Zeitschrift: Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und

Hygiene = Travaux de chimie alimentaire et d'hygiène

Herausgeber: Bundesamt für Gesundheit

Band: 43 (1952)

Heft: 5

Artikel: Considérations analytiques sur quelques vins genevois et résultats de

l'application de quelques règles oenologiques

Autor: Berner, Ch.

DOI: https://doi.org/10.5169/seals-982659

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

- 2. Les couleurs de ces réactions dépendent de la concentration de l'acide sulfurique utilisé.
- 3. Les colorations jaunes et oranges, non caractéristiques, obtenues en utilisant beaucoup d'acide sulfurique, se transforment en colorations caractéristiques par dilution du milieu avec, par exemple, de l'eau ou de l'alcool.
- 4. Les solutions sans colorations caractéristiques ou incolores, qu'on obtient après dilution du milieu par l'eau et extraction de la solution diluée par le chloroforme ou par d'autres liquides non miscibles avec l'eau, donnent des colorations caractéristiques lorsqu'on leur ajoute un acide fort (gaz chlorhydrique, acide trichloracétique).

Literatur

- 1) Th. von Fellenberg: Diese Mitt. 1, 319 (1910).
- ²) L. Rosenthaler: Chem. Ztg. **76**, 374 (1952).

Considérations analytiques sur quelques vins genevois et résultats de l'application de quelques règles oenologiques

Par Ch. Berner (Laboratoire cantonal, Genève)

Je me suis proposé de procéder à l'analyse de quelques vins provenant du vignoble genevois, d'en établir le bilan physico-chimique et de leur appliquer les règles œnologiques classiques.

Le vignoble genevois est fort probablement celui de nos cantons romands qui est constitué par les plants les plus variés. En effet, on rencontre parmi les blancs, les plants nobles suivants: Chasselas (plant dominant comprenant le fendant vert, fendant roux, Blanchette, Plant droit), Riesling-Sylvaner, Aligote et les plants directs: S.V. 5-276, Excelsior, S. 4986 ou Rayon d'Or. Les rouges sont représentés par les Gamays divers, le Pinot noir et des producteurs directs (S. 13 053, S. 7053, S.V. 5-247, S. 5455, S. 8745, S. 8357, Landot 244).

Je n'ai certes pas voulu innover en cette matière mais je pense que des comparaisons analytiques et celles issues de l'examen des bilans peuvent sans nul doute être utiles.

Ce premier travail comprend l'analyse complète de 8 vins et j'ai joint 17 analyses incomplètes mais dont les données permettent néanmoins certaines appréciations.

Lors de la récolte 1951, j'ai vinifié 15 plants nobles et producteurs directs. Ces analyses seront publiées ultérieurement. De nombreux auteurs ont publié des travaux qui ont fait école et je ne citerais que Quartaroli 1), von der Heide et Baragiola 2), Baragiola et Schuppli 3), Dutoit et Duboux 4), Tonduz 5), Bonifazi 6), Godet et Martin 7), Hennigk 8) Brémont 9), Ribereau-Gayon 10).

Méthodes employées

Les méthodes analytiques employées ont été les suivantes:

- a) La densité, l'alcool, l'extrait calculé, les sucres intervertis, l'acide sulfureux, l'acide tartrique, les matières minérales l'alcalinité des cendres, les sulfates et les phosphates ont été dosés suivant les méthodes du Manuel suisse des denrées alimentaires, IVe édition (M. d. a.) 11).
- b) L'acidité totale et le coefficient tampon ont été mesurés au pH mètre et le point neutre a été choisi à pH = 7,07.
- c) L'acidité volatile a été titrée selon la méthode de Jaulmes 12).
- d) L'acide malique est dosé selon *Peynaud-Ribereau-Gayon* ¹³) l'acide citrique selon *Kogan-Peynaud* ¹⁴) et l'acide succinique selon la méthode de *Roger Marignan* ¹⁵).
- e) L'alcalinité selon Farnsteiner 16).
- f) L'ion Fe dosé selon Capt 17).
- g) L'acétylméthylcarbinol et le butylèneglycol selon Kniphorst et Kruisheer ³³). La glycérine selon Fleury-Fatome, Espil, Ferré et Michel ¹⁹). La sorbite selon Litterscheid ²⁰).
- h) Les ions K et Na selon Sémichon, Flanzy et Lamazou-Betbeder 26).
- i) Les autres dosages on été effectués selon les méthodes classiques.

A. Analyses complètes

Les résultats des analyses complètes sont réunis dans les tableaux suivants:

Tableau 1

Désignation	Gama	y 1947	Landot 2	244 1947		Plants
					19	
No d'ordre	1	l	2	2	3	3
Unités	g	méq.	g	méq.	g	méq.
Densité 15º	0,9933		0,9937		0,9928	
Alcool vol. 0/0	12,23		12,96		11,02	
Extrait sec g/l	The state of				1000	
a) direct	23,30		24,46		16,97	War in
b) calculé	22,10		25,00		17,02	
Sucres réducteurs g/l	1,104	The said	0,560	x 1, 11	0,496	
Extrait sans sucre g/l						
a) direct	22,19		23,90		16,47	
b) calculé	20,99		24,44		16,52	
Acidité totale à pH 7,07						
a) ac. tartrique g/l	5,92	78,94	7,48	98,40	5,06	67,40
b) ac. sulfurique g/l	3,96		4,89		3,31	
Acidité volatile						
a) ac. acétique g/l	0,744	12,40	0,48	8,00	0,63	10,50
b) ac. sulfurique g/l	0,61		0,39		0,51	
Acidité fixe						
a) tartrique g/l	5,12		6,78		4,26	
b) sulfurique g/l	3,20		4,50		2,80	
Matières minérales g/l	2,82		2.89		2,36	
Alcalinité M. d. a.		27,70		27,80		19,50
Alcalinité selon Farnsteiner		23,60		24,80		17,40
Chiffre d'alcalinité		9,8		9,6		8,2
SO ₄ "	0,283	5,980	0,267	5,57	0,249	5,19
PO_4 "	0,305	9,630	0,266	8,38	0,229	7,22
Fe	0,00450	0,24	0,0062	0,32	0.0057	0,30
NH4	0,037	1,70	0.037	1,70	0,029	1,30
SO ₂ libre mg/l	40,9		21,8		25,6	
SO ₂ total mg/l	.28,0	3,88	85,8	2,60	179	5,40
CO ₃ ++	0,6767		0,6953		0,4933	
Butylèneglycol	0,407		0,330		0,252	
Acétylméthyl-carbinol	-				1 T	
Glycérol	8,60		9,75		6,31	
pH	3,25		3,10		3,29	
Sorbite			<u></u>	_	-	néa

Chassela	ıs								
19	50	Peissy	1950	Peissy	1950	Malva	1 1950	Dardag	ny 1950
4	1		5	6		7		8	3
g	méq.	g	méq.	g	méq.	g	méq.	g	méq,
0,9932		0,9935		0,9939		0,9930		0,9919	
10,88		10,43		10,05		11,05		11,86	
10,00		10,43		10,03		11,03		11,00	
17,30		17,97		18,23		17,42		17,04	
18,20		17,30		17,20		18,20		17,80	
0,365		0,724		0,976		1,232		0,552	
0,00.		0,1.21		0,570		1,202	MA.	0,002	
16,93		17,25		17,25		16,19		16,49	
17,83	· contract	17,08		16,22		16,97		17,25	
5,20	69,20	4,50	60,00	4,45	59,30	4,85	64,60	4,75	63,30
3,40	00,20	2,95		2,91		3,27	2,00	3,11	
				7,02		7.7		0,11	
0,57	9,50	0,54	9,00	0,61	10,20	0,45	7,50	0,56	9,40
0,46		0,44	0,00	0,50	10,20	0,37	7,50	0,46	3,10
4,48		3,81		3,68		4,44		4,04	
2,94		2,51		2,41		2,90		2,68	
2,35		2,48		2,37		2,47		2,38	
	21,75		14,30		15,50		17,90		19,40
BEAUTINE ST	20,10		16,00		17,00		20,50		22,00
	9,1		5,7		6,5		7,2		8,1
0,183	3,82	0,420	8,75	0,332	6,93	0,270	5,63	0,230	4,81
0,245	6,72	0,235	7,30	0,186	5,82	0,274	8,57	0,248	7,75
0,0052	0,27	0,0055	0,29	0,0066	0,35	0,0134	0,70	0,006	0,35
0,029	1,30	0,029	1,30	0,029	1,30	0,014	0,80	0,014	0,80
21,8		14,1		17,9		14,1		12,80	
182	5,50	74,2	2,25	88,3	2,72	79,0	2,21	73,0	2,21
0,354		0,458		0,4975		0,5935		0,640	
0,257		0,245		0,317		0,509		0,462	
_		0,015		0,007		0,005	100		
6,96		7,58		6,96		7,32		7,36	
3,32		3,49		3,52		3,55		3,65	
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	-	(77.)	10 <u></u>		- 1		_	40.0

Anions

Acides		1		2	10 gr 11 - 1	3		4	
Acides	méq.	g	méq.	g	méq.	g	méq.	g	
tartrique	30,6	2,295	38,6	2,890	30,6	2,290	33,6	2,520	
malique	38,2	2,560	36,8	2,466	7,91	0,530	13,97	0,930	
lactique	7,0	0,630	11,5	1,035	21,0	1,890	25,5	2,290	
succinique	9,2	0,543	8,0	0,472	11,3	0,667	10,7	0,630	
citrique	11,6	0,742	25,3	1,619	3,7	0,236	0,66	0,042	
acétique	12,4	0,744	8,0	0,480	10,5	0,630	9,5	0,570	
Total	109,0	7,509	128,2	8,962	85,1	6,243	93,93	6,982	

Tableau 3

Anions

Anion		1		2		3		4		
Allion	méq.	g	méq.	g	méq.	g	méq.	g		
SO ₄ "	5,89	0,283	5,57	0,267	5,19	0,249	3,82	0,183		
Cl'	1,00	0,035	1,1	0,039	0,5	0,017	0,7	0,025		
PO4'"	9,63	0,305	8,38	0,266	7,22	0,229	6,72	0,245		
SO_2''	3,88	0,128	2,60	0,086	5,4	0,179	5,50	0,182		
SiO ₂ "	1,1	0,045	1,55	0,062	1,40	0,057	1,30	0,052		
Total	25,50	0,796	19,20	0,720	19,71	0,731	18,04	0,687		

Tableau 4

Cations

Ions		1		2		3		4
10115	méq.	g	méq.	g	méq.	g	méq.	g
K.	30,00	1,170	28,50	1,111	24,60	0,959	25,20	0,983
Na.	1,70	0,040	1,50	0,034	1,67	0,039	1,50	0,034
Ca.	6,52	0,130	6,90	0,138	5,70	0,115	- 5,70	0,114
Mg.	10,10	0,121	10,30	0,124	8,20	0,098	8,33	0,100
Mn.	0,10	0,005	0,13	0,007	0,04	0,002	0,02	0,01
Cu.	0.03	0,001	0,02	0,0008	0.06	0,002	0,04	0,0013
Fe.	0,24	0,0045	0,32	0,0062	0,30	0,0057	0,27	0,0052
Al.	0,17	0,0016	0,20	0,0018	0,33	0,0030	0,18	0,0016
Total	48,86	1,4731	47,87	1,4228	40,90	1,2237	41,24	1,249

organiques

	5		6		7		3
méq.	g	méq.	g	méq.	g	m4q.	g
31,6	2,370	25,2	1,890	31,4	2,355	35,7	2,677
1,2	0,079	1,3	0,087	1,55	0,104	1,54	0,103
23,0	2,070	29,6	2,664	34,0	3,060	23,6	2,124
11,3	0,785	11,1	0,655	10,9	0,643	16,4	0,967
2,0	0,128	0,8	0,051	1,1	0,070	2,0	0,128
9,0	0,540	10,2	0,612	7,5	0,450	9,4	0,564
78,1	5,972	78,2	5,959	86,45	66,82	88,64	6,563

minéraux

	5		6		7		8
méq.	g	méq.	g	méq.	g	méq.	g
8,75	0,420	6,93	0,332	5,63	0,270	4,81	0,230
0,78	0,027	0,65	0,023	0,60	0,022	0,70	0,025
7,30	0,235	5,82	0,186	8,57	0,274	7,75	0,248
2,25	0,074	2,70	0,088	2,32	0,079	2,21	0,073
0,50	0,018	0,56	0,022	0,62	0,025	0,38	0,015
19,58	0,774	16,66	0,651	17,74	0,670	15,85	5,91

minéraux

	5		6		7		8
méq.	g	méq.	g	méq.	g	méq.	g
25,60	1,001	24,10	0,945	28,10	1,099	25,90	1,003
1,64	0.038	1,60	0,037	1,00	0,023	2,11	0,049
5,00	0,099	5,20	0,106	4,70	0,082	4,70	0,093
4,40	0,052	5,40	0,065	5,30	0,063	7,00	0,088
0,06	0,003	0,02	0,001	0,03	0,015	0,04	0,002
0,02	0,0006	0,02	0,0008	0,02	0,0006	0,02	0,0008
0,29	0,0055	0,35	0,0066	0,70	0,0134	0,35	0,006
0,13	0,0012	0,10	0,0009	0,10	0,0010	0,10	0,0010
37,14	1,2003	36,79	1,1623	39,95	1,2970	40,22	1,2428

D(-'41'					Plants C	hasselas		
Désignation	1950	1950	1950	1950	1950	1950	1950	
Communes vitícoles	Satigny	Satigny	Russin	Dar- dagny	Satigny	Bour- digny	Peissy	
No d'ordre	9	10	11	12	13	14	15	
Densité	0,9946	0,9941	0,9932	0,9942	0,9934	0,9940	0,9932	
Alcool vol. 0/0	10,09	9,75	10,79	10,52	10,85	10,72	10,90	
Extrait sec.	10,00	0,.0		10,04	10,00	10,12	10,00	
a) direct g/l	19,11	19,17	17,62	18,41	17,44	18,69	17,94	
b) calculé g/l	19,40	17,30	18,00	19,70	18,65	19,75	18,70	
Sucres réducteurs g/l	1,560	1,104	0,760	0,79	0,79	0,83	0,70	
Extrait sans sucre cal-	1,300	1,104	0,700	0,73	0,73	0,00	0,70	
culé	17,84	18,20	17,24	18,91	17,86	18,92	19.00	
	17,04	10,20	17,24	10,91	17,00	10,92	18,00	
Acidité totale à pH 7,07	1 22	4.00	F 00	CC	r c0		7.00	
a) ac. tartrique g/l	4,55	4,90	5,80	6,6	5,60	5,60	5,80	
b) ac. sulfurique g/l	2,98	3,20	3,80	4,32	3,67	3,67	3,80	
Acidité volatile	0.00				0.40			
a) ac. acétique g/l	0,33	0,54	0,54	0,61	0,58	0,65	0,65	
b) ac. sulfurique g/l	0,27	0,44	0,44	0,49	0,47	0,53	0,53	
Acidité fixe	1 7 7 7 8		. 1					
a) tartrique g/l	4,13	4,22	5,12	5,83	4,87	4,79	5,00	
b) sulfurique g/l	2,71	2,76	3,36	3,83	3,20	3,14	3,27	
Extrait réduit g/l	13,71	13,98	12,12	13,08	12,99	14,13	13,00	
Matières minérales g/l	2,01	2,21	1,92	2,15	1,95	2,38	1,75	
Alcalinité des cendres	1 20 14				197.15			
selon M. d. a.	24,50	16,20	21,00	22,50	19,50	23,00	20,00	
Chiffre d'alcalinité	12,10	7,3	10,9	10,40	10,00	9,6	11,40	
Acides:								
Tartrique g/l	2,610	2,505	1,950	2,670	2,640	2,280	2,71	
Malique g/l	0,283	0,1025	3,320	2,665	1,772	1,770	1,830	
Lactique g/l	1,224	3,672	0,810	0,792	2,07	1,720	1,725	
Succinique g/l	0,637	0,531	0,010	0,732	2,0.	1,720	1,723	
Citrique g/l	0,0597	0,107	0,044	0,010	0,049	0,015	0,0185	
SO_4'' g/1	0,228	0,107	0,011	0,010	0,013	0,013	0,0100	
PO ₄ '" g/l	0,198	2						
Cl' g/l	0,0195		0.0996	0,0234	0,023	0.052	0.0466	
0	0,0193	1,351.0	0,0336	5 50		0,053	0,0468	
	70.4		19,2	22,4	19,2	24,1	25,0	
SO ₂ total mg/l	70,4	207	205	243	174	253	160	
Butylène-glycol mg/l	367	337	289	185	303	269	282	
Acétylméthyl-carbinol								
mg/l	0.0	29,3	_	absence	-	17,05	26,3	
Glycérol g/l	6,94	7,19	4,67	6,19	5,52	5,84	5,66	
pH	3,50	3,44	3,00	2,95	3,00	3,06	3,10	
Sorbite							néan	

tuées dont voici les résultats:

diverses

1									
1950 Mande- ment	1950 Dar- dagny	1949 Dar- dagny	1950 Plants Hybrides rouge	1950 Plants Hybrides blanc	1950 Plants Riesling	1950 Plants Gamay	1950 Plants Hybrides rouge	1950 Plants Hybrides rouge	1950 Plants Hybrides rouge
16	17	18	19	20	21	22	23	24	25
0,994) 9,85	0,9932 10,83	0,9944 10,10	0,9956 11,14	0,9942 10,36	0,9943 11,22	0,9935 12,36	0,9967 10,50	0,9951 10,88	0,9975 9,83
16,63 17,35 0,70	16,33 18,20 0,76	19,00	22,80 24,70 —	19,20 0,680	19,70 21,90 1,02	19,97 22,90 1,49	23,31 26,15 1,36	23,40 23,00 —	24,02 25,70 —
16,65	17,44			18,52	20,88	21,41	24,79		-
5,20 3,39	5,40 3,54	6,30 4,13	6,60 4,32	5,3 3,47	5,5 3,60	5,30 3,47	4,90 3,21	5,70 3,73	6,80 4,45
0,70 0,57	0,56 0,46	0,54 0,44	0,36 0,29	0,7 0,57	0,56 0,46	0,82 0,67	1,02 0,83	0,61 0,50	0,57 0,46
4,32 2,62 12,33 1,90	4,70 3,08 12,74 1,90	5,62 3,69 — 2,00	6,02 4,03 — 2,72	4,42 2,90 14,10 2,13	4,80 3,14 16,08 2,50	4,28 2,80 17,13 1,95	3,63 2,38 21,16 3,15	4,94 3,23 — 3,17	6,09 4,00 — 3,60
21,00 11,05	17,00 8,95	19,00 9,05	34,70 12,70	21,00 9,85	25,00 10,0	20,00 10,2	34,00 10,7	30,00 9,4	35,00 9,7
1,920 1,645 2,070 — 0,030 — 0,041 20,4 151 284	2,440 1,900 1,765 — 0,028 — 0,0351 24,3 181 197	2,530 0,990 0,010 	2,810 — 0,631 — 0,211 0,275 0,0284 — 70,0 —	2,160 1,179 1,92 — 0,016 — 19,2 152 279	1,920 1,640 2,302 — 0,023 — 0,0468 10,2 11,3 280	1,720 1,820 2,375 — 0,059 — 0,0994 64,0 83,2 309	0,870 1,220 3,605 — 0,127 — 0,0760 69,0 198 419	2,655 0,155 3,582 0,673 0,125 0,269 0,2646 0,0284 — 48,6	2,100 0,087 5,850 0,534 — 0,169 0,288 0,0567 — 51,2
11,4 4,87 3,11	absence 5,85 3,01	absence 5,10 3,45	3,50	28,3 6,039 3,10	6,321 3,31	17,4 5,77 3,15	4,105 3,60	7,59 3,55	7,59 3,75
-	-	_	-		_	_		_	<u>-</u>

Remarques

1. Le bilan de l'extrait pour les échantillons 1 à 8 s'établit comme suit:

Tableau 6 Bilan de l'extrait

No d'ordre	1	2	3	4	5	6	7	8
Sucre total Acides	1,104	0,560	0,496	0,368	0,724	0,976	1,232	0,552
organiques 1/2 ac. acétique	7,147	8,722	5,928	6,698	5,602	5,653	6,457	6,281
Subst. minérales (CO ₃)	2,143	2,195	1,867	1,906	2,022	1,873	1,877	1,740
NH ₄ g/l	0,031	0,031	0,018	0,018	0,018	0,018	0,013	0,015
Glycérol + Bu- tylèneglycol	9,007	10,079	6,562	7,217	7,825	7,277	7,829	7,822
Substances albuminoïdes	0,433	0,525	0,725	0,625	0,490	0,673	0,825	0,420
Total	19,855	22,112	15,596	16,922	16,681	16,470	18,233	16,830
Extrait selon			, v.,					
M. d. a.	22,10	25,00	17,02	18,20	17,30	17,20	18,20	17,80
Différence	+2,25	+2,89	+1,43	+1,28	+0.62	+0,73	-0.03	+0,97

Les différences entre ce bilan et celui obtenu selon le M. d. a. sont de \pm 2,25 et \pm 2,89 % pour les rouges No 1 et 2, et de \pm 0,03 et \pm 1,43 % pour les chasselas. *Godet* et *Martin* ont relevé une certaine incertitude dans la méthode du Manuel. Elle est donc vérifiée surtout pour les rouges.

Si, d'autre part, on compare les extraits obtenus selon M. d. a. et ceux obtenus directement à 100°, on constate, en règle générale que l'extrait M. d. a. est toujours plus élevé que l'extrait direct.

2. Le bilan des cendres pour les vins 1 à 8 se présente ainsi:

Tableau 7 Bilan des cendres

Echantillons No	1	2	3	4	5	6	7	8
Cendres trouvées g/l	2,82	2,89	2,36	2,35	2,48	2,37	2,47	2,38
Somme des cations g/l	1,4731	1,4228	1,2237	1,2491	1,2003	1,1623	1,2970	1,2428
Somme des anions g/l	0,7960	0,7200	0,7310	0,6870	0,7740	0,6510	0,6700	0,5910
CO ₃ g/1	0,6767	0,6953	0,4933	0,3540	0,4580	0,4975	0,5935	0,6400
Total	2,9458	2,8381	2,4480	2,2901	2,4323	2,3108	2,5605	2,4790
Alcalinité selon Farnsteiner	23,6	24,8	17,4	20,1	16,0	17,0	20,5	22,0
Alcalinité calculée	22,6	23,2	16,45	18,4	15,3	16,6	19,7	21,3

La concordance dans le bilan de ces cendres et celle entre l'alcalinité de Farnsteiner sont satisfaisantes.

Le chiffre d'alcalinité des divers vins est un peu élevé mais ceci s'explique — sauf pour les vins 1 et 2 — par le fait que ces vins ont été examinés au printemps suivant leur récolte alors que leur équilibre n'était pas encore complètement réalisé.

3. Les teneurs en acide succinique s'échelonnent de 0,5 à 1 g/l; elles ne suivent nullement la formule préconisée par *Uon der Heide* et *Baragiola* ²): 1 g d'alcool = 0,00969 g d'acide succinique.

Quant à l'acide citrique, sa teneur normale pour les divers plants s'étend de 0,010 à 0,120 g/l. Dès que les teneurs sont plus élevées que 150 mg/l, on doit soupçonner une addition d'acide citrique. Je reviendrai sur ces teneurs en acide citrique dans un prochain travail.

L. Genevois 21) a montré que si l'on désigne par

g = nombre de molécules de glycérol

a = nombre de molécules d'acide acétique

s = nombre de molécules d'acide succinique

on a la relation g > 2a + 5s

qui, appliquée à quelques-uns des vins étudiés donne les résultats suivants:

No d'ordre	Relation de G	enevois	No d'ordre	Relation	de (Genevois
1	0,071 <	0,074	8	0,080	<	0,100
2	0,076 >	0,056	9	0,075	>	0,0405
3	0,0686 <	0,0775	10	0,078	>	0,0387
4	0,0756 >	0,0725	19	0,055	>	0,0415
5	0,0825 >	0,0745	24	0,082	>	0,0485
6	0,0756 <	0,0759	25	0,082	>	0,0415
7	0,0795 >	0,0695				

Cette inégalité est vérifiée pour 10 vins sur 13.

4. Les teneurs en K sont voisines de 1 g/l. Le rapport

$$\frac{K}{\text{cations minéraux}} = R$$

donne les valeurs suivantes:

No d'ordre	1	2	3	4	5	6 .	7	8
Valeur de R	0,614	0,597	0,601	0,611	0,688	0,654	0,703	0,643

Ces valeurs sont constantes et varient de 0,597 à 0,703, elles sont du même ordre que celles trouvées par *Brémond*.

Lasserre 22) trouve que le rapport $\frac{Mg}{Ca} = R_L$ varie de 1 à 2 dans les vins alors qu'il est de 0,4 à 1,1 dans leurs moûts.

Pour les vins 1 à 8, nous avons obtenu:

No d'ordre	1	2	3	4	5	6	7	8
Valeur de RL	1,549	1,492	1,438	1,461	0,88	1,04	1,127	1,489

Le No 5 seul, fait exception.

Les teneurs en Mn sont plus élevées pour les rouges et en particulier pour les hybrides comme Flanzy et Thérond ²³) l'ont relevé.

5. Le rapport $\frac{\text{glycerol}}{\text{alcool}} \times 100 \text{ s'élève à}$

No d'ordre	1	2	3	4	5	6	7	8	9	10	11	12
Valeur du rapport	8,8	10,2	7,2	8,0	9,1	8,7	8,3	7,8	8,6	9,3	5,4	7,4
No d'ordre	13	14	15	16	17	18	20	21	22	23	24	25
Valeur du rapport	e A	6,8	65	6.9	6.8	63	7,3	7.0	5.8	1.0	8,7	9.7

Ce rapport est inférieur à 7 pour de nombreux vins.

6. Des calculs établis selon Quartaroli, von der Heide et Baragiola et Tonduz, il résulte que le % d'acides organiques libres est le suivant pour les divers vins considérés:

Tableau 8 Acides libres

Acide	1	2	3	4	5	6	7	8
tartrique	31,20	39,80	27,40	27,08	25,94	25,40	23,56	19,90
malique	47,53	60,90	48,30	24,20	55,92	46,15	44,15	38,96
succinique	83,91	92,00	84,70	93,00	73,27	82,30	81,80	79,02
acétique	95,08	97,30	95,30	95,36	95,00	94,90	94,40	85,60
lactique	71,42	82,40	72,70	72,74	91,30	70,54	68,43	64,40
citrique	28,78	44,10	30,90	48,48	30,00	25,00	23,63	24,00
Total des acides organiques	54,91	57,40	56,70	54,80	63,10	59,90	56,00	50,90

Comme Brémond 9) l'a remarqué «la valeur de l'acidité réelle d'un vin est en relation étroite avec les proportions d'acides libres et salifiés» et en particulier en fonction de l'acide organique libre le plus fort. Le tableau ci-dessous s'applique aux 8 vins considérés:

Tableau 9 Rapport entre pH, acide tartrique libre, acide tartrique combiné

No	pH	Acide tartrique libre	Acide tartrique combiné
2	3,10	39,80	60,10
1	3,25	31,20	66,30
4	3,29	27,40	72,30
3	3,32	27,08	72,20
5	3,49	25,94	74,00
6	3,52	25,40	74,60
7	3,55	23,56	76,40
8	3,65	19,90	79,80

B. Bilan des ions

Le bilan des divers ions des vins 1 à 8 est exposé dans les tableaux suivants:

Tableau 10 Balance des ions

Echantillons No	1	2	3	4	5	6	7	8
Somme des anions					1			
organiques	109,0	128,2	85,10	93,93	78,18	78,20	86,45	88,64
Alcalinité des cendres non corrigée selon		X 1 73						
Farnsteiner	23,60	24,80	17,40	20,10	16,00	17,00	20,50	22,00
A ajouter:			W					
² / ₃ PO ₄ total	6,42	5,58	4,80	4,48	4,86	3,88	5,72	5,10
NH4	1,70	1,70	1,30	1,30	1,30	1,30	0,80	0,80
Alcalinité corrigée a)	31,72	32,08	23,50	25,88	22,16	22,18	27,02	27,9
Acidité totale (rouge-Phénol)	78,94	98,40	67,40	69,20	60,00	59,30	64,60	63,3
A déduire:					in the second			
1/4 PO4 minéral	2,41	2,09	1,80	1,70	1,82	1,45	2,14	1,9
¹ / ₃ SO ₂ total	1,27	0,86	1,80	1,83	0,75	0,90	0,77	0,7
Acidité totale corrigée b)	75,26	95,45	63,80	65,67	57,43	56,95	61,69	60,6
Somme des cations (a + b)	106,98	127,53	87,30	91,55	79,59	79,13	88,71	88,5

 $Tableau \ 11$ Somme des anions organiques + minéraux = Cations minéraux + Acidité de titration

Echantillons No	1	2 -	3	4	5	6	7	8
Somme des anions organiques	109,00	128,20	85,10	93,93	78,10	78,20	86,45	88,64
Somme des anions minéraux	25,50	19,20	19,71	18,04	19,58	16,66	17,74	15,85
Total des anions	134,50	147,40	104,81	111,97	97,68	94,86	104,19	104,49
Sommes des cations minéraux	48,86	47,87	40,90	41,24	37,14	36,79	39,95	40,22
Acidité de titration	78,94	98,40	67,40	69,20	60,00	59,30	64,60	63,30
Total	127,80	146,27	108,30	110,44	97,14	96,09	104,55	103,52

 $Tableau\ 12$ Somme des cations minéraux fixes = Somme des anions minéraux + Alcalinité des cendres non corrigée

Echantillons No	1	2	3	4	5	6	7	8
			méq					
Alcalinité des cendres non corrigée	23,60	24,80	17,40	20,10	16,00	17,00	20,50	22,00
Somme des anions minéraux	25,50	19,20	19,71	18,04	19,58	16,66	17,74	15,85
Total	49,10	44,00	37,11	38,14	35,58	33,66	38,24	37,85
Sommedes cations minéraux fixes	48,86	47,87	40,90	41,24	37,14	36,79	39,95	40,22

C. Application des Règles oenologiques

Les règles œnologiques sont les suivantes:

a) le rapport Alcool dans lequel l'alcool est défini par le poids total de ce dernier ainsi exprimé:

(l'alcool en vol. $^{0}/_{0} \times 8$) + (poids du sucre —1) 0,45 et l'extrait à 100° diminué:

- a) du poids des matières réductrices (en glucose) supérieur à 1 g
- b) du poids du sulfate de K supérieur à 1 g
- c) du poids de l'acide tartrique non combiné excédant ¹/₂ g pour les vins rouges 1 g pour les vins blancs.
- b) La règle de Gautier 34).
- c) La règle de Roos qui est le quotient de la règle de Gautier par le rapport

 Alcool

 Extrait
- d) Les règles de Blarez 35).
- e) L'indice de tartre défini par Fonzès-Diacon ²⁵).

 Malgré les nombreuses critiques formulées à leur égard, j'ai pensé néanmoins qu'il serait curieux de considérer les résultats obtenus dans leurs applications à quelques 120 vins genevois.

Tableau 13 Règles œnologiques

No	Désignation	Alcool	Règle Alcool Extrait	Règle de	Gautier corrigée	Règle de Slizewicz	Règle d Blarez Alcool
		1	2	3	4	5	acidité 6
	C1 1						
	Chasselas:				1		
3	Mandement 1950	11,02	5,27	13,95	14,62	0,252	3,93
4	Mandement 1950	10,88	5,03	13,87	14,73	0,270	3,70
5	Peissy 1950	10,43	4,22	12,98	13,83	0,240	4,15
6	Peissy 1950	10,05	4,06	12,51	13,68	0,239	4,17
7	Malval 1950	10,05	4,64	13,99	15,37	0,262	3,81
8	Dardagny 1950	11,86	4,50	14,56	15,44	0,226	4,42
9	Satigny 1950	10,09	5,07	12,84	13,22	0,268	2,72
10	Satigny 1950	9,75	5,25	12,55	14,26	0,283	3,53
11	Russin 1950	10,79	4,89	14,15	14,36	0,311	3,21
12	Dardagny 1950	10,52	4,57	13,94	14,10	0,364	2,74
13	Satigny 1950	10,85	4,97	14,54	14,58	0,293	3,39
14	Bourdigny 1950	10,72	4,59	14,19	14,21	0,292	3,41
15	Peissy 1950	10,90	4,85	13,98	14,10	0,300	3,33
16	Mandement 1950	9.85	4,73	12,53	13,38	0,265	3,76
17	Dardagny 1950	10,83	5,36	13,69	14.37	0,284	3,51
18	Dardagny 1950	10,10	3,30	13,83	14,10	0,364	2,73
26	Peissy 1944	9,60	3,78	12,63	13,20	0,304	3,17
27	Genevois 1944	6,50	2,42	10,96	12,09	0,513	1,45
	Mandement 1944	9,60			13,95	0,410	
28	Mandement 1944	9,30	3,62	13,54			2,43
29	Souche 1944		3,64	12,58	13,60	0,342	2,83
30		8,80	3,57	12,34	13,54	0,422	2,48
31		9,00	3,83	12,39	14,05	0,365	2,65
32	Jussy 1944	9,50	3,76	13,83	14,27	0,455	2,19
33	Sezegnin 1944	8,50	4,92	12,24	13,75	0,440	2,28
34	Genevois 1944	7,70	3,92	11,24	12,95	0,459	2,17
35	Bossey 1944	7,80	3,96	11,60	13,04	0,485	2,05
36	Peissy 1944	8,60	4,24	12,08	12,95	0,404	2,47
37	Soral 1944	7,80	4,07	11,54	12,95	0,479	2,08
38	Mandement 1944	8,10	3,78	11,61	12,93	0,438	2,30
39	Mandement 1944	8,30	3,68	11,81	11,75	0,422	2,36
40	Dardagny 1944	8,30	3,90	11.81	13,52	0,422	2,36
41	Dardagny 1944	8,40	4,00	11,91	12,94	0,417	2,39
42	Souche 1944	8,30	3,95	11,32	12,61	0,363	2,74
43	Souche 1944	8,30	4,00	11,32	13,07	0,363	2,64
44	Souche 1944	8,20	3,56	11,22	12,37	0,368	2,71
45	Souche 1944	8,40	3,93	11,61	13,08	0,380	2,62
46	Souche 1944	8,40	3,93	11,61	13,23	0,380	2,62
47	Souche 1944	8,20	3,70	11,40	12,43	0,390	2,56
48	Souche 1944	8,90	4,36	11,47	12,52	0,288	3,46
49	Souche 1944	8,10	3,44	11,08	12,01	0,367	2,75
50	Souche 1944	8,10	3,72	11,08	12,82	0,368	2,75
51	Souche 1944	7,90	3,61	11,11	12,93	0,481	2,19
52	Souche 1944	7,30	2,82	11,10	12,24	0,520	1,92

Tableau 13 Règles œnologiques (suite)

No	Désignation	1	Alcool	Règle Alcool Exlrait	Règle de	Gautier corrigée	Règle de Slizewicz	Règle o Blarez Alcoo
			1	2	3	4	5	acidite 6
			1	4		- 1	1 3	1
53	Souche	1944	7,40	2,44	11,86	13,52	0.602	1,65
54		1944	8,50	4,02	11,19	12,55	0,316	3,16
55		1944	7,40	3,67	9,70	12,33	0,309	3,23
56	Mandement		9,50	4,57	12,45	12,53	0,310	3,22
57	Mandement		8,30	3,14	10,69	12,95	0,280	3,47
58	Mandement		8,10	3,05	10,53	13,42	0,300	3,33
59	Mandement		7,30	3,79	11,17	13,32	0,530	1,88
60		1944	8,80	4,60	11,10	12,75	0,260	3,83
61		1944	7,90	6,06	9,93	11,15	0,257	3,89
62		1944	8,80	4,23	11,61	13,11	0,268	3,72
63		1944	7,00	3,70	11,40	12,23	0,460	2,18
64		1944	7,90	3,86	11,40	12,78	0,444	2,31
65		1944	8,30	3,62	11,08	12,75	0,482	2,07
66		1944	7,70	3,78	11,11	12,28	0,413	2,42
67		1944	7,10	3,68	11,10	12,62	0,656	1,52
68		1944	8,90	3,90	11,86	12,55	0,378	2,66
69		1944	8,80	3,78	11,31	12,61	0.373	2,91
70		1945	8,10	3,62	11,33	12,05	0,375	2,52
71	Mandement		9,10	3,75	12,64	13,24	0,389	2,57
72		1946	8,50	3,75	11,32	12,72	0,333	3,01
73		1948	11,10	3,30	14,85	14,96	0,337	2,99
74		1949	10,50	5,38	13,45	14,50	0,337	3,56
75		1949	9,40	4.47	12,99		0,381	2,61
76		1949	10,52	4,21	14,65		0,392	2,57
76 B		1949	10,35	5,55	12,80	1	0,332	4,22
77 77	Sézenove	1949	10,52	5,82	13,81		0,312	3,25
78		1949	10,00	5,37	12,43		0,243	4,11
79	Soral	1949	10,00	4,32	12,26		0,226	4,42
80	Soral	1949	9,83	5,28	12,76		0,299	3,33
81	Bernex	1949	10,00	5,12	12,70		0,280	2,34
82	Peissy	1949	10,52	4,80	13,41	- 47 115	0,274	3,64
83	Peissy	1949	10,55	4,88	13,17		0,248	4,02
84	Peissy	1949	10,55	4,53	13,30		0,260	3,83
85	Peissy	1949	10,70	4,68	13,27	100	0,240	4,16
86	Peissy	1949	10,79	5,14	13,28		0,230	4,25
87	Peissy	1949	10,73	4,66	13,25		0,259	3,85
88	Peissy	1949	10,32	4,91	13,33		0,239	3,21
89	Peissy	1949	10,17	5,02	13,53	100	0,310	3,36
90	Dardagny	1949	11,14	5,15	14,39	T. Carlo	0,201	3,42
91	Dardagny	1949	10,70	4,76	13,89		0,300	3,33
92	Mandement		10,70	3,96	13,76		0,300	2,66
93	Mandement		9,83	4,19	13,76		0,349	3,86
93	Mandement		9,88	3,75	13,20		0,349	2,51
95	Mandement		10,57	3,69	15,18	Property and the	0,399	2,28

Tableau 13 Règles œnologiques (suite)

No	Désignation	Alcool	Règle Alcool Extrait	Règle de	Gautier corrigée	Règle de Slizewicz	Règle d Blarez Alcool
					-	_	acidité
		1	2	3	4	5	6
96	Mandement 1949	9,83	4,35	13,97		0,421	2.27
97	Mandement 1949	10,17	3,92	13,49		0,320	3,06
98	Mandement 1949	10,17	3,72	14,22		0,320	2,50
99	Mandement 1949	10,05	3,96	13,84		0,377	2,65
100	Dardagny 1948	10,96	4,86	13,36		0,222	4,51
101	Soral 1948	10,96	4,86	13,55		0,236	4,23
102	Soral 1948	10,93	5,08	13,75		0,259	3,52
103	Confignon 1948	11,00	5,05	14,12		0,283	3,52
103	Confignon 1948	10,88	4,48	13,98		0,285	3,51
105	Bernex 1948	10,76	4,53	13,73		0,252	3,62
106	Satigny 1948	10,65	4,95	13,27		0,232	4,06
107	Satigny 1948	10,05	4,95	12,74		0,240	4,13
108	Satigny 1948	10,26	5,33	13,13		0,279	3,57
109	La Souche 1948	10,79	4,43	13,28		0,230	4,33
110	Peissy 1948	10,75	4,78	12,85		0,241	4,14
111	Malval 1948	11,05	3,96	14,06		0,272	3,67
	Vins rouges:	11,00	0,50	11,00		0,4,4	0,07
1	Gamay 1947	12,23	4,29	15,28	15,50	0,252	3,82
2	Landot 244	12,25	4,11	16,87	17,74	0,232	2,88
4	Satigny 1947	12,90	4,11	10,07	17,74	0,344	2,00
19	Hybride 1950	11,14	3,72	15,20	15,20	0.361	2,76
22	Gamay-	11,14	3,14	15,20	13,40	0,301	4,70
44	Satigny 1950	12,36	4,95	15,23	16,24	0,225	4,41
23	Hybride 1950	10,50	3,27	12,96	14,63	0,224	4,41
24	Hybride 1950	10,88	3,90	14,16	15,78	0,224	3,36
25	Hybride 1950	9,83	3,60	13,88	16,73	0,407	2,47
112	Hybride 1949	11,41	4,24	14,21	10,10	0,245	4,08
113	Soral 1949	9,91	3,58	13,48		0,360	2,77
114	Confignon 1949	10,88	3,49	15,80		0,452	2,21
115	Confignon 1949	9,91	3,55	13,39		0,351	2,85
116	Soral 1949	11,14	4,22	14,42		0,294	3,40
117	Sézenove 1949	10,88	3,23	16,13		0,482	2,07
118	Bernex 1949	11,41	4,17	15,24		0,335	2,95
119	Gamay-Mande-						
	ment 1945	8,20	2.51	12,94		0,456	2,19
120	Gamay-Dar-						
	dagny 1947	11,52	4,30	14,29		0,240	4,15
121	Dardagny 1949	9,50	3,88	12,58		0,324	3,08
122	Peissy 1949	10,37	3,29	14,16		0,364	2,73
123	Bernex 1949	11,10	3,22	14,85		0,337	2,93

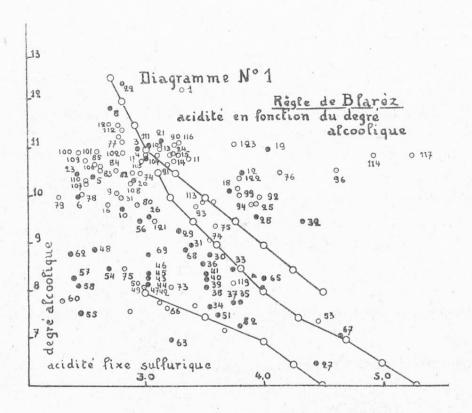
En consultant les résultats mentionnés au tableau 13 il est possible de formuler cependant quelques remarques. Les chiffres-limites mentionnés pour les règles alcool-extrait et celles de *Gautier* sont les suivantes:

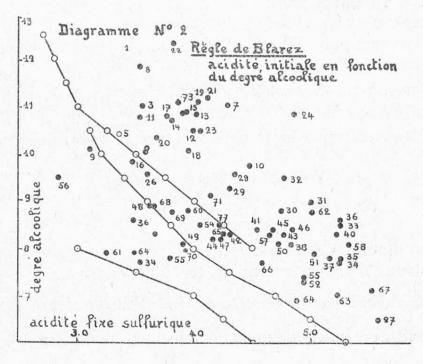
	Règle alcool-extrait	Règle de Gautier	
Vins rouges	2,5 à 4,5	12 à 17	
Vins blancs	3,5 à 5,5		

Le tableau 13 (pages 403 et suivantes) montre que certains vins blancs sont caractérisés par un rapport alcool-extrait inférieur à 3,5. Ce sont les vins No 27, 52, 53, 57, 58. Or, ces échantillons résultent de coupages de diverses régions du canton. Les vins No 61, 73, 77 ne satisfont pas à la règle non plus. Deux vins blancs ont un rapport supérieur à 5,5.

Les caractères œnologiques d'une année se retrouvent dans les valeurs de cet indice. Pour les vins blancs issus de Chasselas, la règle alcool-extrait fournit les valeurs suivantes:

Année	Limites	Moyenne	Nombre d'échantillons examinés
1944	2,42-6,06	3,79	44
1948	3,96—5,33	4,76	12
1949	3,69—5,82	4,65	27
1950	4,06—5,36	4,80	16


La règle de Gautier présente les valeurs mentionnées à la colonne 3, du tableau 13.


Rappelons tout d'abord que *Gautier*, dans ses calculs, a fait intervenir l'acidité sulfurique correspondant à l'acidité mesurée. Or, *Ferré* ²⁴) a fait très justement remarquer qu'il serait plus rationnel de corriger cette acidité mesurée en tenant compte de l'influence de la rétrogradation malolactique. D'où l'emploi dans l'établissement des formules œnologiques d'une acidité dite «initiale», c'est à dire l'acidité du vin avant la rétrogradation qui est calculée par la formule: acidité fixe initiale = acidité fixe mesurée + (ac. lactique — 0,5) 0,54. *Ferré* admet que 0,5 g d'acide lactique sont formés au cours de la fermentation alcoolique.

J'ai exprimé dans le tableau 13, colonnes 3 et 4, la règle de *Gautier* calculée d'une part en fonction de l'acidité mesurée et, d'autre part en fonction de l'acidité initiale.

Les chiffres obtenus sont naturellement différents. Si l'on se penche sur les valeurs établies en fonction de l'acidité initiale, presque tous les vins pour lesquels l'acide lactique a été dosé, satisfont à cette règle.

Blarez a montré que pour 3 catégories de vins (catégories de vins provenant de 3 types de régions), il existe pour chaque degré alcoolique une acidité fixe minimum. J'ai porté dans le diagramme 1, toutes les acidités fixes minimum correspondant aux degrés alcooliques des divers vins. Un très grand nombre de vins ne satisfont pas aux règles œnologiques de Blarez. Dans le diagramme 2, j'ai exprimé l'acidité minimum avant la rétrogradation malolactique; dans ces conditions, seuls de très rares vins ne satisfont pas à la règle de Blarez.

L'indice de tartre défini plus haut n'a été appliqué qu'aux 8 vins mentionnés au tableau 1.

No d'ordre	Indice de tartre	No d'ordre	Indice de tartre
1	0,51	5	0,61
2	0,676	6	0,52
3	0,62	7	0,55
4	0,66	8	0,69

Ces résultats montrent que cet indice est inférieur à l'unité pour tous les 8 vins de 1950 et en particulier inférieur à 0,80. Ils devraient être considérés, d'après les commentaires présentés sur cette règle, comme des vins anormaux. Il conviendrait de vérifier à l'avenir, si cette anomalie était un caractère des vins de 1950 ou si c'est une règle générale.

Slizewicz ³¹) a, dans sa thèse, établi une relation mathématique de 2 courbes de la règle de Blarez (1 et 2ème catégorie) en remarquant que la courbe de la 2ème catégorie se place dans le prolongement de celle de la 1ère catégorie. Dans ces conditions, ces 2 courbes peuvent si l'on pose:

être assimilées à une portion d'hyperbole de formule

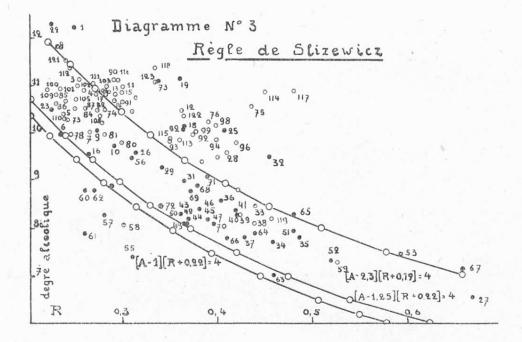
$$(F + k) (A + 1) = m$$

qui après résolution peut s'exprimer ainsi:

$$(F - 0.6) A = 26$$

Dans cette thèse, l'auteur montre la discordance qui existe entre les diverses règles œnologiques. Gautier admet, en effet, que la somme alcool + acidité fixe est constante, alors que pour Blarez, cette somme est fonction inverse du degré alcoolique et dépend de l'origine.

Slizewicz, Taboury et Mimault ³²) admettent que la règle de Blarez est plus proche de la vérité que celle de Gautier.


Taboury et Mimault ont adopté pour la représentation des vins limites une droite d'équation.

$$A + pF = q$$
 dans laquelle
 $p = 2 \text{ à } 3$
 $q = 18 \text{ à } 22$

équation pouvant donner 4 droites correspondant à 4 catégories de vins. Le problème est complexe. Slizewicz reconnaît que l'étude des variations du rapport acidité fixe degré alcoolique est intéressante parce que «fixe pour un degré et ceci indépendamment du mouillage, indépendamment de l'acidité volatile».

Parmi les vins de la 1ère catégorie, *Slizewicz* élimine ceux de degré inférieur à 11° et pour les vins de la 2ème catégorie, il conserve ceux de 5 à 10°. Les variations du rapport en fonction du degré alcoolique sont alors représentées par une branche d'hyperbole d'équation

$$(A - 2,3)$$
 $(R + 0,19) = 4$ dans laquelle $A = degré$ alcoolique $R = valeur$ du rapport $\frac{Acidité fixe}{degré alcoolique}$ d'où $A = \frac{4}{R + 0,19} + 2,3$

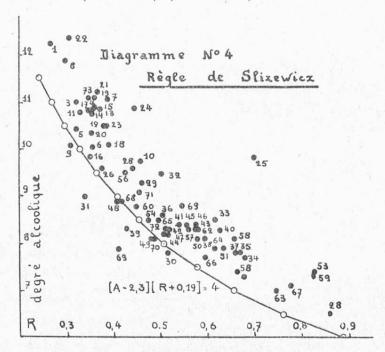
Les vins genevois figurant au tableau 13 sont portés sur le diagramme 3. Il est à remarquer qu'environ 75 % de ces vins, situés entre le point 0 et l'hyperbole de *Slizewicz*, sont des vins anormaux.

Slizewicz et Fonzez-Diacon ²⁵) ont interprété ces anomales de composition par une «dilution physiologique naturelle du jus de raisin par l'eau de pluie et par la neutralisation de son acidité par la potasse de la sève brute».

Si l'on examine le diagramme 3, il apparaît pour les vins mentionnés et dont les points représentatifs sont exprimés en fonction du degré alcoolique et de l'acidité réelle, que l'hyperbole d'équation

$$(A - 1.25) (R + 0.22) = 4$$

répondrait mieux à la composition des vins genevois. Il convient cependant d'attendre d'autres résultats analytiques. Toutefois, sur 123 vins, 11 vins ne satisfont pas à cette hyperbole, ce sont les No 48, 54, 55, 57, 58, 60, 61, 62, 63, 79 et 89, soit 9 vins de l'année 1944 et 2 vins de 1949.


Or, les échantillons 48, 54, 55, 57, 58 et 89 sont des vins résultant de coupages de plus de 50 % de la commune nominative et de moins de 50 % d'autres communes voisines.

Les No 60, 61, 62 et 63 sont issus des communes d'Athenaz et de Laconnex.

D'autre part, nous calculons le rapport *Slizewicz* en faisant intervenir, non plus l'acidité fixe, mais l'acidité fixe «initiale» c'est à dire l'acidité fixe avant la rétrogradation malolactique.

Le nouveau rapport Slizewicz a été calculé pour 75 vins; il s'agit des vins marqués d'un rond plein sur le diagramme 3. Le nouveau rapport a été porté sur le diagramme 4 et nous constatons alors que la très grande majorité des vins satisfait à l'hyperbole d'équation

$$(A - 2.3) (R + 0.19) = 4$$

Or, parmi les vins qui ne satisfont pas à cette hyperbole, les No 9, 30, 31, 39, 48, 49, 61, 68 et 70, 7 vins sont des vins de 1944, les autres sont des vins provenant de coupages de diverses communes voisines.

Résumé

- 1. J'ai procédé à l'analyse complète de 8 vins du vignoble genevois et d'autre part, à l'analyse moins complète de 17 autres vins.
- 2. Les bilans des ions des 8 vins sont concordants. Il en est de même des bilans de l'extrait et des cendres.
- 3. Le rapport $\frac{K}{\text{cations minéraux}}$ présente une certaine constance. Le rapport $\frac{\text{Mg}}{\text{Ca}}$ est conforme aux résultats trouvés par *Lasserre* à l'exception d'un échantillon.
- 4. Des teneurs plus élevées en Mn pour les hybrides sont confirmées.

- 5 Le rapport $\frac{\text{glycérol}}{\text{alcool}} \times 100$ est souvent inférieur à 7, mais il faut considérer que les quantités de glycérol qui sont intervenues dans le calcul de ce rapport sont celles correspondant au glycérol exempt de butylèneglycol.
- 6. Les teneurs en butylèneglycol sont au moins de l'ordre de 200 mg/l.
- 7. La relation entre le pH et l'acide tartrique libre est vérifiée.
- 8. Les règles œnologiques ont été appliquées à 123 vins genevois.

La règle alcool-extrait est satisfaite à l'exception de 8 vins. Les caractères œnolo-

giques d'une année se retrouvent dans les valeurs de cet indice.

La règle de Gautier n'est pas toujours satisfaite si l'on fait intervenir l'acidité mesurée. Mais si l'on fait intervenir l'acidité initiale, presque tous les vins satisfont à cette règle.

L'indice de tartre montre que les 8 vins analysés complètement sont à considérer

comme vins anormaux.

La règle de *Blarez* est vérifiée pour le plus grand nombre des vins si l'on fait intervenir l'acidité fixe «initiale».

Il semble que l'hyperbole de Slizewicz est vérifiée en fonction de l'acidité mesurée, pour une courbe d'équation

(A-1,25) (R+0,22)=4L'hyperbole de *Slizewicz* d'équation (A-2,3) (R+0,19)=4

est vérifiée pour un très grand nombre de vins si l'on fait intervenir non pas l'acidité mesurée mais l'acidité «initiale».

Zusammenfassung

- 1. Acht Genfer Weine wurden einer vollständigen und 17 weitere Weine einer weniger vollständigen Analyse unterzogen.
- 2. Die Ionen-Bilanzen für die ersten acht Weine zeigen eine gute Übereinstimmung. Dasselbe trifft zu für die Bilanzen der Extrakte und der Aschenbestandteile.
- 3. Der Quotient $\frac{K}{\text{mineralische Kationen}}$ zeigt eine gewisse Konstanz. Der Quotient $\frac{Mg}{Ca}$ stimmt mit den Angaben von *Lasserre*, mit einer einzigen Ausnahme, überein.
- 4. Die bei Hybridenweinen auftretenden höheren Gehalte an Mangan konnten bestätigt werden.
- 5 Der Quotient $\frac{\text{Glycerin}}{\text{Alkohol}} \times 100$ fällt oft tiefer als 7 aus; dabei ist aber zu berücksichtigen, dass in den hier aufgeführten Werten für Glycerin das Butylenglykol nicht enthalten ist.
- 6. Die Gehalte an Butylenglykol liegen in der Grössenordnung von mindestens 200 mg/l.
- 7. Es konnte bestätigt werden, dass eine Beziehung zwischen pH und freier Weinsäure besteht.
- 8. Die œnologischen Regeln wurden an 123 Genfer Weinen überprüft.

Das Verhältnis von Alkohol zum Extrakt ist im allgemeinen, mit Ausnahme von acht Weinen, normal. Dabei konnte festgestellt werden, dass diese Kennzahl für das jeweilige Weinjahr charakteristisch ist.

Der Gautier'schen Regel wird nicht immer entsprochen, wenn ihr der «gemessene» Säuregrad» zugrunde gelegt wird. Zieht man aber den «ursprünglichen Säuregrad» als Basis heran, so genügen fast alle Weine dieser Regel.

Der Weinstein-Index beweist, dass die acht vollständig untersuchten Weine als abnormal zu betrachten sind.

Die Regel von Blarez konnte bei den meisten Weinen bestätigt werden, wenn die Gehalte an nichtflüchtiger «ursprünglicher Säure» zugrunde gelegt werden.

ES scheint, dass die Hyperbel von Slizewicz in ihrer Abhängigkeit von der «gemessenen Säure» der Gleichung

$$(A - 1.25) (R + 0.22) = 4$$

folgt. Dagegen stimmt sie mit der Formel

$$(A - 2.3) (R + 0.19) = 4$$

bei einer sehr grossen Zahl von Weinen überein, wenn man an Stelle der «gemessenen Säure» die Werte für «ursprüngliche Säure» heranzieht

Littérature

- 1) Quartaroli: Statz. sperim. agr. ital. 60, 321 (1907).
- 2) Von der Heide et Baragiola: Landw. Jahrb. 39, 101 et 104 (1910).
- 3) Baragiola et Schuppli: Z.U.L. 29, 193 (1915); 39, 313 (1920).
- 4) Dutoit et Duboux: Analyse physico-chimique des vins, 1912.
- ⁵) Tonduz: Ces Travaux, 11, 44 (1920).
- 6) G. Bonifazi: Ces Travaux, 30, 241 (1939).
- 7) Godet et Martin: Ces Travaux, 37, 327 (1946).
- 8) K. Hennig: Journée viticole XII, 21 (1943).
- 9) Brémont: Etude physico-chimique de l'acidité des vins, Thèse Alger 1937.
- 10) J. Ribereau-Gayon et E. Peynaud: Ann. ferm. 4, 554 (1938).
- 11) M. d. a.: Manuel suisse des denrées alimentaires, 1937.
- ¹²) P. Jaulmes: Analyse des vins, Montpellier, 1942.
- ¹³) E. Peynaud: Ann. Falsif. **31**, 332 (1938).
 - J. Ribereau-Gayon et E. Peynaud: Bull. Soc. chim. France V, 227 et 1276 (1938).
- ¹⁴) E. Peynaud: Bull. intern. Vin, **11**, 13 (1938).
 - J. Ribereau-Gayon et E. Peynaud: Bull. Soc. chim. France V, 226 (1938).
- 15) R. de Marignan: Dosage de l'acide succinique dans les vins, 1944. Montpellier.
- ¹⁶) K. Farnsteiner: Z.U.L.G. **13**, 335 (1907).
- ¹⁷) E. Capt: Ces Travaux, **29**, 33 (1938).
- 18) Semichon, Flanzy et Lamazou-Betbeder: Ann. Falsif., 23, 517 (1930).
- 19) Fleury et Fatone: Ann. Ferment, 1, 285 (1935).
 L. Espil: Bull. Soc. chim. France III, 1334 (1936).
- Ferré et Michel: Ann. Falsif., 31, 90 (1938).
- F. M. Litterscheid: Z.U.L. 62, 653 (1931).
 L. Genevois: Bul. Soc. chim. biol., 18, 295 (1936).
- ²²) Lasserre: P. V. Soc. Sc. Phys. Bordeaux, 5 janvier 1933.
- ²³) Flanzy et Thérond: Rev. viticult., **90**, 435 et 454 (1939).
- ²⁴) L. Ferré: Ann. Falsif., 21, 75 (1928).
- ²⁵) Fonzez-Diacon: Ann. Falsif., **18**, 532-606 (1925); **19**, 416-463 (1926); **20** 467 (1927); **21**, 17 (1928).

²⁶) Sémichon, Flanzy et Lamazou-Betbeder: Loc. cit.

²⁷) Ch. Blarez: Vins et spiritueux, 1936, p. 229.

- ²⁸) Bertin et Gilles: Bull. Inst. œnol. Algérie, 1, 1 (1928).
- ²⁹) Bertin: Bull. Inst. œnol. Algérie, **2**, 57 (1929).
 ³⁰) Delord: Bull. Inst. œnol. Algérie, **7**, 205 (1933).
- 31) Slizewicz: Thèse de Pharmacie, Montpellier, 1938.
- ³²) Taboury et Mimault: Ann. Falsif., 29, 458 (1936).

³³) Kniphorst et Kruisheer: Z.U.L. **73**, 1 (1937).

³⁴) A. Gautier: La sophistication des vins, 3ème éd.

35) Ch. Blarez: Ann. Chim. analyt. 1908, 174. Vins et spiritueux, 2ème éd. 1916.

Zur Aldosenbestimmung mit Jod in alkalischer Lösung

Von H. Streuli und A. Fasler (Laboratorium Lindt & Sprüngli AG, Kilchberg)

Nachdem wir die durch Einfachheit und sehr gute Reproduzierbarkeit gekennzeichnete von Fellenberg'sche Modifikation 1) der Aldosenbestimmung nach Willstätter-Schudel während längerer Zeit mit scheinbar bestem Erfolg zur Untersuchung reduzierender Substanzen des Kakaos angewandt hatten, zeitigten Lactosebestimmungen in Schokolade Resultate, welche die Genauigkeit der Methode in Frage stellten.

Die Vorschrift von Fellenbergs basiere auf Untersuchungen Kolthoffs; bei genauerm Studium der Originalarbeit²) erhält man allerdings vorerst den Eindruck, dass deren Ergebnisse etwas summarisch verarbeitet worden sind. Beispielsweise wird bei von Fellenberg nirgends der Tatsache Erwähnung getan, dass auch Saccharose und Fructose von Jod in geringem Masse angegriffen werden — was gerade beim Versuch einer Trennung der Zuckerarten nicht ohne Interesse ist — und dies Kolthoff sogar zur Bemerkung veranlasst, es sei bei Anwesenheit von viel Saccharose neben Lactose dem Sodaverfahren (Bougault) gegenüber dem NaOH-Verfahren den Vorzug zu geben.

Insbesondere muss es aber erstaunen, dass der wiederholte, ausdrückliche Vermerk Kolthoffs unbeachtet geblieben ist: «Aus den Versuchen ergibt sich, dass die Reaktionsgeschwindigkeit zwischen Lactose und Hypojodit geringer ist als zwischen Glucose und dem Reagens. Bei Anwendung derselben Vorschrift, wie sie bei Glucose angegeben ist, soll man bei Lactose erst nach 10 Minuten Stehen den Jodüberschuss zurücktitrieren.»

Nun arbeitet von Fellenberg ja in verdünnterer Lösung als Kolthoff, wodurch natürlich die Reaktionsgeschwindigkeit noch vermindert wird. Es erscheint deshalb nicht ohne weiteres als selbstverständlich, dass Lactose in der von von Fellenberg vorgeschriebenen Reaktionszeit von 3—5 Minuten wirklich quantitativ