Zeitschrift: Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und

Hygiene = Travaux de chimie alimentaire et d'hygiène

Herausgeber: Bundesamt für Gesundheit

Band: 69 (1978)

Heft: 4

Artikel: Zur Ausscheidung von Aflatoxin M1 in die Milch und dessen

Vorkommen in Milch und Milchprodukten - eine Literaturübersicht

Autor: Sieber, R. / Blanc, B.

DOI: https://doi.org/10.5169/seals-983334

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Zur Ausscheidung von Aflatoxin M1 in die Milch und dessen Vorkommen in Milch und Milchprodukten eine Literaturübersicht

R. Sieber und B. Blanc
Eidg. Forschungsanstalt für Milchwirtschaft, Liebefeld-Bern
(Direktor: Prof. Dr. B. Blanc)

Einleitung

Im Jahre 1960 gingen in England nach dem Verfüttern von verschimmeltem Erdnußmehl Tausende von Truthühnern, Enten, Rebhühnern und Fasanen ein (1, 2). Aus dem Futter wurde das verantwortliche Toxin und gleichzeitig der Schimmelpilz Aspergillus flavus isoliert, der seinerseits diese toxische Substanz bilden konnte (3, 4). Nach dem Namen dieses Pilzes wurde das von ihm gebildete toxische Stoffwechselprodukt «Aflatoxin» genannt. Es konnten einzelne Komponenten charakterisiert werden, die nach ihrer Fluoreszenzfarbe im UV-Licht die Bezeichnung B (blau) und G (grün) erhielten und die sich in B₁, B₂, G₁ und G₂ unterteilen ließen (5—8).

Aus der Milch von Kühen, an die aflatoxinhaltiges Futter, ebenfalls verschimmelte Erdnüsse, verfüttert wurde, konnte eine weitere, für Entenküken toxische Substanz isoliert werden (9, 10), die zu den gleichen pathologischen Veränderungen der Leber wie die Aflatoxine führte. Ebenso war die Substanz aus einem toxischen Kuhmilchextrakt identisch mit einer Substanz aus der Milch von Ratten, die reines Aflatoxin B1 erhalten hatten. Diese wurde als «Milchtoxin» bezeichnet (11). Auch Butler und Clifford (12) zeigten, daß das Aflatoxin B1 in der Leber von Ratten in das «Milchtoxin» umgewandelt wurde. Später isolierten Allcroft et al. (13) dieses Toxin nach dem Verfüttern von reinem Aflatoxin B1 an Schafe aus Urin, Blut, Leber und Niere, zeigten chromatographisch dessen Uebereinstimmung mit dem «Milchtoxin» von de Jongh et al. (11) und schlugen den Namen Aflatoxin M vor, weil es zuerst in Milch gefunden wurde. Es ließ sich in zwei blauviolett fluoreszierende Fraktionen zerlegen, die Aflatoxine M1 und M2 (14). Auch konnte bestätigt werden, daß das Aflatoxin M1 in der Milch die gleiche Struktur hatte wie das Aflatoxin M1 im Urin der Schafe (15). Fehr et al. (66) fanden jedoch in der Milch von Kühen und Ziegen vorwiegend Aflatoxin B1, in geringerem Maße auch M1. Weitere Untersuchungen gaben Aufschluß über die Ausscheidung von Aflatoxin M1 bei Kuh und Schaf, nachdem diese die Aflatoxine

B₁, B₂, G₁, G₂ erhielten (16, 17). Nach oraler Verabreichung von Aflatoxin B₁ konnte in Urin und Kot von Rhesusaffen (18) und nach dem Verzehr von aflatoxinkontaminierten Nahrungsmitteln im Urin von Menschen (19) Aflatoxin M₁ nachgewiesen werden.

Die Struktur der verschiedenen Aflatoxine ist in Abbildung 1 zusammengestellt. Für ein vertieftes Studium des gesamten Fragenkomplexes (20—22), ebenso über die Bedeutung der Aflatoxine in der Milchwirtschaft (23, 24), sei auf verschiedene Monographien verwiesen. Im folgenden beschränken wir uns auf das Aflatoxin M₁ und beleuchten dessen Vorkommen in der Milchwirtschaft.

R
$$B_1; R=H$$
 $M_1; R=OH$
 G_1
 G_1
 G_2
 G_2
 G_1
 G_2

Abb. 1. Struktur der Aflatoxine B1, B2, G1, G2, M1, M2

Biologische Eigenschaften von Aflatoxin M₁

Die akute Toxizität des Aflatoxins M₁ ist der von B₁ ähnlich. So betragen die LD₅₀-Dosen bei eintägigen Entenküken nach oraler Applikation 0,3—0,5 mg/kg (25).

Neben der akuten Toxizität hat vielmehr die starke krebserzeugende Wirkung der Aflatoxine das Interesse auf sich gezogen. So wurde aus den Werten epidemiologischer Untersuchungen an Menschen in tropischen Ländern gefolgert, daß die unter schweizerischen Verhältnissen noch duldbare Aflatoxinaufnahme kaum über 1 ng/Mensch · Tag (= 1 Milliardstel g) erreichen sollte (26). Dabei ist das Aflatoxin M₁ etwa 4—10mal weniger kanzerogen als das Aflatoxin B₁ (26), wie Untersuchungen an der Regenbogenforelle (27—29) und an der Ratte (30) gezeigt haben. Nach Barnes (31) dagegen entwickelten Ratten, die während 2 Jahren eine Diät mit 50% gefriergetrocknetem Milchpulver (5,0 µg/kg Aflatoxin M₁) erhielten, keine Lebertumore. Studien an Salmonella typhimurium TA98 zeigten, daß

Aflatoxin M₁ gegenüber von Aflatoxin B₁ eine relative mutagene Wirkung von 0,032 aufweist (67).

Ausscheidung von Aflatoxin M₁

An Kühe verfüttertes Aflatoxin B₁ wird von den Mikroorganismen des Pansens nicht zu anderen fluoreszierenden Verbindungen umgewandelt (32) und erscheint bereits 2 Stunden nach der Verabreichung im Blut, wie mit radioaktiv markiertem ³H Aflatoxin B₁ gezeigt werden konnte (33). Nach Engel und Hagemeister (45) werden 95% und mehr des verabreichten Aflatoxins vermutlich in den Vormägen abgebaut wie dies in vitro-Untersuchungen mit Panseninhalt zeigten oder in den Vormägen resorbiert und 2—5% erreichen den Darm. Bereits 5 Stunden nach der Aufnahme von aflatoxinkontaminiertem Futter konnte Aflatoxin M₁ in der Milch gefunden werden (16, 17, 33); nach anderen Autoren erst nach 12 bis 24 Stunden (34—37). Bei längerfristiger Verfütterung von Aflatoxinen erreicht die Aflatoxin-M₁-Ausscheidung nach 3 bis 4 Tagen ihre höchsten Werte (33, 38) und bleibt bei fortwährender Zufuhr konstant (34, 35); doch zeigen andere Untersuchungen keine stetige Ausscheidung (Tabelle 1) (36, 39) oder eine maximale Ausscheidung nach 5 bis 6 Tagen mit einem darauffolgenden Rückgang (45).

Tabelle 1. Prozentuale Aflatoxin-M₁-Ausscheidung in die Milch nach einer täglichen Aufnahme von 10 mg Aflatoxin B₁ bei einer einzelnen Kuh (39)

	Woche	M ₁ -Ausscheidung in ⁰ / ₀ des verfütterten B ₁
and Park	The second	
	1	0,69
	2	0,49
	3	0,79
	4	0,79
	6	1,01
	7	1,05
	8	1,30
	10	0,82
	11	0,77
	12	0,99
	14	0,87
a II. E. vê		skriger i special kriet etaktima iz

Verschiedene Untersuchungen haben einen Zusammenhang zwischen der Aufnahme von Aflatoxin B₁ und der Ausscheidung von Aflatoxin M₁ in die Milch aufgezeigt (16, 17, 33—45). In der Tabelle 2 sind dazu die verschiedenen prozentualen Werte angegeben. Es kann festgestellt werden, daß die Ausscheidungsquote größtenteils unter 1,5% liegt. Einzig *Masri* et al. (39) fanden unter 6 Kühen

ein Tier, das nach dem Verfüttern von 5 mg B₁/Tag über 38 Wochen in den ersten 16 Wochen zwischen 2,37 bis 3,94% der aufgenommenen B₁ als M₁ ausschied. Auch innerhalb einer genetisch stark verwandten Herde von Kühen konnte zwischen der geringsten und höchsten Ausscheidungsmenge ein Verhältnis von 1:6,75 festgestellt werden (37).

Tabelle 2. Ausscheidung von Aflatoxin M₁ in Abhängigkeit von der verzehrten Aflatoxin-B₁-Menge bei Kuh und Schaf

Autor	Ausscheidung von Afl.M ₁ in % bezogen auf den Afl.B ₁ -Gehalt im Futter				
	A STATE OF THE STATE OF THE STATE OF				
Allcroft et al. (16)	0,35				
Masri et al. (39)	1,56 (0,5,—3,9)				
Kuh 2	2,37—3,94				
Neumann-Kleinpaul und Terplan (41)	1,39				
Hoversland et al. (44) McKinney et al. (38)	0,43—1,38				
Kiermeier (36)	0,86				
Kiermeier und Mücke (40)	0,18-0,39				
Polan et al. (33)	0,00—0,30				
Lafont und Lafont (42)	0,78—0,90				
Engel und Hagemeister (45)	<0,6				
Nabney et al. (17): Mutterschaf	0,25				

Zwischen der täglichen Aufnahme von Aflatoxin B1 und der Ausscheidung von Aflatoxin M1 in die Milch ist eine lineare Beziehung festzustellen. Berücksichtigt man die Werte von Polan et al. (33), van der Linde et al. (34), Allcroft und Roberts (35), Kiermeier et al. (37), McKinney et al. (38), Masri et al. (39), Kiermeier und Mücke (40) und Lafont und Lafont (42), so läßt sich anhand der Regressions analyse die Gerade mit $y = -2.55 + 0.84 \times (r^2 = 0.73)$ (n = 43) beschreiben (Abb. 2). Bei den Arbeiten von McKinney et al. (38), Masri et al. und Lafont und Lafont (42) wurden die über mehrere Tage bzw. Wochen angegebenen Werte eines Tieres als Durchschnittswert in die Rechnung einbezogen. Es ist dabei zu beachten, daß diese Versuche meistens mit Mengen über 1 mg Aflatoxin B₁/Tag durchgeführt wurden mit Ausnahme von 0,875 mg (35), 0,1, 0,2, 0,6 mg (37), 0,046 und 0,250 mg (33), während bei einer Untersuchung von 105 Futtermittelproben ein Einzelbzw. ein Mischfuttermittel einen maximalen Aflatoxin-B1-Gehalt von 280 bzw. 300 µg/kg aufwiesen (46). Werden bei der oben erwähnten Regressionsanalyse die Werte über 30 mg Aflatoxin B₁/Tag als zu hoch weggelassen, so resultiert daraus: $y = -0.01 + 0.64 \times (r^2 = 0.82) (n = 39).$

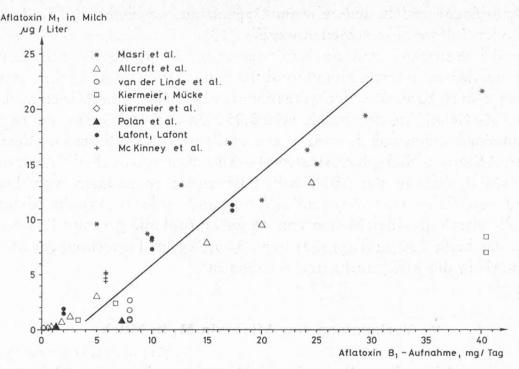


Abb. 2. Aflatoxin-M₁-Gehalt in Milch von Kühen, die unterschiedliche Mengen von Aflatoxin B₁ erhielten (Wert von Masri et al.: 80 mg B₁ nicht eingezeichnet).

Nach dem Absetzen der aflatoxinkontaminierten Ration oder von reinem Aflatoxin B1 ist das Aflatoxin M1 in der Milch nicht mehr nachweisbar*: nach zwei Tagen (33), nach etwa 2 bis 3 Tagen (37, 40), nach 3 Tagen (41), nach 3 bis 4 Tagen (34, 35, 38). Bei größeren Mengen an zugeführtem Aflatoxin B1 dauert die Ausscheidung 4 bis 5 Tage (36, 40 45) und kann bis zum 9. (42, 66) bzw. 13. (37) Tage anhalten. Nach einer täglichen Zufuhr von 10 bis 40 mg über mehrere Wochen waren 7 Tage nach dem Absetzen noch 1-5 µg/kg (39, 43) und 9 Tage nach einer über 5 Tage dauernden Zufuhr von 17,25 mg/Tag noch meßbare Mengen (0,20 µg/kg zu finden (42). In Studien, bei denen nur eine einzige Dosis Aflatoxin an Kühe (16) und an laktierende Mutterschafe (17) gegeben wurde, konnte ebenfalls gezeigt werden, daß die Ausscheidung des Aflatoxin M1 in die Milch nach 4 bzw. 5 Tagen beendet war. Im Urin konnten bei Kuh und Schaf nach 5 Tagen, im Kot nach 6 Tagen bei der Kuh und nach 8 Tagen beim Schaf noch meßbare Mengen von Aflatoxin nachgewiesen werden (16, 17). In diesen Untersuchungen zeigte sich auch, daß mehr als 90% der verfütterten Aflatoxine nicht in den Exkreten gefunden werden konnten. Nach Engel und Hagemeister (45) werden bei den Milchkühen weniger als 1% im Kot und bis zu 5% des verabreichten Aflatoxins im Urin und nach Polan et al. (33) 5% im Kot und 3,2% im Urin ausgeschieden. Es ist zu erwarten, daß über eine Demethylierung der Methoxylgruppe die Aflatoxine in nichtfluoreszierende und nichttoxische Stoffwech-

^{*} Nachweisgrenze in µg/kg: 0,04 (36, 37, 40), 0,1 (38, 45), 0,2 (42), 0,33 (35), 0,6 (41), 1 (16, 17, 39, 43).

selprodukte umgewandelt, teilweise im Organismus verbleiben (68) oder als Glucuronide oder Sulfate ausgeschieden werden (18).

Unter der Annahme, daß ein Kraftfutter nur 10 µg/kg B₁ enthält, eine Kuh täglich 5 kg davon zu sich nimmt und 10 Liter Milch gibt, ist bei einer Metabolisierung von 1 bzw. 3% der aufgenommenen Aflatoxin-B₁-Menge mit einem Aflatoxin-M₁-Gehalt in der Milch von 0,050 bzw. 0,150 µg/kg zu rechnen. So haben Untersuchungen von Kiermeier et al. (37) gezeigt, daß bei der Verfütterung von 25 µg Aflatoxin B₁/kg Kraftfutter (4—5 kg Kraftfutter/Kuh) noch mit einem Aflatoxin-M₁-Gehalt in der Milch von 0,04 µg/kg zu rechnen war. Demgegen-über wird von Polan et al. (33) und Allcroft und Roberts (35) die Meinung vertreten, daß unterhalb einer Menge von 46 µg/kg (auf die gesamte Ration bezogen 15 µg/kg, das heißt 230 µg/Tag) (33) bzw. 50 µg/kg im Futterkonzentrat (35) kein Aflatoxin M₁ in der Milch mehr nachweisbar ist*.

Vorkommen von Aflatoxin M₁ in Milch

Futtermittel, vor allem Erdnußprodukte wie auch andere Oelsaatprodukte, sind häufig mit Aflatoxinen kontaminiert (39, 70). So sind nach Hüni (69) neben dem Erdnußmehl, das mit bis zu 5 ug/kg Aflatoxin verunreinigt sein kann, oft auch Maisgluten, Kokosmehl und Palmkernmehl jedoch mit geringeren Aflatoxinmengen kontaminiert, während Mais und Leinkuchen eine seltene und die übrigen verwendeten Futtermittel keine Kontamination an Aflatoxinen aufweisen; die Nachweisgrenze der angewendeten Methode liegt bei 2 ug/kg. Da nach dem Verzehr von aflatoxinkontaminierten Futtermitteln mit einem Carry over von 1% in die Milch zu rechnen ist, kann eine Aflatoxinverseuchung der Milch nur über Futtermittel verhindert werden, die keine oder nur geringe Mengen an Aflatoxinen enthalten. So existieren in verschiedenen Ländern bereits Vorschriften, die den maximalen Gehalt an Aflatoxinen in Kraftfuttermitteln für Milchvieh begrenzen, so in den Europäischen Gemeinschaften auf 20 u.g/kg (47). In der Schweiz wurde von der Eidg. Forschungsanstalt für viehwirtschaftliche Produktion, Grangeneuve, mit Wirkung ab 1. August 1977 an die Futtermittelfabrikanten die Verordnung erlassen, daß «Erdnußprodukte mit nachweisbaren Aflatoxinmengen nicht für die Milchviehfütterung verwendet werden dürfen» (48). Als Folge dieser Verordnung ergab sich im Bereich der Mischfuttermittel folgende Entwicklung: im Winter 1976/77 (59 Proben) wurden in 7% und im Winter 1977/78: Oktober bis Dezember (489 Proben) in 35%, Januar bis Februar (298 Proben) in 60% der Proben keine Aflatoxine (Nachweisgrenze: 2 µg/kg) nachgewiesen, während bis zu 20 µg/kg Aflatoxin im Futtermittel in 54, 39 bzw. 26% der Proben ermittelt wurden (69).

Daß die Aflatoxinkontamination der Milch einen Zusammenhang mit der Verfütterung von Kraftmitteln aufweist, zeigt sich auch darin, daß in Milchproben der Monate November bis Mai eine größere Anzahl positiver Proben mit einem

^{*} Nachweisgrenze: 0,33 ug/kg (35) bzw. Spuren = 0,01 μ g/kg (33).

etwas höheren Durchschnittswert nachgewiesen wurde als in den Monaten Juni bis Oktober: 70% gegenüber 25% (49). Ebenso stellten Kiermeier et al. (46) einen qualitativen Zusammenhang zwischen dem Aflatoxin-B₁-Gehalt in Futtermitteln und dem Aflatoxin-M₁-Gehalt in der Milch fest. Fritz et al. (50) fanden 4 von 24 Milchproben der Monate Dezember bis April als aflatoxin-M₁-positiv: in allen 12 Milchproben des Sommers war es nicht nachweisbar (Nachweisgrenze: 0,1 µg/kg). Neben diesen Arbeiten haben noch andere Autoren Aflatoxin M₁ in Milch festgestellt (37, 54—55, 71), doch existieren ebenfalls Arbeiten, in denen Aflatoxin M₁ in Milch nicht nachgewiesen wurde (10, 51, 52) (Tabelle 3).

Tabelle 3. Aflatoxin M₁ in Milch

Autor	Anzahl Proben	Nachweisgrenze der Methode, μg/kg	Positiv. in 0/0	Aflatoxine B ₁ , B ₂ , G ₁ , G ₂ nachweisbar
		biolog. Test,	3	
Allcroft und Carnaghan (10)	19	ohne Angaben	neg.	
Purchase und Vorster (54)	21	0,16	23,8	
Brewington et al. (51)	unbekannt	<1	neg.	
Kiermeier und Mücke (55)	61	0,04	46	
Lemieszek-Chodorowska (52)	31	0,05	neg.	
Kiermeier et al. (37)	165	0,04	22	The last
Paul et al. (53)	56	<1	7,1	kein B ₁ , B ₂ , C
Fritz et al. (50)	36	0,1	11	kein B ₁
Kiermeier et al. (46)	419	0,02	18,9	nein
Polzhofer (49)	260	0,05	45	nein
Pée et al. (71)	68		61,7	

Vorkommen von Aflatoxin M_1 in Milchprodukten

Es ist zu erwarten, daß nach der Verarbeitung von aflatoxinkontaminierter Milch Aflatoxin M₁ in den Milchprodukten zu finden ist. Dabei sind aber die Ergebnisse über den Einfluß der Lagerung (Tabelle 4) und verschiedener Erhitzungs- und Trocknungsbedingungen (Tabelle 5) recht widersprüchlich. Ebenso verhält es sich mit den Ergebnissen in bezug auf die Aflatoxin-M₁-Verteilung auf Molke und Bruch bei der Käseherstellung, was hauptsächlich auf die Ausführung der Versuche, auf die unterschiedlichen Bestimmungsmethoden und die Darstellung der Resultate zurückzuführen sein dürfte (10, 38, 56, 58—61, siehe dazu auch 73). Einheitlicher sind die in der Literatur dargestellten Werte über die Aflatoxin-M₁-Verteilung bei der Butterherstellung: so verbleiben bei der Entrahmung der Milch rund 84 (57) bzw. ungefähr 75% (59) des Aflatoxin M₁ in der Magermilch und nach der Verbutterung sind rund 81 (57) bzw. 60 (59) bzw. 86% (60) in der Butter zu finden.

Tabelle 4. Veränderungen des Aflatoxin-M₁-Gehaltes in der Milch während der Lagerung bei verschiedenen Temperaturen (Angaben in µg/kg bzw. Abnahme in ⁰/₀)

Lagerungs- temperatur ⁶ C	Art der Milch	Tage								Litera-				
		0	3	4	6	7	8	12	17	50	68	100	120	tur
5	Roh, Past, UHTa, b		19—25%											57
4	Pastb	1,7	17-25 70			1,6			1,8					56
0	Roha	1,3		0,8		1,0	0,2	0,1	-,			- 25		38
	Roha	5,3		4,8			0,6	0,6						38
—18	Roha					5,4		6,2			4,3	4,0	3,4	56
—18c	Roha					6,0		6,4			5,3	3,8	3,0	56
—18	Roha				7,8/1,80/0									57
—18	Rohb				31,60/0		2 2 1	41			1			57
-32	Roha	5,0					- 41			2,9				38
	Roha	5,3								2,2			0,7	38
		1 2 4											- 5	201
		1.81												

a Natürlich kontaminierte Milch

b Milch mit zugesetztem Standard

c bei jeder Probeentnahme aufgetaut und erneut eingefroren

Tabelle 5. Einfluß verschiedener Erhitzungs- und Trocknungsbedingungen auf den Aflatoxin-M₁-Gehalt der Milch

	Erhitzungs- bzw. Trocknungsbedingungen		Abnahme in %	Literatur
601				
	62°C, 30′	a	33	58
	63°C, 30′	b	0/6/0	56
	71°C, 40′′	a	14/6	57
	71°C, 40′′	b	29	57
	72°C, 45″	a	46	58
	75°C, 40′′	a	12	57
	77°C, 16″	b	0	56
	80°C, 45″	a	64	58
	113—118°C, 30′	a	0	10
	120°C, 15′	a	25/24	57
	120°C, 15′	b	22/24/28	57
	128—138°C, momentan	a	0	10
	Sterilisieren	a	81	58
	Konzentrieren	a	0	57
	Walzentrocknung (verminderter Druck)	a	61	58
	Walzentrocknung (4,9 kg/cm²)	a	76	58
	Sprühtrocknung	a	86	58
	Sprühtrocknung	a	13	57

a Natürlich kontaminierte Milch

Verschiedene Autoren haben Milchpulver, Joghurt und Käse auf den Gehalt an Aflatoxin M₁ untersucht (41, 49—53, 62—65, 71, 72). Es zeigte sich, daß mit einer unterschiedlichen Anzahl aflatoxin-M₁-positiver Proben gerechnet werden muß (Tabelle 6). So wurden bei Milchpulver neben Chargen, bei denen kein Aflatoxin M₁ nachgewiesen wurde (50—52, 63), auch solche gefunden, bei denen die Hälfte bis ³/₄ der Proben M₁-positiv waren (49, 62). Ebenso waren bei Joghurt und Käse, ausgenommen bei (64) und (72), mehr als die Hälfte der Proben positiv (43, 49, 65), wobei bei der Arbeit von Kiermeier et al. (65) in 54⁰/₀ der positiven Käseproben nur Spuren nachgewiesen werden konnten, die quantitativ nicht zu erfassen waren.

Im Interesse der menschlichen Gesundheit gilt es, die Kontamination der Milch mit Aflatoxin zu unterbinden. Die Aflatoxinverseuchung der Milch kann aber nur über die Verfütterung von aflatoxinfreien Futtermitteln verhindert werden.

b Milch mit zugesetztem Standard

Tabelle 6. Aflatoxin M1 in Milchprodukten

Autor	Milchprodukt	Nachweis- grenze der Methode µg/kg	Anzahl Proben	Positiv. in %0	Aflatoxine B ₁ , B ₂ , G ₁ , G ₂	
Brewington et al. (51)	Magermilchpulver	<1	unbekannt	neg.		
Neumann-Kl. und Terplan (41)	Trockenmilchprodukte		166	5		
Jung und Hansen (62)	Vollmilchpulver	0,2	58	50		
	Magermilchpulver	0,2	62	71		
Lemieszek-Chodorowska (52)	Milchpulver	0,05	13	neg.		
Lück et al. (63)	Milchpulver	1	56	neg.	kein B ₁	
Paul et al. (53)	Milchpulver	<1	16	6	B_1 , B_2 , G_1 neg.	
Fritz et al. (50)	Milchpulver	0,5	18	neg.	1 Pr. B ₁ -pos.	
Polzhofer (49)	Milchpulver	0,2	41	73	nein	
Polzhofer (49)	Joghurt	0,06	54	82	nein	
Lück et al. (64)	Käse	1	42	neg.		
Paul et al. (53)	Käse	<1	26	neg.	6 Pr. B ₁ -pos., 1 P Spuren B ₂	
Polzhofer (49)	Frischkäse	0,1	80	34	nein	
이 시작을 다 가게 되었다.	Camembert	0,1	65	51	nein	
	Hartkäse	0,1	77	75	nein	
	Schmelzkäse	0,1	134	40	nein	
Kiermeier et al. (65)	Käse	0,02	197	69	nein	
Corbion und Fremy (72)	Camembert	2,5	100	1	kein B ₁	
		7				

Zusammenfassung

Diese Literaturübersicht befaßt sich mit der Frage der Ausscheidung von Aflatoxin M₁ in die Milch und dessen Vorkommen in Milch und Milchprodukten. Wegen ihrer starken kanzerogenen Wirkung sind die Aflatoxine, die toxische Stoffwechselprodukte gewisser Schimmelpilzarten sind, besonders gefürchtet. Aflatoxin B₁ in Futtermitteln wird von der Kuh in Aflatoxin M₁ umgewandelt und zu etwa 1% in die Milch ausgeschieden. Zwischen der Aflatoxin-B₁-Aufnahme im Futter und der M₁-Ausscheidung in die Milch läßt sich eine lineare Beziehung aufzeigen. In Milch und Milchprodukten wurden verschiedentlich Aflatoxin M₁ nachgewiesen. Die Verarbeitung von aflatoxin-M₁-kontaminierter Milch wird besprochen.

Résumé

Cette bibliographie est consacrée aux problèmes de la sécrétion de l'aflatoxine M₁ avec le lait et de sa présence dans le lait et les produits laitiers. Les aflatoxines sont des métabolites toxiques de moisissures; elles sont redoutées pour leur effet fortement cancérigène. L'aflatoxine B₁ des fourrages est transformée par la vache en aflatoxine M₁ qui est sécrétée avec le lait dans une proportion d'environ 10/0 de la quantité ingérée. Il existe une relation linéaire entre l'ingestion d'aflatoxine B₁ avec le fourrage et la sécrétion d'aflatoxine M₁ dans le lait. A plusieurs reprises on a constaté la présence d'aflatoxine M₁ dans le lait et les produits laitiers. L'utilisation de lait contaminé par l'aflatoxine M₁ comme lait de fabrication est discutée.

Abstract

This bibliography relates to the problems of aflatoxin M_1 secretion in milk and its presence in milk and dairy products. Aflatoxins are toxic metabolites from specific mould species; their strong cancerigenic effect makes them a particularly dangerous toxin. Aflatoxin B_1 in feed is transformed by the cow into aflatoxin M_1 and secreted in milk at a ratio of about $1^{0}/_{0}$. There is a linear relation between aflatoxin B_1 intake with feed and aflatoxin M_1 secretation in milk. Aflatoxin M_1 has been found repeatedly in milk and dairy products. Processing of aflatoxin M_1 -contaminated milk is discussed.

Literatur

- 1. Blount, W. P.: Turkey «X» disease. Turkeys 9, 52, 55-58, 61, 77 (1961).
- 2. Asplin, F. D. and Carnaghan, R. B. A.: The toxicity of certain groundnut meals for poultry with special reference to their effect on ducklings and chickens. Vet. Rec. 73, 1215—1219 (1961).
- 3. Allcroft, R., Carnaghan, R. B. A., Sargeant, K. and O'Kelly, J.: A toxic factor in Brazilian groundnut meal. Vet. Rec. 73, 428—429 (1961).
- 4. Sargeant, K., Sheridan, A., O'Kelly, J. and Carnaghan, R. B. A.: Toxicity associated with certain samples of groundnuts. Nature 192, 1096—1097 (1961).
- 5. Asao, T., Büchi, G., Abdel-Kader, M. M., Chang, S. B., Wick, E. L. and Wogan, G. N.: Aflatoxins B and G. J. Am. Chem. Soc. 85, 1706—1707 (1963).

- 6. van der Zijden, A. S. M., Koelensmid, W. A. A. B., Boldingh, J., Barrett, C. B., Ord, W. O. and Philp, J.: Isolation in crystalline form of a toxin responsible for turkey X disease. Nature 195, 1060—1062 (1962).
- 7. Harteley, R. D., Nesbitt, B. F. and O'Kelly, J.: Toxic metabolites of Aspergillus flavus. Nature 198, 1056—1058 (1963).
- 8. Asao, T., Büchi, G., Abdel-Kader, M. M., Chang, S. B., Wick, E. L. and Wogan, G. N.: The structures of aflatoxins B and G₁. J. Am. Chem. Soc. 87, 882—886 (1965).
- 9. Allcroft, R. and Carnaghan, R. B. A.: Groundnut toxicity. Aspergillus flavus toxin (aflatoxin) in animal products: preliminary communication. Vet. Rec. 74, 863—864 (1962).
- 10. Allcroft, R. and Carnaghan, R. B. A.: Groundnut toxicity: an examination for toxin in human food products from animals fed toxic groundnut meal. Vet. Rec. 75, 259—263 (1963).
- 11. de Jongh, H., Vles, R. O. and van Pelt, J. G.: Milk of mammals fed an aflatoxin-containing diet. Nature 202, 466—467 (1964).
- 12. Butler, W. H. and Clifford, J. I.: Extraction of aflatoxin from rat liver. Nature 206, 1045-1046 (1965).
- 13. Allcroft, R., Rogers, H., Lewis, G., Nabney, J. and Best, P. E.: Metabolism of aflatoxin in sheep: excretion of the «milk toxin». Nature 209, 154—155 (1966).
- 14. Holzapfel, C. W., Steyn, P. S. and Purchase, I. F. H.: Isolation and structure of aflatoxin M₁ and M₂. Tetrahedron Letters 25, 2799—2803 (1966).
- 15. Masri, M. S., Lundin, R. E., Page, J. R. and Garcia, V. C.: Crystalline aflatoxin M₁ from urine and milk. Nature 215, 753—755 (1967).
- 16. Allcroft, R., Roberts, B. A. and Lloyd, M. K.: Excretion of aflatoxin in a lactating cow. Food Cosmet. Toxicol. 6, 619—625 (1978).
- 17. Nabney, J., Burbage, M.B., Allcroft, R. and Lewis, G.: Metabolism of aflatoxin in sheep: Excretion pattern in the lactating ewe. Food Cosmet. Toxicol. 5, 11—17 (1967).
- 18. Dalezios, J. I., Hsieh, D. P. H. and Wogan, G. N.: Excretion and metabolism of orally administered aflatoxin B₁ by rhesus monkeys. Food Cosmet. Toxicol. 11 605—616 (1973).
- 19. Campbell, T. C., Caedo, J. P. jr., Bulatao-Jayme, J., Salamat, L. and Engel, R. W.: Aflatoxin M₁ in human urine Nature 227, 403—404 (1970).
- 20. Goldblatt, L. A.: Aflatoxin. Scientific background, control and implications. Academic Press, New York, London 1969.
- 21. Frank, H. K.: Aflatoxine. Bildungsbedingungen, Eigenschaften und Bedeutung für die Lebensmittelwirtschaft. B. Behr's Verlag, Hamburg 1974.
- 22. Int. Agency for Research on Cancer: Aflatoxins. IARC Monographs on the evaluation of the carcinogenic risk of chemicals to man: Some naturally occurring substances 10, 51—72. IARC, Lyon 1976.
- 23. Lynch, G. P.: Mycotoxins in feedstuffs and their effect on dairy cattle. J. Dairy Sci. 55, 1243-1255 (1972).
- 24. Kiermeier, F.: The significance of aflatoxins in the dairy industry. IDF Ann. Bull., Doc. No. 98 (1977).
- 25. Purchase, I. F. H.: Acute toxicity of aflatoxins M₁ and M₂ in one-day-old ducklings. Food Cosmet. Toxicol. 5, 339—342 (1967).
- 26. Schlatter, C.: Gesundheitsgefahr durch Aflatoxine in der Nahrung? Ernährungsinformation 2 (1977) der Schweiz. Vereinigung für Ernährung.
- 27. Sinnhuber, R. O., Lee, D. J., Wales, J. H., Landers, M. K. and Keyl, A. C.: Aflatoxin M₁: a potent liver carcinogen for rainbouw trout. Fed. Proc. 29, 568 (1970).

- 28. Sinnhuber, R. O., Lee, D. J., Wales, J. H., Landers, M. K. and Keyl, A. C.: Hepatic carcinogenesis by aflatoxin M₁ in rainbouw trout (Salmo gairdneri) and its enhancement by cyclopropene fatty acids. J. nat. Cancer Instr. 53, 1285—1288 (1974).
- 29. Canton, J. H., Kroes, R., van Logten, M. J., van Schothorst, M., Stavenuiter, J. F. C. and Verhülsdonk, C. A. H.: The carcinogenicity of aflatoxin M₁ in rainbouw trout. Food Cosmet. Toxicol. 13, 441—443 (1975).
- 30. Wogan, G. N. and Paglialunga, S.: Carcinogenicity of synthetic aflatoxin M₁ in rats. Food Cosmet. Toxicol. 12, 381—384 (1974).
- 31. Barnes, J. M.: Aflatoxin as a health hazard. J. appl. Bact. 33, 285-298 (1970).
- 32. Mathur, C. F., Smith, R. C. and Hawkins, G. E.: Growth and morphology of Streptococcus bovis and of mixed rumen bacteria in the presence of aflatoxin B₁, in vitro. J. Dairy Sci. 59, 455—458 (1976).
- 33. Polan, C. E., Hayes, J. R. and Campbell, T. C.: Consumption and fate of aflatoxin B₁ by lactating cows. J. Agr. Food Chem. 22, 635—638 (1974).
- 34. van der Linde, J. A., Frens, A. M. and van Esch, G. J.: Experiments with cows fed groundnut meal containing aflatoxin. In: G. N. Wogan, Mycotoxins in foodstuffs, pp. 247—249. M. I. T. Press, Cambridge 1964.
- 35. Allcroft, R. and Roberts, B. A.: Toxic groundnut meal: The relationship between aflatoxin B₁ intake by cows and excretion of aflatoxin M₁ in milk. Vet. Rec. 82, 116—118 (1968).
- 36. Kiermeier, F.: Ueber die Aflatoxin-M-Ausscheidung in Kuhmilch in Abhängigkeit von der aufgenommenen Aflatoxin-B₁-Menge. Milchwissenschaft 28, 683—685 (1973).
- 37. Kiermeier, F., Reinhardt, V. und Behringer, C.: Zum Vorkommen von Aflatoxinen in Rohmilch. Deut. Lebensm. Rundschau 71, 35—38 (1975).
- 38. Mc Kinney, J. D., Cavanagh, G. C., Bell, J. T., Hoversland, A. S., Nelson, D. M., Pearson, J. and Selkirk, R. J.: Effects of ammoniation on aflatoxins in rations fed lactating cows. J. Am. Oil Chem. Soc. 50, 79—84 (1973).
- 39. Masri, M. S., Garcia, V. C. and Page, J. R.: The aflatoxin M content of milk from cows fed known amounts of aflatoxin. Vet. Rec. 84, 146—147 (1969).
- 40. Kiermeier, F. und Mücke, W.: Einfluß der Qualität des Futtermittels auf den Aflatoxingehalt der Milch. XIX. Int. Milchw. Kongr. 1D, 114-115 (1974),
- 41. Neumann-Kleinpaul, A. und Terplan, G.: Zum Vorkommen von Aflatoxin M₁ in Trockenmilchprodukten. Arch. Lebensmittelhyg. 23, 128—132 (1972).
- 42. Lafont, P. et Lafont, J.: Elimination d'aflatoxine par la mamelle chez la vache. Cah. Nutr. Diét. 10, 55-57 (1975).
- 43. Keyl, A. C., Booth, A. N., Masri, M. S., Gumbmann, M. R. and Gagne, W. E.: Chronic effects of aflatoxin in farm animal feeding studies. In: M. Herzberg: Toxic microorganisms, pp. 72—75. Proc. 1st U.S.-Japan Conf. Toxic Microorganisms 1970.
- 44. Hoversland, A. S., McKinney, J., Selkirk, R., Cavanagh, G., Pearson, J. and Nelson, D. M.: Aflatoxin studies with lactating and non-lactating dairy cows. J. Animal Sci. 37, 253—254 (1973).
- 45. Engel, G. und Hagemeister, H.: Untersuchungen über den Verbleib von Aflatoxin B₁ im Verdauungstrakt von Kühen. Milchwissenschaft 33, 21—23 (1978).
- 46. Kiermeier, F., Weiß, G., Behringer, G., Miller, M. und Ranfft, K.: Vorkommen und Gehalt an Aflatoxin M₁ in Molkerei-Anlieferungsmilch. Z. Lebensm. Unters. -Forsch. 163, 171—174 (1977).
- 47. Europäische Gemeinschaft: Amtsblatt L38/31 vom 11. Febr. 1974.
- 48. Eidgenössische Forschungsanstalt für viehwirtschaftliche Produktion, Grangeneuve: Zirkularschreiben vom 19. Juli 1977 an die Mischfutterfabrikanten.

- 49. Polzhofer, K.: Aflatoxinbestimmung in Milch und Milchprodukten. Z. Lebensm. Unters. -Forsch. 163, 175—177 (1977).
- 50. Fritz, W., Donath, R. und Engst, R.: Bestimmung und Vorkommen von Aflatoxin M₁ und B₁ in Milch und Milchprodukten. Nahrung **21**, 79—84 (1977).
- 51. Brewington, C. R., Weihrauch, J. L. and Ogg, C. L.: Survey of commercial milk samples for aflatoxin M. J. Dairy Sci. 53, 1509—1510 (1970).
- 52. Lemieszek-Chodorowska, K.: (Detection and estimation of aflatoxin M₁ in milk). Roczniki Panst. Zakladu Higieny 25, 489—494 (1974), zit. nach DSA 37, 430 (1975).
- 53. Paul, R., Kalra, M. S. and Singh, A.: Incidence of aflatoxins in milk and milk products. Indian J. Dairy Sci. 29, 318—321 (1976), zit. DSA 39, 650 (1977).
- 54. Purchase, I. F. H. and Vorster, L. J.: Aflatoxin in commercial milk samples. S. Afr. med. J. 42, 219 (1968), zit. nach DSA 31, 94 (1969).
- 55. Kiermeier, F. und Mücke, W.: Ueber den Nachweis von Aflatoxin M in Milch. Z. Lebensm. Unters. -Forsch. 150, 137—140 (1972).
- 56. Stoloff, L., Trucksess, M., Hardin, N., Francis, O. J., Hayes, J. R., Polan, C. E. and Campbell, T. C.: Stability of aflatoxin M in milk. J. Dairy Sci. 58, 1789—1793 (1975).
- 57. Kiermeier, F. und Mashaley, R.: Einfluß der molkereitechnischen Behandlung der Rohmilch auf den Aflatoxin-M₁-Gehalt der daraus hergestellten Produkte. Z. Lebensm. Unters. -Forsch. **164**, 183—187 (1977).
- 58. Purchase, I. F. H., Steyn, M., Rinsma, R. and Tustin, R. C.: Reduction of the aflatoxin M content of milk by processing. Food Cosmet. Toxicol. 10, 383-387 (1972).
- 59. Grant, D. W. and Carlson, F. W.: Partitioning behavior of aflatoxin M in dairy products. Bull Environm. Contam. Toxicol. 6, 521—524 (1971).
- 60. Stubblefield, R. D. and Shannon, G. M.: Aflatoxin M₁: Analysis in dairy products and distribution in dairy foods made from artificially contaminated milk. J. Assoc. Offic. Analyt. Chemists 57, 847—851 (1974).
- 61. Kiermeier, F. und Buchner, M.: Zur Verteilung von Aflatoxin M₁ auf Molke und Bruch bei der Käseherstellung. Z. Lebensm. Unters. -Forsch. **164**, 82—86 (1977).
- 62. Jung, M. und Hansen, E.: Ueber das Vorkommen von Aflatoxin M in Trockenmilcherzeugnissen. Food Cosmet. Toxicol. 12, 131—138 (1974).
- 63. Lück, H., Steyn, M. and Wehner, F. C.: A survey of milk powder for aflatoxin content. S. Afr. J. Dairy Technol. 8, 85—86 (1976).
- 64. Lück, H., Wehner, F. C., Plomp, A. and Steyn, M.: Mycotoxin in South African cheeses. S. Afr. J. Dairy Technol. 8, 107—110 (1976).
- 65. Kiermeier, F., Weiß, G., Behringer, G. und Miller, M.: Ueber das Vorkommen und den Gehalt von Aflatoxin M₁ in Käsen des Handels. Z. Lebensm. Unters. -Forsch. 163, 268—271 (1977).
- 66. Fehr, P.-M., Bernage, L. et Vassilopoulos, V.: Effet de la consommation de tourteau d'arachide pollué par Aspergillus flavus chez le ruminant en lactation. Lait 48, 377—391 (1968).
- 67. Wong, J. J. and Hsieh, D. P.: Mutagenicity of aflatoxins related to their metabolism and carcinogenic potential. Proc. Natl. Acad. Sci. USA 73, 2241—2244 (1976).
- 68. Hayes, J. R., Polan, C. E. and Campbell, T. C.: Bovine liver metabolism and tissue distribution of aflatoxin B₁. J. Agr. Food Chem. 25, 1189—1193 (1977).
- 69. Hüni, K.: Vortrag, Arbeitstagung «Gesundheitsgefährdung durch Aflatoxine», 20./21. März 1978 in Zürich.
- 70. Lafont, P. et Lafont, J.: Contamination de produits céréaliers et d'aliments du bétail par l'aflatoxine. Food. Cosmet. Toxicol. 8, 403—408 (1970).

71. van Pée, W., van Brabant, J. et Joostens, J.: La détection et le dosage de l'aflatoxine M₁ dans le lait et le lait en poudre. Rev. Agric. 30, 403—415 (1977).

72. Corbion, B. et Fremy, J. M.: Recherche des aflatoxines B₁ et M₁ dans les fromages de type «Camembert». Lait 58, 133—140 (1978).

73. Sieber, R.: Zur Frage der Mykotoxine in Käse. Schweiz. Milchztg. 104, 683 (1978).

Dr. R. Sieber Prof. Dr. B. Blanc Eidg. Forschungsanstalt für Milchwirtschaft Schwarzenburgstraße 155 CH - 3097 Liebefeld-Bern