Zeitschrift: Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und

Hygiene = Travaux de chimie alimentaire et d'hygiène

Herausgeber: Bundesamt für Gesundheit

Band: 49 (1958)

Heft: 2

Artikel: Die Vitamine der B-Gruppe der Kakaobohne : (Beitrag zur Ermittlung

des biologischen Wertes der Kakaobohne)

Autor: Antener, Ilse

DOI: https://doi.org/10.5169/seals-982531

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die Vitamine der B-Gruppe der Kakaobohne

(Beitrag zur Ermittlung des biologischen Wertes der Kakaobohne)

Von Ilse Antener

(Vitamin-Laboratorium der Firma Nestlé S. A., Vevey)

In letzter Zeit sind verschiedene Arbeiten über den biologischen Wert der Kaffeebohne erschienen. Es schien uns ebenfalls von Interesse, eine systematische Untersuchung über den biologischen Wert des Kakaos durchzuführen. Die vorliegende Arbeit hat zum Ziele, die Vitamine der B-Gruppe in der Kakaobohne, den verschiedenen Teilen derselben und im Endprodukt Kakao zu bestimmen. Des weiteren haben wir den Einfluss des Fabrikationsprozesses bei der Kakaoherstellung auf die Stabilität der Vitamine der B-Gruppe untersucht. Dabei war es nötig, für einige Vitamine eine für unser Untersuchungsmaterial geeignete Methode zu entwickeln. Ueber diese Versuche werden wir im Detail an anderer Stelle berichten.

I. Die Vitamine der B-Gruppe in der rohen Kakaobohne

Die von uns untersuchte Kakaobohnensorte zeigte folgende mittlere Gehalte der Vitamine der B-Gruppe:

Thiamin (B ₁)	0,24 mg ⁰ /	0
Lactoflavin (B2)	0,41 mg ⁰ /	0
Pyridoxin (B ₆)	0,09 mg ⁰ /	0
Nicotylamin	2,1 mg °	0
Biotin	15,5 γ 0,	0
Ca-Pantothenat	1,35 mg °	0
Folsäure	18 γ 0,	0
Citrovorum Faktor	17 γ 0,	0
Vitamin B ₁₂ *)	nicht vorhande	n

Wir stellen fest, dass alle Vitamine der B-Gruppe sich in der rohen Kakaobohne befinden mit Ausnahme des Vitamins B12, wo der mikrobiologische Test mit Ochromonas malhamensis negativ ausfiel.

Die gefundenen Werte sind normal für ein Naturprodukt dieser Zusammensetzung. Interessant ist, dass sich die Werte denjenigen des grünen Kaffees nähern wie uns die folgende Gegenüberstellung zeigt:

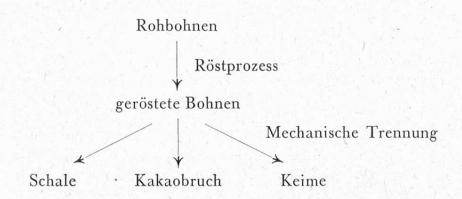

^{*)} mit Ochromonas malhamensis bestimmt

Tabelle 1

Vitamin	Kaffeebohne¹) grün	Kakaobohne roh
Thiamin (B ₁)	0,21 mg ⁰ / ₀	0,24 mg ⁰ / ₀
Lactoflavin	0,23 mg ⁰ / ₀	0,41 mg ⁰ / ₀
Pantothenatsäure	1,0 mg ⁰ / ₀	1,35 mg ⁰ / ₀
Folsäure	20 γ 0/0	18 y 0/0
Pyridoxin	0,14 mg ⁰ / ₀	0,088 mg ⁰ / ₀
B_{12}	0,1 γ 0/0	nicht vorhanden
Biotin	nicht bestimmt	15,5 y 0/0
Citrovorum Faktor	$12 \gamma ^{0/0}$	17 y 0/0

Untersuchungsmaterial

Von den gleichen Rohbohnen haben wir die gerösteten Bohnen untersucht und von denselben wieder Schalen, Keime und Kakaobruch wie dies das folgende Schema zeigt:

Die auf diese Weise entnommenen Muster gestatten eine genaue Bilanz der Fabrikationsverluste.

II. Der Vitamingehalt der B-Gruppe in den verschiedenen Teilen der gerösteten Kakaobohne

Die Vitamingehalte der B-Gruppe in den verschiedenen Teilen der gerösteten Kakaobohne befinden sich in der folgenden Tabelle.

Tabelle 2

Vitamine		Kakao- bruch	Schalen	Keime	Geröstete Kakao- bohnen bestimmt	Geröstete Kakao- bohnen berechnet
Thiamin	mg ⁰ / ₀	0,093	0,187	0,168	0,126	0,124
Lactoflavin	mg^{-0}/o	0,28	0,59	0,41	0,33	0,31
Pyridoxin	mg^{-0}/o	0,10	0,10	0,17	0,08	0,10
Nicotinsäureamid	$mg^{0}/_{0}$	1,85	4,68	3,26	2,2	2,14
Biotin	$\gamma^{0/0}$	14,3	23,0	25,3	15,1	15,3
Pantothensäure	mg^{0}/o	0,77	2,0	2,13	0,95	0,90

Wir haben die Prozentanteile von Schale und Keim in unseren untersuchten Kakaobohnen bestimmt und dabei die folgenden Anteile gefunden:

Kakaobruch in der gerösteten Bohne	89,17 0/0
Keime in der gerösteten Bohne	$0.76^{-0}/_{0}$
Schale in der gerösteten Bohne	$10,07^{-0}/_{0}$

Diese Zahlen benutzten wir, um aus den von uns bestimmten Vitamingehalten von Kakaobruch, Keim und Schale den Vitamingehalt der gerösteten Bohne durch Berechnung zu ermitteln, siehe letzte Kolonne der Tabelle 2.

Aus der Tabelle ersehen wir, dass der Vitamingehalt der B-Gruppe von Schale und Keim höher liegt als in den gebrochenen Kakaokernen, dies trifft namentlich für die Vitamine B₁, B₂, Nicotylamin, Calciumpantothenat und Biotin zu. Diese Tatsache ist ein allgemeines Naturgesetz, namentlich beim Getreide, Mais, Reis, wo Keime und Schale vitaminreicher sind als der Mehlkörper. Was den Vitamingehalt des Keimes anbetrifft, ist es nicht verwunderlich, dass dieser erhöht ist, resultiert doch aus ihm die neue Pflanze. Eine klassische Analogie haben wir im Vitamin B₁-Gehalt im Silberhäutchen vom Reis, diese Tatsache hat ja sogar zur Entdeckung des Aneurins beigetragen.

Die Vitamine der B-Gruppe finden sich jedoch auch im gebrochenen Kakaokern, wo die Gehalte höher sind als beim Weissmehl.

Wir haben die Vitamingehalte der verschiedenen Teile der gerösteten Kakaobohne im Verhältnis ihres Prozentgehaltes zusammengezählt und so den Gehalt der gerösteten Bohne rechnerisch ermittelt. Dies diente uns als Kontrolle unserer Vitaminbestimmungen. In den beiden letzten Rubriken von Tabelle 2 finden wir die bestimmten und errechneten Vitamingehalte der gerösteten Kakaobohne. Wir stellen fest, dass die Werte gut miteinander übereinstimmen mit Ausnahme von Vitamin B6, wo wir eine Schwankung von 20 % feststellen, was durch den geringen Gehalt von Vitamin B6 erklärt werden darf.

III. Bestimmung der Verluste während der Kakaopulverfabrikation

Bei der Kakaopulverherstellung haben wir zwei Prozesse, welche zu Vitaminverlusten führen könnten.

- 1. Die Röstung
- 2. Die Solubilisierung

In beiden Fällen arbeitet man bei erhöhter Temperatur; im letzteren zudem in alkalischem Milieu.

1. Vitamin-Verluste während der Röstung

Die Röstung der rohen Kakaobohne findet bei ungefähr 140° statt. In der nachfolgenden Tabelle finden wir die Vitamingehalte vor und nach der Röstung:

Kakaobohnen Vitamin roh geröstet $\begin{array}{ccc} 0,24 & mg \, {}^{0}/_{0} \\ 0,41 & mg \, {}^{0}/_{0} \end{array}$ Thiamin (B₁) 0.126 mg 0/0 0,33 mg ⁰/₀ Lactoflavin (B2) $0.088 \text{ mg}^{-0}/_{0}$ 0,08 mg ⁰/₀ Pyridoxin (B₆) $2,12 \text{ mg}^{0/0}$ $mg^{0/0}$ Nicotylamin 2,2 Biotin 15,5 15,1 Ca-Pantothenat $1,35 \text{ mg}^{0/0}$ 0.95 $mg^{0/0}$

Tabelle 3

Wir stellen einen Verlust von etwa 30 % für Pantothensäure und einen von etwa 50 % für Vitamin B1 fest, ebenso einen kleinen Vitamin-B2-Verlust. Die Gehalte von Nicotinsäureamid, Biotin und Vitamin B6 haben sich nicht geändert, was auf Grund ihrer chemischen Konstitution zu erwarten war.

2. Vitamin-Verluste während der Solubilisation

Die Solubilisierung erfolgt bei erhöhter Temperatur und in alkalischem Milieu. Sie wird in der Hauptsache nur für die Kakaopulverherstellung durchgeführt, nicht für die Schokoladefabrikation. Weil bei der Solubilisierung in alkalischem Milieu und bei erhöhter Temperatur gearbeitet wird, stellen wir die vollständige Zerstörung des Vitamin B1 fest. Die anderen Vitamine bleiben mehr oder weniger stabil. Die erhaltenen Werte sind in der Tabelle 4 zusammengestellt.

Tabelle 4

Vitamine	Kakao vor Solubilisation	Kakao nach Solubilisation
Thiamin	0,05 mg ⁰ / ₀	0,0 mg ⁰ / ₀
Lactoflavin	$0.3 \text{ mg}^{0/0}$	0,28 mg ⁰ / ₀
Pyridoxin	0,057 mg ⁰ / ₀	0,04 mg ⁰ / ₀
Nicotylamin	$2.1 \text{ mg}^{-0/0}$	1,85 0/0
Biotin	$10.0 \gamma^{0/0}$	10,2 y 0/0
Ca-Pantothenat	0,73 mg ⁰ / ₀	0,70 mg ⁰ / ₀

IV. Die Vitamine der B-Gruppe im Kakaopulver

Wir finden die Werte in der Tabelle zusammengestellt:

Tabelle 5

	Thiamin	0,0 mg ⁰ / ₀
	Lactoflavin	
- 1 - No.	마일(1) 이 나는 이 나는 이 아무슨 이 가장 이 가장 있다면 이 가장 하는데 이 이 이 이 이 이 나는 그는 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	$0.29 \text{ mg}^{-0/0}$
	Pyridoxin	0,07 mg ⁰ / ₀
	Nicotylamin	$2.8 \text{ mg}^{-0/0}$
	Biotin	15.3
	Ca-Pantothenat	$0.69 \text{ mg}^{-0/0}$

Wir stellen fest, dass sich das Vitamin Bi nicht mehr im Kakaopulver vorfindet. Ein Teil desselben wurde durch die Röstung, der andere bei der Solubilisierung zerstört. Alle anderen Vitamine der B-Gruppe sind im Kakao vorhanden.

Aus technischen Gründen ist es leider unmöglich, die gleichen Rohbohnen und das aus denselben hergestellte Kakaopulver zu untersuchen. Aus diesem Grunde konnte die Bilanz Rohbohne-Kakaopulver nicht ausgerechnet werden.

Experimenteller Teil

I. Angewandte Methoden

Zur Bestimmung von Vitamin B2, B12, Folsäure, Biotin, Pantothensäure, Citrovorumfaktor haben wir die mikrobiologischen Methoden angewandt. Vitamin B1 wurde nach der von uns beschriebenen Methode 2) (Kolonnenchromatographie und Thiochromtest) bestimmt.

II. Herstellung der Extrakte für die mikrobiologischen Bestimmungen

1. Nicotinsäureamid

Das Nicotinsäureamid wird durch eine saure Hydrolyse freigelegt. Säure-konzentration 0,1 n H₂SO₄, Hydrolysendauer 30 Minuten bei 112°.

Beispiel: 5 g der feingemahlenen Substanz werden in einem Reagensglas mit eingeschliffenem Stopfen mit Petroläther entfettet. (5 Minuten schütteln mit 20 cm³ Petroläther auf der Schüttelmaschine, zentrifugieren, abdekantieren des Petroläthers, wiederholen des Ausschüttelns 3 mal). Ueberspülen der getrockneten entfetteten Substanz in einen 200 cm³ Erlenmeyerkolben mit 40 cm³ 0,1 n H₂SO₄, hydrolisieren bei 112⁰ für eine halbe Stunde. Nach dem Erkalten überführen derLösung in einen 100 cm³ Kolben, den pH-Wert auf 6,8 einstellen, auffüllen und filtrieren. Für den mikrobiologischen Versuch eine Verdünnung herstellen (etwa 1 γ Nicotinsäure pro cm³).

2. Pantothensäure

Die entfettete Substanz wird in strömendem Wasserdampf behandelt, darauf mit Takadiastase fermentiert und der fertige Extrakt noch einmal mit Petroläther ausgeschüttelt.

Beispiel: Die feingemahlene Substanz wird nach der oben beschriebenen Methode entfettet und in einem Mörser mit 80 cm³ destilliertem Wasser angerührt. Nach Ueberspülen in einem Erlenmeyer von 200 cm³ wird dieser mit einem Wattebausch verschlossen und für 30 Minuten im strömenden Dampf gelassen. Nach dem Erkalten wird der pH-Wert auf 4,6 gestellt, 0,1 g Takadiastase zugefügt und über Nacht bei 42° fermentiert. Darauf wird die Lösung auf 200 cm³ aufgefüllt und filtriert. Das Filtrat wird mit Petroläther im Scheidetrichter ausgeschüttelt, um eventuelle noch vorhandene Fettspuren zu entfernen. Herstellung einer Verdünnung für die mikrobiologische Bestimmung (etwa 0,1 γ Pantothensäure pro cm³).

3. Lactoflavin

Die entfettete Substanz wird fermentiert, hydrolosiert und das Filtrat noch einmal mit Petroläther ausgeschüttelt.

Beispiel: 5 g der feingemahlenen Substanz wird nach der oben beschriebenen Weise entfettet und über Nacht bei 42° fermentiert. Dazu werden 100 mg Takadiastase und 100 mg Papaïn, in 10 cm³ Acetatpuffer pH 4,6 angerührt und zu der Substanz gegeben. Nach der Fermentierung werden 40 cm³ 0,1 n HCl zugefügt und 15 Minuten lang bei 112° hydrolysiert, der pH-Wert wird auf 4,6 gestellt, die Lösung auf 100 cm³ aufgefüllt und filtriert. Ausschütteln des Filtrates mit Petroläther, um letzte Fettspuren zu entfernen. Die Endlösung soll etwa 1 γ B² pro cm³ enthalten.

-4. Pyridoxin

Die feingemahlene entfettete Substanz wird mit 0,25 n HCl autoklaviert und das störende Vitamin B1 mit Sulfit zerstört.

Beispiel: 10 g der feingemahlenen Substanz wird nach der oben beschriebenen Weise entfettet mit 50 cm³ 0,25 n HCl angerührt, in einen 200 cm³-Erlenmeyer übergespült und eine Stunde bei 112° autoklaviert. Nach dem Erkalten wird die Lösung in einen 100 cm³-Kolben übergeführt, der pH-Wert auf 4,6 gestellt, auf 100 cm³ aufgefüllt und filtriert. 50 cm³ des Filtrates werden auf pH 8 gebracht, 10 cm³ einer 1 % frisch hergestellten Na₂SO₃-Lösung zugefügt und die Lösung für eine halbe Stunde im Trockenschrank bei 100° gelassen. Nach dem Erkalten zufügen von 30 bis 50 Tropfen (die Quantität ist vom Produkt abhängig) 3 % Wasserstoffsuperoxyd. Es muss ein Ueberschuss an H₂O₂ durch die Jod-Stärkereaktion festgestellt werden. Der pH-Wert wird genau auf 5,6 eingestellt und die Lösung auf 100 cm³ aufgefüllt und filtriert. 1 cm³ soll etwa 1 γ B6 enthalten.

5. Biotin

2 g der feingemahlenen Substanz werden nach der oben beschriebenen Weise entfettet, mit 6 n H₂SO₄ angerührt (Gesamtsäuremenge 30 cm³) und zwei Stunden bei 125⁰ autoklaviert. Nach dem Erkalten wird der pH-Wert auf 4,6 eingestellt, auf 100 cm³ aufgefüllt und filtriert. 1 cm³ soll etwa 1 μγ Biotin enthalten.

6. Folsäure

5 g feingemahlene Substanz werden in der üblichen Weise entfettet und mit 50 cm³ Pufferlösung pH 4,6 in einen Schliffkolben übergespült. Es wird 5 Minuten unter Rückfluss im siedenden Wasserbad erhitzt. Nach dem Abkühlen werden 100 mg Schweinsnierenextrakt (Desicated hog kidneys may be obtained from Difco Laboratories, Detroit) zugefügt und unter Zugabe von einigen Tropfen Toluol 24 Stunden bei 38° fermentiert. Der Kolben wird darauf für 5 Minuten zur Entfernung des Toluols in ein siedendes Wasserbad gestellt, abgekühlt und auf 100 cm³ aufgefüllt. 1 cm³ soll etwa 10 μγ Folsäure enthalten.

7. Vitamin B₁₂

5 g der fein gemahlenen und entfetteten Substanz werden in einem Mörser mit 25 cm³ Pufferlösung pH 4,6 angerührt. Zufügen von 1 bis 2 Tropfen einer 1 % KCN-Lösung und 100 mg Takadiastase und fermentieren lassen über Nacht bei 42%. Darauf Ueberspülen in einen Erlenmeyer von 200 cm³ und im strömenden Dampf lassen für 30 Minuten. Erkalten lassen und auf 100 cm³ auffüllen. Den pH-Wert auf 5,5 einstellen und filtrieren. 1 cm³ soll etwa 0,2 μγ enthalten.

8. Citrovorum Faktor

5 g fein gemahlenes und entfettetes Material wird mit etwa 20 cm³ Phosphatpuffer pH 7 angerührt, 5 Minuten im siedenden Wasserbad erhitzt. Nach dem Erkalten Zugabe von 40 mg Hühnerpankreas in Phosphatpuffer pH 7 angerührt und einigen Tropfen Toluol, dann lässt man 24 Stunden bei 37° fermentieren.

Zur Entfernung des Toluols 5 Minuten im siedenden Wasserbad lassen, in einen 100 cm³ Messkolben überspülen und auf 100 cm³ auffüllen, filtrieren. Die Bestimmung wurde nach der von H. E. Sauberlich ³) und C. A. Baumann beschriebenen Methode durchgeführt.

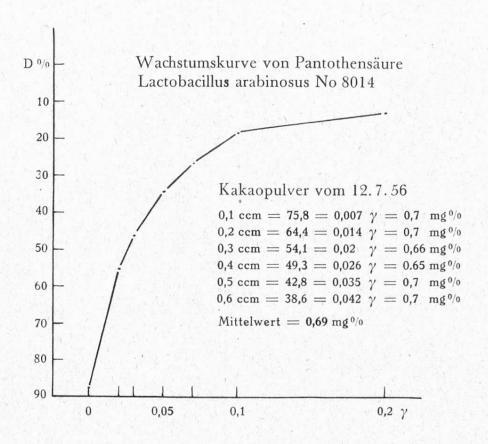
Die erhaltenen Wachstumskurven der bestimmten Vitamine sind nachfolgend wiedergegeben:

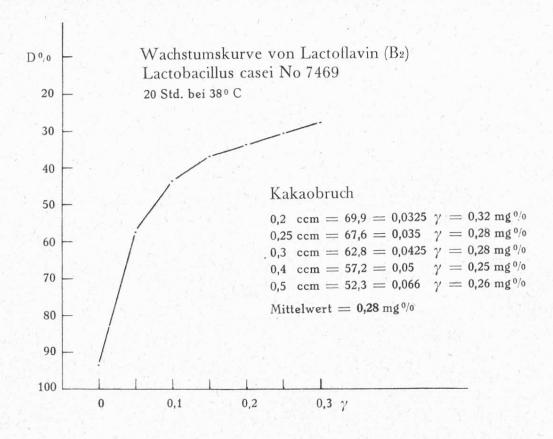
Wachstumskurven

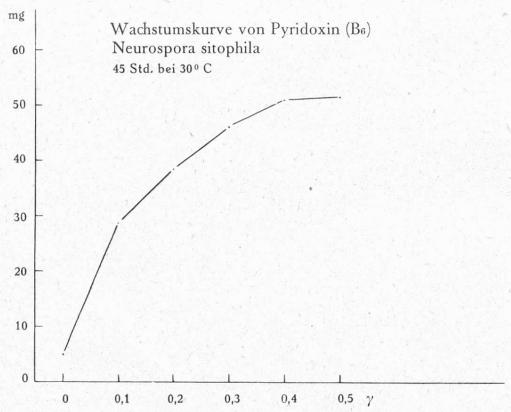
Angewandte Microorganismen zu den mikrobiologischen Bestimmungen

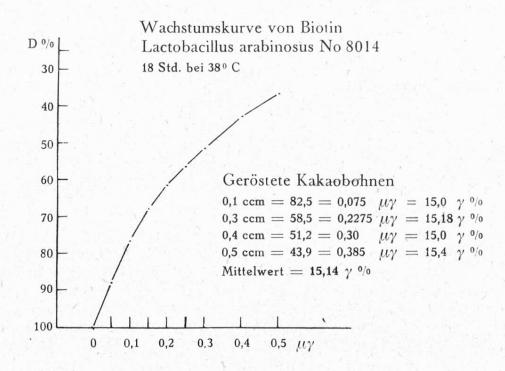
Nicotinsäureamid: Lactobacillus arabinosus No 8014
 Pantothensäure: Lactobacillus arabinosus No 8014

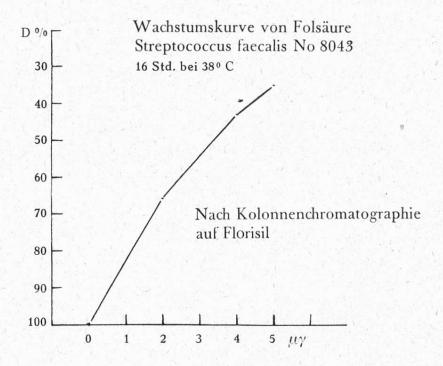
3. Lactoflavin: Lactobacillus casei No 7469

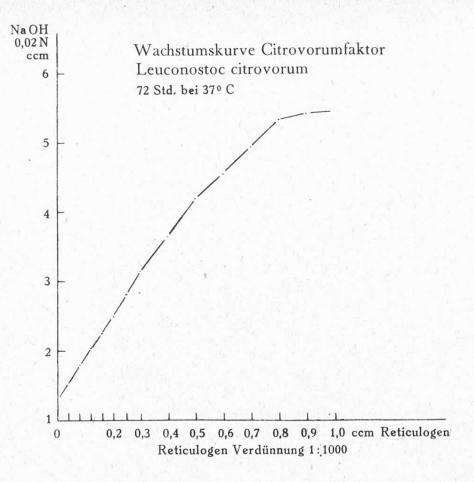

4. Pyridoxin: Neurospora sitophila

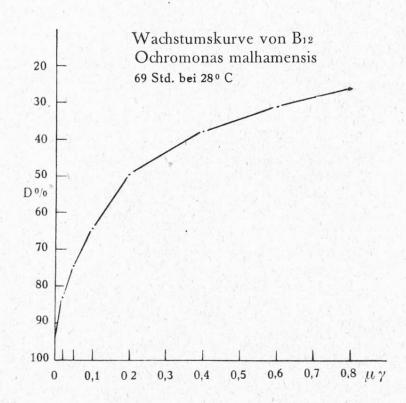

5. Biotin: Lactobacillus arabinosus No 8014
6. Folsäure: Streptococcus faecalis No 8043
7. Citrovorum Faktor: Leuconostoc citrovorum 8081


8. Vitamin B₁₂: Ochromonas malhamensis


Fräulein Ruth Jucker und Fräulein Marianne Zehnder danke ich für ihre Hilfe bei der Durchführung dieser Arbeit.


Wachstumskurve von Nicotinsäureamid (PP) Lactobacillus arabinosus No 8014 10 18 Std. bei 38° C 20 30 Kakaobohne (roh) $0.15 = 70.8 = 0.015 \ \gamma = 2.0 \ \text{mg}^{\,0/0}$ Lösung I 40 $0.25 = 64.3 = 0.025 \quad \gamma = 2.0 \quad \text{mg}^{\,0/0}$ $D^{0/0}$ $0.4 = 57.3 = 0.04 \quad \gamma = 2.0 \text{ mg}^{0/0}$ 50 $0.05 = 51.5 = 0.0575 \gamma = 2.3 \text{ mg}^{0/0}$ Lösung II $0.1 = 37.1 = 0.1125 \gamma = 2.25 \text{ mg}^{0/0}$ 60 $0.15 = 28.3 = 0.165 \quad \gamma = 2.2 \quad \text{mg}^{\,0/0}$ 0.2 = 22.35 = 0.21 $\gamma = 0.21$ mg^{0/0} 70 Mittelwert = 2,1 mg 0/0 80 0,1 0,2 0,3 γ





Zusammenfassung

Bestimmung der Vitamine der B-Gruppe (B₁, B₂, PP, B₆, B₁₂, Biotin, Pantothensäure, Folsäure, Citrovorum Faktor) in der rohen und gerösteten Kakaobohne, sowie in der Schale, im Keim und im Kakaokern. In der rohen Kakaobohne sind die oben erwähnten Vitamine vorhanden mit Ausnahme von Vitamin B₁₂, wo der mikrobiologische Test mit Ochromonas malhamensis negativ ausfiel. Die Untersuchungen haben ergeben, dass etwa 50 % von Vitamin B₁, 30 % der Pantothensäure und kleine Mengen B₂ durch die Röstung verloren gehen. Bei der Solubilisierung geht der gesamte Vitamin B¹-Gehalt verloren, die anderen Vitamine bleiben mehr oder weniger beständig. Es werden die verwendeten mikrobiologischen Methoden, sowie eine detaillierte Extraktbereitung zur mikrobiologischen Bestimmung dieser Vitamine beschrieben.

Résumé

Détermination des vitamines du groupe B (B₁, B₂, PP, B₆, B₁₂, biotine, acide pantothénique, acide folique, facteur citrovorum) dans la fève brute du cacao, la fève grillée ainsi que dans la pelure, le germe et le grué. Dans la fève brute, les vitamines citées sont présentes, à l'exception de la vitamine B₁₂ où le test microbiologique avec Ochromonas malhamensis a donné un résultat négatif. Les recherches ont démontré qu'environ 50 % de la vitamine B₁, 30 % de l'acide pantothénique et de faibles quantités de B₂ sont détruits par le rôtissage. Pendant la solubilisation, la vitamine B₁ est complètement détruite, tandis que les autres vitamines restent plus ou moins stables. On décrit les méthodes microbiologiques employées, ainsi que la préparation détaillée des extraits pour le dosage de ces vitamines.

Summary

Determination of vitamins of groupe B (B₁, B₂, B₆, B₁₂, PP, pantothenic acid, folic acid, biotin, citrovorum factor) in the raw and roasted cacao bean, in the shell, the germ and the nibs. The raw bean contains the vitamins mentioned above with the exception of vitamin B₁₂. The microbiological test with Ochromonas malhamenis has given in this case a negative result. Roasted the cacao bean loses about 50 % of vitamin B₁ and 30 % of pantothenic acid and feeble quantities of B₂. During the solubilisation the vitamin B₁ is completely destroyed whereas the other vitamins scarcely change. The microbiological methods employed are described as well as the detailed preparation of the extracts of the determination of these vitamins.

Literatur

- 1) J. Agric. Food Chem. 5 375 (1957).
- ²) Diese Mitt. 47, 415 (1956).
- 3) J. Biol. Chem. 176, 165-173 (1948).