Zeitschrift: Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und

Hygiene = Travaux de chimie alimentaire et d'hygiène

Herausgeber: Bundesamt für Gesundheit

Band: 40 (1949)

Heft: 5-6

Artikel: Analyse d'un lait d'éléphant Autor: Krauze, S. / Legatowa, B.

DOI: https://doi.org/10.5169/seals-983808

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 22.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Analyse d'un lait d'éléphant

par S. Krauze et B. Legatowa

(Institut d'Hygiène de l'Etat, Laboratoire de recherches des matières alimentaires, Varsovie)

La naissance d'un éléphant dans un jardin zoologique est un fait extrêmement rare. En tout, avant la guerre, il n'avait été noté que onze fois; ce fut donc un grand événement au jardin zoologique de Varsovie, quand, le 16 avril 1937, un petit éléphanteau-femelle y a vu le jour. Etant le douzième de la série mondiale il a reçu le nom de «Douzette». La période de gestation chez l'éléphant dure 22 mois. Le lait est apparu deux mois avant la naissance du petit animal. La Douzette fut allaitée par sa mère durant une année.

Il nous a été possible de faire quelques analyses et comme les données sur la composition chimique du lait d'éléphant sont très rares dans la littérature et peu concordantes, nous avons cru utile de publier nos résultats et observations.

Les analyses ont été exécutées le 10 et le 14 octobre 1937. La guerre et ses suites ont retardé cette publication. Les notes, égarées en 1944, pendant l'insurrection de Varsovie, n'ont été retrouvées que tout dernièrement.

Les caractères organoleptiques du lait en question sont les suivants. Il est blanc, plus blanc que le lait de vache. A l'état très frais, il a une légère odeur d'huile de coco s'accentuant avec le temps. A la lumière de *Wood* il présente une luminescence bleue caractéristique, entre autres, pour l'huile de coco. Notre première supposition était qu'il y avait une adjonction de tourteaux de coco à la nourriture de l'animal, mais ce n'était pas le cas. Pendant les six premiers mois, l'éléphant-mère recevait quotidiennement 10 litres de lait, de l'avoine pilée, de la paille hachée, des pommes de terre, des betteraves, du pain et des petits pains offerts par des visiteurs du jardin zoologique. En outre, des rameaux de saules, d'acacias et de buissons divers. Par suite, l'odeur anormale du lait présentait un problème à élucider.

Sa saveur était douceâtre avec un arrière-goût de savon. Cette particularité a trouvé son explication dans la faible acidité du lait qui n'était que de 1,7° Soxhlet-Henkel. La réaction du lait au papier de tournesol était alcaline. La recherche microscopique des leucocytes a donné des résultats négatifs. Comme on le sait, cet examen a une grande importance pour l'estimation du lait de vache et du lait humain ainsi que du bon fonctionnement des glandes mammaires.

Au laboratoire on utilise souvent l'essai de M. Zimmermann ¹). La manière d'opérer est la suivante: 1 ml. de lait est additionné de 1 ml. d'acide sulfurique 0,1 normal, complété à 10 ml. avec de l'eau. Le tout est mélangé et laissé au repos pendant 4 à 5 heures. Après ce temps, le lait humain non falsifié ne donne aucun précipité. La présence de ce dernier permet de découvrir l'addition même de 10 % de lait de vache. Cette réaction résulte du caractère différent de

ces deux sortes de lait et surtout, d'une plus grande teneur en caséine du lait de vache. Or, dans cet essai, le lait d'éléphant se comportait comme le lait humain — il ne donnait pas de précipité. Un autre point caractéristique, c'est le résultat négatif de l'essai de Wilkinson et de Peters 2) qu'on exécute en ajoutant du peroxyde d'hydrogène et de la benzidine après avoir acidulé le lait avec de l'acide acétique. Une coloration bleue, due a la formation de p-quinonediimide apparait immédiatement tant dans le lait humain que dans celui de vache. Le lait d'éléphant ne présente pas cette coloration ce qui le différencie nettement des deux autres. Probablement bien des questions intéressantes, concernant les enzymes, auraient pu être élucidées et, en particulier, la recherche de la catalase. Il est regrettable que nous ne disposions que d'un matériel très restreint ce qui a rendu impossible un examen détaillé de la question. Dans leur travail sur les enzymes, J. B. Sumner et G. F. Sommers 3) font observer que la peroxydase du lait n'est pas spécifique, parce qu'elle agit sur tous les phénols, amines aromatiques, ainsi que sur la bilirubine. Elle exerce une action catalytique en présence de H₂O₂, dans l'oxydation de ces composés. Elle peut catalyser également l'oxydation des nitrites et du tryptophane ce qui n'est pas le cas pour la peroxydase d'origine végétale. Le peroxyde d'hydrogène peut être remplacé par des persulfates, ce qui constitue encore une différence dans le mode d'action d'avec la peroxydase végétale.

Ces auteurs sont d'avis que la peroxydase peut causer chez les animaux et chez les végétaux l'oxydation de certains phénols, malheureusement ce fait n'est pas bien prouvé. On ne sait pas si la quantité de H₂O₂ dans la cellule est suffisante pendant l'action de la peroxydase, car les cellules vivantes renferment également la catalase, décomposant H₂O₂.

Il est douteux, également, qu'il existe dans la cellule la quantité nécessaire de phénol pour que l'action de la peroxydase puisse s'exercer. En outre la peroxydase peut être rendue inactive par un excès de H₂O₂, mais sa réactivation est possible si cet excès est éliminé par la catalase.

Ces observations font ressortir l'absence de spécificité de la peroxydase du lait. L'étude de la totalité du système des enzymes du lait d'éléphant aurait pu contribuer à éclaircir cette question.

Les données, concernant la composition chimique du lait d'éléphant, présentent, comme nous l'avons dit, de grandes divergences.

Il nous semble sûr que les résultats peu concordants peuvent s'expliquer non seulement par les différences consécutives aux méthodes employées, mais aussi par la période de la lactation.

Ce n'est que J. König 4) qui précise que le lait examiné en 1880 a été analysé tout de suite après la naissance de l'éléphanteau. Les autres auteurs n'en parlent pas. Le lait dont nous disposions fut pris 6 mois après la naissance de la Douzette.

Tableau Composition chimique du lait d'éléphant

No	Auteur	Poids spéci- fique	Eau	Résidu sec	Résidu sec dégraissé	Graisse	Sucre	Matiè- res azotées	Cendres
1	$Blyth-Cox^{5}$)	1,035	67,85	32,15	12,58	19,57	8,84	3,09	0,65
2	Heinemann 6)	1,0313	79,30	20,70	11,60	9,10	8,59	2,51	0,50
3	König ⁴)		68,14	31,86	11,28	20,58	7,18	3,45	0,65
4	Pijanowski 7)		68,1	31,9	11,9	20	8,0	3,1	0,6
5	Nos résultats	1,0325	77,25	22,25	9,05	13,2	3,85	4,27	0,93

Les résultats de nos analyses accusent une haute teneur en graisse: 13,2 % 0. Ce chiffre est compris entre les limites signalées par d'autres auteurs (9,1 à 20,6 % 0). La quantité de matières azotées trouvée par nous, en employant le facteur N×6,37 est de 4,3 % 0, elle est donc supérieure a celle indiquée par nos prédécesseurs (2,5 à 3,5 % 0). Nous avons trouvé seulement 3,85 % 0 de lactose, tandis qu'on en a signalé dans la littérature 7,2 % et même 8,8 % 0. La quantité de cendres trouvée est de 0,93 % au lieu de 0,5 à 0,65 % 0.

Nous avons aussi déterminé la teneur en Cl' qui est de 0,045 %. Puisque la substance analysée renfermait une quantité notable de graisse nous avons profité de cette circonstance pour déterminer l'indice de *Reichert-Meissl* et celui de *Polenske* %) afin de connaître la teneur en acides gras volatils solubles et insolubles dans l'eau. Ces chiffres sont très précieux pour l'analyse des graisses extraites de l'amande du fruit de cocotier et de l'huile de palme. Les données obtenues sont très intéressantes: l'indice de *Reichert-Meissl* est de 4,7, celui de *Polenske* de 30,4.

Ce sont donc des chiffres inconnus jusqu'à présent pour une graisse naturelle. Nous y trouvons aussi l'explication de l'odeur particulière du lait d'éléphant rappelant celle de l'huile de coco. Il est probable que ce lait renferme des acides caprylique, laurique et myristique caractéristiques pour l'huile de coco. Cette circonstance provoque aussi la luminescence bleue caractéristique à la lumière de *Wood*.

L'extrême rareté du produit analysé nous autorise à publier les résultats de nos recherches.

Résumé

Du lait d'éléphant — prélevé 6 mois après la naissance de l'éléphanteau — fut analysé. Ce lait avait une odeur particulière rappelant celle de l'huile de coco et était très riche en graisse; ses principales caractéristiques ont été déterminées.

Zusammenfassung

6 Monate nach der Niederkunft eines Elefanten wurde die Milch untersucht. Diese sehr fettreiche Milch wies einen eigenartigen, an Kokosfett erinnernden Geruch auf. Deren Hauptkennzahlen wurden bestimmt.

Littérature

1) D'après C. Griebel Z.U.L. 72, 46 (1936); Z. für Kinderheilkunde 45, 310 (1928).

²) W. P. Wilkinson et E. R. C. Peters, Z.U.N.G. 16, 172 (1908).

3) J. B. Sumner and G. F. Sommers: «Chemistry and methods of enzymes», Academic Press Inc., New York 1947.

4) J. König: «Chemische Zusammensetzung der menschlichen Nahrungs- und Genussmittel», I, 273 (1903).

- ⁵) A. Wynter Blyth and M. Wynter Blyth, revised by H. E. Cox: «Foods, Their Composition and Analysis», London 1927.
- 6) P. G. Heinemann: «Milk», W. B. Saunders Company, Philadelphia and London 1919.
- 7) E. Pijanowski: Chemia i higiena mleka, Warszawa 1948.

8) E. Polenske, Z.U.N.G. 7, 273 (1904).

Zum Stoffwechsel des Fluors

Von Th. von Fellenberg, Muri/Bern, und Hch. Schmid, Vorsteher der Schulzahnklinik Unterstrass, Zürich

Es ist schon wiederholt beobachtet worden, dass eine gute Vitaminversorgung die Zähne gegen Karies widerstandsfähiger macht. Osch 1) führte an 9 Kindern während 5 Jahren einen Versuch durch, indem er Polyvitamintabletten (A, B1, B2, C, D) verabreichte. Nach dieser langen Versuchsdauer trat eine einzige kariöse Stelle auf. Welche der 5 Vitamine speziell gewirkt haben, geht aus den Versuchen nicht hervor. Nach Schmuziger 2) wirkt sich der Mangel an Vitamin A frühzeitig auf die Zahnanlage, solcher an Vitamin D in Verkalkungsschäden aus.

1. Fütterungsversuch mit Lebertran und Fluor am Meerschweinchen

Bei unsern Versuchen wurden die Vitamine A und D in Form von Medizinallebertran verabreicht, welcher von alters her als ein kariesverhütendes Mittel angesehen wird. Wir gingen aber nicht etwa darauf aus, nachzuweisen, ob Lebertran eine Wirkung auf die Zähne der Versuchstiere habe, sondern es interessierte uns, zu prüfen, ob eine solche Wirkung über das Fluor gehe, d.h. ob bei der Verfütterung von Lebertran eine erhöhte F-Menge von dem sich bildenden Zahn aufgenommen werde.