sorte d'émulsifiant. Ce révélateur est recommandé pour le polyricinoléate de polyglycérol car il réagit mieux que S 1
3a, 3b	Stéaroyllactylate de sodium	80	S 3: Taches jaunes avec les substances acides
4a, 4b	Mono-/diglycérides	40	S 4: Taches blanches sur fond lie de vin avec les composés α, β-dihydroxylés.
5a, 5b	Lécithine de soja	80	S 5: Les composés phosphorés donnent des taches bleues
6a, 6b	Sucro-esters	80	S 6: Taches violettes avec les sucres, violettes virant au vert avec l'acide cholique et l'acide désoxycholique
7a, 7b	Stéarate de polyoxy- éthylène sorbitane	80	S 7: Taches rouges instantanées avec les composés polyoxyéthylénés et les polyglycérols (n > 3). Taches jaune brun avec les composés ammonium quaternaire (lécithine, alcaloïde). D'autres émulsifiants réagissent également d'où possibilité de confusion comme par exemple avec les ester du sorbitane (taches jaunes à jaune orange)

désoxycholique par exemple) l'identification est obtenue par l'examen de la position des taches après migration avec les milieux F 1 et F 2 et par les colorations obtenues avec les révélateurs. Le révélateur à l'anthrone donne avec les sucro-esters des colorations violettes comme le révélateur au naphtorésorcinol mais moins stables. L'anthrone permet cependant de distinguer les acides biliaires: Sous lumière UV 366 nm l'acide cholique a une fluorescence bleu foncé, l'acide désoxycholique bleu clair. Dans le visible les 2 acides donnent une tache jaune. Après développement avec les milieux F 1 et F 2 et révélations sélectives l'identification est établie si les taches de l'échantillon analysé correspondent quant à leur position, leur forme et leur taille aux taches des témoins. Si ce n'est pas le cas, l'échantillon doit être hydrolysé et les produits obtenus sont identifiés par chromatographie gaz-liquide. Cette méthode sera publiée ultérieurement. Il est possible de préciser encore l'identification en effectuant des chromatographies avec d'autres milieux (milieu F 3 par exemple) (7). En cas de doute il est recommandé d'effectuer une hydrolyse (20).

Avec un milieu donné la reproductibilité des chromatogrammes est assez bonne. Les chromatogrammes des émulsifiants les plus couramment utilisés et des témoins avec les milieux de migration F 1, F 2 et F 3 et le révélateur S 1 sont reproduits sur la figure 1. Les valeurs de R_f peuvent subir des variations de l'ordre de 0,1. C'est la raison pour laquelle elles ne sont pas indiquées. Les chromatogrammes de la figure 1 ne sont donnés qu'à titre indicatif car il y a des différences pour un même émulsifiant selon la provenance.

La bibliographie sur les émulsifiants contient un certain nombre d'articles qui permettent d'identifier les différentes taches obtenues par chromatographie sur couche mince. Les références de ces articles sont données dans le tableau 2.

Tableau 2. Identification des émulsifiants

Type d'émulgateur	Référence	
Monoglycérides	8, 9, 10	
Acétoglycérides	11	
Citro- et lactoglycérides	12	
Monoglycérides diacétyltartriques	13	
Stéaroyllactylates	12	
Esters d'acides gras alimentaires du propylène glycol	14	
Esters polyglycériques des acides gras alimentaires	15	
Lécithine	16, 17	
Saccharo-esters	18, 19	

Résumé

Une méthode chromatographique sur couche mince est décrite. Elle permet avec 3 milieux de migration et 8 révélateurs de séparer et d'identifier divers émulsifiants pour denrées alimentaires.

Fig. 1. Séparation d'émulsifiants et de substances témoins

F 1 = Ether de pétrole / éther diéthylique / acide acétique (60:40:1)

1 = Tristéarine

2 = Acide stéarique

3 = Mono-/diglycérides

4 = Palmitate d'ascorbyle

5 = Polyricinoléate de polyglycérol

6 = Monostéarate de propylèneglycol

7 = Acétoglycérides

F 2 = Chloroforme / méthanol / eau (65:25:4)

8 = Citroglycérides

9 = Stéarate de polyglycérol

10 = Lactoglycérides

11 = Glycérides diacétyltartriques

12 = Tristéarate de sorbitane

13 = Phosphatidate d'ammonium

14 = Stéarate de polyoxyéthylène sorbitane

F 3 = Chloroforme / acétone / acide acétique (94:6:1)

15 = Sucro-esters

16 = Stéaroyllactylate de sodium

17 = Lécithine

18 = Dodécylasulfate de sodium

19 = Sulfosuccinate de sodium

Zusammenfassung

Eine dünnschichtchromatographische Methode wird beschrieben, mit der es möglich ist, Emulgatoren für Lebensmittel zu trennen und zu identifizieren. Die vorgeschlagene Methode braucht 3 Fließmittel und 8 Sprühreagenzien.

Summary

A thin layer chromatographic method is described. The proposed method with 3 solvents and 8 spray reagents allows the separation and the identification of food emulsifiers.

Bibliographie

- 1. Brüschweiler, H. and Longhi, R.: Separation and identification of emulsifiers by thin layer chromatography. IUPAC Commission on fats, oils and derivatives. Working group 8 (sept. 1979); 7, Emulsifiers.
- 2. Dieffenbacher, A. and Bracco, U.: Analytical techniques in food emulsifiers. J. Am. Oil Chemists' Soc. 55, 642-646 (1978).
- 3. Mattey M. E.: The detection of fat-solvent extractable emulsifiers. B. F. M. I. R. A. Techn. Circ. No 509, Leatherhead, 1972.
- 4. Stahl, E.: Dünnschichtchromatographie, 2. Aufl. Springer-Verlag, Berlin, Heidelberg, New York 1967.
- 5. Halvarson, H. and Qvist, O.: A methode to determine the monoglyceride content in fats and oils. J. Am Oil Chemists' Soc. 51, 162–165 (1974).
- 6. Dittmar, J. C. and Lester, R. L.: A simple specific spray for the detection of phospholipids on thin-layer chromatograms. J. Lipid Res. 5, 126–127 (1974)
- 7. Streuli, H.: Emulgatoren. In: Kosmetika, Riechstoffe und Lebensmittelzusatzstoffe, H. Aebi, E. Baumgartner, H. P. Fiedler und G. Ohloff, p. 157–234. Georg Thieme Verlag, Stuttgart 1978.
- 8. Neissner, R.: Herstellung und DC-Trennung von Teilestern «techn. Monoglyceride» mit Carbonsäuren. Fette, Seifen, Anstrichm. 79, 314–319 (1977).
- 9. Hoffmann, K. und Goldschmidt, Th.: Glycerinmonostearate ein Überblick. Seife, Öle, Fette, Wachse 104, 3–6 (1978)
- 10. Fischer, R.: Chromatographische Untersuchung von technischem Glycerinmonostearat. Chromatographia 7, 207–210 (1974).
- 11. Neißner, R.: Qualitative DC-Trennung von Acetoglyceriden. Fette, Seifen, Anstrichm. 79, 24–28 (1977).
- 12. Regula, E.: Dünnschichtchromatographischer Nachweis von Calcium- und Natrium-Stearoyllactylat neben anderen Emulgatoren in Lebensmitteln. J. Chromatogr. 115, 639–644 (1975).
- 13. Seher, A. und Janssen, J.: Die Analyse nichtionogener grenzflächenaktiver Stoffe. IV. Untersuchung von Diacetylweinsäure-monoglyceriden. Fette, Seifen, Anstrichm. 72, 773-776 (1970).
- 14. Neißner, R.: Qualitative Trennung einiger Polyalkohol-Fettsäurepartialester und Identifizierung der Polyalkohol-Komponente. Fette, Seifen, Anstrichm. 74, 198–202 (1972).
- 15. Neißner, R.: Polyglycerine und Fettsäure-Polyglycerinpartialester (Herstellung, Kennzahlen, DC-Trennungen). Fette, Seifen, Anstrichm. 82, 93-100 (1980).

- 16. Erdahl, W. L., Stolywho, A. and Privett, O. S.: Analysis of soybean lecithin by thin layer and analytical liquid chromatography. J. Am. Oil Chemists' Soc. 50, 513-515 (1973).
- 17. Marinetti, E.-V.: Lipid chromatographic analysis, 2ème éd., vol. 1. Dekker, New-York 1976.
- 18. Weiss, T. J., Brown, M., Zeringue, H. J. and Feuge, R. O.: Quantitative estimation of sucrose esters of palmitic acid. J. Am. Oil Chemists' Soc. 48, 145-148 (1971).
- 19. Zeringue, H. J. and Feuge, R. O.: Purification of sucrose esters by selective adsorption. J. Am. Oil Chemists' Soc. 53, 567-571 (1976).
- 20. Dick, R. und Miserez, A.: Gaschromatographischer Nachweis und Bestimmung von Lebensmittelemulgatoren. Mitt. Gebiete Lebensm. Hyg. 67, 472-487 (1976).

Dr E. Martin Laboratoire cantonal de chimie 22, quai Ernest-Ansermet CH-1211 Genève 4