**Zeitschrift:** Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und

Hygiene = Travaux de chimie alimentaire et d'hygiène

Herausgeber: Bundesamt für Gesundheit

**Band:** 63 (1972)

Heft: 4

**Artikel:** Ueber die Bestimmung von Mengenelementen und Spurenelementen in

Lebensmitteln und Trinkwasser mit der Atomabsorptions-

Spektrophotometrie

Autor: Müller, U. / Windemann, H.

**DOI:** https://doi.org/10.5169/seals-982805

#### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

# Ueber die Bestimmung von Mengenelementen und Spurenelementen in Lebensmitteln und Trinkwasser mit der Atomabsorptions-Spektrophotometrie

U. Müller und H. Windemann Kant. Laboratorium Bern

# 1. Einleitung und Problemstellung

Die vorliegende Arbeit soll zum Ziele haben, unsere Erfahrungen der letzten 3 Jahre auf dem Gebiet der Bestimmung von Spuren- und Mengenelementen in Lebensmitteln und Trinkwasser mittels Atomabsorptions-Spektrophotometrie (AAS) zusammenzufassen. Sie erhebt keinen Anspruch auf Vollständigkeit, sondern will vielmehr dem Lebensmittelchemiker Probleme und Anwendungsmöglichkeiten der AAS aufzeigen.

Bei der Behandlung der einzelnen Elemente beschränken wir uns daher in der Folge bewußt auf einige ausgewählte und für die Lebensmittelkontrolle wichtige Nahrungsmittelklassen und Gebrauchsgegenstände. Die erarbeiteten Meßparameter sind jedoch erfahrungsgemäß in den meisten Fällen auch auf andere Lebensmittelkategorien anwendbar.

### 2. Analytisches

# 2.1. Apparatives

- Gerät: Beckman Einstrahl-Gerät Mod. 1301
- Brenngasgemisch: Wasserstoff-Luft
- Brenner: Turbulenzbrenner
- Einstellung der Brennerhöhe: Die Skala reicht von 0 bis 3 inches, wobei in Stellung 0 der Abstand zwischen Brenner und Strahlengang am kleinsten ist.
- Beckman Digital-Concentration-Converter
- Beckman 3115 Printer
- Schreiber: W+W 3002

### 2.2. Veraschung

Im folgenden wird die Normvorschrift für diejenigen Lebensmittel beschrieben, für die sich eine Veraschung aufdrängt:

Man wägt 2-5 g Lebensmittel in eine Pt-Schale ein, verkohlt über der Bunsenbrennerflamme und stellt die Pt-Schale zum Veraschen in den

Muffelofen (der Temperaturbereich ist bei der Besprechung der einzelnen Elemente präzisiert)\*. Wenn die Asche annähernd weiß ist, wird sie zwecks Homogenisierung mit dest. H<sub>2</sub>O befeuchtet und mit einem Glasstab zerdrückt, anschließend auf dem siedenden Wasserbad vorgetrocknet und im Muffelofen nochmals verascht. Diese zweite Veraschungsphase ermöglich das vollständige Verbrennen der letzten Kohlepartikel, die durch Einschluß in Salzschmelzen der Veraschung in der ersten Phase entzogen werden. Damit entfällt auch die Gefahr, daß derartige Kohlepartikel namentlich Eisen adsorptiv festhalten, was zu tiefe Meßwerte zur Folge hätte.

### 2.3. Herstellung der Meßlösung

Die Asche wird in einigen ml einer 18% igen Salzsäure-Lösung (enthaltend 5% La<sub>2</sub>O<sub>3</sub>) aufgelöst und mit entionisiertem Wasser auf das 10-fache Volumen verdünnt. Gemessen wird gegen eine Blindlösung von 1,8% iger Salzsäure und 0,5% La<sub>2</sub>O<sub>3</sub>.

Erübrigt sich die Veraschung (z. B. bei der Analyse von Trinkwasser), dann wird die Untersuchungslösung auf die obengenannten Konzentrationen an Salzsäure und La<sub>2</sub>O<sub>3</sub> gebracht und in dieser Form vermessen.

### 2. 4. Eichlösungen

werden hergestellt durch Verdünnen von Standardlösungen der Fisher Scientific Company (Lieferant: Bender & Hobein AG, Zürich) mit entionisiertem Wasser und Aufbewahren in Polyaethylenflaschen.

# 2.5. Auswertung der AA-Signale

Die Auswertung der AA-Signale wird wahlweise nach folgenden 2 Methoden vorgenommen:

### a) Eichkurvenmethode

Diese Methode setzt eine ungefähre Kenntnis der chemischen Zusammensetzung der Meßlösung voraus, damit eine Matrixanpassung von Eich- und Meßlösung vorgenommen werden kann.

<sup>\*</sup> Die optimale Veraschungstemperatur sowie die optimale Veraschungsdauer werden für jedes Element an verschiedenen Nahrungsmittelklassen experimentell erarbeitet, indem vorerst bei konstanter Veraschungsdauer die Veraschungstemperatur, anschließend bei konstanter Veraschungstemperatur die Veraschungsdauer variiert und die optimalen Bedingungen im Bereich der höchsten Ausbeuten festgelegt werden.

### b) Methode der Standardzusätze (Additionsmethode)

Auch bei dieser letzteren Auswertmethode wird die Meßlösung mit La<sub>2</sub>O<sub>3</sub> und Salzsäure versetzt\*.

Die Additionsmethode darf zudem nur dann zur Anwendung gelangen, wenn

- 1. in einem linearen Bereich der Eichkurve gemessen und
- 2. alle Störungseinflüsse über den ganzen Meßbereich konstant sind.

### 2. 6. Erfassungsgrenze und Standard-Abweichung

Erfassungsgrenze: Wir definieren für unsern internen Gebrauch die Erfassungsgrenze als jene minimale Konzentrationsangabe, die uns ein AA-Signal gerade noch quantitativ liefert. Dieser Wert ist stets auf die Meßlösung und nicht auf die Asche oder auf das Lebensmittel bezogen. Standard-Abweichung: Die Berechnung der Standard-Abweichung wurde nach Kaiser und Specker (1) vorgenommen.

#### 2.7. Anreicherungsmethode

Entzieht sich ein Element infolge seiner geringen Konzentration in der Meßlösung der direkten quantitativen Bestimmung, kann es mit der nachstehend beschriebenen Methode angereichert werden (2).

Nach der trockenen Veraschung wird der Rückstand in 1,8% iger Salzsäure aufgenommen, je nach Element auf einen bestimmten pH-Wert gepuffert und anschließend mit 5 ml eines Komplexbildners (2% ige wäßrige Na-Diaethyldithiocarbamat-Lösung oder 5% ige wäßrige Ammoniumpyrrolidin-Dithiocarbamat-Lösung) versetzt. Der resultierende Metall-Komplex wird mit 10 ml wassergesättigtem Methylisobutylketon ausgezogen und das fragliche Element in diesem Extrakt gegen eine wassergesättigte Methylisobutylketon-Blindlösung bestimmt.

Diese Methode erlaubt eine rund 10fache Anreicherung des Metalls und eine dementsprechende Absenkung der Erfassungsgrenze.

### 3. Ergebnisse

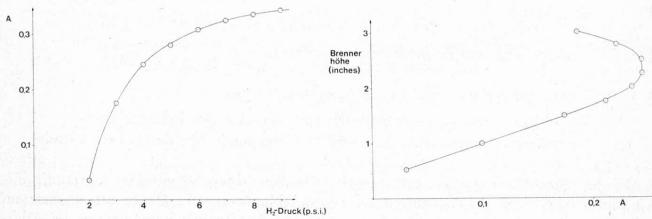
### 3. 1. Bestimmung von Fe in diätetischen Produkten

# 3. 1. 1. Veraschungsdauer und Veraschungstemperatur

Veraschungsdauer: 3—5 Stunden (je nach Art des Lebensmittels) Veraschungstemperatur: 500—600 ° C (je nach Art des Lebensmittels)

\* Mit der Zugabe von LaCl<sub>3</sub> werden nicht alle chemischen Störeffekte vollständig eliminiert; nach unsern Erfahrungen ist es empfehlenswert, die Menge an zugesetztem LaCl<sub>3</sub> nicht noch weiter zu erhöhen, sondern zur Auswertung vorzugsweise die Additionsmethode heranzuziehen.

Tabelle 1 Das Wiederfinden von Fe-Zusätzen unter obigen Veraschungsbedingungen


| Date of the second         | Fe-Zusatz | Gefundener Fe-Gehalt<br>in ppm |                 | Ausbeute an            |
|----------------------------|-----------|--------------------------------|-----------------|------------------------|
| Produkt                    | in ppm    | Doppel-<br>bestimmungen        | Mittel-<br>wert | zugesetztem<br>Fe in % |
| Früchtebrei                | 0         | 25,0<br>25,0                   | 25,0            |                        |
| Früchtebrei<br>+ 50 ppm Fe | 50        | 73,0<br>76,2                   | 74,6            | 99,5                   |
| Früchtebrei<br>+ 75 ppm Fe | 75        | 101,8<br>98,2                  | 100             | 100                    |

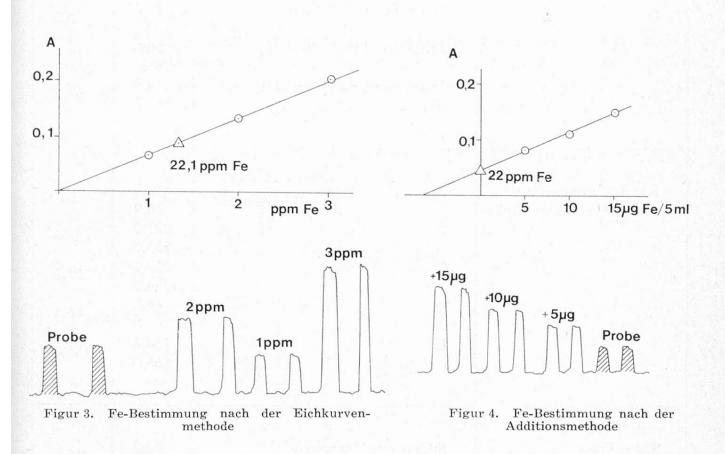
## 3.1.2. Geräteparameter

Tabelle 2

| Brennerhöhe (inches)     | 2,5   |
|--------------------------|-------|
| $H_2$ (p.s.i.)           | 4     |
| Luft (p.s.i.)            | 15    |
| Zeitkonstante            | 2     |
| Wellenlänge (nm)         | 248,3 |
| single pass              |       |
| Spaltbreite (mm)         | 0,1   |
| Geschwindigkeit des      |       |
| Papiervorschubs (cm/min) | 2,5   |

Auf Figur 1 und Figur 2 sind die Geräteparameter « $H_2$ -Druck» und « $Brennerh\"{o}he$ » ermittelt worden.




Figur 1. Fe-Bestimmung: H2-Druck in Funktion der Absorbance

Figur 2. Fe-Bestimmung: Brennerhöhe in Funktion der Absorbance

Gemäß Figur 1 ist das Brenngasgemisch bei rund 8 p.s.i. H2 optimal. Will man die Brenngaskosten merklich senken, so kann auch bei einem H2-Druck von 4 p.s.i., d. h. rund 20 % unter dem Brenngasoptimum gearbeitet werden, was erfahrungsgemäß die Empfindlichkeit und Nachweisgrenze nur unwesentlich beeinflußt.

#### 3.1.3. Auswertung der Fe-Signale

Als Beispiel zur Auswertung eines Fe-Signals ist auf Figur 3 und Figur 4 der Fe-Gehalt eines diätetischen Lebensmittels nach der Eichkurvenmethode resp. nach der Methode der Standardzusätze ermittelt worden. Die entsprechenden Meßlösungen wurden nach 2. 2. und 2. 3. erhalten.



Da gerade bei der Turbulenzflamme die Störeinflüsse recht bedeutend sind, ist die Auswertung nach der Additionsmethode vorzuziehen.

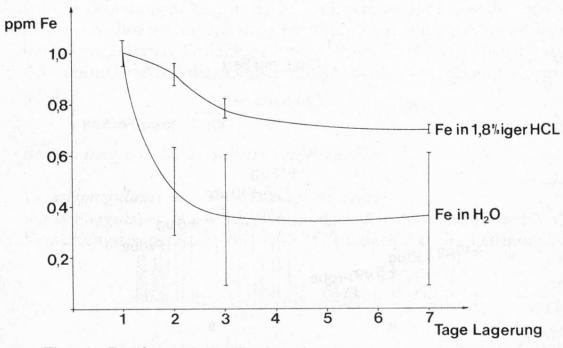

# 3. 1. 4. Zusammenstellung einiger Resultate

Tabelle 3

|                                    |                               | Fe-Gehalt in ppm        |                |  |
|------------------------------------|-------------------------------|-------------------------|----------------|--|
|                                    | Produkt                       | Doppelbe-<br>stimmungen | Mittel<br>wert |  |
|                                    |                               |                         |                |  |
| Säuglings- und<br>Kindernährmittel | Milch-Fertigbrei              | 10,1<br>10,0            | 10,0           |  |
|                                    | Milch-Fertigbrei mit Früchten | 9,2<br>9,0              | 9,1            |  |
|                                    | Trockener Früchtebrei I       | 25,0<br>25,0            | 25,0           |  |
|                                    | Trockener Früchtebrei II      | 66,0<br>65,0            | 65,5           |  |
|                                    | Trockener Früchtebrei III     | 54,5<br>54,0            | 54,2           |  |
| Kraftnahrungsmittel                | A                             | 37,0                    | 36,9           |  |
| und Frühstücksgetränke             | В                             | 36,9<br>225,0           |                |  |
|                                    | C                             | 223,0<br>232,0          | 224,0          |  |
|                                    | D                             | 234,0                   | 233,0          |  |
| production of the second           |                               | 65,0                    | 65,5           |  |
|                                    | E                             | 164,0<br>166,0          | 165,0          |  |
| Baby-Foods                         | Spinat mit Kartoffeln         | 62,2                    | 62.1           |  |
| nghad dan makin                    | Leber mit Gemüse              | 62,1<br>53,0            | 62,1<br>53,1   |  |
|                                    | Fleisch-Mahlzeit              | 53,2<br>49,2            | 48,9           |  |
|                                    | Gemüse-Mahlzeit               | 48,7<br>66,4            | 66,8           |  |
|                                    | Rindfleisch mit Gemüse        | 67,2<br>4,7<br>4,8      | 4,7            |  |

#### 3. 1. 5. Diskussion

- Standard-Abweichung (95 % statistische Sicherheit): ± 4 %.
- Erfassungsgrenze
   im single pass
   im triple pass
   nach Anreicherung (im triple pass)
   0,3 ppm Fe
   0,1 ppm Fe
   0,01 ppm Fe
- Bei Anwendung der Anreicherungsmethode gem. 2.7. wird die Lösung auf einen pH-Bereich zwischen 6—7 gepuffert. Die Zusammensetzung des Puffers ist folgende: 7,6 g NaH<sub>2</sub>PO<sub>4</sub>·H<sub>2</sub>O, 11 g Na<sub>2</sub>-Tartrat·2 H<sub>2</sub>O und 2 g NaOH, mit Wasser aufgefüllt auf 100 ml.
- Günstigster Meßbereich (im single pass): 1—5 ppm Fe.
- Störungen
  - a) Alle chemischen Störungen können bei Anwendung der Additionsmethode in Kombination mit der LaCl<sub>3</sub>-Zugabe eliminiert werden.
  - b) Der «light-scattering-effect» (nachweisbar mit Hilfe der Gold-Linie) trat bisher bei unseren Bestimmungen nirgends in Erscheinung.
  - c) Dem Fe-Schwund bei Verwendung von Glasmaterialien (Figur 5) wird durch Lagerung der Lösungen in Polyaethylenflaschen erfolgreich begegnet.

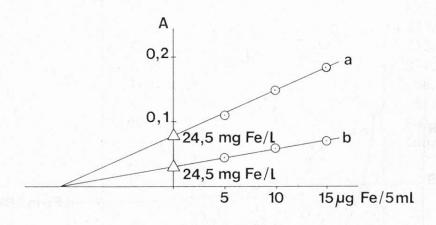


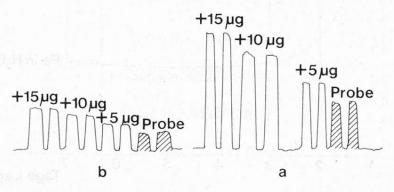
Figur 5. Fe-Schwund in Glasflaschen (Lagerung von 1 ppm Fe-Lösungen

#### 3. 2. Bestimmung von Fe in Wein

Diese Bestimmung kann sowohl nach vorangegangener trockener Veraschung des Weins als auch durch direkte Verwendung des Weins als Meßlösung vorgenommen werden.

# 3. 2. 1. Veraschungsdauer und Veraschungstemperatur siehe 3. 1. 1.


# 3. 2. 2. Geräteparameter


siehe 3. 1. 2.

#### 3. 2. 3. Auswertung

Als Beispiel ist auf Figur 6 die Ermittlung des Fe-Gehaltes eines Weines nach der Additionsmethode mit und ohne verangegangener trockener Veraschung aufgezeichnet.

a = mit Veraschung b = ohne Veraschung





Figur 6. Bestimmung des Fe-Gehaltes von Wein mit der Additionsmethode

### 3. 2. 4. Zusammenstellung einiger Resultate

Tabelle 4

|                       | Fe-Gehalt               | in mg/l         |
|-----------------------|-------------------------|-----------------|
| Produkt               | Doppelbe-<br>stimmungen | Mittel-<br>wert |
| Spanischer Weißwein 1 | 1,0<br>1,0              | 1,0             |
| Spanischer Weißwein 2 | 6,2<br>5,8              | 6,0             |
| Spanischer Weißwein 3 | 10,0<br>10,0            | 10,0            |
| Brouilly '            | 12,6<br>12,6            | 12,6            |
| St. Magdalener        | 4,8<br>4,8              | 4,8             |
| Bourgogne Latour      | 7,9<br>7,5              | 7,7             |
| Spanischer Rotwein    | 24,5<br>24,5            | 24,5            |
| Spanischer Portwein   | 7,5<br>7,3              | 7,4             |

#### 3.2.5. Diskussion

Unsere Erfahrungen zeigen, daß die direkte Bestimmung des Fe-Gehaltes in Weinen ohne vorangegangene trockene Veraschung aus bisher noch nicht restlos abgeklärten Gründen manchmal etwas zu hohe Werte ergibt, so daß normalerweise die Veraschung in den Analysengang eingeschaltet wird.

# 3.3. Bestimmung von Ca in diätetischen Produkten

### 3. 3. 1. Veraschungsdauer und Veraschungstemperatur

Veraschungsdauer: 3—6 Stunden (je nach Art des Lebensmittels) Veraschungstemperatur: 450—600 ° C (je nach Art des Lebensmittels)

Tabelle 5

Das Wiederfinden von Ca-Zusätzen unter optimalen Veraschungsbedingungen

| Produkt                          | Ca-Zusatz | Gefundener<br>in        |                 | Ausbeute an<br>zugesetztem |
|----------------------------------|-----------|-------------------------|-----------------|----------------------------|
| 11odda                           | in º/o    | Doppel-<br>bestimmungen | Mittel-<br>wert | Ca in %                    |
|                                  |           |                         |                 |                            |
| Frühstücksgetränk                | 0         | 0,34<br>0,34            | 0,34            |                            |
| Frühstücksgetränk<br>+ 0,2 % Ca  | 0,2       | 0,56<br>0,55            | 0,55            | 105                        |
| Frühstücksgetränk<br>+ 0,34 % Ca | 0,34      | 0,69                    | 0,68            | 100                        |
|                                  |           |                         |                 |                            |

#### 3.3.2. Geräteparameter

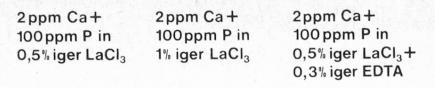
Tabelle 6

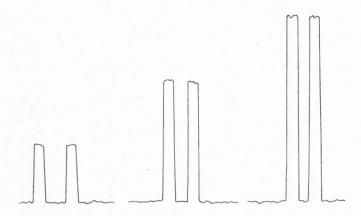
| Brennerhöhe (inches)     | 2,0                |
|--------------------------|--------------------|
| Luft (p.s.i.)            | 15                 |
| $H_2$ (p.s.i.)           | 4                  |
| Zeitkonstante            | 2                  |
| single pass              |                    |
| Wellenlänge (nm)         | 422,7              |
| Spaltbreite (mm)         | 0,15               |
| Geschwindigkeit des      | A Committee of the |
| Papiervorschubs (cm/min) | 2,5                |

### 3.3.3. Auswertung der Ca-Signale

Bei der Auswertung wird analog zur Fe-Bestimmung vorgegangen (vgl. 3. 1. 3.). Die Eichkurve ist bis 8 ppm Ca nachgewiesenermaßen linear. Auch hier ist infolge geringerer Störanfälligkeit die Additionsmethode vorzuziehen.

### 3. 3. 4. Zusammenstellung einiger Resultate


Tabelle 7


|                    | Ca in                   | 0/0             |
|--------------------|-------------------------|-----------------|
| Produkt            | Doppel-<br>bestimmungen | Mittel-<br>wert |
|                    |                         |                 |
| Trocken-Milchbrei  | 0,343<br>0,337          | 0,340           |
| Säuglingsnahrung   | 0,028                   | 0,028           |
| Kindermehl         | 0,170<br>0,164          | 0,167           |
| Schoko-Milchbrei   | 0,375<br>0,370          | 0,372           |
| Milch-Bananenbrei  | 0,318<br>0,314          | 0,316           |
| Frühstrücksgetränk | 0,120<br>0,120          | 0,120           |
| Eiercognac         | 0,071<br>0,071          | 0,071           |
| Orangen-Konzentrat | 0,038                   | 0,038           |
|                    |                         |                 |

#### 3.3.5. Diskussion

- Standard-Abweichung (95 % statistische Sicherheit): ± 5,2 %.
- Die Erfassungsgrenze erweist sich als irrelevant, da die Lebensmittel relativ hohe Ca-Mengen aufweisen.
- Günstigster Meßbereich (im single pass): 1-8 ppm Ca.
- Störungen

Bei Anwendung der Additionsmethode (sowie der Zugabe von LaCl<sub>3</sub>) lassen sich normalerweise alle chemischen Störungen eliminieren. Von einem rund 50—100fachen Phosphorüberschuß an, berechnet auf die vorhandene Ca-Menge, muß der LaCl<sub>3</sub>-Zusatz verdoppelt oder dann mit einer Kombination LaCl<sub>3</sub>-Aethylendiamintetraazetat resp. LaCl<sub>3</sub>-Oxin (3) gearbeitet werden (vgl. Fig. 7).





Figur 7. Elimination des P-Störeffektes bei der Ca-Bestimmung

### 3. 4. Bestimmung von Cu in Lebensmitteln

### 3. 4. 1. Veraschungsdauer und Veraschungstemperatur

Veraschungsdauer: 3—5 Stunden (je nach Art des Lebensmittels) Veraschungstemperatur: 450—550 ° C (je nach Art des Lebensmittels) Wiederfinden von Cu-Zusätzen: Die Zusätze konnten unter obigen Veraschungsbedingungen mit Ausbeuten von 98,5—101,5 % wieder aufgefunden werden.

## 3. 4. 2. Geräteparameter

Tabelle 8

| Brennerhöhe (inches)                  | 2,75  |
|---------------------------------------|-------|
| Luft (p.s.i.)                         | 15    |
| $H_2$ (p.s.i.)                        | 4     |
| Zeitkonstante je nach Problemstellung |       |
| single pass                           |       |
| Wellenlänge (nm)                      | 324,7 |
| Spaltbreite (mm)                      | 0,15  |
| Geschwindigkeit des                   |       |
| Papiervorschubs (cm/min)              | 2,5   |

### 3. 4. 3. Auswertung der Cu-Signale

Die Auswertung der Cu-Signale erfolgt vorzugsweise nach der Additionsmethode.

### 3. 4. 4. Zusammenstellung einiger Resultate

Tabelle 9

|                   | ppm Cu                  |                 |  |
|-------------------|-------------------------|-----------------|--|
| Produkt           | Doppel-<br>bestimmungen | Mittel-<br>wert |  |
| Gewürzmischung    | 2,2                     | 2,1             |  |
| Schaumeiweiß      | 2,1<br>2,5<br>2,5       | 2,5             |  |
| Weizenkeime       | 14,1<br>14,0            | 14,0            |  |
| Frühstücksgetränk | 10,0<br>10,0            | 10,0            |  |

#### 3. 4. 5. Diskussion

- Erfassungsgrenze
   im triple pass
   nach Anreicherung (im triple pass)
   0,02 ppm Cu
   0,002 ppm Cu
- Bei Anwendung der Anreicherungsmethode gemäß 2.7. werden 50 ml Aschelösung mit 10 ml einer 10% igen Na<sub>2</sub>-Tartrat · 2 H<sub>2</sub>O-Lösung versetzt und der ganze Ansatz auf einen pH-Bereich zwischen 6—7 gepuffert.
- Günstigster Meßbereich (im single pass): 0,2-7 ppm Cu.
- Störungen
   Durch Anwendung der Additionsmethode in Kombination mit einer LaCl<sub>3</sub>-Zugabe können sämtliche Störeffekte befriedigend eliminiert werden.

# 3.5. Bestimmung von Zn in Lebensmitteln und Trinkwasser

# 3. 5. 1. Veraschungsdauer und Veraschungstemperatur

Veraschungsdauer: 3—5 Stunden (je nach Art des Lebensmittels) Veraschungstemperatur: 450—550 °C (je nach Art des Lebensmittels) Wiederfinden von Zn-Zusätzen: Zn-Zusätze konnten unter obigen Veraschungsbedingungen mit Ausbeuten von 99,5—100,6 % wieder aufgefunden werden.

Für Trinkwasser kann im Analysengang auf den Veraschungsschritt verzichtet werden.

#### 3.5.2. Geräteparameter

Tabelle 10

| Brennerhöhe (inches)                  | 2,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Luft (p.s.i.)                         | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $H_2$ (p.s.i.)                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Zeitkonstante je nach Problemstellung | and the second s |
| single pass                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Wellenlänge (nm)                      | 213,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Spaltbreite (mm)                      | 0,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Geschwindigkeit des                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Papiervorschubs (cm/min)              | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                       | A Transport of the Atlanta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

# 3.5.3. Auswertung der Zn-Signale

Die Auswertung kann bei Trinkwasser wahlweise nach der Additionsresp. Eichkurvenmethode vorgenommen werden, bei festen Lebensmitteln ist die Additionsmethode vorzuziehen.

# 3. 5. 4. Zusammenstellung einiger Resultate

Tabelle 11

|                                                         | ppm Zn                  |                 |
|---------------------------------------------------------|-------------------------|-----------------|
| $\operatorname{Produkt}$                                | Doppel-<br>bestimmungen | Mittel-<br>wert |
| Würzmischung                                            | 35,0                    | 2.4.7           |
|                                                         | 34,5                    | 34,7            |
| Schaumeiweiß                                            | 28,1                    | 28,1            |
|                                                         | 28,1                    | 20,1            |
| Früchte-Brei                                            | 18,8                    | 18,8            |
| Trinkwasser I                                           | 18,8                    |                 |
| en la filipatamentalisa (New York diazone) molamati i k | 0,42                    | 0,42            |
| Trinkwasser II                                          | 0,72                    | 0.72            |
|                                                         | 0,72                    | 0,72            |
| Verunreinigtes Trinkwasser A                            | 8,0                     | 8,0             |
| 77 P                                                    | 8,0                     | 0,0             |
| Verunreinigtes Trinkwasser B                            | 698<br>693              | 695             |
|                                                         | 693                     |                 |

#### 3.5.5. Diskussion

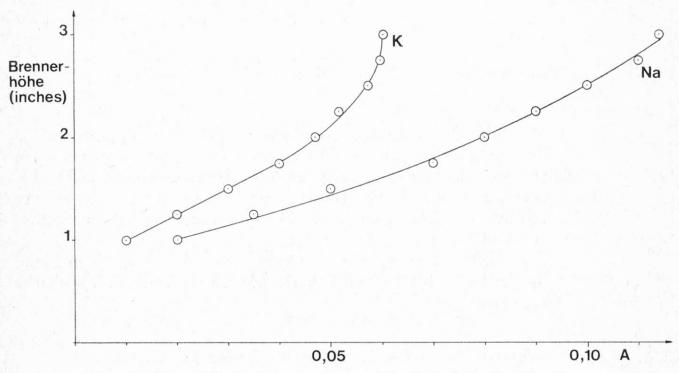
- Erfassungsgrenze
  im triple pass
  nach Anreicherung (im triple pass)
  0,01 ppm Zn
  0,002 ppm Zn
- Bei Anwendung der Anreicherungsmethode gemäß 2.7. wird die Lösung analog zur Cu-Bestimmung auf einem pH-Bereich zwischen 6—7 gepuffert.
- Günstigster Meßbereich (im single pass): 0,2-4 ppm Zn.

#### - Störungen

- a) Mit Hilfe der Additionsmethode in Kombination mit einer LaCl<sub>3</sub>-Zugabe lassen sich alle merkbaren chemischen Störungen beseitigen.
- b) Daß sich durch Anwendung der Anreicherungsmethode keine größere Steigerung der Erfassungsgrenze erzielen läßt, liegt an der starken Blindabsorption von Methylisobutylketon beim vorliegenden Gasgemisch.
- c) Ein «light-scattering-effect» (nachweisbar mit einer Neon-Linie) konnte bisher bei unseren Untersuchungen noch nirgends beobachtet werden.

## 3. 6. Bestimmung von Na und K in Lebensmitteln und Trinkwasser

#### 3. 6. 1. Veraschungsdauer und Veraschungstemperatur


Veraschungsdauer: 3—5 Stunden (je nach Art des Lebensmittels) Veraschungstemperatur: 450—600 ° C (je nach Art des Lebensmittels) Für Trinkwasser kann im Analysengang auf den Veraschungsschritt verzichtet werden.

### 3. 6. 2. Geräteparameter

Tabelle 12

|                              | Na    | K        |
|------------------------------|-------|----------|
|                              |       |          |
| Brennerhöhe (inches)         | 3     | 3        |
| Luft (p.s.i.)                | 15    | 15       |
| $H_2$ (p.s.i.)               | 4     | 4        |
| Zeitkonstante                | 8     | 8        |
| Wellenlänge (nm) single pass | 589,0 | 765,5    |
| Spaltbreite (mm)             | 0,1   | 1,0      |
| Geschwindigkeit des          |       | b was di |
| Papiervorschubs (cm/min)     | 2,5   | 2,5      |

In Figur 8 ist die Ermittlung des Geräteparameters «Brennerhöhe» dargestellt. Wie bei Cu und Zn, aber im Gegensatz zu Fe und Ca, geht die Absorbance bei kontinuierlich veränderter Brennerhöhe nicht durch ein Maximum.



Figur 8. Na- und Ka-Bestimmung: Brennerhöhe in Funktion der Absorbance

# 3. 6. 3. Auswertung der Na- und K-Signale

Die Auswertung der Signale kann bei Trinkwasser wahlweise nach der Additions- oder Eichkurvenmethode erfolgen, bei festen Lebensmitteln ist die Additionsmethode vorzuziehen.

# 3. 6. 4. Zusammenstellung einiger Resultate

Tabelle 13

|                 | Na in                 | K in g/kg       |                       |                 |
|-----------------|-----------------------|-----------------|-----------------------|-----------------|
| Lebensmittel    | Doppelbe-<br>stimmung | Mittel-<br>wert | Doppelbe-<br>stimmung | Mittel-<br>wert |
| Baby-Food Nr. 1 | 1,26<br>1,25          | 1,25            | 2,35<br>2,34          | 2,34            |
| Baby-Food Nr. 2 | 1,95<br>1,95          | 1,95            | 1,92<br>1,88          | 1,90            |
| Baby-Food Nr. 3 | 1,20<br>1,00          | 1,10            | 3,20<br>3,00          | 3,10            |

|                                  | Na in                 | g/kg            | K in                  | g/kg            |
|----------------------------------|-----------------------|-----------------|-----------------------|-----------------|
| Lebensmittel                     | Doppelbe-<br>stimmung | Mittel-<br>wert | Doppelbe-<br>stimmung | Mittel-<br>wert |
| Baby-Food Nr. 4                  | 1,26<br>1,24          | 1,25            | 1,27<br>1,26          | 1,26            |
| Baby-Food Nr. 5                  | 1,60<br>1,59          | 1,60            | 2,10<br>2,10          | 2,10            |
| Baby-Food Nr. 6                  | 1,92<br>1,87          | 1,90            | 1,55<br>1,45          | 1,50            |
| Baby-Food Nr. 7                  | 0,81                  | 0,80            | 2,12<br>2,12          | 2,12            |
| Salzfreie Suppe                  | 0,42<br>0,38          | 0,40            | -,                    |                 |
| Gewürzmischung                   | 0,77                  | 0,77            | 1                     |                 |
| Na-arme Streuwürze               | 0,80                  | 0,80            | 250<br>250            | 250             |
| Orange-Tafelwasser               | 3,33                  |                 | 0,075                 | 0,07            |
| Grapefruitsaft                   |                       |                 | 1,30<br>1,29          | 1,30            |
| Orangen-Zitronensaft-Konzentrat  |                       |                 | 4,57<br>4,57          | 4,57            |
| Orangen-Konzentrat               |                       |                 | 5,35<br>5,25          | 5,30            |
| Orangensaft                      |                       |                 | 1,63<br>1,59          | 1,61            |
| Mandarinensaft-Konzentrat        |                       |                 | 7,41<br>7,35          | 7,38            |
| 3-Früchte-Saft                   |                       |                 | 1,45<br>1,49          | 1,47            |
|                                  | Na in                 | ppm             | K in                  | ppm             |
| Wasser                           | Doppelbe-<br>stimmung | Mittel-<br>wert | Doppelbe-<br>stimmung | Mittel-<br>wert |
| Wasser aus Botanischem Garten    | 108<br>108            | 108             | 2,0<br>2,0            | 2,0             |
| Trinkwasser Gemeinde Köniz       | 59<br>58              | 58              | 0,7                   | 0,7             |
| Wasser aus Persien               | 280<br>280            | 280             | 10,8<br>10,8          | 10,8            |
| Wasser aus Nepal (Mineralwasser) | 130<br>127            | 128             | 30                    | 30              |
| Mineralwasser aus Adelboden      | 4,5<br>4,5            | 4,5             | 1,3<br>1,3            | 1,3             |
| Längeney-Bad-Wasser              | 5,3<br>5,2            | 5,3             | 1,0<br>1,0            | 1,0             |

#### 3. 6. 5. Diskussion

Erfassungsgrenze
 im single pass
 im triple pass

0,005 ppm Na 0,03 ppm K

- Günstigster Meßbereich (im single pass):

Na: 0,01—1,5 ppm K: 0,1—1,7 ppm

Störungen

- a) Bei der Bestimmung von Fruchtsäften konnte eine abnorme Krümmung der Eichkurve beobachtet werden. Die diesbezüglichen Störfaktoren ließen sich durch den kombinierten Zusatz von LaCl<sub>3</sub>-CsCl (0,1 % La<sub>2</sub>O<sub>3</sub>; 0,5 % CsCl; 0,36 % Salzsäure in der Meßlösung) eliminieren. Es ist bekannt, daß CsCl die Ionisationsstörungen beseitigt (4). Der große Cs+-Ueberschuß bewirkt, daß der Einfluß der leicht ionisierbaren Elemente auf das Ionisationsgleichgewicht Na \improx Na+ +e- vernachlässigbar wird.
- b) Die relativ bedeutende Blindabsorption von Wasser steigt mit abnehmendem Abstand Brenner-Strahlengang an.

c) Ein absolut sauberes Arbeiten ist bei der Na-Bestimmung Vorbedingung (sauberes Geschirr!).

— Bei Produkten mit hohem Na-Gehalt wird bei der weniger empfindlichen Wellenlänge von 330,2 nm mit nur 1 Brenngasdüse gearbeitet. Hier erstreckt sich der günstigste Meßbereich von 20—200 ppm Na.

# 3.7. Bestimmung von Mn in Trinkwasser

# 3.7.1. Geräteparameter

Tabelle 14

| Brennerhöhe (inches)            | 2,5   |
|---------------------------------|-------|
| Luft (p.s.i.)                   | 15    |
| $H_2$ (p.s.i.)                  | 4     |
| Zeitkonstante                   | 2     |
| Wellenlänge (nm)<br>single pass | 279,5 |
| Spaltbreite (mm)                | 0,1   |
| Geschwindigkeit des             |       |
| Papiervorschubs (cm/min)        | 2,5   |

### 3.7.2. Auswertung der Mn-Signale

Die Auswertung der Mn-Signale bietet sowohl nach der Additionsmethode als auch nach der Eichkurvenmethode keine nennbaren Schwierigkeiten.

### 3.7.3. Zusammenstellung einiger Resultate

Tabelle 15

|                               | Mn in ppm               |                 |  |  |
|-------------------------------|-------------------------|-----------------|--|--|
| Trinkwasser und Mineralwasser | Doppel-<br>bestimmungen | Mittel-<br>wert |  |  |
|                               |                         |                 |  |  |
| TV.                           | 0,62                    | 0.71            |  |  |
| Wasser aus Persien            | 0,60                    | 0,61            |  |  |
| Wasser aus dem                | 0,46                    | 0.47            |  |  |
| Längeney-Bad, Quelle I        | 0,46                    | 0,46            |  |  |
| Wasser aus dem                | 0,46                    | 0.46            |  |  |
| Längeney-Bad, Quelle II       | 0,46                    | 0,46            |  |  |
| Wasser aus dem                | 0,40                    | 0.40            |  |  |
| Längeney-Bad, Quelle III      | 0,40                    | 0,40            |  |  |

#### 3.7.4. Diskussion

- Erfassungsgrenze
   im triple pass
   nach Anreicherung (im triple pass)
   0,03 ppm Mn
   0,002 ppm Mn
- Bei Anwendung der Anreicherungsmethode gemäß 2.7. wird die Lösung analog zur Cu-Bestimmung auf einen pH-Bereich zwischen 6—7 gepuffert. Der extrahierte Mn-Komplex ist im vorliegenden Fall jedoch nicht stabil (5), daher sollte die Ausmessung der Lösung spätestens 30 Minuten nach der Extraktion erfolgen.
- Günstigster Meßbereich (im single pass): 0,5-8 ppm Mn.
- Störungen
  Falls der Instabilität des Mn-Komplexes bei Anwendung der Anreicherungsmethode Rechnung getragen wird, erweist sich die Mn-Bestimmung als praktisch störungsfrei.

### 3. 8. Bestimmung von Phosphor in Lebensmitteln

#### 3.8.1. Methodik

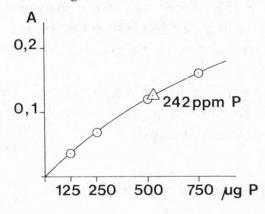
Phosphat wird mit Ammoniummolybdat umgesetzt, die resultierende Phosphormolybdänsäure mit Isobutylazetat extrahiert und im Extrakt die Molybdänkonzentration mittels AAS bestimmt (6). Isobutylazetat trennt H<sub>3</sub>PO<sub>4</sub>(MoO<sub>3</sub>)<sub>12</sub> selektiv von H<sub>4</sub>SiO<sub>4</sub>(MoO<sub>3</sub>)<sub>12</sub> ab.

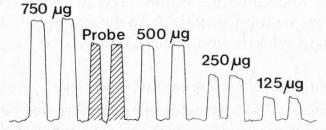
# 3. 8. 2. Veraschungsdauer und Veraschungstemperatur

Veraschungsdauer: 3—5 Stunden (je nach Art des Lebensmittels) Veraschungstemperatur: 500—600 ° C (je nach Art des Lebensmittels)

#### 3.8.3. Herstellung der Meßlösung

Die Asche wird (je nach Löslichkeit der Asche) in 3—5 ml 18% iger Salzsäure gelöst und diese Lösung während 20 Minuten mit 2 ml 10% iger (NH<sub>4</sub>)6 Mo<sub>7</sub>O<sub>24</sub>·4 H<sub>2</sub>O stehengelassen. Der resultierende Komplex wird anschließend während 1 Minute mit 10 ml wassergesättigtem Isobutylazetat extrahiert und gegen eine Blindlösung von wassergesättigtem Isobutylazetat ausgemessen.


#### 3.8.4. Geräteparameter


Tabelle 16

| Brennerhöhe (inches)    | 2,75  |
|-------------------------|-------|
| Luft (p.s.i.)           | 10    |
| $H_2$ (p.s.i.)          | 1     |
| Zeitkonstante           | 8     |
| Wellenlänge (nm)        | 313,3 |
| single pass             |       |
| Spaltbreite (mm)        | 0,15  |
| Papiervorschub (cm/min) | 2,5   |

#### 3. 8. 5. Auswertung der Mo-Signale

Wie aus Figur 9 ersichtlich ist, bildet Mo eine relativ stark gekrümmte Eichkurve. Demzufolge kann die Additionsmethode nicht zur Anwen-





Figur 9. P-Bestimmung nach der Eichkurvenmethode

dung gelangen. Die Auswertung aufgrund der Eichkurvenmethode hingegen ergibt einwandfreie Resultate.

### 3.8.6. Zusammenstellung einiger Resultate

In Tabelle 17 haben wir ein paar unserer Resultate — sowohl nach der Methode der AAS als auch nach der kolorimetrischen Bestimmungsmethode als Phosphormolybdänblau (7) ermittelt — zusammengestellt.

Tabelle 17

|                          | P-Gehalt in ppm<br>(AAS) |                 | P-Gehalt in ppm<br>(kolorimetrisch) |                 |  |
|--------------------------|--------------------------|-----------------|-------------------------------------|-----------------|--|
|                          | Doppel-<br>bestimmungen  | Mittel-<br>wert | Doppel-<br>bestimmungen             | Mittel-<br>wert |  |
| Orangensaftkonzentrat I  | 139                      | 137             | 138                                 | 140             |  |
|                          | 136                      | 137             | 143                                 | 110             |  |
| Orangensaftkonzentrat II | 129                      | 120             | 122                                 | 125             |  |
|                          | 129                      | 129             | 128                                 | 125             |  |
| Mandarinensaftkonzentrat | 513                      | 512             | 511                                 | E1/             |  |
|                          | 513                      | 513             | 520                                 | 516             |  |
| Frühstücksgetränk        | 2020                     | 2000            | 2020                                | 2020            |  |
|                          | 1980                     | 2000            | 2040                                | 2030            |  |

#### 3.8.7. Diskussion

- Erfassungsgrenze im single pass: 125 µg P/10 ml Extrakt.
- Günstigster Meßbereich (im single pass): 250—1000 ug P/10 ml Extrakt.
- Ein Vergleich der Methoden AAS und Kolorimetrie ergibt bei der Phosphatbestimmung folgendes Bild: Bezüglich der Genauigkeit sind beide Methoden als einander ebenbürtig zu bezeichnen, bezüglich Einfachheit ist jedoch die kolorimetrische Phosphatbestimmungsmethode vorzuziehen.

# 3. 9. Bestimmung von Cd in Lebensmitteln

### 3.9.1. Veraschungsdauer und Veraschungstemperatur

Veraschungsdauer: 3—5 Stunden (je nach Art des Lebensmittels) Veraschungstemperatur: 450—550 ° C (je nach Art des Lebensmittels)

#### 3.9.2. Geräteparameter

Tabelle 18

| Brennerhöhe (inches)                  | 3     |
|---------------------------------------|-------|
| Luft (p.s.i.)                         | 25    |
| $H_2$ (p.s.i.)                        | 4     |
| Zeitkonstante je nach Problemstellung |       |
| Wellenlänge (nm)                      | 228,8 |
| single pass                           |       |
| Spaltbreite (mm)                      | 0,1   |
| Papiervorschub (cm/min)               | 2,5   |

### 3.9.3. Auswertung der Cd-Signale

Die Auswertung der Cd-Signale erfolgt vorzugsweise nach der Methode der Standardzusätze (vgl. 2. 5.).

#### 3.9.4. Zusammenstellung einiger Resultate

Tabelle 19

|              |   | ppm Cd                  |                 |  |  |
|--------------|---|-------------------------|-----------------|--|--|
| Produkt      |   | Doppel-<br>bestimmungen | Mittel-<br>wert |  |  |
|              | 1 |                         |                 |  |  |
| Streuwürze   |   | 4,4                     | 4,4             |  |  |
| Würzmischung |   | 4,3<br>4,2              | 4,3             |  |  |
| Hefeextrakt  |   | 1,3                     | 1,3             |  |  |

#### 3.9.5. Diskussion

- Erfassungsgrenze
  - triple pass 0,005 ppm Cd
- Drängt sich eine Anreicherung auf, dann wird analog zu 3. 1. 5. (Fe) vorgegangen.\*
- Günstigster Meßbereich (im single pass): 0,1-1,2 ppm Cd.

# 3. 10. Bestimmung von Cd in Geschirren

# 3. 10. 1. Herstellung der Meßlösung

Gemäß. Art. 453 LMV wird das auf eine Cd-Abgabe hin zu prüfende Geschirr oder bemalte Glas während 24 Stunden bei Zimmertemperatur

<sup>\*</sup> Bei Lebensmitteln mit hohem Salzgehalt tritt ein «fight-scattering-effect» auf. Durch Anwendung der Anreicherungsmethode kann er eliminiert werden.

in 4% ige Essigsäure eingetaucht, anschließend der Cd-Gehalt der Essigsäurelösung bestimmt und auf die Cd-Abgabe pro dm² Geschirroberfläche umgerechnet. Währenddem bei Eßgeschirren normalerweise die Cd-Lässigkeit der Innenseite bestimmt wird, beschränkt man sich bei Trinkgläsern auf die Berücksichtigung eines 2 cm breiten äußeren Lippenrandes.

# 3. 10. 2. *Geräteparameter* vgl. Tabelle 18 (3. 9. 2.)

#### 3. 10. 3. Auswertung der Cd-Signale

Die Auswertung wird vorzugsweise nach der Additionsmethode vorgenommen (vgl. 2. 5).

### 3. 10. 4. Zusammenstellung einiger Resultate

Tabelle 20

| Probe              | Cd-Lässigkeit                   |
|--------------------|---------------------------------|
|                    |                                 |
|                    |                                 |
| Keramikschale a    | $<$ 0,6 $\mu$ g/dm <sup>2</sup> |
| Keramikschale b    | $<$ 0,6 $\mu g/dm^2$            |
| Fondue-Kasserole a | 1,6 µg/dm²                      |
| Fondue-Kasserole b | $1,7 \mu\mathrm{g/dm^2}$        |
| Teflonpfanne       | 1,9 mg/dm <sup>2</sup>          |
| Trinkglas          | 4,0 mg/dm <sup>2</sup>          |

#### 3. 10. 5. Diskussion

- Erfassungsgrenze: vgl. 3. 9. 5.
- Störungen

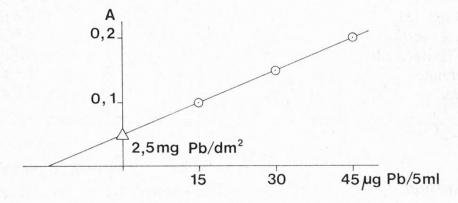
Testversuche haben ergeben, daß bei der Messung gegen eine Blindlösung von reiner 4% iger Essigsäure mit keinen merklichen Störeffekten zu rechnen ist, demach sogar auf die LaCl<sub>3</sub>-Zugabe zu Meßund Blindlösung verzichtet werden kann.

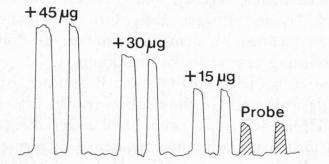
— Nach unseren bis jetzt vorliegenden Resultaten ist die Cd-Abgabe von Geschirrglasuren und Geschirrfarben gering. Interessant mag vor allem die Feststellung sein, daß nach 24stündiger Essigsäureextraktion rund 90 % des löslichen Cadmiums aus dem Geschirr entfernt sind. So gibt z. B. eine Teflonpfanne während den ersten 24 Stunden 1,9 mg

Cd/dm<sup>2</sup> an die Essigsäure ab, während weiteren 24 Stunden jedoch nur noch 0,09 mg Cd/dm<sup>2</sup>.

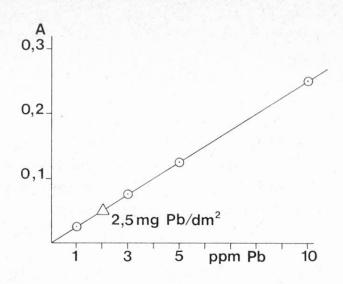
#### 3.11. Bestimmung von Pb in Geschirr

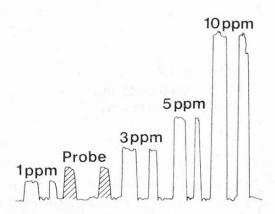
# 3. 11. 1. Herstellung der Meßlösung vgl. 3. 10. 1.


#### 3. 11. 2. Geräteparameter


Tabelle 21

| Brennerhöhe (inches)     | 2,75  |
|--------------------------|-------|
| Luft (p.s.i.)            | 15    |
| $H_2$ (p.s.i.)           | 4     |
| Zeitkonstante            | 2     |
| Wellenlänge (nm)         | 283,3 |
| single pass              |       |
| Spaltbreite (mm)         | 0,15  |
| Geschwindigkeit des      |       |
| Papiervorschubs (cm/min) | 2,5   |


#### 3. 11. 3. Auswertung der Pb-Signale


Die Auswertung kann wahlweise nach der Additions- oder Eichkurvenmethode vorgenommen werden (vgl. Figuren 10 und 11).





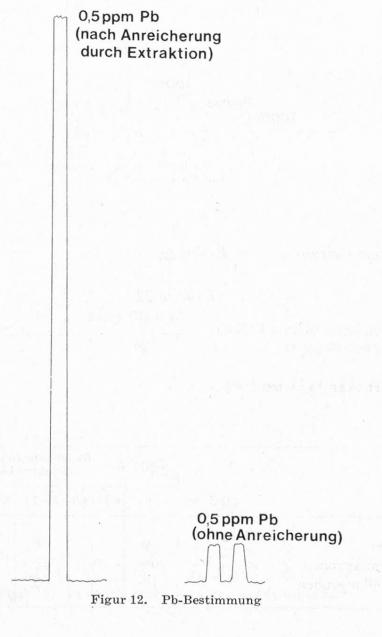
Figur 10. Pb-Bestimmung nach der Additionsmethode





Figur 11. Pb-Bestimmung nach der Eichkurvenmethode

# 3. 11. 4. Zusammenstellung einiger Resultate


# Tabelle 22

| Zahl der untersuchten Proben:  | — Gläser    | 37  |
|--------------------------------|-------------|-----|
|                                | — Keramik   | 223 |
|                                | — Porzellan | 20  |
| Zahl der beanstandeten Proben: | — Gläser    | 27  |
|                                | — Keramik   | 43  |
|                                | — Porzellan | 0   |
|                                |             |     |

| Bleiabgabe in mg Pb/dm²<br>Geschirroberfläche |       |         |      |       |        |       |
|-----------------------------------------------|-------|---------|------|-------|--------|-------|
|                                               | < 0,1 | 0,1-3,0 | 3—10 | 10-20 | 20—100 | > 100 |
| Zahl der Gläser                               | 9     | 1       | 4    | 12    | 7      | 4     |
| Zahl der Keramikproben                        | 99    | 79      | 30   | 11    | 4      | 0     |
| Zahl der Porzellanproben                      | 19    | 1       | 0    | 0     | 0      | 0     |

#### 3. 11. 5. Diskussion

- Erfassungsgrenze
   im triple pass
   nach Anreicherung (im triple pass)
   0,1 ppm Pb
   0,01 ppm Pb
- Bei Anwendung der Anreicherungsmethode mittels Na-Diaethyldithiocarbamat gemäß 2.7. wird die Essigsäurelösung analog zur Cu-Bestimmung auf einen pH-Bereich zwischen 6—7 gepuffert. Auf Figur 12 sind die Bestimmungen einer 0,5 ppm Pb-Lösung mit und ohne Anreicherungsschritt aufgezeichnet.
- Günstigster Meßbereich (im single pass): 1-20 ppm Pb.
- Störungen: vgl. 3. 10. 5.
- Der ADI-Wert für Pb beträgt 10 bis max. 50 µg Pb/Mensch/Tag. Es darf angenommen werden, daß rund 10 % des mit der Nahrung auf-



genommenen Bleis resorbiert werden. Einige der untersuchten Geschirrproben geben nun jedoch Pb-Mengen ab, die wesentlich über dem ADI-Wert liegen. Es wird demnach unumgänglich sein, die in Art. 453 LMV genannte Toleranzgrenze von 3 mg Pb/dm² wesentlich abzusenken, vor allem deshalb, weil es heute herstellungstechnisch mehr und mehr möglich ist, bleifreie Geschirrfarben und Geschirrglasuren zu benützen oder die Fabrikationsbedingungen dergestalt zu steuern, daß die Pb-Lässigkeit praktisch unbedeutend wird.

### Zusammenfassung

Es werden praxisgerechte Methoden zur Metallbestimmung in Lebensmitteln und Gebrauchsgegenständen mit der herkömmlichen Atomabsorptions-Spektrophotometrie mit Flamme beschrieben. Besonders berücksichtigt werden die Aufarbeitung, die Geräteparameter sowie 2 mögliche Meßmethoden, welche auch für andere AAS-Gerätetypen sinngemäß übernommen werden können.

#### Résumé

L'auteur décrit des méthodes utilisables dans la pratique pour la détermination des métaux dans les denrées alimentaires et les objets usuels. Il s'agit de la méthode classique qui se sert de la spectrophotomètrie à absorption atomique (avec flamme). L'accent est mis spécialement sur la préparation de l'échantillon, les paramètres de l'appareil ainsi que sur deux méthodes de mesure possibles qui peuvent également être appliquées à d'autres types de spectrophotomètres à absorption atomique.

#### Literatur

- 1. Kaiser H., Specker H.: Z. Analyt. Chem. 149, 46 (1956).
- 2. Nix J., Goodwin T.: Atomic Absorption Newsletter 9, 119 (1970).
- 3. Rubeska J., Moldan B.: Atomic Absorption Spectrophotometry, 119, London, Iliffe Books Ltd., 1969.
- 4. Slawin W.: Atomic Absorption Spectroscopy, 163, New York, London, Sindney, Interscience Publishers, 1958.
- 5. Yanagisawa M., Suzuki M., Takenchi T.: Analyt. Chim. Acta 43, 500 (1968).
- 6. Ramakrishna T. V., Robinson J. W., West P. W.: Analyt. Chim. Acta 45, 43 (1969).
- 7. Schormüller J.: Handbuch der Lebensmittelchemie II/2, 71, Berlin, Heidelberg, New York, Springer Verlag, 1967.