Zeitschrift: Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und

Hygiene = Travaux de chimie alimentaire et d'hygiène

Herausgeber: Bundesamt für Gesundheit

Band: 64 (1973)

Heft: 1

Artikel: Arsen als Spurenelement in Wasser

Autor: Senften, Hans

DOI: https://doi.org/10.5169/seals-982285

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Arsen als Spurenelement in Wasser

Hans Senften

Institut für Lebensmittelchemie, Universität Bern*

Die Ermittlung von Arsen-Gehalten im Trinkwasser geht auf eine Anregung von Prof. Dr. O. Högl vor etwa 7 Jahren zurück. Es stellte sich damals die Frage, ob sich die Trinkwässer von den Mineralwässern im Gehalt an Hydrogenarsenat unterscheiden. Ebenso hat Prof. Högl die Borsäure als Untersuchungskriterium vorgeschlagen, und ihr Vorkommen in Wasser ist von mir eingehend bearbeitet worden. Im Verlaufe der Neuanalysen der schweizerischen Mineralquellen haben sich nun eine ganze Reihe von Arsen-Werten von Trink-, Mineral- und Flußwässern angesammelt, über die berichtet werden soll. Gleichzeitig wurde die bekannte Bestimmungsmethode weiter ausgebaut und erprobt, besonders die Anreicherung des Arsens durch Eisenhydroxid-Fällung.

Meinem verehrten Lehrer, Herrn Prof. Dr. O. Högl, sei diese Publikation zu seinem 75. Geburtstag gewidmet.

I. Die Bedeutung des Arsens als Spurenelement

Arsen-Verbindungen sind meist nur als toxische Stoffe bekannt, man gibt 70 mg Arsen** als letale Dosis an. Es wurde früher zur Behandlung von Blutarmut eingesetzt, heute findet man es noch als Bestandteil des Tonikum-Roche: Bei Einnahme dieses Medikamentes werden nur 2 mg As verabreicht. Noch geringer sind die täglichen Aufnahmen mit der Nahrung: H. J. M. Bowen (1966) spricht von 100—300 µg, E. J. Underwood von 900 µg As. Die Aufnahme von Arsen aus Trink- und Mineralwasser bleibt fast immer unter 10 µg As, selbst wenn 0,5 l aufs Mal getrunken werden. K. Schwarz (1970) ordnet das Arsen den bedingt essentiellen Spurenelementen («under special consideration») zu. Nebenbei dürfte es interessieren, daß bei Fütterungsversuchen an Ratten das Arsen aus Garnelen zu 0,7 %, das Arsen aus As₂O₃ dagegen zu 19 % im Gewebe deponiert worden sei, wie W. Mertz (1971) berichtet.

Uns beschäftigt das Arsen zuerst als Unterscheidungskriterium für Trinkund Mineralwasser, dann in geochemischer Hinsicht sowie als Verschmutzungsindikator. Die «Normes Internationales pour l'Eau de Boisson» (Organisation mondiale de la Santé, Genève 1972) bezeichnen 0,05 mg As/l als provisorischen maximal zulässigen Gehalt für Trinkwässer. Die «Verordnung über den Verkehr mit Lebensmitteln und Gebrauchsgegenständen» schreibt in Artikel 264, l, vor, daß ein Mineralwasser als Arsen-Wasser bezeichnet werden muß, wenn der

^{*} Postadresse: Engehaldenstraße 6, 3012 Bern.

^{**} Umgerechnet aus der Literaturangabe: 100 mg $As_2O_3=LD^{50}$.

Gehalt mindestens 200 µg As/l beträgt (ca. 0,4 mg HAsO₄²⁻). In der Schweiz trifft dies nur für die Mineralquellen von Val Sinestra zu.

Von Arsen wird angenommen, daß es, analog zum Phosphor, als Ion der mittelstarken Arsen-Säure, als HAsO₄² gelöst vorliegt. Das wird bei Wasser, das mit der Luft in Berührung gekommen ist, zutreffen. Sauerstofffreie Wässer werden das Arsen in 3wertiger Form, und zwar, — infolge der geringen Säurestärke, — als undissoziierte arsenige Säure enthalten. Das Handbuch für Lebensmittelchemie (Band 8) enthält die Bestimmungsmethode, bei der das 3wertige Arsen an der Quelle jodometrisch erfaßt wird.

Die in Mineralwasseranalysen übliche Schreibweise als HAsO₄² (Hydrogenarsenat) soll beibehalten werden. In dieser Arbeit werden die Resultate in Milligramm Hydrogenarsenat pro Liter und in Mikrogramm Arsen pro Liter angegeben, um Maßzahlen von handlicher Größenordnung zu bekommen.

Beim Studium der Literatur findet man Angaben über Arsengehalte verschiedener Substanzen als As, As₂O₃, As₂O₅ usw. Die Tabelle mit den Umrechnungsfaktoren soll dem Leser nicht vorenthalten werden.

Tabelle 1. Umrechnungsfaktoren für Arsen-Verbindungen

	As 74,92	$\begin{array}{c c} As_2O_3 \\ 2 \cdot 98,92 \\ = 197,84 \end{array}$	HAsO ₄ 2— 139,924	HAsO ₂ 107,926	$\begin{array}{c c} As_2O_5 \\ 2 \cdot 114,918 \\ = 229,836 \end{array}$
As	1	1,320	1,867	1,440	1,533
As_2O_3	0,757	1	1,414	1,091	1,161
HAsO ₄ ²	0,535	0,706	1	0,771	0,821
$HAsO_2$	0,694	0,916	1,296	1	1,064
As_2O_5	0,652	0,861	1,217	0,939	1

II. Die Analytik des Arsens

Nachstehend soll zuerst eingehend über die Anreicherung und Bestimmung von Arsen in Wasser berichtet werden.

Ueber Nachweis- und Bestimmungsmethoden des Arsens besteht aus gerichtschemischen Gründen eine sehr umfangreiche Literatur. Die Erfassung von Mikrogrammengen bietet heute keine Probleme, die Bestimmung geht auf die Prinzipien von Marsh und Gutzeit zurück: Das Arsen wird als AsH₃ aus der Lösung getrieben, worauf es in verschiedener Weise weiter reagiert. Sehr bewährt hat sich die Reaktion mit dem Silberdiäthyldithiocarbaminat zu einem roten Farbstoff, der bequem fotometrisch ausgewertet werden kann. Als störende Verbindung darf der Schwefelwasserstoff nicht außer acht gelassen werden. Es sollen hier nur einige

für Wässer besondere Probleme diskutiert werden: Konservierung der Wasserproben, Anreicherung und Messung des Arsens. Die aus der Literatur entnommenen Vorschriften sind auf Grund persönlicher Erfahrungen modifiziert und verbessert worden. Eingangs soll auf eine Besonderheit im chemischen Verhalten des Arsens und auf die analytischen, technischen und geochemischen Konsequenzen hingewiesen werden.

1. Die Reaktion des Arsens mit ausfallendem Eisen

Wird eine Arsen-Lösung — auch von geringster Konzentration — die 5 bis 10 mg Fe/l enthält, alkalisch gemacht, so fällt das Eisen als Hydroxid aus und reißt das gesamte gelöste Arsen mit sich. Das Eisen wirkt hier als Spurenfänger. Aus Modellversuchen hat sich gezeigt, daß gelöstes Vanadium ebenfalls quantitativ mitgeht. Aus verschiedenen Literaturzitaten konnte entnommen werden, daß wahrscheinlich das Aluminium auch mitgefällt wird; dieser Frage werden wir noch nachgehen.

2. Anwendungen und Folgen

a) Die besprochene Arsen-Mitfällung kann für die Anreicherung von Spuren ausgenutzt werden, wie das die japanischen Autoren K. Sugawara und Mitarb. (1956) publiziert haben. Die Methode wurde mit Erfolg reproduziert, wobei bis 10 Liter Wasser verarbeitet worden sind. Tabelle 2 enthält Beispiele von Arsen-Bestimmungen, wo zwei Anreicherungsverfahren, Mitfällung und Eindampfen, zur Anwendung gekommen sind.

Tabelle 2
Bestimmung des Arsens durch Fotometrie nach 2 Anreicherungsverfahren

Wasserprobe	Anreicherung durch Mitfällung	Anreicherung durch Eindampfen
Schwarzenburg, Riedquelle	0,11 µg As/l	0,12 u.g As/l
Genf, Trinkwasser	1,1 µ.g As/1	0,93 µg As/1
Lostorf 3a	0,15 µg As/1	0,17 µ.g As/l
Lostorf 4	1,2 µg As/1	1,3 u.g As/1

Die Anreicherung durch Mitfällung und durch Eindampfen (der alkalisch gemachten Wasserprobe) liefert die selben Resultate, und hier muß hervorgehoben werden, daß die Mitfällung die einfachere Methode darstellt. Dazu kommt, daß die Störung durch Schwefelwasserstoff weitgehend ausgeschaltet werden kann (Einzelheiten siehe bei den Vorschriften).

b) Die Arsen-Mitfällung bedeutet ferner, daß die Wasserproben beim Stehen in neutralem Zustand das Arsen infolge Ausfallen des Eisenniederschlages verlieren. Beispielsweise konnte beim Wasser des Eisensäuerlings von St. Moritz das gesamte Arsen im Eisenniederschlag, der sich beim Stehen der neutralen Wasserprobe gebildet hatte, wieder gefunden werden. Wasserproben für die Arsen-Bestimmung müssen an der Quelle angesäuert werden. Faustregel: 1 mVal Alkalität = 1 ml HCl (d = 1,19) auf 5 l, dann fällt das pH auf etwa 2.

c) Bei der Wasserenthärtung durch Kalk-Zugabe und Eisenflockung (Fäll-klärung) ist mit der Elimination des gelösten Arsens zu rechnen. Dies konnte bei der Berkefeld-Anlage der Firma Arkina SA, Yverdon, nachgeprüft werden. Das Rohwasser aus dem Versorgungsnetz der Stadt Yverdon (aus dem Neuenburgersee gewonnen) weist 0,69 µg/l auf, das behandelte Wasser nur noch 0,03 µg As/l,

die erwartete Arsen-Entfernung tritt also ein.

d) Dagegen konnte bei der dritten Reinigungsstufe der Abwasseranlage von Jona, wo ebenfalls eine Eisenflockung stattfindet, keine so deutliche Reduktion des Arsens beobachtet werden. Das Abwasser enthielt nach der biologischen Rei-

nigung 0,80 µg As/l, nach der chemischen Stufe immer noch 0,55 µg.

e) Ein in diesen Zusammenhang gehörender weiterer Effekt ist die Arsen-Verminderung, die bei der Entfluoridierungsanlage in Zurzach stattfindet. Das 10 mg F⁻/l aufweisende Na₂SO₄-Wasser wird beim Durchgang durch ein Aluminiumoxid-Filter weitgehend selektiv entfluoridiert, nur die ohnehin geringe Eisenkonzentration wird weiter herabgesetzt: von 54 auf 29 µg Fe/l. Gleichzeitig fällt nun der Arsen-Spiegel von 124 auf 5 µg As/l.

f) Das auf dem Spureneinfang beruhende geochemische Verhalten des Arsens wird in Kapitel III erläutert. Die von mir erwarteten relativ hohen Arsen-Gehalte bei Eisenquellen konnten bei Schlegwegbad, Längeneybad, Rohrimoosbad, Gonten-

bad, St. Moritz und Levico Forte bestätigt werden.

3. Besprechung der in dieser Arbeit angewandten Bestimmungsmethoden

Als Bestimmungsmethode wurde die Fotometrie des AsH₃-Silberdiäthyl-Dithiocarbaminat-Komplexes gewählt. Die Grundsätze der Bestimmung und Anreicherung wurden aus der Literatur von W. Fresenius und F. Schneider (1964) sowie G. Stratton (1962) und K. Sugawara (1956) entnommen. Nur über die Modifikationen und gemachte Erfahrungen soll berichtet werden.

Zur Erzielung unabhängiger Eichgrundlagen sei empfohlen, Natriumarsenat und Arsentrioxid einzuwägen, sowie eine Fixanal-Lösung zu verdünnen. Die gemäß Literatur befürchtete Abnahme des Gehaltes kleiner Arsen-Konzentrationen konnte in den Eichlösungen (1,5 und 10 µg As/ml) beim Stehen in braunen Glasflaschen nicht beobachtet werden.

Die Anwesenheit von Schwefelwasserstoff verunmöglicht die Arsen-Messung vollständig. Fresenius empfiehlt, nach dem Eindampfen mit Schwefelsäure abzurauchen, Stratton will den Schwefelwasserstoff mit dem Blei-Acetat-Filter abfangen. Das Verfahren funktioniert, weist aber nur beschränkte Kapazität auf.

Bei Schwefelwasserstoff enthaltenden Wässern ist zur Anreicherung am besten die Mitfällung zu wählen. Das Bleiacetat-Filter soll aber trotzdem in allen Fällen angebracht werden, es verfälscht die Messung nicht, nur bei Eich-Messungen kann es weggelassen werden.

Für die Mitfällung schreiben die japanischen Autoren eine Konzentration von 10 mg Fe/l vor. Versuche haben gezeigt, daß 5 mg ebenfalls genügen. Die Mitfällung ist mit Erfolg bisher bei 10 l Wasser durchgeführt worden; größere Eisenmengen störten die Arsen-Bestimmung; die Abtrennung des Eisens durch Ausschütteln mit Methyl-Iso-Butyl-Keton hat jedoch zu Arsen-Verlusten geführt.

Große Wassermengen wurden bis jetzt auf dem Wasserbad erwärmt, ein Tauchsieder aus Metall ist nicht geprüft worden. Arsen-Einschleppungen wären hier zu befürchten, dagegen bei einem solchen aus Quarz wohl kaum. Zum Alkalisieren der Proben vor dem Eindampfen scheint Na₂CO₃ am besten geeignet zu sein, das abgeschiedene Karbonat wirkt nachher beim Herauslösen des Rückstandes mit Salzsäure als Sprengmittel. Die Verwendung von 5% iger Salzsäure bewirkt eine ruhige Gasentwicklung, die aber bei Zimmertemperatur immer noch zügig genug abläuft. Fresenius sowie Stratton schreiben vor, das Kaliumjodid als wässerige Lösung zu dosieren. Das Zugeben des festen und somit besser haltbaren Salzes brachte keine Nachteile. Das ziemlich teure Pyridin kann zur Rückgewinnung mittels Destillation gesammelt werden. Der Vorlauf ist zu verwerfen, und man fängt nur die zwischen 114-116 ° C siedende Fraktion auf. Zur Wasserstoffentwicklung nimmt man das «Zink grob gepulvert» von Merck; es würde pro Bestimmung höchstens 0,6 µg As einschleppen, es konnte aber kein konstanter Blindwert beobachtet werden. Die Leermessungen schwankten ganz leicht um den Nullwert, die Nachweisgrenze liegt dann auch bei 0,5 ug As (ermittelt durch etwa 10 Blindversuche, nach H. Kaiser [1965]). Entgegen den Angaben in der Literatur wird der Inhalt der Absorptionsgefäße nicht direkt in die Küvette zur Fotometrie umgeleert. Die Reproduzierbarkeit der Arsen-Messung scheint wesentlich besser zu sein, wenn das Silber-Reagens mit Pyridin herausgewaschen und auf ein definiertes Volumen (10 ml-Meßkolben) gefüllt wird. Das Absorptionsgefäß weist mit Vorteil in der unteren Krümmung einen Hahnen

Die Brauchbarkeit der in Abschnitt II, 4, erläuterten Methoden konnte mit zahlreichen Zusatzversuchen belegt werden, und in Tabelle 3 wird gezeigt, wie Resultate anderer Autoren reproduziert werden konnten.

4. Die ausführlichen Vorschriften zur Arsen-Bestimmung in Wässern

Eichgrundlagen. Arsen-Lösung mit 100 µg As/ml: 132,0 mg bei 116 °C getrocknetes As₂O₃ in 2-n H₂SO₄ lösen und mit reinem Wasser zum Liter füllen.

Arsen-Lösung mit 10 µg As/ml: 83,3 mg Na₂HAsO₄·7 H₂O in 2 l reinem Wasser lösen.

Arsen-Lösung in beliebiger Konzentration durch Verdünnung eines Fixanal-Präparates der Firma Stehelin, Basel.

Tabelle 3 Vergleich unserer Resultate mit denjenigen anderer Autoren

Bezeichnung der Wasserprobe	Unser Wert mg HAsO42— pro l	Autor	Wert in mg HAsO ₄ ² — pro l
Meerwasser Türkei	0,0031		
Meerwasser Tunesien	0,0082	2	
Meerwasser allgemein	1 <u>- </u> 1 8	H. J. M. Bowen	0,0056
		Verschiedene Autoren	
		im Gmelin zitiert	0,004 -0,006
Eglisau I	0,015	O. Gübeli	0,011
Weißenburg	0,012	O. Gübeli, 1954	0,012
Ragaz	0,015	EAWAG, 1965	0,020
		O. Gübeli	0,018
Baden	0,068	O. Gübeli, 1949	0,076
Zurzach	0,23	EAWAG, 1965	0,270
Bath, England	0,019	J. P. Riley (1961)	0,019

Vorbehandlung der Wasserproben. Die Wasserproben müssen unmittelbar an der Quelle gefaßt werden, solange noch kein Luftkontakt erfolgt ist, der das Eisen zur Abscheidung gebracht hat. Sie werden durch Ansäuern konserviert. 1 ml Salzsäure (d=1,19) pro mVal Alkalität sollte für 5 l Wasser genügen; das pH wird damit auf etwa 2 abgesenkt.

a) Die Anreicherung des Arsens

a) Durch Mitfällung

Prinzip. Das Arsen wird mit ausfallendem Eisenhydroxid gesammelt. Der Niederschlag wird durch Dekantieren getrennt und in Salzsäure aufgenommen.

Anwendungsbereich. Wasserproben mit Arsen-Gehalten bis herab zu 0,1 µg As/l und sonst beliebiger Zusammensetzung, besonders empfohlen bei solchen mit hohen CaSO₄-Anteilen und nachweisbarem Schwefelwasserstoff.

Reagenzien. Eisenchloridlösung: 48,4 g FeCl₃ · 6 H₂O Merck 3943 und 250 ml Schwefelsäure 1,84 Merck 731 mit reinem Wasser zum Liter füllen: 1 ml = 10 mg Eisen.

Salzsäure, 37 $^{0}/_{0}$ (d = 1,19) Merck 317.

Ammoniak, Merck 5432 1:1-Lösung in Tropfflasche.

Universal-Indikatorstäbchen, nicht blutend, Merck 9535/0001.

Geräte. Wasserbad; 5—10 l-Becherglas oder Plasticwanne mit Tauchsieder aus Quarz; Standzylinder; Vakuum mit Saugflasche; Erlenmeyer-Kolben mit Schliff (100 oder 200 ml).

Ausführung der Anreicherung. Eine größere Wassermenge (bis jetzt bis zu 10 Litern erprobt) wird pro Liter mit 0,5 ml der Eisenchloridlösung versetzt und

auf dem Wasserbad oder mit einem Tauchsieder auf 70—80° C erwärmt. Das pH soll unter 2 sein. Unter Rühren wird bis pH 7 neutralisiert, und die Suspension wird über Nacht stehen gelassen. Die klare Lösung wird abgesaugt und die restliche Suspension in einen hohen Standzylinder umgeleert, wo sie nach weiterem Stehen endgültig getrennt werden kann. Die verbleibende Suspension wird mit einem Sechstel ihres Volumens 37 % ige Salzsäure in einen 100 ml- oder 200 ml-Erlenmeyer-Kolben mit Schliff gespült, so daß hier Eisen und Arsen in 50—100 ml einer 5 % igen Salzsäurelösung vorliegen.

β) Durch Eindampfen

Prinzip. Das Arsen wird durch alkalisches Eindampfen der Wasserprobe angereichert. Der Rückstand wird in Salzsäure aufgenommen.

Anwendungsbereich. Wasserproben mit wenigstens 1 µg As/l, schwefelwasserstofffrei, nicht hoch mineralisiert.

Reagenzien. Natriumkarbonat, Merck 6392, 20% ige wässerige Lösung in Tropfflasche.

5 % o/oige Salzsäure, in Spritzflasche (140 ml 37 % oige Salzsäure mit reinem Wasser zum Liter füllen).

Geräte. Oberflächenverdampfer aus Quarz, Typ «OV 200»; große Quarzschale, ϕ 230 mm, der Firma Heraeus.

Spatel aus Polyaethylen.

Erlenmeyer-Kolben mit Schliff (100 oder 200 ml).

Ausführung der Anreicherung. Bis zu 2 l Wasser werden in die Quarzschale gegeben und durch Zutropfen von Na₂CO₃-Lösung alkalisiert. Nach dem Verdampfen (etwa 4 Stunden) wird der trockene Rückstand mit 50—100 ml 5% ige Salzsäure quantitativ in einen 100- oder 200-ml-Erlenmeyer-Kolben gewaschen; wenn nötig reibt man mit dem Plasticspatel nach, besonders bei Eisenhydroxid-Abscheidungen, die das As angereichert enthalten könnten.

b) Die Bestimmung des Arsens

Prinzip. Das Arsen wird durch Reduktion mit Zink aus der salzsauren Lösung als AsH₃ getrieben und reagiert mit Silberdiäthyldithiocarbamat in Pyridin zu einem roten Komplex, der fotometrisch ausgewertet wird.

Anwendungsbereich. Eisenhydroxid-Suspensionen (erprobt bis 50 mg Fe) und Eindampfrückstände als salzsaure Lösung vorliegend sowie nicht vorbehandelte Wasserproben mit mehr als 10 µg As/l. Meßbereich der Fotometrie: 0,5 bis 20 µg As.

Reagenzien. Salzsäure, 37 %, Merck 317 und 5 %.

Kaliumjodid, Merck 5043.

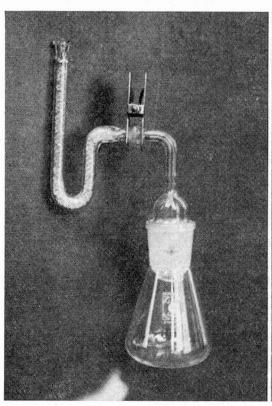
Zinn-(II)-Chlorid, Merck 7815. 40% ige Lösung in 37% ige Salzsäure, in Tropf-flasche aus Glas.

Blei-II-Acetat, Merck 7375: 10% ige wässerige Lösung.

Pyridin, Merck 9728 (in Spritzflasche).

Silberdiäthyldithiocarbaminat, Merck 1515: 0,5% ige Lösung in Pyridin (durch leichtes Erwärmen in Lösung bringen; im Kühlschrank aufbewahren).

Zink, grob gepulvert, Merck 8756.


Schwefelsäure, 96 % (d =1,84) Merck 731, in Weithalsgefäß.

Spezialgeräte. Bleiringe, zum Beschweren der Erlenmeyer-Kolben.

Pyrex-Glaswolle.

Wasserbad.

Erlenmeyer-Kolben, mit Absorptionsrohren (mit Glaskugeln gefüllt) gemäß Abbildung, zu beziehen bei Tewis AG, Laborbedarf, Bern.

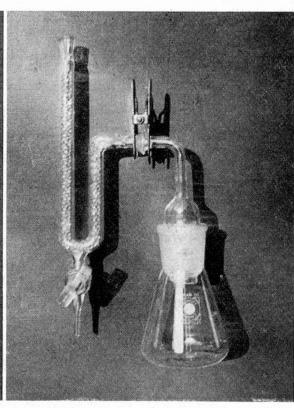


Abbildung 1: Arsin-Generatoren und Absorptionsgefäße, rechts modifizierte Ausführung mit Glashahn.

Ausführung der Bestimmung.

Direktmessungen: 50 bis 100 ml Wasserprobe werden mit 8—16 ml 37% iger Salzsäure auf einen Salzsäuregehalt von etwa 5% gebracht.

Eichproben: Etwa 30 ml 5% ige Salzsäure werden mit den gewünschten Mengen

der Eichlösungen versetzt.

Diese Proben und die aus den Anreicherungsschritten stammenden salzsauren Lösungen werden mit einer kleinen Spatelspitze Kaliumjodid und 8 Tropfen Zinn-(II)-Chloridlösung versetzt. Eisenhaltige Proben werden jetzt farblos, andernfalls gibt man noch mehr Zinnlösung dazu. Die Kölbchen läßt man 5 Minuten bei 90 °C im fast leeren Wasserbad mit Bleiringen beschwert stehen. Das As-V wird zu As-III reduziert. Die Proben werden auf Zimmertemperatur abgekühlt.

Unterdessen werden die Absorptionsrohre mit dem Silberdiäthyldithiocarbaminat-Reagens gefüllt, die optimale Menge (keine Spritzverluste bei der Gasentwicklung) muß durch Versuche festgelegt werden. Die abgebildeten Rohre verlangten 1,4 oder 2 ml Reagens. Zur Beseitigung der Störung durch Schwefelwasserstoff, mit der bei allen Messungen außer bei Eichproben zu rechnen ist, wird ins Innere des Uebergangsstückes vom 29er-Kegelschliff zum Kugelschliff ein Bausch mit wenig Bleiacetatlösung getränkter Pyrex-Glaswolle gestopft. Die Schliffe werden vor dem Zusammenbau zum Dichten in konzentrierte Schwefelsäure getaucht, wobei keine Säure ins Reagens geraten darf. In das Kölbchen wird etwa 6 g Zink gegeben und das Rohr sofort aufgesetzt. Man läßt zur AsH₃-Entwicklung etwa 1 Stunde stehen, dann wird der Inhalt der Absorptionsrohre mit Pyridin in ein 10 ml-Meßkölbchen gewaschen und zur Marke gefüllt. Man fotometriert gegen das Reagens bei 530 nm in einer 1 cm-Küvette. Die Eichfaktoren sind reproduzierbar; aus etwa 50 Messungen wurde eine mittlere Extinktion von 0,018 pro µg As erhalten.

Umrechnungsfaktoren. 1 μg As = 0,00187 mg HAsO₄²⁻.

Angabe der Resultate. Als Mikrogramm As pro Liter oder als Milligramm HAsO₄²⁻ pro Liter. Angaben in Mikrogramm HAsO₄²⁻ sind zu vermeiden (Verwechslungsgefahr). Man gibt 2 Zahlen an, unabhängig vom Dezimalkomma. Die relative Standardabweichung beträgt 7 %.

Nachweisgrenze. 0,5 µg As.

Garantiegrenze für Reinheit: Ergebnisse unter 0,5 µg As bedeuten weniger als 1 µg As oder 0,002 mg HAsO₄²⁻ in der untersuchten Wassermenge. Literatur. Anreicherung durch Mitfällung: K. Sugawara et al. (1956).

Bestimmung: G. Stratton et al. (1962) und W. Fresenius et al. (1964).

III. Sammlung und Diskussion der Arsen-Werte der Wässer

1. Arsen-Gehalte der Trinkwässer

Die Kenntnis des durchschnittlichen Arsen-Gehaltes von Trinkwasser kann für seine Abgrenzung gegen Mineralwasser dienlich sein. Weiter frägt es sich, ob es in der Schweiz Gebiete mit arsenreichem Trinkwasser gibt. Die tägliche Arsen-Aufnahme durch das Trinkwasser kann berechnet werden. Um einen großen Teil der schweizerischen Wohnbevölkerung zu erfassen, wurde vorab das Trinkwasser der größten Schweizer Städte ausgewählt.

Die Wasserproben wurden zur Arsen-Anreicherung meistens eingedampft, seltener kam die Spurenfällung zur Anwendung. Alle Messungen erfolgten durch

Fotometrie des Silberdiäthyldithiocarbaminat-Komplexes.

Tabelle 4 enthält die Arsen-Gehalte der untersuchten Trinkwasserproben in abnehmender Reihenfolge, und zwar in Mikrogramm As und in Milligramm HAsO₄²⁻ pro Liter, daneben wird auf die Herkunft des entsprechenden Wassers hingewiesen.

Aus den Werten in Tabelle 4 kann der Mittelwert von 0,5 μg As oder 0,0009 mg HAsO₄²⁻ pro l berechnet werden; wichtiger scheint die Kenntnis des Bereiches zu sein, in den die untersuchten Trinkwässer fallen: 0—1,4 μg As oder 0—0,0026 mg HAsO₄²⁻/l.

Tabelle 4. Arsen-Gehalte der Trinkwässer

Ort	Herkunft des Wassers	μg As/l	mg HAsO ₄ ² —/l
St. Gallen	Bodensee	1,4	0,0026
Lausanne	Genfersee	1,4	0,0026
Lugano	Grund- und Quellwasser	1,4	0,0026
Genf	Genfersee	1,1	0,0020
Yverdon 1972	Neuenburgersee	0,69	0,0013
Yverdon 1969	Neuenburgersee	0,30	0,00056
Frauenfeld	Grund- und Quellwasser	0,56	0,0010
Basel	Versickertes Rheinwasser	0,50	0,00093
Neuenburg	Seewasser	0,48	0,00089
S-charl GR	Quellwasser	0,37	0,00069
Neuenburg	Quellwasser	0,24	0,00045
Bern	Quellwasser Emmental	0,24	0,00045
Luzern	See- und Quellwasser	0,17	0,00032
Winterthur	Grundwasser Tößtal	0,13	0,00032
Schinznach-Dorf	Quellwasser	< 0,3	< 0,0005
Densbüren	Quellwasser	< 0,3	< 0,0005
Burgdorf	Grundwasser	< 0,2	< 0,0004
Montreux-Mavalley	Quellwasser	< 0,1	< 0,0002
Chur	Quellwasser	< 0,07	< 0,0001
Literaturangabe:			14 11 11
H. J. M. Bowen	(Fresh water)	0,4	0,00072

Die tägliche Arsenaufnahme mit 2 Litern Trinkwasser liegt damit in der Größenordnung von 0 bis 3 µg As pro Tag.

In Tabelle 4 fallen keine Gebiete mit arsenreichem Trinkwasser auf, wesentlicher ist, daß allgemein Quellwässer geringere Arsen-Gehalte als Fluß- und Seewasser aufweisen; die Werte liegen unter 0,4 µg As/l. Arsen-Gehalte über 0,5 µg As/l finden wir bei aufbereitetem Fluß- und Seewasser. Um diesen Befund zu bestätigen, wurde der Arsen-Gehalt einiger Flußwasserproben ermittelt.

2. Arsen-Gehalte der Flußwässer

Bowen (1966) berichtet in seinem Buche, daß Flußwässer bis zu 230 µ.g As/l enthalten können und daß 3,7 · 10¹⁶ kg Flußwasser pro Jahr 1,5 · 10⁷ kg As ins Meer brächten. Diese Menge ist höher als die jährlich geförderte Menge von 2,7 · 10⁶ kg. Bowen bezeichnet das Arsen als mäßigen potentiellen Verschmutzer.

Tabelle 5 enthält die Arsen-Gehalte einiger Schweizer Flüsse.

Der mittlere Arsen-Gehalt der Flüsse ist mit 1,3 µg As/l höher als derjenige des Trinkwassers. Nur die Aare enthält im Oberlauf so wenig Arsen wie ein Quell-

Tabelle 5. Arsen-Gehalt der Flußwasserproben

Bezeichnung der Wasserprobe	Entnahmeort	μg As/l	mg HAsO ₄ 2—/1	
Rhone	Vouvry	4,2	0,0080	
Rhein	Basel	1,5	0,0028	
Limmat	Turgi	1,4	0,0026	
Glatt	Hochfeld	1,2	0,0022	
Thielle	Yverdon	1,2	0,0022	
Thur	Andelfingen	0,85	0,0016	
Reuß	Windisch	0,54	0,0010	
Aare	Koblenz	1,7	0,0031	
Aare	Brugg	1,4	0,0026	
Aare	Wohlensee	0,21	0,00039	
Weitere Angaben zum V	Vergleich			
Abwasser von Jona bei	Rapperswil ZH vor chemischer			
Reinigungsstufe		0,80	0,0015	
nach chemischer Reinig	ung (Eisen-Flockung)	0,55	0,0010	

wasser, die übrigen Flüsse wurden nur im Unterlauf untersucht. Ihr Arsen-Gehalt ist hoch, er dürfte zum Teil auf die Abwässer zurückzuführen sein, beim unbehandelten Abwasser von Jona finden wir einen ähnlichen Wert. Die sonst noch selten installierte chemische Reinigungsstufe reduziert den Arsen-Gehalt in geringem Ausmaß. Das aus den Abwässern stammende Arsen der Flüsse ist dann in dem daraus gewonnenen Trinkwasser wiederum zu finden, sofern es nicht durch besser wirksame Flockungsprozesse entfernt wird.

Zur Erklärung der Arsen-Gehalte der Flüsse sind die von H. J. M. Bowen (1966) gemachten Angaben über Dünger anzuführen. Je nach Hauptelement enthalten die Dünger folgende Arsen-Mengen:

Calcium	1	mg/kg	Stickstoff	100	mg/kg
Kalium	15	mg/kg	Phosphor	10—1000	mg/kg

Im Ricasol-Dünger von Lonza (13 % N, 9 % P, 22 % K) konnte ich 48 mg As/kg finden, im Baumdünger Frusan weniger als 0,1 mg/kg. Streusalz (Auftausalz) enthält weniger als 0,1 mg As/kg. Der Arsen-Gehalt der Flüsse geht demnach auf die Abwässer und auf die Ausschwemmung gewisser Düngersorten zurück, das Streusalz dürfte weniger ausmachen.

R. C. Cowen (1970) behauptet, daß das Arsen der Flüsse von den Detergentien, welche 10—70 mg As/kg enthalten sollen, herkomme. Leider konnte aus Zeitgründen dieser Frage nicht weiter nachgegangen werden.

Tabelle 6. Die Arsen-Gehalte der Mineralwässer, nach Quellklassen geordnet

a) Calciumsulfat-Wässer, Ca²⁺ und SO₄²⁻ enthaltend

	Gesamt- Mineralisation mg/l	μ g As/l	mg HAsO4/l	Bemerkungen
Alpine Gipsquellen		9.11		
Weißenburg	1680	6,4	0,012	schwach eisenhaltig 26 ° C
Gurnigel Rischbach,	1800	0,74	0,0014	
Zweisimmen	2370	0,26	0,00048	
Adelboden Aproz, Nappe	1950	0,2	0,004	
souterraine	1500	< 0,1	< 0,0002	The pulling of
Aproz, Gipsquellen	2130	< 0,2	< 0,004	
Morgins, Eau rouge	2230	< 0,2	< 0,0004	schwach eisenhaltig
Saillon	1080	< 0,2	< 0,0004	schwach eisenhaltig
Saxon, kalt	2300	< 0,2	< 0,0004	South dell elseminaters
Saxon, warm	780	< 0,5	< 0,001	24 ° C
Jura-Gipsquellen				
Lostorf 4 (Gips-				
therme)	906	1,3	0,0024	
Eptingen	1470	1,2	0,0022	Law office and the first
Olsberg	2400	0,80	0,0015	
Ramsach	1310	0,75	0,0014	Audy as to see
Rheinfelden, Magden	2700	0,75	0,0014	a deposit conflict
Lostorf 3b	2375	0,70	0,0013	Kidast halek
Wintersingen	2450	0,47	0,00088	and the state of t
Sulz	1330	0,29	0,00054	e e com a salah
Sissach	2550	0,27	0,00052	The Commission of the Commissi
Yverdon, Prairie	1400	0,18	0,00034	Les beinding The
Lostorf 3a	2508	0,16	0,00030	The way to be
Kaisten CaSO ₄ -	2308	0,10	0,00030	A TOTAL PROPERTY.
Quelle	1100	0,14	0,00027	and the second second second
Lostorf 1 (Gips-	Se distribution			and the second second second
quelle)	1260	0,13	0,00025	
Yverdon, Bel Air	1400	0,090	0,00017	
Meltingen, Mittel-	1100	0,000	0,00017	SINGULTER STATE
werte	2550	< 2	< 0,004	
Gansingen	1000	< 0,2	< 0,0004	
Staffelegg (Stägli-				47 Jan
matt)	2650	< 0,2	< 0,0004	
Schenkenberg-Agis				Sandank X
(Schinznach-Dorf)	2490	< 0,2	< 0,0004	A Comment of the

b) Calciumhydrogenkarbonat-Wässer, Ca²⁺ und HCO₃⁻ überwiegend (meistens geringer Natrium-Gehalt)

	Gesamt- Mineralisation mg/l	μg As/l	mg HAsO4/l	Bemerkungen
a. Akratopegen, < 0	,1 mg Fe/l			
Elm	540	0,21	0,00040	1
Schwarzenburg	260	0,11	0,00021	Verarbeitung von 10 l Wasser
Henniez Trinkwasser aus	400	<0,1	< 0,0002	
Quellen	200—400	0-0,4	0-0,0008	- 100 m 100 m
O About athamas	0.1 Fa/1			
β Akratotherme, < 0	u,1 mg re/i			
Ragaz	400	8,0	0,015	37 ° C
γ Eisenhaltige Akra ordnung, Artikel 264	<i>1b</i>			iz. Lebensmittelver
ordnung, Artikel 264 Schlegwegbad		isenwässer n 14	ach der Schwei	iz. Lebensmittelver
ordnung, Artikel 264	<i>1b</i>		0,026	iz. Lebensmittelver
ordnung, Artikel 264 Schlegwegbad Längeneybad, Ader rechts Längeneybad,	350	14 11	0,026	iz. Lebensmittelver
ordnung, Artikel 264 Schlegwegbad Längeneybad, Ader rechts Längeneybad, Ader links	350 360 —	14 11 7,0	0,026 0,021 0,013	iz. Lebensmittelver
ordnung, Artikel 264 Schlegwegbad Längeneybad, Ader rechts Längeneybad, Ader links Rohrimoosbad	350 360 — 460	14 11 7,0 4,7	0,026 0,021 0,013 0,0088	iz. Lebensmittelver
ordnung, Artikel 264 Schlegwegbad Längeneybad, Ader rechts Längeneybad, Ader links Rohrimoosbad Gontenbad	350 360 — 460 520	14 11 7,0 4,7 4,0	0,026 0,021 0,013 0,0088 0,0075	iz. Lebensmittelver
ordnung, Artikel 264 Schlegwegbad Längeneybad, Ader rechts Längeneybad, Ader links Rohrimoosbad	350 360 — 460	14 11 7,0 4,7	0,026 0,021 0,013 0,0088	iz. Lebensmittelver
ordnung, Artikel 264 Schlegwegbad Längeneybad, Ader rechts Längeneybad, Ader links Rohrimoosbad Gontenbad Knutwil	350 360 — 460 520	14 11 7,0 4,7 4,0	0,026 0,021 0,013 0,0088 0,0075	iz. Lebensmittelver
Schlegwegbad Längeneybad, Ader rechts Längeneybad, Ader links Rohrimoosbad Gontenbad Knutwil Rheinfelden,	350 360 	14 11 7,0 4,7 4,0 1,4	0,026 0,021 0,013 0,0088 0,0075 0,0026	iz. Lebensmittelver
Schlegwegbad Längeneybad, Ader rechts Längeneybad, Ader links Rohrimoosbad Gontenbad Knutwil Rheinfelden, Kapuziner	350 360 	14 11 7,0 4,7 4,0 1,4	0,026 0,021 0,013 0,0088 0,0075 0,0026	iz. Lebensmittelver
Schlegwegbad Längeneybad, Ader rechts Längeneybad, Ader links Rohrimoosbad Gontenbad Knutwil Rheinfelden, Kapuziner Bündner Säuerlinge (< 10 mg Na/l) STV Carola	350 360 	14 11 7,0 4,7 4,0 1,4	0,026 0,021 0,013 0,0088 0,0075 0,0026	iz. Lebensmittelver
Schlegwegbad Längeneybad, Ader rechts Längeneybad, Ader links Rohrimoosbad Gontenbad Knutwil Rheinfelden, Kapuziner Bündner Säuerlinge (< 10 mg Na/l) STV Carola STV Clozza	350 360 	14 11 7,0 4,7 4,0 1,4 1,4 <1	0,026 0,021 0,013 0,0088 0,0075 0,0026 0,0026	iz. Lebensmittelver
Schlegwegbad Längeneybad, Ader rechts Längeneybad, Ader links Rohrimoosbad Gontenbad Knutwil Rheinfelden, Kapuziner Bündner Säuerlinge (< 10 mg Na/l) STV Carola STV Clozza STV Sotsass	350 360 	14 11 7,0 4,7 4,0 1,4 1,4 <1 <1 <1 <1	0,026 0,021 0,013 0,0088 0,0075 0,0026 0,0026 <0,002 <0,002 <0,002 <0,002	iz. Lebensmittelver
Schlegwegbad Längeneybad, Ader rechts Längeneybad, Ader links Rohrimoosbad Gontenbad Knutwil Rheinfelden, Kapuziner Bündner Säuerlinge (< 10 mg Na/l) STV Carola STV Clozza STV Sotsass STV Vih	350 360 	14 11 7,0 4,7 4,0 1,4 1,4 <1 <1 <1 <1 <1 <0,5	0,026 0,021 0,013 0,0088 0,0075 0,0026 0,0026 <0,002 <0,002 <0,002 <0,001	iz. Lebensmittelver
Schlegwegbad Längeneybad, Ader rechts Längeneybad, Ader links Rohrimoosbad Gontenbad Knutwil Rheinfelden, Kapuziner Bündner Säuerlinge (< 10 mg Na/l) STV Carola STV Clozza STV Sotsass STV Vih Sassal	350 360 	14 11 7,0 4,7 4,0 1,4 1,4 <1 <1 <1 <1	0,026 0,021 0,013 0,0088 0,0075 0,0026 0,0026 <0,002 <0,002 <0,002 <0,002	iz. Lebensmittelver
Schlegwegbad Längeneybad, Ader rechts Längeneybad, Ader links Rohrimoosbad Gontenbad Knutwil Rheinfelden, Kapuziner Bündner Säuerlinge (< 10 mg Na/l) STV Carola STV Clozza STV Sotsass STV Vih	350 360 	14 11 7,0 4,7 4,0 1,4 1,4 <1 <1 <1 <1 <1 <0,5	0,026 0,021 0,013 0,0088 0,0075 0,0026 0,0026 <0,002 <0,002 <0,002 <0,001	iz. Lebensmittelver

c) Natriumhydrogenkarbonat-Wässer, Na+ und HCO3- überwiegend

	Gesamt- Mineralisation mg/l	μg As/l	mg HAsO4/l	Bemerkungen
Bündner Säuerlinge,				
Eisengehalte über				
5 mg/l				
St. Moritz	1600	17	0,031	114 mg Na/l
Rhäzüns	1760	5,3	0,0098	111 mg Na/l
Peiden	2100	4	0,0080	102 mg Na/l
STV Lischana	5730	2,9	0,0090	800 mg Na/1
STV Emerita	10400	2,4	0,0050	3500 mg Na/1
STV Lucius	13540	1,7	0,0030	4000 mg Na/1
STV Bonifazius	5700	0,58	0,0011	460 mg Na/l
STV Sfondraz	6050	< 1	< 0,002	1100 mg Na/1

Flysch-Quellen, alle sind H₂S-haltig und eisenfrei. Wie aus der geologischen Karte zu ersehen ist, handelt es sich bei diesen alkalischen Quellen wahrscheinlich um Wasser aus dem Flysch, marine Sedimente, die während der alpinen Faltung zur Ablagerung gelangten und hauptsächlich Tonschiefer und Sandsteine umfaßten.

Sörenberg	660	0,49	0,00092	134 1 2 2
Feutersoey	660	0,16	0,0003	
Flühli	320	< 0,2	< 0,0004	
Heustrich	1050	< 0,1	< 0,0002	
eventuell hierhin go	ehörend:			
Schwefeltherme von Yverdon	330	< 0,3	< 0,0006	

d) Natriumsulfatwässer, Na⁺ und SO₄²⁻ überwiegend Thermen oder Subthermen, ohne nennenswerte Eisenkonzentrationen

	Gesamt- Mineralisation mg/l	μg As/l	mg HAsO ₄ /l	Bemerkungen
Zurzach,		Harry Street	dispersion in a	are known in the production
unbehandelt	1000	123	0,23	
(Zurzach,			William Cons	s - serie - mis ulwa
entfluoridiert)	1000	4,8	0,0090	
Brigerbad	810	6,9	0,013	Draw as Server 11 Mars
Lavey	1080	5,9	0,011	
Gletsch	190	3,5	0,0066	
Bovernier	310	3,3	0,0062	

e) Natriumchlorid-Wässer, Na+ und Cl- überwiegend

	Gesamt- Mineralisation mg/l	μg As/l	mg HAsO4/l	Bemerkungen
Baden, Mittelwerte	4500	36	0,068	
Säckingen	1040	28	0,052	
Schinznach-Bad	2200	25	0,047	
Eglisau, Mittelwerte	3000	8,0	0,015	
Lostorf 2	4400	4,2	0,0078	
Bex, Mutterlauge	330 g	2,2	0,0040	5
Bex, Rohsole	320 g	< 0,2	< 0,0004	
Ausland				
Bath, England	2213	10	0,019	CaSO ₄ -Therme mit
				viel NaCl
Meerwasser,				
Tunesien	a serve of the	4,4	0,0082	ground the state of the
Meerwasser, Türkei	Jegrana di La Cara	1,7	0,0031	a The second to be

3. Arsen-Gehalte der Mineralwässer

Der Begriff Mineralwasser bedeutet hier die Mineralwässer gemäß Artikel 263 der Schweizerischen Lebensmittelverordnung im allgemeinen und Artikel 264 im besonderen, also auch Rohsolen und Mutterlaugen, ebenso Meerwasser, sowie gewisse nicht anerkannte Akratopegen mit einem meßbaren Eisengehalt.

Ein Mineralwasser unterscheidet sich vom gewöhnlichen Trinkwasser in seinen physikalischen Eigenschaften, seiner Zusammensetzung oder in seinen physiologischen Wirkungen. Fast alle Mineralwässer weisen in überwiegender Menge die Ionen Ca, Na, Mg, HCO₃⁻, SO₄²⁻, Cl⁻ auf; es kann jedes Wasser je nach Hauptkation oder -Anion mit einer Formel charakterisiert werden, welche die Einteilung der Mineralwässer ermöglicht (Ermittlung des Hauptions aus den Millivalprozenten).

Die Arsen-Konzentrationen der Mineralwässer werden nach Quellklassen geordnet dargestellt. Zur besseren Sichtbarmachung der Zusammenhänge müssen einzelne Beispiele umgeordnet werden: Die CaSO₄-Quelle Schinznach-Bad wird infolge des hohen aber nicht überwiegenden NaCl-Gehaltes zu den NaCl-Wässern genommen, desgleichen werden die Ca(HCO₃)₂-haltigen Bündner-Säuerlinge Rhäzüns, St. Moritz und Schuls-Tarasp-Vulpera (in der Folge STV abgekürzt) Bonifazius sowie die CaSO₄-Quelle Peiden bei den NaHCO₃-Wässern abgehandelt.

Von vielen schweizerischen Mineralwässern liegen Angaben über den Gehalt an Arsen vor, alle sind als HAsO₄²⁻ gerechnet, aber nur wenige dieser Werte konnten reproduziert werden; beim Vergleich hat man den Eindruck erhalten, kleine Meßwerte seien oft mit zu wenig Kritik beurteilt worden.

Im nächsten Abschnitt sollen zuerst die Bereiche der einzelnen Klassen zusammengefaßt werden. Die Berechnung von Durchschnittswerten erscheint angesichts der großen Schwankungsbreiten und den wenigen Vertretern nicht sinnvoll zu sein.

4. Zusammenstellung der Bereiche

Tabelle 7. Wasserarten, Anzahl Resultate und Bereiche der Arsenwerte

Wasserart	Anzahl Resultate	Bereich µg As/l
Quellwasser	10	0 — 0,4
Aufbereitetes See- oder Flußwasser	9	0,3— 1,4
Flußwasser	10	0,2— 4,2
Alle alpinen Gipsquellen	10	0 - 6,4
Alpine Gipsquellen ohne Weißenburg und		
Gurnigel	8	< 0,5
Akratopegen eisenarm	3	0 - 0,2
Akratotherme eisenarm	1	8,0
Akratopegen mit Eisen	7	1,4—14
Bündner Säuerlinge ohne Na, mit Fe	5	< 1
Bündner Säuerlinge mit Na und Fe	7	0 —17
Flyschquellen (NaHCO ₃)	4	0 — 0,49
Natriumsulfatwässer	5	3,3—123
Natriumchloridwässer und Meerwasser ohne		
Rohsole	7	1,7—36
		beautiful d

Diskussion

Ein Vergleich der vorliegenden Arsen-Werte zeigt, daß Quellwässer und akratische Mineralwässer wenig bis kein Arsen enthalten, ebenso verhält es sich mit den meisten natriumarmen Gips- und Kalkquellen im alpinen Gebiet und mit den Natriumquellen aus dem Flysch. Die relativ hohen Arsen-Werte der Flußwässer sind ein Zivilisationsprodukt: Bei der Aare konnte die Zunahme von oben nach unten sichtbar gemacht werden. Das Arsen der Flüsse und Seen kommt im daraus bereiteten Trinkwasser wieder zum Vorschein.

Anders verhält es sich bei wenig mineralisierten Quellen, die über 1 mg Eisen pro 1 enthalten: Man findet hier oft bedeutende Arsen-Gehalte, z. B. Längeneybad, Rohrimoosbad, Schlegwegbad und in viel größerem Ausmaß im Levicoforte-Wasser. Dagegen konnte in den über 5 mg Eisen aufweisenden Bündner Säuerlingen von Schuls kein Arsen gefunden werden.

Bemerkenswert ist ebenso der Unterschied zwischen den Gipsquellen des Juras und der Alpen. Während die meisten Jura-Gipsquellen geringe aber noch nach-

weisbare Arsen-Mengen enthalten, kommt das bei denjenigen der Alpen wenig vor, nicht einmal, wenn Eisen auftritt, z. B. bei Morgins und Saillon. Das Arsen von Weißenburg und von der Akratotherme von Ragaz kann vielleicht mit der Thermalität und damit mit dem tieferen Ursprung erklärt werden.

Flyschquellen und die Calciumquellen von Schuls weisen kaum Arsen auf, höhere Gehalte findet man in den natriumhaltigen Bündner Säuerlingen, besonders in St. Moritz. Bedeutende Arsen-Mengen sind fast immer infolge Anwesenheit von Eisen oder Natrium zu erwarten, aber die Anwesenheit dieser Substanzen garantiert das Vorhandensein von Arsen noch nicht.

Die höchsten Arsen-Werte findet man bei den Wässern mit salinischem Charakter, d. h. bei solchen, wo Natrium-, Chlorid- und Sulfationen überwiegen.

Zur Erklärung dieser Befunde müssen folgende geochemische Gegebenheiten herangezogen werden: V. M. Goldschmidt (1934) erläuterte in seiner Publikation die Geochemie des Arsens recht ausführlich. Er postulierte aus der gesamten Menge Urgestein, die im Laufe geologischer Zeiten im Meere abgelagert worden sind, eine As-Konzentration von 3 mg As/l Meerwasser, in Wirklichkeit findet man dort nur 2—5 Mikrogramm As/l (Goldschmidt sprach von 20 µg As/l), wie die Untersuchungen späterer Autoren gezeigt haben. Auch ich konnte diese Zahlen bestätigen. Goldschmidt macht über Arsen in Gesteinen folgende Angaben:

Tabelle 8. Arsen in Gesteinen

	mg As/kg
Primäre Gesteine	5
Meeres-Sedimente	3—8
Metamorphe Sedimente	0
Sedimentäre oxydische Eisenerze	60—600
Terrestrische eisenreiche Bauxite	300

Das Arsen wird infolge der Sorption an die Sedimente dem Meere laufend entzogen, besonders reichert es sich in eisenreichen Sedimenten an.

Im Roheisen können bis zu 10 mg As/kg gefunden werden; dieses Arsen wird nach der Stahlerzeugung im Thomasmehl zu finden sein. Der Arsen-Gehalt der Meeres-Sedimente kann uns das Vorkommen des Arsens in den Jura-Gipsquellen erklären; die metamorphen Sedimente haben ihr Arsen verloren, und somit ist in den meisten alpinen Gipsquellen keines mehr zu finden. Hier soll auch auf die Arbeit von M. Frey (1969) hingewiesen werden, wo die Metamorphose der Keuper-Formation eingehend erläutert und am Schluß für das Lukmanier-Gebiet eine Umwandlungstemperatur von von 500—550 °C angenommen wird. Das Abrösten des adsorptiv gebundenen Arsen als As₂O₃ wäre bei dieser Temperatur durchaus denkbar. Das Mitgehen des gelösten Arsens mit ausfallendem Eisen-

hydroxid kann im Glas nachvollzogen werden. Es läßt sich, wie besprochen, quantitativ auswerten. Damit sind sedimentäre oxydische Eisenerze reich an Arsen, und die Erwartung, daß in Eisenwässern relativ viel Arsen zu finden sei, konnte bei verschiedenen Eisenquellen bestätigt werden, jedoch — aus den vorher angeführten Gründen der Arsen-Austreibung — eben nicht bei den Bündner Säuerlingen.

Von der Chemosorption an Eisenhydroxid abgesehen, gleicht das geochemische Verhalten des Arsens weitgehend demjenigen des Bors. (Siehe die Arbeiten von H. Harder 1959 und 1961, sowie H. Senften, 1971). Beide Elemente wurden durch Chemosorption dem Meere zum großen Teil entzogen und die restlichen Anteile reicherten sich beim Eindunsten der Meere nach dem Ausfallen des Natrium-Chlorides in den verbleibenden Lösungen an. In der Rohsole von Bex konnte kein Arsen gefunden werden, in der daraus stammenden Mutterlauge fand ich 2,2 µg As/l. In dieser technischen Mutterlauge haben sich andere Spurenelemente um das 25- bis 30fache gegenüber der Rohsole angereichert. Beim seinerzeitigen Ausfallen des NaCl dürften also nur geringe Mengen Arsen mitgegangen sein. Aus diesen einstigen natürlichen «Mutterlaugen» dürften die Natriumchlorid- und Natriumsulfat-Quellen mit den hohen Arsen- (und auch Bor-) Konzentrationen herkommen. Dieser Effekt der Arsen-Anreicherung kann das Arsen-Vorkommen in den natriumreichen Bündner Säuerlingen erklären, gegenteilig wird sich der schon erwähnte Arsen-Verlust durch Abrösten ausgewirkt haben.

- 5 Effekte bestimmen also das Vorkommen von Arsen in Wasser, wobei 4 davon positiv und 1 negativ wirken:
- Auslaugung des von den tonigen Fraktionen festgehaltenen Arsens und desjenigen der Primärgesteine;
- Auslaugung des von den eisenhaltigen Sedimenten festgehaltenen Arsens;
- Auslaugung des in den Evaporaten angereicherten Arsens;
- Abtransport des Arsens, bedingt durch Zivilisation: Hauptsächlich Dünger;
- Entfernung des Arsens aus Gesteinen durch Metamorphosen.

Das Arsen scheint mir als Unterscheidungskriterium von Trink- und Mineralwasser wenig geeignet zu sein. Es gibt viele Mineralwässer, die — wie die Quellwässer — arsenfrei sind; die vereinzelt hohen Gehalte in Trinkwässern sind als Verschmutzungen zu werten. Deshalb ist die Abwesenheit von Arsen in den Akratopegen positiv zu beurteilen; diese Wässer erfahren dadurch eine Aufwertung.

Zusammenfassung

Die tägliche Aufnahme von Arsen mit der Nahrung bewegt sich unter 1 mg As, der aus dem Trinkwasser kommende Anteil ist nur gering. Zur Anreicherung des Arsens wird eine Mitfällung mit Eisenhydroxid und zur Bestimmung die Fotometrie des Silberdiäthyldithiocarbamat-Komplexes vorgeschlagen. Die aus der Literatur übernommenen Methoden sind in verschiedenen Einzelheiten modifiziert worden.

Trinkwasser aus Quellen ist sozusagen arsenfrei, aufbereitetes See- oder Flußwasser enthält bis zu 1,4 µg As/l. Das Arsen der Flüsse kommt aus dem Abwasser und aus den ausgeschwemmten Phosphat-Düngern. Das Arsen der Mineralwässer kann auf der Begleitung des Eisens und in geringerem Ausmaß der tonigen Sedimente beruhen. Die arsenreichen Na-Quellen werden als Auslaugungsprodukte der einstigen Mutterlaugen aufgefaßt. Die Arsen-Armut der alpinen Ca-Quellen, auch solcher mit viel Eisen, wird auf die Abröstung des Arsens bei metamorphotischen Vorgängen zurückgeführt.

Résumé

L'absorption journalière d'arsenic par l'alimentation varie en dessous de 1 mg d'As. L'apport de l'eau potable est faible. L'arsenic a été dosé par photométrie du complexe diéthyldithiocarbamate d'argent, après enrichissement par coprécipitation avec de l'hydroxyde de fer. Les méthodes reprises de la bibliographie ont été modifiées dans divers détails.

L'eau potable de sources est pratiquement exempte d'arsenic; l'eau de lacs et de rivières traitée contient jusqu'à 1,4 µg As/l. L'arsenic de l'eau des rivières provient des eaux usées qui y sont déversées et des engrais phosphatés répandus dans les cultures. L'arsenic des eaux minérales peut être un accompagnant du fer et en plus faible mesure provenir des sédiments argileux. Les teneurs élevées en arsenic des sources alcalines sodiques peuvent s'expliquer par le lessivage d'anciennes eaux mêres. La faible teneur en arsenic des eaux calciques alpines, même riches en fer, doit être attribuée au grillage de l'arsenic au cours de processus métamorphiques.

Literatur

Bowen H. J. M.: Trace Elements in Biochemistry. Academic Press New York (1966).

Cowen R. C.: The Christian Science Monitor vom 25. 4. 1970.

Fresenius W. und Schneider F.: Z. analyt. Chem. 203, 417 (1964).

Frey M.: Die Metamorphose des Keupers vom Tafeljura bis zum Lukmaniergebiet. Diss., Bern (1969). Beiträge zur geol. Karte der Schweiz, 137. Lieferung.

Goldberg E. D.: in J. P. Riley & G. Skirrow: Chemical Oceanography, Academic Press, New York (1965).

Goldschmidt V. M.: Nachr. der Ges. der Wiss., Göttingen. Math. Phys. Kl. Fachgr. IV Geol. und Min. Neue Folge 1, Nr. 2 (1934).

Harder H.: Nachr. Wiss. Ges. Göttingen. Math. Phys. Klasse 67—183 (1959) und 1—26 (1961).

Kaiser H.: Z. analyt. Chem. 209, 1-18 (1965).

Metz W. und Cornatzer W. E.: Newer Trace Elements in Nutrition, New York (1971). Riley J. P.: J. Appl. Chem. 11, 190-2 (1961).

Schwarz K. in Mills C. F.: Trace Elements in Animals, Livingstone Edinburgh (1970). Senften H.: Borsäure in Trink- und Mineralwässern. Diss., Bern (1971). (Beim Autor erhältlich).

Stratton G. und Whitehead H. Collins: J. Am. Water Works. Assoc. 54, 861—4 (1962). Sugawara K., Tanaka M. und Kanamori S.: Bull chem. Soc. Japan 29, 670—3 (1956), referiert in Z. analyt. Chem. 157, 119 (1957).

Underwood E. J.: Trace Elements in Human and Animal Nutrition, Academic Press, New York, 3. Aufl. (1971).