Zeitschrift: Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und

Hygiene = Travaux de chimie alimentaire et d'hygiène

Herausgeber: Bundesamt für Gesundheit

Band: 56 (1965)

Heft: 2

Artikel: Beitrag zur Bestimmung des Eigehaltes in Teigwaren : Berechnung von

Eiklar und Eigelb: welcher Faktor soll zur Berechnung des Eiklars

verwendet werden?

Autor: Hadorn, H. / Zürcher, K.

DOI: https://doi.org/10.5169/seals-982190

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

MITTEILUNGEN

AUS DEM GEBIETE DER

LEBENSMITTELUNTERSUCHUNG UND HYGIENE

VERÖFFENTLICHT VOM EIDG. GESUNDHEITSAMT IN BERN
Offizielles Organ der Schweizerischen Gesellschaft für analytische und angewandte Chemie

TRAVAUX DE CHIMIE ALIMENTAIRE ET D'HYGIÈNE

PUBLIÉS PAR LE SERVICE FÉDÉRAL DE L'HYGIÈNE PUBLIQUE À BERNE Organe officiel de la Société suisse de chimie analytique et appliquée

ABONNEMENT:

Schweiz Fr. 22.— per Jahrgang (Ausland Fr. 27.—) Suisse fr. 22.— par année (étranger fr. 27.—) Preis einzelner Hefte Fr. 4.— (Ausland Fr. 5.—) Prix des fascicules fr. 4.— (étranger fr. 5.—)

Band - Vol. 56

1965

Heft — Fasc. 2

Beitrag zur Bestimmung des Eigehaltes in Teigwaren: Berechnung von Eiklar und Eigelb

Welcher Faktor soll zur Berechnung des Eiklars verwendet werden?

Von H. Hadorn und K. Zürcher Laboratorium des Verbandes Schweiz. Konsumvereine (VSK) Basel

1. Einleitung

Bei der Untersuchung von Frischeierteigwaren spielt neben der allgemein üblichen Bestimmung der Gesamtlipoide und des Cholesterins auch die Bestimmung der löslichen Proteine eine wichtige Rolle. Lipoide und Sterine sind charakteristische Bestandteile des Eidotters. Aus diesen Werten läßt sich der Eigelbgehalt berechnen. Die Bestimmung der wasserlöslichen Proteine hat von Fellenberg (1) in die Teigwarenanalytik eingeführt. Die Methode gestattet die Berechnung des Eiklargehaltes. In gewissen Fällen lassen sich auf Grund der löslichen Proteine Frischeierteigwaren von sogenannten Konserven-Eierteigwaren (aus Eipulver hergestellt) unterscheiden. Die von Fellenbergsche Methode ist von Hadorn und Jungkunz (2) etwas vereinfacht und verbessert worden. Sie liefert gut reproduzierbare Resultate. Das Prinzip war folgendes: Das fein gemahlene Teigwarenpulver wird mit Wasser geschüttelt und das Unlösliche abzentrifugiert. In

einem aliquoten Teil der überstehenden wässerigen Lösung werden zunächst die löslichen Getreideproteine mit Magnesiumsulfat ausgefällt und abfiltriert. Im Filtrat fällt man in der Siedehitze die Eiproteine mit Kupfersulfat, filtriert sie ab und bestimmte sie nach Kjeldahl. Mit den eigentlichen Eiklarproteinen wird stets noch eine geringe Menge von Getreideproteinen (0,1 %) miterfaßt. Die Berechnung des Eigehaltes erfolgt nach Abzug von 0,1 % für die Getreideproteine mittels eines empirischen Faktors. Nach von Fellenberg muß die Differenz (lösliche Eiproteine) mit dem Faktor 173 multipliziert werden, um den Eigehalt, ausgedrückt in g frischem Eierinhalt pro kg Grieß zu erhalten. Müller (3) hat diesen Faktor bestätigt. Auch Hadorn und Jungkunz (2) haben bei ihren Modellversuchen mit labormäßig hergestellten Frischeierteigwaren den gleichen Faktor gefunden. Philippe und Henzi (4) schlagen dagegen einen höheren Faktor 192 vor, der auch in das Lebensmittelbuch, 4. Auflage, aufgenommen worden ist. Ihre Begründung ist die folgende: In der Praxis geht beim Aufschlagen der Eier ein beträchtlicher Teil des Eiklars verloren, weil die Schalen nicht so gründlich gereinigt werden wie im Haushalt oder bei den erwähnten Laboratoriumsversuchen. Pro Ei werden durchschnittlich 2,06 g Eiklar mit den Schalen weggeworfen. Diesen Umstand haben Philippe und Henzi bei der Berechnung berücksichtigt, indem sie den Faktor 192 verwenden.

Für die heute im Handel befindlichen Gefriereier und das industriell gewonnene Gußei dürften die von Philippe und Henzi beschriebenen Umstände nicht immer zutreffen. Das Eiklar wird in rationell arbeitenden Betrieben entweder durch Ausblasen oder durch Abzentrifugieren praktisch vollständig von den Schalen abgetrennt. Der ursprünglich von von Fellenberg vorgeschlagene Faktor dürfte die zutreffenderen Resultate liefern. Um dies zu prüfen, haben wir verschiedene Modellversuche angestellt und Frischeierteigwaren untersucht, die unter Aufsicht und gleichzeitiger Kontrolle der verarbeiteten Rohmaterialien hergestellt worden waren. Es erwies sich im Laufe unserer Untersuchungen als zweckmäßig, den Eiklar- und den Eigelb-Anteil in den Teigwaren gesondert zu berechnen. Bei Eierteigwaren, die aus Eimasse fabriziert wurden, welche Eiklar und Eigelb nicht im richtigen Verhältnis enthielten, ergeben sich sonst etwas verfälschte Analysenresultate.

2. Modellversuche mit Eimasse und Grieß

In Modellversuchen haben wir genau gewogene Mengen von Grieß, mit verdünnter Eimasse (Eisuppe) und Wasser gemischt, während 5 Minuten kräftig geschüttelt und schließlich zentrifugiert. Die Versuchsbedingungen entsprachen annähernd denjenigen der Vorschrift von Hadorn und Jungkunz (2), wonach 8 g Teigwarenpulver mit 40,0 ml Wasser geschüttelt werden. Die verwendete Eisuppe war unmittelbar vorher in einer Teigwarenfabrik aus polnischem Gefriervollei hergestellt worden. Sie wurde im elektrischen Mixer homogenisiert und wies folgende Gehaltszahlen auf:

Trockensubstanz	13,84 0/0	13,84 %
Lipoide	6,75 0/0	6,77 0/0
Eiklar-Anteil (Berechnung siehe Abschnitt 5)	30,6 %	
Eiklar-Proteine (Eiklar enthält nach Großfeld [5])		
im Mittel 11,6 % Proteine)	3,55 %	

Tabelle 1 Modellversuche mit Grieß und Eisuppe

A	mahlene wur	fein ge- m Grieß den wogen	Titra-	10	Lösliche	Proteine		Normal	es, frische	s Eiklar
Versuch Nr.	Eisuppe g	Wasser ml	tion 0,1-n HCl ml	Eiklar- Proteine theoret.	Gefunden inkl. Getreide- Proteine	Cotroido	Ausbeute	Theoret. ber. aus zuge- setzter Menge Eisuppe g/kg Grieß	Gefunden mit Faktor 173.0,646	Ausbeute
1	2	3	4	5	6	7	8	9	10	11
1	0	40,0	0,49	0	0.122	0	0		l Val	
2	1,618	38,4	3,21	0,718	0,133	0,740	103	61,9	82,7	133
3	2,400	37,6	4,61	1,065	1,254	1,121	105	91,8	125,3	137
4	2,414	37,6	4,50	1,003	1,224	1,091	103	92,6	121,9	132
5	3,233	36,8	6,38	1,433	1,735	1,602	112	123,5	179,0	145
6	3,210	36,8	6,68	1,424	1,817	1,684	118	122,8	188,2	153

In der Tabelle 1 sind die in den Modellversuchen abgewogenen Mengen Eisuppe und Wasser angegeben. Nach gründlichem Homogenisieren wurde die Mischung, bestehend aus 8 g gemahlenem Grieß, Eisuppe und Wasser kräftig geschüttelt und zentrifugiert. In 25 ml der überstehenden Lösung wurden die löslichen Proteine wie üblich (2) bestimmt. Die Titrationswerte und die daraus berechneten Gehalte an löslichen Proteinen und Eiklar sind in der Tabelle 1 aufgeführt und den theoretischen, aus der Eisuppe berechneten Werten gegenübergestellt. Im verwendeten Hartweizengrieß findet man nach obiger Methode 0,133 % lösliche Getreideproteine, was gut mit dem seinerzeit von Hadorn und Jungkunz (2) gefundenen Wert (0,14 %) übereinstimmt. In der Kolonne 6 der Tabelle 1 sind die im Modellversuch gefundenen löslichen Proteine aufgeführt. In Kolonne 7 finden sich (nach Abzug der Getreideproteine) die Werte für die Eiklarproteine. Diese stimmen ganz befriedigend mit den theoretischen Werten für die Eiklarproteine in Kolonne 5 überein, welche aus der Zusammensetzung und der abgewogenen Menge Eisuppe berechnet worden sind. Die Ausbeute an löslichen Eiklarproteinen betrug bei den Modellversuchen mit 2 und 3 Eiern pro kg Gries 102-105 % der Theorie. Bei den Modellversuchen 5 und 6 mit 4 Eiern pro kg Grieß war die Ausbeute etwas zu hoch, sie betrug 112-118 %. Vermutlich sind hier noch Proteine des Dotters miterfaßt worden.

In Kolonne 9 findet man den theoretischen Eiklargehalt der Modellmischungen, berechnet aus der zugesetzten Menge Eisuppe und deren Eiklargehalt von 30,6 %. In Kolonne 10 ist der Eiklargehalt aus den löslichen Eiklarproteinen nach von Fellenberg berechnet worden. Man multiplizierte die löslichen Eiklarproteine (in Kolonne 7) zunächst mit dem von Fellenbergschen Faktor 173 und erhält die Menge an gesamtem Eierinhalt. Da der Eierinhalt zu 64,6 % aus Eiklar besteht, multipliziert man noch mit 0,646. Die gefundenen Eiklargehalte in Kolonne 10 sind durchwegs viel zu hoch. Die Ausbeute beträgt 132—153 % der Theorie. Bei der Analyse von Frischeierteigwaren liefert dagegen die Berechnung des Eigehaltes aus den löslichen Proteinen annähernd richtige Resultate. Aus diesem Widerspruch zu unseren Modellversuchen mit Hartweizengrieß und Eisuppe muß geschlossen werden, daß beim Trocknen der Teigwaren ein Teil (ca. ½) der Eiklarproteine unlöslich wird. Diesem Umstand wird durch den von von Fellenberg empirisch ermittelten Faktor 173 Rechnung getragen.

3. Herstellung der Eierteigwaren

Die Teigwaren für unsere Versuche sind in einer modernen Teigwarenfabrik unter Aufsicht nach zwei verschiedenen Verfahren hergestellt worden.

a) Eiernudeln aus dem Chargenbetrieb

Um die Dosierung von Eimasse und Grieß peinlich genau einhalten zu können, wurden einige Chargen Eierteigwaren nach diesem heute nicht mehr üblichen Verfahren hergestellt. In Chargen von ca. 100 kg wurden Hartweizengrieß, Eimasse und Wasser gemischt, zu einem Teig geknetet, derselbe ausgewalzt, zu Nudeln geschnitten und getrocknet.

b) Eiernudeln aus kontinuierlichem Betrieb

In den modernen Maschinen werden die Teigwaren kontinuierlich hergestellt. In einer Dosierapparatur wird der Grieß in Portionen von 1 oder 2 kg abgewogen und automatisch in den Mischer entleert. Im gleichen Rhythmus wird die berechnete Menge Eisuppe (Mischung bestehend aus Eimasse und Wasser) ebenfalls automatisch abgemessen und entleert. Die Masse wird innig gemischt, geknetet, gepreßt und schließlich in die gewünschte Form gebracht. Die Trocknung erfolgt normalerweise in einer automatischen Trocknungsanlage bei 40—50 °C. Einzelne Proben wurden auch vor der automatischen Trocknung entnommen und auf Hurden bei 28—30 °C getrocknet. Nach diesem Verfahren sind 5 verschiedene Fabrikationen unter Aufsicht durchgeführt und die Teigwaren untersucht worden.

4. Analysenresultate der im Chargenbetrieb hergestellten Eierteigwaren

In der Tabelle 2 sind die in den Teigwaren analytisch bestimmten Werte für die wasserlöslichen Proteine und die mit verschiedenen Faktoren daraus berech-

Tabelle 2 Berechnung des Eigehaltes aus den löslichen Proteinen (Im Chargen-Betrieb hergestellte Eiernudeln)

			Eigehalt b	erechnet als g/kg Grieß	Eierinhalt
Nr.	Verwendete Eimasse	Lösliche Proteine %	Faktor Philippe und Henzi F = 192	Faktor von Fellenberg F = 173	Theoret. aus der Rezeptur*
1	Gußei, frisch (Inhalt von frisch	0,980	169	152	150
	aufgeschlagenen Schaleneiern)	1,000	173	156	
2	Gefriervollei, holländisch, pasteu-				
	risiert	0,986	170	153	150
3	Gefriervollei, polnisch, pasteuri-	0,816	138	124	150
	siert	0,865	147	132	A HAT BE
4	½ polnisches Gefriervollei Nr. 3	0,887	151	136	150
	½ holländisches Gefriervollei	0,957	164	148	
	Nr. 2		2.77		
5	½ polnisches Gefriervollei Nr. 3	0,843	143	129	150
	½ Gußei, frisch, Nr. 1	0,890	152	138	
			J. J		

^{*} Die verarbeitete Eiersuppe ist nicht analysiert worden.

neten Eigehalte zusammengestellt. Bei den mit Gußei (frische Schaleneier) und den mit holländischem Gefriervollei hergestellten Teigwaren Nr. 1 und Nr. 2 findet man mit dem von Fellenbergschen Faktor nahezu den theoretischen Eigehalt. Die Richtigkeit dieses Faktors ist somit erneut bestätigt worden. In den mit pasteurisiertem polnischen Gefriervollei hergestellten Teigwaren findet man dagegen zu niedrige Eigehalte. Leider haben wir keine Muster der verarbeiteten Eimasse analysiert. Nachträglich läßt sich nicht mehr abklären, ob das polnische Gefrierei richtig zusammengesetzt war oder ob es zu wenig Eiklar enthielt. Bei den Teigwaren Nr. 4 und 5, für deren Fabrikation Mischungen, bestehend aus 50 % polnischem Gefriervollei und 50% Gußei bzw. holländischem Gefriervollei verwendet wurden, ergab die Analyse, wie erwartet, ebenfalls etwas zu niedrige Resultate. Bei allen weiteren Versuchen haben wir auch die verwendete Eimasse bzw. die Eisuppe untersucht, damit die Anteile an Eiklar und Eigelb (Dotter) der damit hergestellten Teigwaren berechnet werden konnten. Nur auf diese Weise ist es möglich, die wahren Gehalte an Eiklar und Eigelb zu ermitteln und dieselben mit den aus der Analyse der Eierteigwaren berechneten Werten zu vergleichen.

Im nächsten Abschnitt wird gezeigt, wie man auf einfache Weise den Eiklarund Eigelbgehalt von Eimasse bestimmen kann.

5. Berechnung des Eigelb- und des Eiklar-Anteils von Eimasse und Eisuppe

Für die späteren Berechnungen erwies es sich als zweckmäßig, in den Eimassen und Eisuppen die Anteile an Eiklar und Eigelb zu berechnen. Aus der Trocken-

substanz und aus dem Lipoidgehalt lassen sich diese Gehalte sowie eventuell zugesetztes Fremdwasser berechnen. Den Berechnungen werden folgende Mittelwerte, die dem Schweiz. Lebensmittelbuch (6) und dem Handbuch der Eierkunde (5) entnommen sind, zu Grunde gelegt:

	Trockensubstanz 0/0	Lipoide 0/0
Eigelb	51,0	35,4
Eiklar	13,4	Spur*

Für die Berechnung der Eigelb- und Eiklargehalte lassen sich folgende Gleichungen aufstellen:

Eigelb in
$$^{0}/_{0}$$
. $= x$
Eiklar in $^{0}/_{0}$. $= y$

zugesetztes Wasser in $^{0}/_{0}$ («Fremdwasser»). $= z$
Lipoidgehalt in $^{0}/_{0}$. $= L$

Trockensubstanzgehalt in $^{0}/_{0}$. $= T$
 $x + y + z$ $= 100$ (I)

 $0,51 \times + 0,134 \times + 0,0003 \times +$

Der Lipoidgehalt des Eiklars ist so gering, daß in Gleichung (III) das zweite Glied weggelassen werden kann. Aufgelöst lauten die Gleichungen:

Eigelbgehalt in
$$^{0/0}$$
 = $\frac{L}{0,354}$
Eiklargehalt in $^{0/0}$ = $\frac{T-1,44 L}{0,134}$
«Fremdwasser» in $^{0/0}$ = 100 minus Eigelb minus Eiklar.

Zahlenbeispiel

In einer Probe von polnischem Gefriervollei fanden wir 26,5 % Trockenmasse und 12,72 % Lipoide. Hieraus berechnen sich nach obigen Formeln folgende Werte:

Eigelbgehalt
$$=\frac{12,72}{0,354}$$
 $=35,93 \%$

Eiklargehalt $=\frac{26,25-1,44\cdot17,72}{0,134}$ $=59,20 \%$

Fremdwasser $=100-35,9-59,2$ $=4,9 \%$

* In einer Probe Eiklar fanden wir nach der Alkohol-Benzol-Extraktion 0,03 % Lipoide oder 0,22 % in der Trockenmasse. *Hadorn* und *Jungkunz* (7) fanden in einem chinesischen Trockeneiweiß 0,22 %, in einem selbst hergestellten Eiweiß 0,43 % Lipoide in der Trockenmasse.

Infolge der natürlichen Schwankungen im Wasser- und Lipoidgehalt der Eimasse gibt die Summe aus den berechneten Eigelb- und Eiklargehalten nur in den seltensten Fällen 100 %. Differenzen bis zu 5 % «Fremdwasser» liegen innerhalb der normalen Schwankungsbreite und deuten nicht auf eine Verfälschung hin. Obiges Gefriervollei ist demnach ungefähr richtig zusammengesetzt, es enthält lediglich etwas zu wenig Eiklar.

Nach Literaturangaben (5) enthält Eimasse im Mittel 64,6 % Eiklar und 35,4 %

Eigelb.

6. Analyse und Zusammensetzung der kontinuierlich fabrizierten Eiernudeln

In einer Teigwarenfabrik wurden unter Aufsicht 5 verschiedene Teigwaren mit z. T. verschiedenen Rohmaterialien im kontinuierlichen Verfahren hergestellt. Einzelheiten über die Kontrolle dieser Fabrikation sind in einer anderen Arbeit (8) angegeben. Aus dem zu verarbeitenden Gefriervollei oder dem Gußei (Inhalt von frisch aufgeschlagenen Eiern) wurde zunächst durch Zusatz einer berechneten Menge Wasser die sogenannte Eisuppe zubereitet und innig gemischt. Proben dieser Eisuppe wurden entnommen und analysiert.

a) Zusammensetzung der Eisuppe

Aus dem Trockensubstanz- und Lipoidgehalt der Eisuppe lassen sich die Anteile an frischem Eiklar und Eigelb (Dotter) berechnen. In der Tabelle 3 sind die Analysen der fünf verschiedenen Eisuppen zusammengestellt. Bei der Eisuppe A ergaben sich in den sechs über eine Zeitspanne von 21/2 Stunden an der Dosierapparatur entnommenen Proben gewisse Schwankungen. Diese sind auf ungenügende Homogenisierung der Eimasse und Eisuppe zurückzuführen. Bei den übrigen 4 Eisuppen wurde auf eine besonders gute Homogenisierung geachtet, die Schwankungen in der Zusammensetzung der zu verschiedenen Zeiten entnommenen Proben sind unbedeutend. Aus dem Trockensubstanz- und Lipoidgehalt wurden nun die Gehalte an Eiklar und Eigelb in der Eisuppe berechnet. Für die Beurteilung, ob die Eimasse richtig zusammengesetzt war, ist das Verhältnis von Eiklar zu Eigelb wichtig. Wir berechnen daher den Eigelbgehalt in % der Gesamteimasse. Bei der Eisuppe A beträgt derselbe 35,7 %. Dieser Wert stimmt erstaunlich gut mit dem in der Literatur angegebenen Mittelwert überein (35,4 % Eigelb in der Eimasse). Bei den 4 andern Eisuppen war das Eigelb durchwegs etwas angereichert. Vermutlich ist beim Aufschlagen der Eier ein Teil des Eiklars verloren gegangen. Besonders ausgeprägt ist dies in der Eisuppe B aus polnischem Gefriervollei und in der aus ungarischem Gusei hergestellten Eisuppe E. An der Dosiermaschine wurden auch die Gewichte der einzelnen Portionen Eisuppe, die jeweils zu 1 kg Grieß entleert wurden, kontrolliert. Aus dieser Dosierung (Mittelwert) und der Zusammensetzung der Eisuppe lassen sich die Gehalte an Eiklar und Dotter in der Teigware berechnen. In der Tabelle 3 sind die Resultate zusammengestellt. Die Eigehalte der Teigwaren sind

Tabelle 3 Zusammensetztung und Dosierung der Eisuppen

	Eisuppe A für 3-Eier- nudeln aus polnischem Gefrier- vollei I	Eisuppe B für 4-Eier- nudeln aus polnischem Gefrier- vollei II	Eisuppe C für 3-Eier- nudeln aus polnischem Gefrier- vollei III	Eisuppe D für 4-Eier- nudeln aus polnischem Gefrier- vollei III	Eisuppe E für 3-Eier- nudeln aus ungari- schem Gußei
				/ 1 3/3/4/14/2	100
Trockensubstanz % Probe Nr. 1	12,72	17,89	13,84	16,49	14,19
Probe Nr. 2	12,67	17,91	13,82	16,45	14,21
Probe Nr. 3	13,32	18,01	13,86	16,50	14,21
Probe Nr. 4	13,29	18,02	-	-	
Probe Nr. 5	13,60	18,03	-	_	1
Probe Nr. 6	13,60	_	_		
Mittelwert	13,20	17,97	13,84	16,48	14,20
Lipoide ⁰ / ₀ Probe Nr. 1	5,85	9,27	6,76	8,09	7,21
Probe Nr. 2	5,90	9,06	6,73	8,13	7,19
Probe Nr. 3	6,35	8,94	6,76	8,13	7,19
Probe Nr. 4	6,30	9,31	Wast Land	nspu ll/ orig	
Probe Nr. 5	6,45	9,30	ode co ares	ca e ll ees	
Probe Nr. 6	6,45		ell i le mme	4	
Mittelwert	6,22	9,18	6,75	8,12	7,20
Eiklar in der Eisuppe 0/0	31,7	35,5	30,8	35,8	28,6
Eigelb in der Eisuppe 0/0	17,6	25,9	19,1	22,9	20,3
Summe Eiklar und Eigelb %00	49,3	61,4	49,9	58,7	48,9
Anteil des Eigelbs vom					
Gesamtei in $0/0$	35,7	42,2	38,3	39,0	41,5
Dosierung der Eisuppe wäh-		The state of the state of	a France		
rend der Fabrikation in g/kg	Marie Villa	Kirk underfelb	TRA MITT		
Grieß (Mittel aus 4 bis 10 Wä-	100	mark with	A-46		
gungen)	289,4	323,6	292,0	319,7	304,9
In der Teigware	and the second		6.002.00	and make	
ber. aus Zusammensetzung und	A CONTRACTOR			in the rate	
Dosierung der Eisuppe				31 54 45	
Eiklar (theoretisch) g/kg	92	115	90	114	87
Eigelb (theoretisch) g/kg	51	84	56	73	62

als frisches Eiklar, bzw. frisches Eigelb (Dotter) in g pro kg Grieß berechnet worden.

b) Zusammensetzung der Teigwaren

Auf einer automatischen Maschine wurden von jeder Sorte ca. 800—1000 kg Teigwaren fabriziert.

Während der Fabrikation wurden an der Maschine zu verschiedenen Zeiten Proben von den noch feuchten, frisch gewalzten und geschnittenen Nudeln entnommen und diese auf Hurden in feuchter Atmosphäre bei 28—30 °C getrocknet. Die normale Trocknung der Nudeln während der Fabrikation erfolgte kontinuierlich in einem Automaten bei 40—50 °C. Auch von diesen, im Automaten getrockneten Nudeln wurden Proben entnommen und analysiert.

Wir bestimmten von sämtlichen Teigwarenproben den Lipoidgehalt nach Hadorn und Jungkunz (8), den Cholesteringehalt nach Acker und Greve (10) sowie die löslichen Proteine nach Hadorn und Jungkunz (9). Für die genaue Berechnung des Eigehaltes aus den Lipoid- und Cholesteringehalten muß man die entsprechenden Werte des verwendeten Grießes kennen. In einer Probe fein gemahlenen Hartweizengrießes wurden der Lipoid- und der Steringehalt ermittelt. Zur Berechnung des Eigehaltes haben wir den Lipoidgehalt (1,61 %) und den Steringehalt (40,3 mg %) des Grießes in die betreffenden Formeln eingesetzt, wodurch die Zuverlässigkeit der Berechnungen wesentlich erhöht wird. Die Analysenresultate sind in der Tabelle 4 zusammengestellt. Bei Doppelbestimmungen an der gleichen Teigwarenprobe wurden in der Regel sehr schön reproduzierbare Resultate erhalten. Auch die Resultate der verschiedenen Muster innerhalb einer Serie stimmten meistens gut überein. Dies beweist, daß die Fabrikation, besonders die Dosierung der Eisuppe, während der beobachteten Zeitspanne von 2—3 Stunden ziemlich regelmäßig erfolgte.

In der Tabelle 4 sind in den Kolonnen 7, 8 und 9 die Eigehalte als ganzer Eierinhalt berechnet worden. Bei der Serie A (3-Eiernudeln aus polnischem Gefriervollei I) stimmen die aus den Lipoiden und den Sterinen berechneten Eigehalte durchwegs gut mit den aus den löslichen Proteinen berechneten überein. Hieraus darf in der Regel geschlossen werden, daß in der verarbeiteten Eimasse Eiklar und Eigelb im richtigen Verhältnis vorhanden waren. Die Analyse der Eisuppe A in Tabelle 3 hatte dies bereits bewiesen.

Bei den Eiernudeln der Serie B stimmen die aus den Lipoiden und den Sterinen berechneten Eigehalte (Kolonnen 7 und 8) ebenfalls sehr schön miteinander überein. Die Resultate sind aber zu hoch. Aus den löslichen Proteinen dagegen errechnen sich viel niedrigere Eigehalte. Dies ist darauf zurückzuführen, daß die Eimasse zu viel Eigelb und zu wenig Eiklar enthielt. (Siehe Tabelle 3, Probe B). Lipoide und Sterine sind charakteristische Bestandteile des Eidotters. Weil die Eimasse an Dotter angereichert war, täuschen die aus den Lipoiden und dem Cholesterin berechneten Werte einen zu hohen Volleigehalt vor.

In den Teigwaren fanden wir 234—247 g/kg Eiinhalt anstatt 200. In der Eimasse war der Eiklaranteil zu gering, folglich wird auch in der Teigware auf Grund der löslichen Proteine ein zu niedriger Volleigehalt gefunden (170 bis 186 g/kg).

Bei den übrigen Teigwaren (Serien C und E) lagen die Verhältnisse ähnlich, sie waren jedoch etwas weniger stark ausgeprägt. Auch hier ergaben sich aus den löslichen Proteinen durchwegs etwas niedrigere Eigehalte als aus den Lipoid- und Cholesteringehalten. Auf diese Tatsache werden wir im Abschnitt 7 ausführlich zurückkommen.

Tabelle 4 Analyse der kontinuierlich fabrizierten Teigwaren

	Bezeichnung	Zeit der		Sterine mg %		Eigehalt berechnet als ganzer Eierinhalt aus:			Frisches Eiklar	Frisches Eigelb
Nr.		Probe- nahme	0/0			Lipoiden g/kg	Sterinen g/kg	Löslichen Proteinen g/kg	ber. aus löslichen Proteinen g/kg	ber. aus Sterinen g/kg
1	2	3	4	5	6	7	8	9	10	11
	Serie A 3-Eiernudeln mit poln	ischem Gefrie	rgollei I							
		isenem Gejrie	1	L		1	1	1	(theoret.	,
4	a) Hurdentrocknung	0.15	2.16	100	0.017	121	124	1.41	92) 91	51)
1	Anfang	9.15	3,16	109	0,917	131 137	134 140	141	95	47 50
2		9.45	3,24	112	0,95	137	140	149	96	30
2		10.15	3,25 3,29	107,4	0,980	142	135	152	98	48
3		10.13	3,32	107,4	0,780	144	133	132	70	70
4		11.15	3,20	110	0,850	134	136	130	84	48
7		11.15	3,20	110	0,852	13.	130	130	84	10
5	Ende	12.15	3,33	111	0,920	145	138	142	92	49
	Lindo	12.10	3,37		0,936	148		144	93	
	b) Maschinentrocknung			1000						
6	Anfang		3,20	112,8	0,880	134	141	135	87	50
7	Mitte		3,26	110,6	0,860	139	137	131	85	49
8	Ende		3,32	115,7	0,870	144	147	133	86	52
	Serie B 4-Eiernudeln mit poln	ischem Gefrier	vollei II						(theoret.	(theoret
	Maschinentrocknung	E- S		-					115)	84)
9	Anfang		4,40	162,1	1,08	241	244	170	110	86
10	Mitte		4,46	159,4	1,13	247	238	178	115	84
8 1		Nr. Burn	4,39	163,5	SE STA	241	247			87
11	Ende		4,27	158,4	1,10	230	236	173	112	84
1			4,29	157,5	1,11	232	234	175	115	83
1			F 3 -	-	1,17			186	120	

	a) Hurdentrocknung								(theoret. 90)	57)
2	Anfang	9.15	3,50	123,0	0,851	155	162	130	84	57
			3,48			153				
3	Mitte	10.15	3,48	120,0	0,840	153	156	128	83	55
			3,45		0,840	156		128	83	
4	Ende	11.40	3,50	121,1	0,872	155	159	134	87	56
	b) Maschinentrocknung									
5	Mitte		3,53	121,5	0,846	163	159	130	84	56
					0,846			130	84	1. 1. 1. 1.
		1 1						1	1	
			11	-						
	Serie D 4-Eiernudeln mit polni	schem Gefrier	vollei II.						L. 1	1,1
	[발생하기 생산 경기 이 기계 경기 등 기계	3 7 3 3 1							(theoret.	1
	1 1 1 1 1									
	a) Hurdentrocknung	12.20	2.00	1412	1.044	107	200	1/2	114)	73)
	Anfang	12.30	3,98	141,2	1,044	197	200	163	105	71
7	Anfang Mitte	13.40	4,04	142,5	1,065	201	203	167	105 108	71 72
7	Anfang Mitte Ende	1117			,				105	71
7 8	Anfang Mitte Ende b) Maschinentrocknung	13.40	4,04 4,07	142,5 147,5	1,065 1,076	201 211	203 213	167 169	105 108 109	71 72 75
7 8	Anfang Mitte Ende	13.40	4,04	142,5	1,065	201	203	167	105 108	71 72
7 8	Anfang Mitte Ende b) Maschinentrocknung	13.40	4,04 4,07	142,5 147,5	1,065 1,076	201 211	203 213	167 169	105 108 109	71 72 75
7 8	Anfang Mitte Ende b) Maschinentrocknung	13.40	4,04 4,07	142,5 147,5	1,065 1,076	201 211	203 213	167 169	105 108 109	71 72 75
6 7 8	Anfang Mitte Ende b) Maschinentrocknung	13.40	4,04 4,07	142,5 147,5	1,065 1,076	201 211	203 213	167 169	105 108 109	71 72 75
7 8	Anfang Mitte Ende b) Maschinentrocknung	13.40	4,04 4,07 4,04	142,5 147,5	1,065 1,076	201 211	203 213	167 169	105 108 109	71 72 75
7 8	Anfang Mitte Ende b) Maschinentrocknung Mitte	13.40	4,04 4,07 4,04	142,5 147,5	1,065 1,076	201 211	203 213	167 169	105 108 109	71 72 75 73
7	Anfang Mitte Ende b) Maschinentrocknung Mitte	13.40	4,04 4,07 4,04	142,5 147,5	1,065 1,076	201 211	203 213	167 169	105 108 109 107	71 72 75 73
7 8	Anfang Mitte Ende b) Maschinentrocknung Mitte Serie E 3-Eiernudeln mit ungar	13.40	4,04 4,07 4,04	142,5 147,5	1,065 1,076	201 211	203 213	167 169	105 108 109 107	71 72 75 73
7 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Anfang Mitte Ende b) Maschinentrocknung Mitte Serie E 3-Eiernudeln mit ungar	13.40 14.30	4,04 4,07 4,04	142,5 147,5 114,1	1,065 1,076 1,064	201 211 201	203 213 206	167 169 166	105 108 109 107 (theoret. 87)	71 72 75 73 (theorem 62)
7 8 9	Anfang Mitte Ende b) Maschinentrocknung Mitte Serie E 3-Eiernudeln mit ungar	13.40 14.30	4,04 4,07 4,04	142,5 147,5 114,1	1,065 1,076 1,064	201 211 201	203 213 206	167 169 166	105 108 109 107 (theoret. 87) 92	71 72 75 73 (theorem 62) 61
7 8 9 0 1	Anfang Mitte Ende b) Maschinentrocknung Mitte Serie E 3-Eiernudeln mit ungar a) Hurdentrocknung Anfang Mitte	13.40 14.30 rischem Gußei 15.35 17.00	4,04 4,07 4,04 3,57 3,62	142,5 147,5 114,1 128,0 135,0	1,065 1,076 1,064	201 211 201 167 171	203 213 206 172 187	167 169 166	105 108 109 107 (theoret. 87) 92 95	71 72 75 73 (theoret 62) 61 66
7 3 3 9	Anfang Mitte Ende b) Maschinentrocknung Mitte Serie E 3-Eiernudeln mit ungar a) Hurdentrocknung Anfang Mitte	13.40 14.30 rischem Gußei 15.35 17.00	4,04 4,07 4,04 3,57 3,62	142,5 147,5 114,1 128,0 135,0	1,065 1,076 1,064 1,064	201 211 201 167 171	203 213 206 172 187	167 169 166 142 146 137	105 108 109 107 (theoret. 87) 92 95 90	71 72 75 73 (theoret 62) 61 66

c) Einfluß der Trocknungstemperatur

Es sollte noch untersucht werden, ob die Art der Trocknung der Teigwaren einen Einfluß auf die löslichen Proteine hat. Es wäre beispielsweise denkbar, daß während der Trocknung bei höherer Temperatur ein Teil der Eiproteine denaturiert und wasserunlöslich würde. Einige Teigwarenproben wurden auf Hurden während 27 Stunden bei 28—30 °C, die andern im Automaten während 7 Stunden bei 40—50 °C getrocknet. Zwischen den verschieden getrockneten Teigwaren ergaben sich keine Unterschiede, weder im Steringehalt noch im Gehalt an löslichen Proteinen. Bei Temperaturen bis zu 40—50 °C werden anscheinend die Eiklarproteine nicht denaturiert. Bei höheren Temperaturen (100 °C) werden sie weitgehend wasserunlöslich, was durch Versuche von *Philippe* und *Henzi* (4) bewiesen und von *Hadorn* und *Jungkunz* (9) bestätigt worden ist.

7. Berechnung von Eiklar und Eigelb

Bei Teigwaren, die mit einer Eimasse hergestellt worden sind, die Eiklar und Eigelb nicht im richtigen Verhältnis enthielten, liefert die Berechnung des Eigehaltes (als ganzer Eiinhalt oder Vollei) etwas verfälschte Resultate. Aus dem Cholesterin und den Lipoiden einerseits, den löslichen Proteinen anderseits ergeben sich stark voneinander abweichende Resultate. In solchen Fällen ist es zweckmäßiger, den Eigelb- und den Eiklargehalt gesondert zu berechnen. Aus den analytisch gefundenen Lipoid- und Cholesteringehalten läßt sich das Eigelb, aus den löslichen Proteinen das Eiklar berechnen. Normaler Eierinhalt enthält im Mittel

Zur Berechnung der verschiedenen Eibestandteile in Eierteigwaren dienen folgende Formeln, die zum Teil der Arbeit von *Hadorn* und *Jungkunz* (8) entnommen sind:

a) Aus den Lipoiden

Eigehalt berechnet als ganzer Eierinhalt in g/kg Grieß

$$= \frac{3800 \cdot (L_{\rm t} - L_{\rm g})}{48,3 - L_{\rm t}}$$

Eigelbgehalt berechnet als frisches Eigelb in g/kg Grieß

$$= 0.354 \cdot \frac{3800 \, (L_{\rm t} - L_{\rm g})}{48.3 - L_{\rm t}}$$

Es bedeuten:

 L_t = Lipoidgehalt der Teigware, in $^{0/0}$.

L_g = Lipoidgehalt des verwendeten Grießes, in ⁰/₀.

Für Hartweizendunst = 1,9 %.

Für Hartweizenspezialgrieß = 1,6 %.

Wenn die Grießqualität unbekannt ist, wird der Mittelwert = 1,8 einge-

setzt.

3800 = Umrechnungsfaktor für Trockenvollei auf Frischei = 1000 · 3,8.

48,3 = Lipoidgehalt der Eitrockensubstanz in ⁰/₀.

b) Aus den Sterinen

Eigehalt berechnet als ganzer Eierinhalt in g/kg Grieß

$$= \frac{3800 (St_2 - St_1)}{2060 - St_2}$$

Eigelbgehalt berechnet als frisches Eigelb in g/kg Grieß

$$= 0.354 \cdot \frac{3800 (St_2 - St_1)}{2060 - St_2}$$

wobei

St₁ = Steringehalt des Grießes in mg % (für Hartweizenspezialgrieß 31 mg %)

(für Hartweizendunst 40 mg %)

(für Mittelwert 35 mg %)

St₂ = Steringehalt der Teigware in mg %.

3800 = Umrechnungsfaktor für Trockenei auf Frischei = 1000 · 3,8.

2060 = Steringehalt von Eitrockensubstanz, in mg %.

c) Aus den löslichen Proteinen

Eigehalt, berechnet als ganzer Eierinhalt in g/kg Grieß

 $= 173 \cdot (P - 0,1)$

Eiklargehalt, berechnet als frisches Eiklar in g/kg Grieß

 $= 0.646 \cdot 173 \, (P - 0.1)$

wobei

P = lösliche Proteine in der Teigware in %.

173 = ist der empirische Faktor nach von Fellenberg.

In der bereits früher besprochenen Tabelle 4 sind in Spalte 10 und 11, für jede Teigwarenprobe die derart berechneten Werte für Eiklar und Eigelb angegeben. In der Tabelle 5 sind für die 5 Teigwarenserien die wichtigsten Werte noch einmal aufgeführt. Sie werden mit den theoretischen Werten verglichen, welche aus der Zusammensetzung und der Dosierung der Eisuppe berechnet worden sind. Der Gehalt an Eigelb wurde für jede Teigwarenserie aus dem Lipoidmittelwert und dem Cholesterinmittelwert aus sämtlichen 4—8 Proben berechnet. Diese beiden Werte

Tabelle 5
Berechnung von Eigelb, Eiklar und gesamtem Eierinhalt in den Teigwaren
(in g/kg Grieß)

	Serie A 3-Eier- nudeln	Serie B 4-Eier- nudeln	Serie C 3-Eier- nudeln	Serie D 4-Eier- nudeln	Serie E 3-Eier- nudeln
Eigelb				1	
Theoretisch:					
Berechnet aus Zusammensetzung					
und Dosierung der Eisuppe	51	84	56	73	62
Analyse:		and the			
Berechnet aus Lipoidgehalt (Mittel)	49	84	56	72	59
Berechnet aus Steringehalt (Mittel)	49	85	56	73	63
Eiklar			94	1	
Theoretisch:					
Berechnet aus Zusammensetzung		The start			
und Dosierung der Eisuppe	92	115	90	114	87
Analyse:			35, 13		
Berechnet aus den löslichen Pro-			4.5	900	177
teinen (Mittel)	90	113	85	107	92
Gesamter Eierinhalt (Summe Eigelb + Eiklar)					
Sollwert	150	200	150	200	150
Theoretisch: Berechnet aus Eisuppe	143	199	146	187	149
Gefunden aus Analyse	139	198	141	180	155
Eigelbanteil in % des gesamten Eier-			30 14 17		
inhaltes	35	43	40	41	41

stimmen durchwegs erstaunlich gut überein; sie weichen nur unwesentlich von den theoretischen Werten ab. Es muß jedoch noch einmal darauf hingewiesen werden, daß diese schöne Übereinstimmung nur erreicht wird, wenn die Lipoid- und Steringehalte des verwendeten Grießes bekannt sind. In der Praxis, wo diese Werte für Grieß oder Dunst in der Regel nicht genau bekannt sind, werden die errechneten Eigehalte, auch bei sehr genau ausgeführten Analysen, immer mit einer gewissen Unsicherheit behaftet sein. Der Gehalt an Eiklar wurde aus den löslichen Proteinen berechnet und zwar mit dem von Fellenbergschen Faktor 173. Die gefundenen Werte stimmen durchwegs mit den theoretischen Eiklargehalten überein, die aus der Zusammensetzung und der Dosierung der Eisuppe berechnet wurden. Damit wird erneut bewiesen, daß der von Fellenbergsche Faktor 173 richtige Werte liefert. Mit dem von Philippe und Henzi (4) vorgeschlagenen Faktor 192 würde man durchwegs zu hohe Werte finden. Der gesamte Eierinhalt wird aus der Summe aus Eigelb und Eiklar berechnet. Die aus der Analyse berechneten Eigehalte stimmen wiederum gut mit den theoretischen, aus der Zusammensetzung und Dosierung der Eisuppe berechneten überein. Die Resultate liegen zum Teil etwas unter dem «Sollwert», welcher bei der Fabrikation angestrebt wurde. Dies ist

darauf zurückzuführen, daß die verarbeiteten Eimassen z. T. etwas höhere Wassergehalte aufwiesen als die Mittelwerte für Eigelb und Eiklar, welche unseren Berechnungsformeln zu Grunde gelegt worden sind.

8. Beurteilung der Analysenresultate

Bei der Analyse von Frischeierteigwaren bestimmt man in der Regel die Lipoide, die Sterine und die löslichen Proteine. Hieraus lassen sich mehrere Werte für den Eigehalt der Teigware berechnen. Man kann, wie dies bisher üblich war, aus allen drei Zahlen den Eigehalt in g Eierinhalt pro kg Grieß berechnen (siehe Formeln in Abschnitt 7). Für die Berechnung aus den löslichen Proteinen ist der von Fellenbergsche Faktor 173 zu verwenden. Geben alle 3 Berechnungen annähernd das gleiche Resultat, so darf daraus geschlossen werden, daß die Teigwaren aus normal zusammengesetztem Eierinhalt fabriziert worden sind. Analysen von Frischeierteigwaren, bei denen die Eigehalte einerseits aus löslichen Proteinen, anderseits aus Lipoiden und Sterinen berechnet, nicht übereinstimmen, gibt man daher besser in anderer Form an. Man berechnet den Eiklargehalt in g pro kg Grieß und den Eigelbgehalt ebenfalls in g pro kg Grieß. Die Summe der beiden Zahlen soll dem deklarierten Eigehalt entsprechen. Bei 3-Eierteigwaren beispielsweise 150 g/kg. Stimmt die Summe mit dem erforderlichen Eigehalt überein, so ist der Eigehalt richtig bemessen worden, die eventuell beobachteten Unterschiede (der als gesamter Eierinhalt berechneten Werte) sind auf unrichtige Verteilung von Eigelb und Eiklar in der Eimasse zurückzuführen. Frischeierteigwaren, bei denen die Summe aus Eigelb und Eiklar zu niedrige Werte liefert, sind auf jeden Fall zu beanstanden. Man kann nun noch den Eigelbanteil in % der gesamten Eimasse ausrechnen. Bei normalem Vollei beträgt er im Mittel 35,4 %. Bei Teigwaren, die aus Konservenei (Eipulver) hergestellt worden sind, liefert die Berechnung aus den löslichen Proteinen meistens etwas zu niedrige Werte, weil im Eipulver ein Teil der Eiklarproteine «denaturiert» und unlöslich geworden ist. Bei der Beurteilung derartiger Teigwaren ist hauptsächlich auf den aus den Sterinen berechneten Eigehalt abzustellen.

Wir danken Fräulein Hetty Mostertman und Frau Ilse Werner für ihre sorgfältige und zuverlässige Mitarbeit bei den zahlreichen Analysen.

Zusammenfassung

- 1. Verschiedene Modellversuche zur Bestimmung der löslichen Eiproteine wurden ausgeführt.
- 2. In einer Teigwarenfabrik sind verschiedene Fabrikationen von Frischeierteigwaren überwacht worden. Die Ausgangsmaterialien und die fertigen Teigwaren wurden analysiert.

- 3. Bei Eierteigwaren, die aus normal zusammengesetzter Eimasse hergestellt wurden, stimmten die nach von Fellenberg aus den löslichen Proteinen mit dem Faktor 173 berechneten Eigehalte gut mit den theoretischen Werten überein. Der von Philippe und Henzi vorgeschlagene Faktor 192 gibt etwas zu hohe Resultate.
- 4. Für Eierteigwaren, die Eigelb und Eiklar nicht ganz im richtigen Verhältnis enthalten, wird vorgeschlagen, die Anteile an Eigelb und Eiklar einzeln zu berechnen. Der Eigehalt ergibt sich dann aus der Summe von Eigelb und Eiklar. In fabrikmäßig hergestellten Teigwaren (23 Proben aus 5 verschiedenen Fabrikationen) fanden wir auf diese Weise ausnahmslos eine gute Übereinstimmung mit den theoretischen Werten, die sich aus der Zusammensetzung und der Dosierung der Eimasse berechnen ließen.

Résumé

On a examiné le dosage des protéines solubles de l'œuf et constaté, pour des pâtes alimentaires aux œufs, qu'en multipliant la valeur trouvée pour les protéines solubles par le facteur 173 de von Fellenberg, on obtient une bonne concordance avec la valeur théorique de la teneur en œufs; le facteur 192 de Philippe et Henzi donne des valeurs un peu trop élevées.

Dans le cas de pâtes aux œufs dans lesquelles le blanc et le jaune d'œuf ne se trouvent pas dans la proportion normale on suggère de calculer séparément le jaune et le blanc, la somme des deux donnant la teneur en œufs.

Summary

Examination of the determination of the soluble egg proteins. For alimentary pastes containing eggs, the egg content is obtained in good agreement with the theoretical value by multiplying the soluble egg proteins by 173 (von Fellenberg's factor).

When egg white and egg yolk are not in the normal relation in alimentary egg pastes, the yolk and the white are calculated separately and the two values obtained are added to give the egg content.

Literatur

- 1. von Fellenberg Th.: Diese Mitt. 21, 205 (1930).
- 2. Hadorn H. und Jungkunz R.: Diese Mitt. 43, 27 (1952).
- 3. Müller E.: Diese Mitt. 25, 313 (1934).
- 4. Philippe E. und Henzi M.: Diese Mitt. 27, 268 (1936).
- 5. Großfeld J.: Handbuch der Eierkunde, Berlin, Verlag J. Springer (1938).
- 6. Schweiz. Lebensmittelbuch, Kapitel 21 «Eier und Eikonserven» (Provisorisches Ringbuch) zu beziehen durch das Eidg. Gesundheitsamt, Bern.
- 7. Hadorn und Jungkunz R.: Diese Mitt. 44, 338 (1953).
- 8. Hadorn H. und Zürcher K.: Dtsch. Lebensmittel-Rdsch. 61, (1965) im Druck.
- 9. Hadorn H. und Jungkunz R.: Diese Mitt. 43, 1 (1952).
- 10. Acker L. und Greve H.: ZUL 124, 257 (1964).