Zeitschrift: Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und

Hygiene = Travaux de chimie alimentaire et d'hygiène

Herausgeber: Bundesamt für Gesundheit

Band: 40 (1949)

Heft: 1-2

Artikel: Nachweis und annähernde Bestimmung des Olivenöles auf Grund

seines Squalen-Gehaltes

Autor: Hadorn, H. / Jungkunz, Rob.

DOI: https://doi.org/10.5169/seals-983784

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Nachweis und annähernde Bestimmung des Olivenöles auf Grund seines Squalen-Gehaltes

von H. Hadorn und Rob. Jungkunz (Laboratorium V.S.K., Basel)

Einleitung

Vor einiger Zeit haben wir 1)5) über Versuche berichtet, bei welchen das Unverseifbare des Olivenöles und des Teesamenöles durch chromatographische Adsorptionsanalyse in verschiedene Bestandteile getrennt wurde. Damals interessierten uns hauptsächlich bestimmte Stoffe, die von Al2O3 adsorbiert werden. Wir haben aber bereits darauf hingewiesen, dass bei jedem Ol ein gewisser, ziemlich konstanter Anteil (Durchlauf) des Unverseifbaren mit dem Lösungsmittel durch die Al2O3-Säule hindurchfliesst. Der Durchlauf des Olivenöles beträgt zirka 0,4 %, der des Teesamenöles nur 0,03 % des Öles. Er stellt eine farblose, ölige Flüssigkeit dar, aus welcher sich eine geringe Menge farbloser Kristalle abscheidet. Wie wir zeigen konnten, besteht beim Olivenöl der Durchlauf zum grössten Teil aus Squalen. In der entsprechenden Fraktion des Teesamenöles und auch anderer Öle wurde ebenfalls Squalen nachgewiesen, jedoch in viel geringerer Menge als beim Olivenöl. Einige Vorversuche ergaben nun, dass sich in dieser Beziehung die meisten Speiseöle ähnlich verhalten wie das Teesamenöl und sich durch ihren niedrigen Kohlenwasserstoff- und Squalengehalt deutlich von Olivenöl unterscheiden.

Wir setzten uns daher zum Ziel, diese Verhältnisse genauer zu studieren, und zunächst beschäftigten wir uns mit dem qualitativen Nachweis des Squalens in verschiedenen Ölen. Zur Abscheidung und Identifizierung dieses ungesättigten Kohlenwasserstoffs soll sich nach Täufel und Mitarbeitern 2) am besten sein Hexahydrochlorid eignen. Wie wir noch zeigen werden, ist dieser Nachweis aber mit gewissen Schwierigkeiten verbunden.

Grossfeld und Timm³) haben früher schon eine Methode zur Unterscheidung des Olivenöles von andern Olen beschrieben, welcher der Squalengehalt des Olivenöles zugrunde liegt und welcher sich aus der Jodzahl des Unverseifbaren errechnen lässt.

Philippe und Henzi 4) haben dann die Grossfeld'sche Methode übernommen, um mit deren Hilfe den Nachweis von Olivenöl in Speiseöl zu führen. Wie wir noch zeigen werden, ist sie jedoch nicht sehr zuverlässig, da im Unverseifbaren einiger Öle Stoffe vorkommen, welche an und für sich schon eine hohe Jodzahl besitzen und dadurch beträchtliche Mengen Squalen vortäuschen können. So enthält z.B. das Teesamenöl eine ungesättigte, sauerstoffhaltige Verbindung, das

Theasin (Bruttoformel C₂₀H₃₄O), ein ungesättigtes Diterpen-Derivat ⁵), welches einen beträchtlichen Teil des Unverseifbaren ausmacht. Nach der Methode von *Philippe* und *Henzi* gelangt dasselbe ebenfalls als «Kohlenwasserstoff» zur Wägung. Aus dem Jodverbrauch des Unverseifbaren würde sich der «Squalengehalt» des Teesamenöles zu 0,17 % berechnen, ein Wert, der aber viel zu hoch ist. In Wirklichkeit enthält Teesamenöl nur Spuren von Squalen.

Im Verlaufe unserer Arbeiten ist es uns schliesslich gelungen, die Kohlen-wasserstoffe durch chromatographische Adsorptionsanalyse von den andern Bestandteilen des Unverseifbaren zu trennen und so in der Kohlenwasserstoff-Fraktion den Squalengehalt durch die Jodzahlbestimmung zu ermitteln. Diese neue Methode erlaubt eine Unterscheidung des Olivenöles von den übrigen Olen und ermöglicht eine angenäherte Bestimmung des Olivenöles in beliebigen Ol-Fett-Mischungen. Über weitere Anwendungsmöglichkeiten soll später in einem andern Zusammenhang noch berichtet werden.

1. Methoden zur Isolierung des Unverseifbaren

Für das Unverseifbare erhält man recht unterschiedliche Werte, je nachdem, ob die alkoholische Seifenlösung mit Äther oder Petroläther ausgeschüttelt wird, weil die Löslichkeit der Sterine in den genannten Lösungsmitteln sehr verschieden ist.

Grossfeld und Mitarbeiter ⁶) haben eine Methode zur Bestimmung des sog. sterinarmen Unverseifbaren ausgearbeitet, welches die Kohlenwasserstoffe quantitativ enthält und von den Sterinen nur einen geringen Anteil. Darnach werden 5 g Ol verseift, die alkoholische Seifenlösung wird mit genau 50 cm³ Petroläther versetzt und dann mit Wasser verdünnt. Hernach erfolgt dann Schichtentrennung. Von der Petrolätherschicht werden 25 cm³ abpipettiert, das Lösungsmittel abdestilliert und der Rückstand (= Unverseifbares) gewogen.

Philippe und Henzi (loc. cit.) benutzten die Methode von Grossfeld. In Abänderung derselben trennten sie jedoch die gesamte Petrolätherschicht im Scheidetrichter ab und wogen das von 5 g Ol herstammende Unverseifbare. Bei der Berechnung der Prozente an Unverseifbarem gebrauchen sie in irrtümlicher Weise den von Grossfeld angegebenen und auch begründeten Faktor 17,6, anstatt den Abdampfrückstand mit 20 zu multiplizieren.

Wie aus der Arbeit von Grossfeld und Höll (loc. cit.) hervorgeht, muss dann ein empirisch zu ermittelnder Faktor benützt werden, wenn ein aliquoter Teil der Petrolätherlösung verwendet wird, weil ein Teil des zugesetzten Petroläthers in der alkoholischen Seifenlösung gelöst bleibt. Die Petrolätherschicht macht daher nach dem Ausschütteln nicht mehr ganz 50 cm³ aus.

Wir verwendeten bei unseren Versuchen in gleicher Weise wie Philippe und Henzi immer die gesamte Petrolätherlösung, welche dann durch Ausschütteln mit 50 vol. proz. Alkohol von suspendierten Seifentröpfchen und Alkali befreit wurde. Die Kohlenwasserstoffe gehen dabei quantitativ in die Petrolätherschicht. Dass die Verwendung des von Grossfeld für seine Zwecke brauchbaren «empirischen Faktors» in unserem Falle unrichtig gewesen wäre, soll folgender Versuch zeigen:

5 g Olivenöl wurden vorschriftsgemäss verseift (siehe Methodik am Schluss dieser Arbeit) und das Unverseifbare mit 50 cm³ Petroläther ausgeschüttelt. In 4 verschiedenen Bestimmungen wurden so folgende Mengen Unverseifbares (in mg) erhalten: 34,0, 34,0, 33,7, 35,3 im Mittel, somit = 34,3 mg.

Zu 5 g dieses gleichen Ols wurden 31,7 mg festes Paraffin zugesetzt. Hierauf wurde nochmals das Unverseifbare in gleicher Weise bestimmt. Jetzt wurden 66,0 mg Unverseifbares gefunden, und dieser Wert entspricht genau der theoretischen Menge, wie aus nachstehender Bilanz hervorgeht.

Unverseifbares in 5 g Olivenöl (Mittel)	=	34,3 mg
Zu 5 g Olivenöl wurden zugesetzt festes Paraffin	=	31,7 mg
Summe	=	66,0 mg
Gefunden	==	66,0 mg

Damit dürfte die Richtigkeit unseres Vorgehens bewiesen sein.

2. Qualitativer Nachweis des Squalens – Abscheidung und Identifizierung als Hexahydrochlorid

Wir beschäftigten uns zunächst mit dem qualitativen Nachweis des Squalens in verschiedenen Ölen und Fetten, um uns über die Verbreitung dieses interessanten Kohlenwasserstoffs zu orientieren.

Squalen, mit der Bruttoformel C30H50, ist ein aus 6 Isoprenresten symmetrisch aufgebauter ungesättigter Kohlenwasserstoff mit 6 isolierten Doppelbindungen.

Tsujimoto 7), Chapman 8) und Heilbron 9) erhielten durch Einleiten von trockenem Chlorwasserstoff in die Äther- oder Acetonlösung von Squalen kristallisierte Niederschläge von Squalenhexahydrochlorid (Schmelzpunkt 112 bis 1250 unscharf). Täufel und Mitarbeiter 10) haben versucht, diese Methode zur quantitativen Squalenbestimmung heranzuziehen und geben dafür folgende Arbeitsvorschrift an:

Die Substanz wird in einem Schliffkolben mit der dreifachen Menge eines bei -5° mit Chlorwasserstoff gesättigten Acetons versetzt und in einer Kältemischung stark abgekühlt. Dann leitete man durch ein eingeschliffenes Gaseinleitungsrohr, das bis zum Boden des Kolbens reichte, 3 Stunden lang trockenes Chlorwasserstoffgas ein. Der Niederschlag von Squalenhexahydrochlorid wird dann dreimal mit bei -5° mit Chlorwasserstoff gesättigtem Aceton dekantiert, quantitativ auf ein Glasfilter gebracht und mit kaltem Äther ausgewaschen. Weiteres Einleiten von Chlorwasserstoff in die Mutterlauge lieferte im allgemeinen nur noch geringfügige Niederschläge.

Bei Kontrollversuchen mit reinem Squalen in Mengen von 0,3 bis 1 g betrug die Ausbeute 77—81 % der Theorie. Zur Ermittlung der Erfassungsgrenze stellten Täufel und Mitarbeiter folgende Versuche an: Wechselnde Mengen Squalen wurden in je 3 g mit Chlorwasserstoff gesättigtem Aceton gelöst und während 3 Stunden unter starker Kühlung mit Chlorwasserstoff behandelt. Es ergaben sich folgende Resultate:

2 mg Squalen = Rotfärbung 4 mg » = Dunkelrotfärbung 10 mg » = Schwarzfärbung 20 mg » = Trübung 30 mg » = starke Trübung

Beim letzten Versuch setzte sich der Niederschlag beim Zentrifugieren ab und konnte durch seinen Mikroschmelzpunkt von 119° als Squalenhexahydrochlorid erkannt werden. Die Erfassungsgrenze liegt demnach bei 30 mg.

Zum Nachweis des Squalens in Olen verwendeten Täufel und Mitarbeiter je 2 g des Unverseifbaren. Dieses wurde in 6 g Aceton gelöst und in der angegebenen Weise mit Chlorwasserstoff behandelt. Bei Anwesenheit von Squalen bildeten sich innert 3 Stunden Kristalle von Squalenhexahydrochlorid. Täufel und Mitarbeiter ¹¹) haben auf diese Weise ausser im Olivenöl auch in einigen andern Olen Squalen nachgewiesen. Angaben über die Ausbeute an Hexahydrochlorid oder über den ungefähren Squalengehalt der geprüften Ole werden nicht gemacht.

Eigene Versuche

In Anlehnung an die Vorschrift von Täufel versuchten wir zunächst in verschiedenen Olivenölen den Squalengehalt durch Abscheidung des Hexahydrochlorids zu bestimmen. Wir verarbeiteten allerdings geringere Mengen Öl, in der Regel 25 g, während Täufel und Mitarbeiter pro Bestimmung 2 g Unverseifbares angewendet haben, was ungefähr 300 g Öl entspricht.

Wir lösten das nach Grossfeld isolierte (sterinarme) Unverseifbare nach den Angaben von Täufel in 1—2 cm³ gekühlten und mit Chlorwasserstoff gesättigten Acetons. Unter starker Kühlung wurde weiter Chlorwasserstoff eingeleitet. Die Lösung färbte sich allmählich dunkelbraun, dann schwarz, aber es erfolgte keine Abscheidung von Squalenhexahydrochlorid-Kristallen. Nach 12-

stündigem Stehen in der Kälte war das Reaktionsgemisch so verharzt, dass die Bildung von Kristallen aussichtslos erschien. Durch Variieren der Versuchsbedingungen wurde schliesslich herausgefunden, dass die Kristallisation verhältnismässig rasch erfolgt, wenn trockener Chlorwasserstoff bis zur Sättigung ohne zu starke Kühlung in die Acetonlösung des Unverseifbaren eingeleitet wird. Dabei färbt sich die Lösung nur schwach braun. Durch intensive Kühlung in einer Kältemischung wollten Täufel und Mitarbeiter wahrscheinlich die Bildung von Verharzungsprodukten verhindern. Die Kristallisation des Hexahydrochlorids wird aber durch die starke Kühlung verzögert und bei kleinen Substanzmengen vollständig verhindert.

Folgende Methode hat sich dann als gut brauchbar erwiesen:

Das sterinarme Unverseifbare aus 25 g Olivenöl wird mit wenig Cloroform quantitativ in ein kleines Reagensglas gespült, ein Siedesteinchen hineingegeben und das Chloroform auf einem Wasserbad wieder abgedampft. Da das Unverseifbare sich in Aceton schlecht löst, wurde zum Einbringen in das Reagensglas Chloroform benutzt. Den Trockenrückstand löst man in 1-2 cm³ wasserfreiem Aceton, stellt das Reagensgläschen in ein Becherglas mit kaltem Wasser zum Kühlen, wobei meistens eine Trübung eintritt, und leitet hierauf trockenen Chlorwasserstoff bis zur Sättigung der Acetonlösung ein. Nach 3-4 Minuten wurde das Gläschen verkorkt und bei Zimmertemperatur im Dunkeln aufbewahrt. Gelegentliches Schütteln beschleunigt die Kristallabscheidung, die meistens schon nach wenigen Minuten einsetzt. Nach etwa 4 Stunden ist die Kristallisation beendet. Zu langes Stehen führt zu Verharzungsprodukten und ist nicht empfehlenswert. Der Niederschlag wird durch ein gewogenes Allihnröhrchen oder einen kleinen Glassintertiegel filtriert, mit wenig Wasser quantitativ aufs Filter gebracht und hierauf zunächst mit etwas Aceton und dann mit Äther ausgewaschen. Nach Entfernung des Siedesteinchens kann der Niederschlag bei 1050 getrocknet und gewogen werden. Das Squalenhexahydrochlorid stellt weiss glänzende Blättchen dar, deren Geruch angenehm an Veilchen erinnert. Sein Schmelzpunkt ist unscharf zwischen 110-1250, weil ein isomenes Gemisch vorliegt. 1 g Squalenhexahydrochlorid entspricht 0,652 g Squalen.

Nach dieser Methode wurden eine Reihe von Olen geprüft. Die betreffenden Werte sind in der letzten Spalte der Tabellen 1 und 2 aufgeführt. Bei den untersuchten Olivenölen schwankt der aus dem gefundenen Hexahydrochlorid berechnete Squalengehalt von 0,07 bis 0,29 %. Alle übrigen Speiseöle, mit Ausnahme des Paranussöls, enthalten nur Spuren von Squalen. Wie schon aus den Literaturangaben hervorgeht, ist die Methode nicht quantitativ. Karrer 13) erhielt aus 1 greinem Squalen 0,5 g Hexahydrochlorid, Schmitt 14) aus 5 g Squalen 2,4 g Hexahydrochlorid, was einer Ausbeute von 32,6 bzw. 31,3 % der Theorie entspricht. Täufel und Mitarbeiter (loc. cit.) erhielten, wie bereits erwähnt, Ausbeuten bis zu 80 % der Theorie und können Squalenmengen von 30 mg an mit Sicherheit nachweisen.

Unsere etwas vereinfachte Methode ist ebenso empfindlich. Im Unverseifbaren von 5 g eines Olivenöls, worin ca. 18 mg Squalen enthalten waren, wurde eine geringe Menge von Squalenhexahydrochlorid-Kristallen erhalten, die mittels Mikroschmelzpunktbestimmung identifiziert werden konnte.

Die Ermittelung der Squalenausbeute als Hexahydrochlorid aus dem Unverseifbaren eines Oles stösst auf Schwierigkeiten, weil keine quantitative Methode für die Squalenbestimmung existiert.

Die von uns ausgearbeitete und später beschriebene Methode zur Bestimmung der sog. Squalenzahl erlaubt nun, die Summe aller in einem Ol vorhandenen ungesättigten Kohlenwasserstoffe quantitativ zu erfassen. Wenn ausser Squalen keine andern ungesättigten Kohlenwasserstoffe vorhanden sind, so gibt die Squalenzahl den Squalengehalt eines Ols in mg⁰/₀ an. Nach Marcelet ¹⁵) kommen aber im Olivenöl neben Squalen noch geringe Mengen anderer ungesättigter Kohlenwasserstoffe vor. Der wirkliche Squalengehalt des Olivenöls wird daher etwas niedriger sein, als es die Squalenzahl angibt. Vergleicht man die aus dem gefundenen Hexahydrochlorid berechneten Squalengehalte mit den entsprechenden Squalenzahlen in Tabelle 6, so erkennt man, dass die Ausbeute an Hexahydrochlorid nur zirka 50—70 % der Theorie ausmacht. Mögliche Verluste sind einerseits unvollständige Umsetzung des Squalens mit Chlorwasserstoff, anderseits eine gewisse Löslichkeit des Squalenhexahydrochlorids in den Lösungsmitteln Aceton und Äther.

Wir versuchten, die Löslichkeit des Hexahydrochlorids in Aceton und in Äther zu bestimmen, um die «Lösungsverluste» einigermassen abschätzen zu können. Dabei ergab sich gleich eine neue Komplikation: Heilbron (loc. cit.) hat die interessante Beobachtung gemacht, dass beim Einleiten von Chlorwasserstoff in eine Squalenlösung 2 isomere Squalenhexahydrochloride entstehen, die sich durch verschiedene Löslichkeiten und Schmelzpunkte unterscheiden. Nach Karrer (loc. cit.) ist das eine Hexahydrochlorid, welches etwa ½ bis ½ der Gesamtmenge ausmacht, in heissem Aceton so gut wie unlöslich und schmilzt aus Essigester umkristallisiert bei 143—145°. Das andere Hexahydrochlorid löst sich in warmem Aceton leichter und kann daraus umkristallisiert werden. Es zeigt den Schmelzpunkt 108—110°. Zu unserer Orientierung über die ungefähren Löslichkeitsverhältnisse gingen wir folgendermassen vor: Wir trennten das aus dem Unverseifbaren von Olivenöl erhaltene Squalenhexahydrochlorid durch fraktioniertes Lösen mit kaltem Aceton in zwei Fraktionen.

Diese unterschieden sich deutlich durch ihre Löslichkeit in kaltem Äther und Aceton, sowie durch die Schmelzpunkte. Wir fanden nachstehende Werte:

	Leichter lösliche Fraktion I	Schwerer lösliche Fraktion II
 Löslichkeit bei 15^o C in 100 Teilen wasserfreiem Aceton 	0,55 g	0,15 g
2. Löslichkeit bei 15°C in 100 Teilen Äther		0,16 g
3. Löslichkeit in mit Chlorwasserstoff gesättigtem Aceton	_	0,16 g
Schmelzpunkt (unscharf)	950	126^{0}

Infolge der Löslichkeit des Hexahydrochlorids in Aceton und Äther entstehen, vor allem bei geringen Squalenmengen, recht erhebliche Verluste. In der Regel verwendeten wir zum Auswaschen der Niederschläge 10—15 cm³ Lösungsmittel. Von der löslicheren Modifikation, die nach Karrer vorherrscht, könnten demnach etwa 50—80 mg in Lösung gehen. Für die Squalenbestimmung wurden jeweils 25 g Olivenöl (mittlerer Squalengehalt zirka 0,3 %) verarbeitet, die theoretisch etwa 115 mg Hexahydrochlorid ergeben sollten. Man erkennt also, dass bei diesem Verfahren Verluste bis zur Hälfte des vorhandenen Squalens möglich sind. Die Methode würde genauere Werte ergeben, aber auch unhandlicher werden, wenn man von grösseren Olmengen ausginge. Bei Olen mit geringen Squalengehalten würde sie aber auch in diesem Falle nur qualitative Resultate liefern oder bei negativem Ausfall der Probe die Abwesenheit geringer Squalenmengen noch keineswegs beweisen.

Wir haben auch versucht, das Squalen als Hexahydrobromid abzuscheiden und zu bestimmen. Das betr. Unverseifbare wurde in möglichst wenig Aceton gelöst und in die eisgekühlte Lösung wasserfreier Bromwasserstoff eingeleitet. Das Squalenhexahydrobromid kristallisierte sehr schön und in grossen Mengen aus. Beim Abfiltrieren und Auswaschen zeigte sich aber, dass diese Verbindung in Äther und in andern Lösungsmitteln noch leichter löslich ist als das Hexahydrochlorid, wodurch grosse Verluste entstanden. Die Methode wurde daher wieder verlassen.

Bedeutend empfindlicher konnte die Squalenhexahydrochlorid-Methode dadurch gestaltet werden, dass der Chlorwasserstoff nicht direkt in die Lösung des Unverseifbaren, sondern in die durch chromatographische Adsorptionsanalyse gereinigte Kohlenwasserstoff-Fraktion eingeleitet wurde (siehe Abschnitt 6). Die Kohlenwasserstoffe wurden in Chloroform gelöst und in ein kleines Reagenzglas gespült. Das Chloroform wurde hierauf auf dem Wasserbad abgedampft, der Rückstand in wenig Aceton gelöst und Chlorwasserstoff eingeleitet. Das Hexahydrochlorid kristallisierte nach einiger Zeit aus, ohne dass gleichzeitig dunkel gefärbte Verharzungsprodukte entstanden.

Beispiel:

100 g Erdnussöl ergaben	165	mg	Unverseifbares
darin	62,1	mg	Kohlenwasserstoffe
nach dem Einleiten von HCl	20,4	mg	Squalenhexahydrochlorid
entsprechend	13,3	mg	Squalen.

Unsere Versuche haben ergeben, dass das Squalen namentlich in pflanzlichen Olen weit verbreitet ist. Täufel und Heimann (loc. cit.) prüften 23 verschiedene Ole auf Squalen, und nach ihren Untersuchungen findet es sich mit Sicherheit in folgenden 7 Olen: Olivenöl, Weizenkeimlingöl, Soyaöl, Leinöl, Erdnussöl, Walöl (frisch), Dorschlebertran (roh) und im Hefefett. Wir konnten Squalen ausserdem auch in Paranussöl, Teesamenöl, Haselnussöl und in Baumwollsamenöl nachweisen und als Squalenhexahydrochlorid identifizieren. Vermutlich sind Spuren von Squalen in allen pflanzlichen Olen enthalten, worauf die Kohlenwasserstoffgehalte und besonders die Squalenzahlen hindeuten. Die Besprechung dieser Resultate erfolgt später.

3. Bestimmung der Kohlenwasserstoffe und des Rohsqualens

Nach der Methode von Grossfeld, die später von Philippe und Henzi übernommen worden ist, wird zunächst das sterinarme Unverseifbare isoliert. Aus dem Halogenverbrauch des Unverseifbaren berechnet sich dann der Squalengehalt. Grossfeld bezeichnet den so erhaltenen Wert vorsichtigerweise als «Rohsqualen», während Philippe und Henzi stets von Squalen schreiben. Es ist ohne weiteres einleuchtend, dass andere im Unverseifbaren vorkommende Stoffe, die ebenfalls Halogen verbrauchen, den Rohsqualengehalt erhöhen müssen.

Wir haben zunächst nach der von Philippe und Henzi modifizierten Grossfeld'schen Methode gearbeitet und in zahlreichen Olen das Unverseifbare, sowie die Jodzahl des Unverseifbaren einerseits nach Hanus, andererseits nach Margosches bestimmt. Die so erhaltenen Werte für zahlreiche Olivenöle und verschiedene andere Ole sind in den Tabellen 1 und 2 zusammengestellt. Der Rohsqualengehalt wurde in Übereinstimmung mit Grossfeld aus dem Jodverbrauch nach Margosches berechnet.

Die Werte für das sterinarme Unverseifbare, bei einmaliger Verseifung, schwanken bei Olivenöl zwischen 0,47 und 0,78 %. (Die entsprechenden Zahlen in den Tabellen 6 und 7 sind in der Regel etwas niedriger, weil dort das nach zweimaliger Verseifung gefundene sterinarme Unverseifbare angegeben wird.) Die meisten andern Ole enthalten weniger Unverseifbares. Nur Traubenkernöl, Rapsöl, Sesamöl und Paranussöl geben ungefähr gleiche Zahlen wie Olivenöle.

Die Jodzahl des Unverseifbaren liegt bei Olivenöl durchwegs höher als bei den übrigen Olen (232—299). Das Unverseifbare des Palmöls, des Teesamenund des Erdnussöls weist ebenfalls ziemlich hohe Jodzahlen auf, die nahe an

Tabelle 1

Nr.	Bezeichnung der Olivenöle	Sterin- armes Unver- seifb.*)		hl des eifbaren nach	Roh- squalen nach Grossfeld	Squalen ber, aus Hexahydro chlorid
		0/0	sches	Hanus	0/0	0/0
	Französische:					
3	vierge	0,78	232	258	0,49	0,29
4	vierge décantée	0,56	244	-	0,37	0,18
6	naturelle	0,47	281		0,36	0,11
	Italienische:					
7	ohne nähere Bezeichnung	0,63	256	245	0,44	0,07
8	ohne nähere Bezeichg. C-P	0,49	269	298	0,35	0,13
10	filtriert	0,68	255	267	0,47	0,14
11	extrafein	0,53	262	299	0,37	0,18
12	ohne nähere Bezeichnung	0,61	236	267	0,39	0,12
	Marokkanische:					3.7
15	vierge Type Nice	0,47	270	298	0,34	0,08
17	Mischung div. Provenienzen	0,68	272	270	0,50	0,16
	do. 14 Tage an der Sonne					
	belichtet	0,60	267	258	0,43	0,12
18	Ohne Provenienzangabe (M)	0,55	255	266	0,38	0,11
21	Griechische:	1	11 11	1		
	ohne nähere Bezeichnung	0,51	292	-	0,40	0,11

^{*)} nach einmaliger Verseifung

Tabelle 2

Nr.	Bezeichnung verschiedener Speiseöle	Sterin- armes Unver- seifb.	Jodza Unverse nach Margo- sches	hl des eifbaren nach <i>Hanus</i>	Roh- squalen nach Grossfeld	Squalen ber.aus Hexahydro- chlorid
		1 3/0	sches		1 70	1 70
1	Baumwollsamenöl	0,23	174	159	0,11	0,019
2	Erdnussöl	0,20	153	169	0,08	Spur
3	Erdnussöl, selbst extrahiert	0,15	176		0,07	_
5	Haselnussöl	0,15		152	0,06	Spur
6	Leinöl	0,42	163	_	0,18	_
7	Mohnöl	0,18	86	_	0,04	-
8	Palmöl, roh	0,27	190	1	0,14	_
9	Palmöl, gebleicht	0,10	214	_	0,06	_
10	Paranussöl	0,40	164		0,18	0,094
12	Rapsöl	0,54	68		0,10	_
13	Sesamöl	0,79	72	_	0,15	_
15	Sonnenblumenkernöl	0,20	136		0,07	_
16	Soyaöl	0,25	143	168	0,10	0,0090
17	Teesamenöl	0,38	156	181	0,16	0,0077
18	Teesamenöl	0,46	144	197	0,18	0,0068
19	Traubenkernöl	0,55	73		0,08	-
20	Walnussöl	0,09	168		0,04	
21	Walnussöl	0,10	110		0,03	

diejenigen des Olivenöls herankommen, während die Jodzahlen des Unverseifbaren des Mohn-, Raps-, Traubenkernöls und Sesamöls unter 100 liegen. Die nach zwei ganz verschiedenen Methoden gefundenen Jodzahlen stimmen im grossen und ganzen befriedigend überein. Wie wir im nächsten Abschnitt zeigen werden, sind die nach den beschriebenen Methoden erhaltenen Werte recht unsicher, weil die Jodzahl des Unverseifbaren sehr stark vom angewendeten Halogenüberschuss abhängt. Bei dem gleichen Unverseifbaren sind, je nach Einwaage und Halogenzusatz, Unterschiede bis zu 30 Einheiten möglich.

Der Gehalt an Rohsqualen schwankt bei den untersuchten Olivenölen zwischen 0,34 und 0,50 %. Alle übrigen Speiseöle besitzen, wie bereits Grossfeld und Mitarbeiter festgestellt und Philippe und Henzi bestätigt haben, niedrigere Rohsqualenwerte. In der Tabelle 3 sind die von den genannten Autoren und die von uns gefundenen Werte zusammengestellt. Die Übereinstimmung ist durchwegs recht gut.

Vergleicht man die Werte für Rohsqualen mit den aus dem Hexahydrochlorid berechneten Squalengehalt (Tabelle 1 und 2 letzte Spalte), so fallen sofort die grossen Unterschiede zwischen den beiden Resultaten auf. Der aus dem

Tabelle 3 Rohsqualengehalt verschiedener Ole

	Grossfeld und Timm		Eigene Werte	
Olivenöle, unverdorben	0,410,54	0,32—0,45	0,34-0,50	
Rüböl	0,05		_	
Erdnussöl	0,05-0,07	0,04-0,09	0,08	
Sesamöl	0,10	0,07	0,15	
Leinöl	0,08	_	0,18	
Aprikosenöl	0,02		_	
Buchnussöl	—	0,03-0,04		
Baumwollsamenöl	_	0,07	0,11	
Haselnussöl	- 7	0,05-0,06	0,06	
Mohnöl	_	0,03	0,04	
Nussöl		0,04	0,04	
Palmöl		0,14	0,06-0,14	
Rapsöl	<u></u>	0,05	0,10	
Soyaöl		0,06	0,10	
Sonnenblumenkernöl		0,07-0,09	0,07	
Traubenkernöl	122 J. T. 18 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	0,10	0,08	
Paranussöl		7 <u>1</u> 7	0,18	
Teesamenöl			0,16-0,18	

Hexahydrochlorid berechnete Wert macht nur 26—62 % des Rohsqualens aus. Diese Zahlen sind aus den früher mitgeteilten Gründen zu niedrig. Der Rohsqualenwert dagegen ist eher zu hoch, weil ausser Squalen, wie gesagt, noch andere Verbindungen im Unverseifbaren ebenfalls Jod verbrauchen.

Die Unterschiede im Rohsqualengehalt zwischen Olivenöl einerseits und den übrigen Speiseölen anderseits sind nicht immer derart gross, dass auf Grund dieser Kennzahl entschieden werden könnte, ob in einem beliebigen Ölgemisch Olivenöl enthalten ist oder nicht. Die Rohsqualengehalte des Palmöls, Raps-, Soya-, Baumwollsamenöls und vor allem des Teesamenöls sind recht beträchtlich. Im Teesamenöl wird beispielsweise etwa halb so viel Rohsqualen gefunden wie im Olivenöl. In einer Mischung würde daher jedes Prozent Teesamenöl zirka 0,5 % Olivenöl vortäuschen.

Wie bereits in der Einleitung erwähnt wurde, wird die Jodzahl des Teesamenöl-Unverseifbaren durch andere Stoffe (Theasin), die dem Squalen nicht verwandt sind, stark erhöht. Durch chromatographische Adsorptionsanalyse gelingt es nun, die Kohlenwasserstoffe von den übrigen Bestandteilen des Unverseifbaren zu trennen. Die Jodzahlbestimmung in der KohlenwasserstoffFraktion liefert so bei allen Speiseölen viel niedrigere Squalenwerte, die sich stark von denjenigen des Olivenöls unterscheiden.

Bevor wir die Versuche über die chromatographische Trennung beschreiben, möchten wir einige theoretische Erörterungen über die Jodzahlbestimmung im Unverseifbaren anbringen. Dies erscheint uns deshalb notwendig, weil sich die Literaturangaben hierüber teilweise widersprechen. Auch für die später beschriebene Squalenbestimmung in der Kohlenwasserstoff-Fraktion ist es notwendig, die Grundlagen der Methode und die Fehlermöglichkeiten zu kennen.

4. Theorie der Jodzahlbestimmung

Eine heute nicht mehr wegzudenkende Kennzahl auf dem Gebiete der Fette und Ole ist die Jodzahl, welche gemäss ihrer Definition angibt, wieviel Halogen, ausgedrückt in % Jod, ein Fett oder eine Fettsäure aufzunehmen vermag. Dadurch wird ihre Anwendung eindeutig auf Glycerinester oder Fettsäuren festgelegt. Obgleich bei dieser begrenzten Möglichkeit heute noch nicht alle Vorgänge abgeklärt sind, ist immer wieder versucht worden, das Jodadditionsvermögen allgemein zur weiteren Kenntnis organischer ungesättigter Verbindungen heranzuziehen.

In der bald hundertjährigen Geschichte der «Halogenzahlbestimmung» (im Jahre 1854 erstmalig von Knop mit Brom benutzt) haben sich zahlreiche Forscher sowohl mit der rein praktischen Arbeitsweise, als auch mit der Ergründung der sich dabei theoretisch abspielenden Vorgänge befasst. Es mögen hier zunächst nur einige derartige Arbeiten erwähnt sein. Es waren vor allem Wijs 16), Ingle 17) und Margosches und Baru 18), welche sich in dieser Beziehung hervorgetan haben.

Wijs stellte u. a. den Grundsatz auf, dass sich in den Fällen, wo sich unterjodige Säure bilden kann, neben der Addition von Chlorjod auch eine Addition von unterjodiger Säure einhergeht. Früher hatten Schweizer und Lungwitz 19) angenommen, das Entstehen von Säure sei auf eine nebenherlaufende Substitution durch Jod zurückzuführen, welche neben der Addition stattfände. Auch Margosches und Baru haben festgestellt, dass bei Benützung einer Lösung von Jodmonochlorid in Tetrachlorkohlenstoff ausser einer Addition eine Substitution von Halogen stattfindet.

Neben diesen Möglichkeiten scheint aber auch die Struktur gewisser ungesättigter Fettsäuren bei der Jodzahlbestimmung eine Rolle zu spielen. So haben Ponzio und Gastaldi 20) gezeigt, dass je weiter die Doppelbindung von der Carboxylgruppe entfernt ist, um so mehr nähert sich die Jodzahl dem theoretischen Wert. Während z.B. bei der gewöhnlichen Olsäure CH3—(CH2)7—CH = CH—(CH2)7—COOH sofort die richtige Jodzahl nach Wijs gefunden wurde (89,96), erhielten sie bei der 2,3-Olsäure zunächst nur JZ = 18,0, die aber nach 70stündiger Einwirkung auf 86,8 anstieg.

Als weiterer wichtiger Umstand bei der Jodzahlbestimmung wurde der Halogenüberschuss erkannt. Während derselbe bei der Hübl'schen Methode immer etwa das Doppelte der theoretisch erforderlichen Menge Jod betragen soll, muss bei der Wijs'schen Methode die Menge so gewählt werden, dass etwa 70 % der zugesetzten Halogenmenge im Überschuss verbleiben und nur etwa 30 % zur Addition verbraucht werden. Bei der Hanus'schen Methode genügt ein Halogenüberschuss von 20 % des Gesamthalogens.

Noch ein Punkt, der bei Jodzahlbestimmungen zu berücksichtigen wäre, ist die Vermeidung jeglicher Lichteinwirkung, weil dabei Substitutionserscheinungen beobachtet worden sind.

Alle die oben beschriebenen Möglichkeiten und Einflüsse beziehen sich auf das Gebiet der Fette und Ole. Wie weit grössere Schwierigkeiten müssen erwartet werden, wenn Jodzahlbestimmungen ausserhalb dieses meist hinreichend bekannten Gebietes zu irgendwelchen quantitativen Bestimmungen herangezogen werden.

In seinen «Methoden der Massanalyse» schreibt Beckhurts ²¹) hierüber folgendes:

«Die Jodzahlen anderer ungesättigter Verbindungen sind bei weitem nicht so konstant, und die relative Unabhängigkeit von der Art der angewendeten Lösung und den Versuchsbedingungen ist viel geringer als bei den Fetten und Olen. Manche geben Zahlen, welche ziemlich der Theorie entsprechen, andere lagern nur sehr wenig Halogen an.»

Wertvolle Beiträge in dieser Beziehung lieferten Ingle ¹⁷) und Fahrion ²²). Ingle hat festgestellt, dass die Jodzahl ungesättigter Verbindungen abhängig ist von der Gegenwart aromatischer und negativer Gruppen, welche der Äthylenbindung benachbart sind. Die Geschwindigkeit der Halogenanlagerung wird mit zunehmendem negativen Charakter der Gruppen vermindert. Fahrion berichtet über ein auffallendes Verhalten der Phenole, speziell des Eugenols bei der Jodzahlbestimmung. Während dasselbe mit Hübl'scher Jodlösung 6 Äquivalente Jod verbraucht, bei welcher der Ring an der Addition teilnimmt, werden mit Waller'scher Lösung (Hübl'sche Jodlösung mit Zusatz einer gewissen Menge konz. HCl) 2 Äquivalente unter alleiniger Reaktion der Seitenkette aufgenommen. Nach Fahrion scheinen freie Phenole wie ungesättigte cyclische Ketone, ihre Ester wie gesättigte Verbindungen zu reagieren. Ferner hat Marcusson ²³) gefunden, dass Cholesterin und Wollfettprodukte bei dem Wijs'schen Verfahren auffallend hohe Jodzahlen ergeben.

Einen interessanten Einblick in die Schwierigkeiten, welche Jodzahlbestimmungen in Anwesenheit unbekannter Stoffe ergeben, bekommen wir aus der folgenden Gegenüberstellung von Jodzahlen im Unverseifbaren des Olivenöles, wie sie von verschiedenen Autoren gefunden wurden.

Jodzahl des Unverseifbaren von Olivenöl

Bolton und Williams 27)	(1930)	197 - 206
Loew 24)	(1931)	125 - 168
Ricca und Lamonica 25)	(1932)	60 - 134
Grossfeld und Timm	(1939)	188 - 242
Philippe und Henzi	(1944)	240 - 284

Wie wir heute wissen, enthält das Unverseifbare des Olivenöls, zum Unterschiede von anderen Ölen und Fetten, bis zu 70 % des ungesättigten Kohlenwasserstoffes Squalen, welcher 12 Atome Jod anzulagern vermag. Im Jahre 1935 wurde er zum ersten Male von Thorbjarnarson und Drummond 26) im Olivenöl nachgewiesen. Aber schon früher war es besonders Bolton und Williams 27) aufgefallen, dass das Unverseifbare des Olivenöls höhere Jodzahlen ergab als das Unverseifbare anderer Ole, was auch von andern Forschern bestätigt worden war. Auffallend an diesen Jodzahlen ist nun, dass sie, je nach Methode, ausserordentlich grosse Schwankungen aufweisen, weshalb man sie zur Charakterisierung des Olivenöls zunächst wieder fallen liess. Ähnliche Erfahrungen machte Grossfeld, als er für seine «Neue Kennzahl für Olivenöl» vor die Wahl gestellt war, sich entweder für die Methode Hanus oder diejenige von Margosches zu entscheiden. Grossfeld gelangt dann zu der Feststellung: «Die Erhöhung der Jodzahl nach Hanus gegenüber Margosches ist auch hier deutlich und stark.» Er fand für diese und andere Unstimmigkeiten selbst keinen plausiblen Grund und gibt daher dem Wunsche Ausdruck: «In theoretischer Hinsicht wäre es interessant, der Ursache dieser Unterschiede nachzugehen.» Es mag ihm wohl aufgefallen sein, dass die Frage des Jodüberschusses von einer gewissen Bedeutung sein könnte, weil er in einer Fussnote anregt: «bei einem grösseren Rückstand als 30 mg ist die Jodzahlbestimmung mit entsprechend grösseren Reagenzienmengen auszuführen». Auch Täufel, Thaler und Widmann (loc. cit.) haben bei ihren Versuchen zur quantitativen Bestimmung des Squalens mittelst der Jodzahl beachtliche Unstimmigkeiten festgestellt, zu welchen sie sich wie folgt äussern:

«Aus diesen Versuchen geht hervor, dass Ergosterin, wie auch F. Reindel und E. Walter ²⁸) gezeigt haben, durch Jod stark substituiert wird. Bei einer Einwaage, die der theoretischen Einwaage von Squalen etwa entsprechen würde, erhält man bei Ergosterin eine höhere Jodzahl, als bei Squalen selbst. Man kann also auf diese Weise Squalen neben Ergosterin nicht erkennen. Ähnlich verhalten sich auch andere Sterine.»

Alle die hier aufgezählten Beobachtungen und die Äusserungen Grossfelds veranlassten uns, für die Squalenbestimmung in Olivenöl auf Grund der Jodzahl die Versuchsbedingungen eingehender zu prüfen und genau festzulegen.

5. Bestimmung der Jodzahl im Unverseifbaren nach verschiedenen Methoden

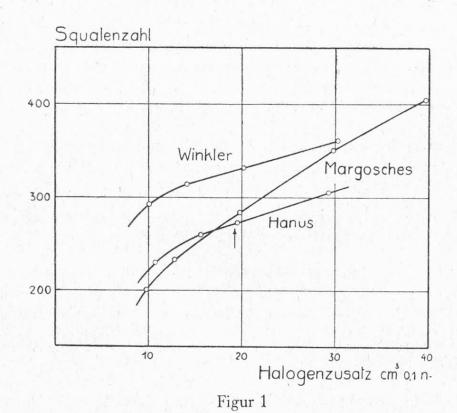
Um die Brauchbarkeit einiger Jodzahlmethoden für die Bestimmung des Squalens zu überprüfen und um den Einfluss des Halogenüberschusses auf die Resultate kennen zu lernen, stellten wir 3 Versuchsreihen an. Wir benutzten dazu nicht das Unverseifbare, welches ein Gemisch verschiedenartiger Stoffe darstellt, sondern eine durch chromatographische Adsorptionsanalyse gereinigte Kohlenwasserstoff-Fraktion aus dem Unverseifbaren eines Olivenöls. Diese bestand zur Hauptsache aus Squalen, neben wenig festen, gesättigten und geringen Mengen anderer, ungesättigter Kohlenwasserstoffe. Um bei allen Versuchen genau gleiche Substanzmengen zur Reaktion zu bringen, wurden aliquote Teile einer Stammlösung der Kohlenwasserstoffe verwendet. Diese enthielten in je 5 cm³ 32,1 mg Kohlenwasserstoffe und entsprachen je 10,0 g Olivenöl. Wir prüften 3 ganz verschiedene Jodzahlmethoden, die sich sowohl durch das verwendete Fettlösungsmittel als auch durch die Zusammensetzung der Halogenlösung unterscheiden. Es waren die Methoden von Hanus, von Margosches und von Winkler.

Je 5 cm³ obiger Stammlösung wurden mit wechselnden Mengen Halogenlösung versetzt und nach der angegebenen Reaktionszeit das überschüssige Halogen zurücktitriert. Aus dem Halogenverbrauch wurde die Squalenzahl des Olivenöls berechnet. Squalenzahl = mg Squalen in 100 g Öl. 1 cm³ 0,1n-J entspricht 3,42 mg Squalen. (Siehe Arbeitsvorschrift am Schluss dieser Arbeit.)

Bei den einzelnen Methoden wurde folgendermassen vorgegangen:

- a) Methode Hanus (Reagenslösung = Jodmonobromid in Eisessig)
 Zu der in 5 cm³ Chloroform gelösten Substanz wurden steigende Mengen (5,5 bis 15 cm³) 0,2n-Jodmonobromidlösung zugegeben und die gut verschlossenen Kolben 15 Minuten im Dunkeln aufbewahrt. Nun wurden 5 cm³ 10 % ige KJ-Lösung und 50 cm³ Wasser zugegeben und das ausgeschiedene Jod mit 0,1n-Na₂S₂O₃-Lösung unter Verwendung von Stärke als Indikator titriert.
- b) Methode Margosches (Reagenslösung = alkoholische Jodlösung)

 Die Substanz wurde in 5 cm³ absolutem Alkohol gelöst und aus einer Bürette langsam 0,2n-alkoholische Jodlösung zugegeben (5,5 bis 20 cm³). Der Kolben wurde gut umgeschwenkt, dann wurden 50 cm³ Wasser zugesetzt, wiederum gut umgeschwenkt und 5 Minuten im Dunkeln stehen gelassen. Hierauf wurde der Jodüberschuss mit 0,1n-Na₂S₂O₃ zurücktitriert.
- c) Methode Winkler (Reagenslösung = 0,2n-KBrO3 bzw. freies Brom)


 Die Substanz wurde in 5 cm³ Tetrachlorkohlenstoff gelöst, mit 0,2n-KBrO3-Lösung (5 bis 15 cm³) und 0,5 bis 1 g KBr versetzt und hierauf mit 10 cm³ 10 % iger HCl angesäuert, wodurch eine dem Bromat äquivalente Menge Brom in Freiheit gesetzt wird. Die gut verschlossenen Kolben wurden während 2 ½ Stunden im Dunkeln stehen gelassen, dann 5 cm³ 10 % ige KJ-Lösung zugesetzt und das ausgeschiedene Jod mit 0,1n-Na₂S₂O₃ titriert.

Die nach diesen 3 Methoden gefundenen Resultate sind in der Tabelle 4 aufgeführt und in der Fig. 1 graphisch dargestellt. Die Jodzahl, bzw. Squalenzahl, nimmt mit steigendem Halogenüberschuss bei allen 3 Methoden stetig,

Tabelle 4

Einwaage: 32,1 mg Kohlenwasserstoffe, entsprechend 10,0 g Olivenöl, gelöst in 5 cm³ Lösungsmittel

M	ethode Hanu	is	Methode Margosches			Methode Winkler			
Halogen- Zusatz cm³ 0,1n	Halogen- Verbrauch cm ³ 0,1n	Squalen- Zahl	Halogen- Zusatz cm³ 0,1n	Halogen- Verbrauch cm ³ 0,1n	Squalen- Zahl	Halogen- Zusatz cm³ 0,1n	Halogen- Verbrauch cm³ 0,1n	Squalen- Zahl	
10,73	6,72	230	9,78	5,88	201	10,10	8,57	293	
15,60	7,60	260	12,78	6,82	233	14,14	9,19	314	
19,50	8,00	273	19,85	8,30	2.84	20,19	9,71	332	
29,25	8,93	306	29,78	10,28	351	30,29	10,55	361	
	1		39,70	11,85	405				

wenn auch etwas verschieden stark zu. Wo der theoretische Wert der Squalenzahl liegt, lässt sich nicht genau feststellen, da wir für unsere Versuche leider kein reines Squalen zur Verfügung hatten. Die verwendete Kohlenwasserstoff-Fraktion (32,1 mg entsprechend 10 g Öl) bestand zwar zum grössten Teil,

schätzungsweise zu 80—90 %, aus Squalen. Wenn sie 100 % reines Squalen enthielte, würde die theoretische Squalenzahl 321 betragen (mg Squalen in 100 g Ol). Höhere Werte als 321 sind demnach sicher unrichtig. Bei allen Methoden werden bei entsprechend grossem Halogenzusatz noch beträchtlich höhere Werte erhalten. Daraus müssen wir schliessen, dass neben der Halogen-Addition an die Doppelbindungen stets auch noch Substitution erfolgt. Dieselbe ist beim Bromierungsverfahren nach Winkler schon bei einem relativ geringen Halogen-überschuss recht beträchtlich. Die Kurve biegt aber dann ab und steigt nahezu linear, aber nicht sehr steil weiterhin an.

Ungünstiger liegen die Verhältnisse bei der von Grossfeld empfohlenen und auch von Philippe angewandten Methode Margosches. Die Kurve steigt mit zunehmendem Halogenüberschuss sehr steil an. Ein etwas grösserer oder geringerer Überschuss verändert die Squalenzahl so stark, dass die Methode für unsere Zwecke unbrauchbar ist. Am besten geeignet schien uns die Methode Hanus. Aus der Kurve in der Fig. 1 ist ersichtlich, dass die Squalenzahl auch hier merklich vom Halogenüberschuss abhängig ist. Wird aber die Reagensmenge der Einwaage angepasst, so erhält man gut reproduzierbare Werte.

Wir haben bei unseren Versuchen den Halogenzusatz willkürlich immer so bemessen, dass für jedes mg Substanz 0,3 cm³ 0,2n-Jodmonobromidlösung zugesetzt wurde. Der Reagensüberschuss beträgt für den Fall, dass reines Squalen vorliegt, 105 %. In unserem Beispiel, wo 32,1 mg Substanz verwendet wurden, müsste demnach die zugesetzte Halogenmenge 9,63 cm³ 0,2n = 19,26 cm³ 0,1n betragen. Diese Stelle ist in Fig. 1 mit einem Pfeil markiert. Die entsprechende Squalenzahl beträgt nach der Kurve = 272.

Die eben beschriebenen Versuche zeigen, wie stark die Jodzahlen des Unverseifbaren je nach Methode und Reagensüberschuss schwanken können. Die grossen Unterschiede zwischen den von verschiedenen Autoren gefundenen Werten werden dadurch erklärt.

6. Aufteilung des Unverseifbaren durch chromatographische Adsorptionsanalyse

Das Unverseifbare der Öle stellt ein Substanzgemisch dar, welches durch die üblichen präparativen Methoden nicht quantitativ in die einzelnen Bestandteile getrennt werden kann. In solchen Fällen leistet meistens die chromatographische Adsorptionsanalyse als Trennungsmethode besonders gute Dienste. Das Verfahren ermöglicht die Erfassung auch sehr kleiner Substanzmengen neben grossen Mengen anderer Stoffe.

Thorbjarnarson und Drummond 30) wandten das Verfahren zum ersten Male zur Zerlegung des Unverseifbaren des Olivenöles an. Sie teilten das Unverseifbare zunächst mit Methylalkohol in vier verschieden schwer lösliche Fraktionen. Der am leichtesten lösliche Anteil wurde in einer Mischung aus 90 %

Petroläther und 10 % Benzol aufgenommen und durch Al₂O₃ filtriert. Das Filtrat hinterliess nach dem Abdampfen des Lösungsmittels ein farbloses, geruchloses Ol, bestehend aus Squalen, vermischt mit wenig sauerstoffhaltigen Verunreinigungen und etwas gesättigten Kohlenwasserstoffen.

Später wandten *Drummond*, *Santos Ruiz* und *Thorbjarnarson* ³¹) das Verfahren auf die Untersuchung des Unverseifbaren verschiedener Fischöle an.

Nach den angestellten Versuchen gehen bei Verwendung von Al₂O₃ als Adsorbens und Petroläther als Lösungsmittel gesättigte Kohlenwasserstoffe, schwach ungesättigte Kohlenwasserstoffe und ein Teil der Kohlenwasserstoffe vom Typus des Squalens schnell ins Filtrat (Durchlauf). Ungesättigte Alkohole suchen die untersten Schichten der Säule auf. Sterine finden sich meist weiter oben in einem gut ausgeprägten Ring. Mit den Sterinen zusammen oder in ihrer Nähe werden die Lipochrome vom Xanthophyltypus adsorbiert. Gesättigte Alkohole sammeln sich am obern Ende der Säule an. Das Verhalten der einzelnen Bestandteile hängt jedoch stark von der chemischen Art der gleichzeitig anwesenden Substanzen ab.

Täufel, Thaler und Widman (loc. cit.) haben diese Versuche mit dem Unverseifbaren des Hefefettes wiederholt, kamen jedoch zu keinen befriedigenden Resultaten. Sie haben hierauf die Versuchsbedingungen stark variiert. Als Adsorptionsmittel wurden neben Al2O3 auch Tierkohle, Carbo medicinalis und Bleicherde verwendet. Als Lösungsmittel wurden Benzol, Hexan, Äther und Äther + Benzol 1:1 ausprobiert. Diese Versuche führten ebenfalls nicht zum Ziel. Die Filtrate enthielten entweder nur einen Teil des Squalens oder waren stark mit Sterin verunreinigt. Täufel und Mitarbeiter kommen zum Schluss, dass eine annähernd quantitative Trennung des Squalens und verwandter Kohlenwasserstoffe von Sterinen und den übrigen Verbindungen des Unverseifbaren mittels der chromatographischen Adsorptionsanalyse nicht möglich ist. Im Modellversuch liess sich zwar reines Squalen nach obiger Methode annähernd quantitativ von reinem Phytosterin trennen. Im Unverseifbaren sollen aber Stoffe vorkommen, die den Adsorptionsvorgang stören.

Wir haben bereits früher ⁵) ein Verfahren beschrieben, wonach eine praktisch quantitative Trennung der Kohlenwasserstoffe von den Sterinen und übrigen Bestandteilen des Unverseifbaren im Oliven- und Teesamenöl gelingt.

Wichtig sind dabei zwei Punkte, welche unbedingt beachtet werden müssen:

- 1. Vor der chromatographischen Adsorption muss das Unverseifbare ein zweites Mal mit alkoholischer Kalilauge verseift, dann in Petroläther aufgenommen und vollständig alkalifrei ausgewaschen werden. Spuren von unverseiften Fettstoffen oder Seife stören nämlich den Adsorptionsvorgang.
- 2. Als Adsorbens muss ein speziell «aktiviertes» Al₂O₃ mit besonders gutem Adsorptionsvermögen verwendet werden.

Die nachstehenden Versuche geben Aufschluss über diese Verhältnisse:

Störender Einfluss von unverseiften Fettstoffen

Das von Alkali und Seife befreite Unverseifbare von je 50 g Teesamenöl wurde im ersten Versuch nach einmaliger, im zweiten Versuch nach zweimaliger Verseifung in Benzol gelöst und durch eine Säule von 15 g Aluminiumoxyd filtriert. Alle Versuchsbedingungen, wie Adsorbens- und Lösungsmittelmenge, wurden konstant gehalten. Wie aus nachstehender Tabelle hervorgeht, ist die Trennung im ersten Versuch sehr mangelhaft. Ein Teil des Theasins und der gelben Farbstoffe waren durch die Säule hindurchgeflossen. Beim weitern Nachwaschen der Säule mit Benzol (total 60 cm³) gelangte immer mehr des adsorbierten Theasins ins Filtrat, während im zweiten Versuch keine wägbaren fremden Substanzmengen mehr ins Filtrat gelangten. Die chromatographische Trennung ist somit nach zweimaliger Verseifung quantitativ; die Werte sind gut reproduzierbar.

	Einmalige Verseifung	Zweimalige Verseifung
Abdampfrückstand des Filtrats (Durchlauf) in % des Unverseifbaren	55 0/0	10,3 %
Farbe und Aussehen des Abdampf- rückstandes	gelb, harzartig	farblos, flüssig mit wenig farb- losen Kristallen
Prüfung des Durchlaufs auf Theasin	stark positiv	negativ

Um zu prüfen, ob das nach Grossfeld isolierte sterinarme Unverseifbare noch geringe Mengen unverseifter Fettstoffe enthält, wurde die «Verseifungszahl» des «unverseifbaren» Rückstandes bestimmt. 100 g Teesamenöl wurden vorschriftsgemäss während einer Stunde verseift, das Unverseifbare nach Grossfeld isoliert und mit 50 % igem Alkohol vollständig alkalifrei ausgewaschen. Der erhaltene Rückstand (477,8 mg Unverseifbares) wurde mit 25 cm³ 0,1nalkoholischer Kalilauge während 1 Stunde am Rückflusskühler gekocht und der Verbrauch an Lauge titrimetrisch bestimmt. Zur zweiten Verseifung wurden noch 1,58 cm³ 0,1n-KOH verbraucht. Die titrierte neutrale Lösung wurde nun stark alkalisch gemacht, mit dem gleichen Volumen Wasser verdünnt, das Unverseifbare mit Petroläther ausgeschüttelt und weiter verwendet. Die alkoholische Seifenlösung wurde zur Abscheidung der Fettsäuren angesäuert und mit Äther ausgeschüttelt. Nach dem Abdampfen des Äthers wurden 53 mg Fettsäuren erhalten, die bei Zimmertemperatur erstarrten. Sie verbrauchten zur Neutralisation 1,60 cm3 0,1n-KOH. Bei der ersten Verseifung blieben demnach 0,06 %. Fettstoffe unverseift.

Diese Versuche zeigen, dass das nach den üblichen Methoden erhaltene Unverseifbare noch geringe Mengen verseifbarer Fettstoffe enthält, die, wie bereits gesagt, den Adsorptionsvorgang stören. Eine zweimalige Verseifung ist daher unbedingt notwendig.

Adsorptionseigenschaften verschiedener Aluminiumoxydsorten

Wir haben bereits früher darauf hingewiesen, dass wir zur chromatographischen Trennung des Unverseifbaren ein besonders aktiviertes Al₂O₃ verwenden. Aluminiumoxyd zur Adsorptions analyse ist stark hygroskopisch. Die Präparate des Handels enthalten alle beträchtliche Mengen Wasser, das erst beim Glühen entweicht. Trautner und Roberts ³²) haben über Versuche berichtet zur chromatographischen Trennung von Hyoscin und Hyoscyamin an Silicagel. Sie haben beobachtet, dass wasserhaltige Präparate für diese Versuche, bei welchen mit organischen Lösungsmitteln gearbeitet wird, ungeeignet sind. Die Präparate wurden vorerst durch 12stündiges Glühen entwässert und dadurch aktiviert.

Der eine von uns 33) hat bei früheren Untersuchungen beobachtet, dass bei gebrauchten Al2O3-Präparaten, die durch Waschen mit verdünnter Salpetersäure und anschliessendem Glühen regeneriert worden sind, das Adsorptionsvermögen merklich zunahm. Dieses Verhalten kann folgendermassen erklärt werden: Durch die verdünnte Salpetersäure wird das Al₂O₃ oberflächlich angegriffen. Es entsteht Aluminiumnitrat, welches zum Teil adsorbiert wird, sich beim Glühen wieder zersetzt und fein verteiltes Al₂O₃ zurücklässt. Durch diese Operation wird die aktive innere Oberfläche des Präparates vergrössert, was sich durch ein grösseres Adsorptionsvermögen bemerkbar macht. Es wurde nun ferner beobachtet, dass frisch geglühtes Al₂O₃ aktiver ist als ein gleiches Präparat, das längere Zeit aufbewahrt wurde. Das stark hygroskopische Al2O3 nimmt selbst in verschlossenen Flaschen nach einiger Zeit etwas Feuchtigkeit auf. Dadurch wird ein Teil der «aktiven Zentren» mit Wassermolekülen abgesättigt, das Präparat verliert an Wirksamkeit. Wir begegneten diesem Übelstand, indem wir das frisch geglühte Al₂O₃ sofort nach dem Abkühlen im Exsikkator mit Benzol befeuchteten. Das Benzol verhindert, dass ein Teil der aktiven Oberfläche durch Wassermoleküle besetzt wird.

Die Versuche in Tabelle 5 zeigen die Unterschiede in der Wirksamkeit verschiedener Al₂O₃-Präparate. Aus 100 g Olivenöl wurde das sterinarme Unverseifbare isoliert (nach zweimaliger Verseifung = 701,9 mg Unverseifbares). Dieses wurde in 25 cm³ Benzol gelöst und für jedes Chromatogramm 5 cm³ dieser Stammlösung, entsprechend 20 g Ol oder 140,4 mg Unverseifbarem, verwendet. 10 g Al₂O₃ wurden in ein unten verengtes und mit Wattebausch verschlossenes Glasrohr von 1 cm Durchmesser eingefüllt und mit Benzol durchtränkt. Die Säule hatte eine Höhe von 13 cm. Nun wurden 5 cm³ der Stammlösung unter schwachem Saugen hindurchfiltriert und die Säule mit 50 cm³ Benzol nachgewaschen. Das Filtrat (1. Fraktion) wurde in ein gewogenes Schliff-

Tabelle 5 Chromatographische Adsorptionsanalyse

701,9 mg aus 10 g Olivenöl wurden in 25 cm³ Benzol gelöst und davon für je 1 Chromatogramm 5 cm³ = 140,4 mg Unverseifbares verwendet (Säule: 13 cm hoch, 1 cm Durchmesser, 10 g Al₂O₃)

Bezeichnung der Aluminium-Oxyd-Sorten	Ausdehnung d.fluoresz. Zone im Chromatogramm	K	dsorbierte WSt chlauf) in º/o des Unverseifb.	Jod- verbrauch des Durchlaufs cm ³ 0,1n-J	Squalen- Zahl
1. Al ₂ O ₃ nach <i>Brockmann</i> neues <i>Merck</i> -Präparat					
1. Fraktion *) 2. Fraktion **)	9 cm	100,5 5,5	73	20,38 }	348
Total:		106,0	77	21,77	372
2. Al ₂ O ₃ nach <i>Brockmann</i> obiges Präparat frisch aktiviert und mit Benzol befeuchtet	10				
1. Fraktion 2. Fraktion	3,5 cm	85,8	63	18,96 0	324
3. Altes, mehrfach gebrauchtes und mehrmals regeneriertes Al ₂ O ₃ Merck, aber nicht sofort mit Benzol befeuchtet					
1. Fraktion	5 cm	90,9	66	a) 19,20 b) 19,30	328 330
2. Fraktion		0,6	0,4	0	
4. Englisches Präparat «Al ₂ O ₃ activated» (<i>Hopkin</i> , Lond.), vor Gebrauch «aktiviert» und mit Benzol befeuchtet					
1. Fraktion	4 cm	89,4	63,6	a) 19,48 b) 19,38	333 328
2. Fraktion		0,7	0,5	0	46

^{*) 1.} Fraktion mit 50 cm³ Benzol ausgewaschen **) 2. Fraktion mit 25 cm³ Benzol ausgewaschen

kölbchen gebracht, das Benzol abdestilliert, der Rückstand bei 100° getrocknet und gewogen. Hierauf wurden die ungesättigten Kohlenwasserstoffe jodometrisch nach Margosches bestimmt. Die Al₂O₃-Säule wurde nun nochmals mit 25 cm³ Benzol nachgewaschen und trocken gesaugt. Dieses zweite Filtrat (2. Fraktion) wurde in gleicher Weise weiter behandelt. Mit Ausnahme des ersten Versuches mit unbehandeltem Al₂O₃ waren im zweiten Filtrat nur noch Spuren von Substanz vorhanden.

Als Mass für das Adsorptionsvermögen diente die Schichthöhe einer ziemlich scharf begrenzten, unter der Quarzlampe oben grün und unten weiss leuchtenden Zone. Diese Zone, die bei allen Versuchen die gleiche Menge adsorbierte Substanz enthält, variierte in ihrer Ausdehnung stark. Im ersten Versuch, mit dem unbehandelten Präparat nach Brockmann, ist sie am längsten (9 cm). Die chromatographische Adsorption war bei diesem Versuch unvollständig. Die adsorbierbaren Substanzen «schlagen durch», d.h. ein Teil verlässt unten die Säule und gelangt ins Filtrat. Beim Entwickeln des Chromatogramms wird immer mehr Substanz ausgewaschen.

Die 3 aktivierten Präparate geben gute Resultate. Die Substanzmenge im Durchlauf ist überall ungefähr gleich, ebenso der Jodverbrauch. Beim weiteren Auswaschen der Säule gelangt nichts mehr ins Filtrat, und die Trennung ist somit quantitativ. Die Ausdehnung der fluoreszierenden Zone ist je nach Präparat etwas verschieden. Die beste Adsorptionsfähigkeit besitzt das frisch aktivierte Präparat von Versuch 2, das sofort nach dem Glühen mit Benzol befeuchtet wurde.

Wir verwendeten für alle unsere Versuche aktiviertes und mit Benzol getränktes Al₂O₃. Zur Trennung des Unverseifbaren aus 20 g Ol genügten in der Regel 10 g Al₂O₃. Die ausführliche Methode zur Bestimmung der KWSt findet sich am Schluss dieser Arbeit. Die Menge der ungesättigten Kohlenwasserstoffe wurde in allen Fällen jodometrisch (nach Methode *Hanus*) bestimmt.

Wir haben auch versucht, die Kohlenwasserstoff-Fraktion aus verschiedenen Olen durch den Brechungsindex zu charakterisieren. Mischungen, die reich an ungesättigten Stoffen sind (Squalen), sollten höhere Brechungsindices geben als solche mit vorwiegend gesättigten KWSt. Es zeigte sich aber, dass die Unterschiede zwischen den verschiedenen Olen nur gering waren. Aus den nachstehenden Beispielen ist ersichtlich, dass die Squalenzahl sich eher zur Charakterisierung der Kohlenwasserstoff-Fraktion verschiedener Ole eignet als der Brechungsindex.

Ole:	Brechungsindex bei 40°	Kohlenwasserstoffe (KWSt) mg %	Squalenzahl (SqZ)
Olivenöl 19 (max.)	1,4880	434	358
Olivenöl 7 (min.)	1,4830	347	274
Teesamenöl	1,4840	35	15
Paranussöl	1,4704	245	143

7. Kohlenwasserstoff-Gehalt und Squalenzahl verschiedener Öle und Fette Tabelle 6

Nr.	Bezeichnung der Olivenöle	Ein- waage g Öl	n 40 des Durch- laufes	sterin- armes Unfb. 2.Versei- fung	mg º/o KWSt	Sq-Z
	Algerische:				,	
1 2	vierge extra ohne nähere Bezeichnung	20 20	1,4850 1,4842	0,459 0,537	272 355	234, 234 287, 271
	Französische:					
3 4 5 6	vierge vierge non décantée vierge décantéee naturelle	11,08 20 20 20 20	 1,4860 1,4848 1,4842	0,780 0,553 0,550 0,468	586 339 347 262	458 288, 308 280, 293 230, 229
	Italienische:					
7	ohne nähere Bezeichnung	20	1,4830	0,629	347	272, 276
8	ohne nähere Bezeichg. C—P	50 50 50	1,4850	0,492 0,472 0,482	327 313 321	266 272
9	ohne nähere Bezeichg. C—P hellfarbig	20	1,4848	0,498	370	318, 291
10	filtriert	20	1,4850	0,680	463	389, 387
11	extrafein	20	1,4852	0,525	360	311, 336
12	ohne nähere Bezeichnung	20	<u> </u>	0,486	314	248
13	Typ Riviera Ia	10	- - 1	0,558	326	282
14	Pressöl	10	w - 0	0,575	346	291
1 1	Marokkanische:					
15	vierge Type Nice	20	1,4846	0,452	286	245, 243
	Spanische:					
16	ohne nähere Bezeichnung	20	1,4852	0,684	518	434, 414
17	ohne nähere Bezeichg. C—P	10		0,529	424	306
18	Ohne Provenienzangabe (M)	20	1,4852	0,517	306	258, 243
19	Mischung div. Provenienzen	20	1,4880	0,685	434	359, 357
20	«Olio Oliva puro» (M)	10	_	0,622	425	357

Tabelle 7

Ńr.	Bezeichnung	Einwaage g Öl	Sterin- armes Unfb.	KWSt mg ^{0/0}	Sq-Z
1	D 11 "1	50	0.764	22.4	10.7
1	Baumwollsamenöl	50	0,264	32,4	10,2
2	Erdnussöl, raffiniert	50	0,159	65,0	30,6
3	Erdnussöl aus leicht gerösteten	50	0.150	47.0	25.7
4	Erdnüssen selbst extrahiert	50	0,150	42,8	35,7
4	Erdnussöl des Handels	50	0,170	62,1	32,0
5	Haselnussöl	100	0,121	42,8	22,3
7	Leinöl	50	0,417	57,8	13,6
	Mohnöl	100	0,181	39,8	8,3
8	Neuköl (Niggeröl)	25	0,271 0,266	36,4	8,9
10	Palmöl, ungebleicht	80 80	0,200	58,0	26,0
11	Palmöl, gebleicht	80	0,098	27,9	13,0
12	Paranussöl (M)	50	0,393	207,0 245,0	155,0 143,0
13	Paranussöl, selbst extrahiert	64	0,400	24,5	5,7
14	Rapsöl Sesamöl	50	0,545	40,2	9,9
15		50	0,515	31,8	10,9
16	Sesamöl des Handels	80	0,200	34,1	12,0
17	Sonnenblumenkernöl	50	0,261	46,2	13,2
18	Soyaöl Teesamenöl	100	0,360	41,6	18,6
10	Teesamenöl 1. Bestimmung	200	0,400	39,2	15,0
19	Teesamenöl 1. Bestimmung 2. Bestimmung	100	0,413	33,9	14,2
15	Teesamenöl 2. Bestimmung 3. Bestimmung	100	0,408	28,6	15,4
20	Traubenkernöl	80	0,551	169,0	16,5
21	Walnussöl	80	0,094	20,0	13,3
22	Walnussöl 1. Bestimmung	(50	0,115	20,0	3,9
	2. Bestimmung	80	0,104	26,0	3,4
23	Weizenkeimöl (E) selbst	17,5	2,02	140,5	15,7
24	Weizenkeimöl (B) extrahiert	13,3	1,51	141,0	14,5
25	Butter, eingesotten	50	0,133	15,2	11,4
26	Butter, eingesotten (ausländ.)	50	0,133	13,2	6,8
27	Kokosnussfett	50	0,096	22,8	6,2
28	Rindsfett, selbst ausgelassen	40	0,047	14,2	8,1
29	Schweinefett, selbst ausgelassen	40	0,047	3,5	1,1
30	Schweineschmalz	50	0,021	3,0	2,5
30	Sen wemesenmarz	140	0,029	3,0	2,5

Es wurden 20 reine Olivenöle des Handels diverser Provenienzen, dann zahlreiche andere als Speiseöle bekannte pflanzliche Ole und einige Speisefette nach der am Schluss dieser Arbeit angegebenen Methodik untersucht. Die betreffenden Resultate sind in den Tabellen 6 und 7 zusammengestellt.

a) Reine Olivenöle des Handels

Die Olivenöle sind in der Tabelle 6 nach ihrer Herkunft geordnet und geben zu folgenden Bemerkungen Anlass:

Das sterinarme Unverseifbare schwankt zwischen 0,46 und 0,78 % und der Gehalt an Kohlenwasserstoffen zwischen 262 und 586 mg%. Die Squalenzahl, welche wir als die für die Beurteilung wichtigste Kennzahl ansehen, bewegt sich ebenfalls innerhalb ziemlich weiter Grenzen, und zwar von 230 bis 458. Die Mehrzahl der im Handel befindlichen reinen Olivenöle besitzt Squalenzahlen zwischen 230 und 320. Wesentlich höhere Squalenzahlen, über 400, wurden verhältnismässig selten (2 von 19 Proben) angetroffen.

In einigen Olivenölen, die aus frischen Oliven selbst abgepresst wurden (Jungfernöle) und in selbst gewonnenen Extraktionsölen wurden auffallenderweise noch beträchtlich höhere Squalenzahlen gefunden. Unterschiede zwischen Extraktions- und Pressöl waren dabei nicht feststellbar. Versuche zur Abklärung dieser Unstimmigkeit der Kennzahlen zwischen Handelsölen und selbst hergestellten Olivenölen sind im Gange.

Aus den bisherigen Untersuchungen geht hervor, dass reine Olivenöle des Handels im Mittel Squalenzahlen um zirka $275~(\pm40)$ aufweisen. Grössere Abweichungen nach oben wurden nur in vereinzelten Fällen beobachtet, während unverdorbene Olivenöle mit SqZ unter 230 überhaupt nicht angetroffen wurden. Unterschiede in den Squalenzahlen zwischen Olivenölen verschiedener Provenienzen scheinen ebenfalls nicht zu bestehen.

b) Alte, verdorbene Olivenöle

Grossfeld hat seinerzeit festgestellt, dass altes, verdorbenes Olivenöl einen viel niedrigeren Rohsqualengehalt aufweist, als normales Olivenöl. Er vermutete, dass das Squalen durch Autoxydation zerstört wird.

Zur Überprüfung dieser Verhältnisse haben wir ein normales Olivenöl (Nr. 19) während 14 Tagen in einer farblosen, nur lose verschlossenen Flasche der intensiven Sonnenbestrahlung ausgesetzt, bis es vollständig ausgebleicht und stark verdorben war (stark positive Kreis-Reaktion). Die chemische Untersuchung, welche erst einige Monate nach dieser Sonnenbestrahlung erfolgte, ergab, dass im belichteten Ol sowohl Unverseifbares, Kohlenwasserstoffgehalt, wie auch Squalenzahl bedeutend abgenommen hatten. Die Oxydationsprodukte des Squalens sind vermutlich Aldehyde, Säuren und andere Abbauprodukte, die bei der Verseifung abgetrennt werden, wodurch auch der Gehalt an Unverseifbarem und an Kohlenwasserstoffen vermindert wird.

Aus nachstehender Zusammenstellung ist ersichtlich, dass die Differenz überall nahezu gleich gross ist. Demnach muss durch die Autoxydation im Unverseifbaren nur Squalen zerstört worden sein.

	mg ^{0/0} Unverseifbares	mg ^{0/0} KWSt	Sq-Z
frisches Ol	685	434	358
nach Belichtung	520	263	195
Verlust (Differenz)	165	171	163

Mit diesem Versuche ist die Beobachtung Grossfelds, wonach Squalen infolge Autoxydation zerstört wird, bestätigt worden.

Auch bei längerer unsachgemässer Lagerung des Olivenöles wurde eine deutliche Abnahme der Squalenzahl beobachtet. Wie die nachstehenden Untersuchungen zeigen, ist diese ebenfalls auf Autoxydation und beginnende Verderbnis des Oles zurückzuführen.

Ein frisches italienisches Olivenöl (Nr. 8) wurde während 5 Monaten in einer braunen, zu zirka ¹/₈ gefüllten Flasche im Dunkeln aufbewahrt.

	Frisches Öl am 9. Juli 1948	Gelagertes Öl am 2. Dezember 1948
Squalenzahl	266 272	247 248
Kreis-Reaktion	negativ	positiv
Peroxydzahl	3	18,0
Sinnenprüfung	normal	noch keine Verdorben-
		heit wahrnehmbar
Farbe	gelb, schwach grün-	gelb, schwach grün-
	stichig	stichig

Die Squalenzahl hatte merklich abgenommen, während die Peroxydzahl stark angestiegen ist. Bei der Sinnenprüfung fiel die beginnende Fettverderbnis noch nicht merklich auf. Squalen unterliegt demnach schon im Anfangsstadium der Autoxydation, ähnlich wie Vitamin A und stark ungesättigte Fettsäuren.

c) Diverse Fette und Ole

In der Tabelle 5 sind die Werte für Unverseifbares und Kohlenwasserstoffe, sowie die Squalenzahl zahlreicher Speiseöle und -fette zusammengestellt.

Das Unverseifbare variiert bei den verschiedenen Olen sehr stark. Raps-, Sesam-, Teesamen- und Traubenkernöl besitzen ziemlich hohe Gehalte an sterinarmem Unverseifbaren (0,5—0,7 %), ähnlich wie Olivenöl.

Andere Ole, wie Erdnussöl, Haselnussöl, Nussöl, und die festen Fette dagegen enthalten sehr wenig sterinarmes Unverseifbares $(0.02-0.2\,^{\circ}/_{\circ})$. Der Kohlenwasserstoffgehalt ist bei allen Olen und Fetten ebenfalls niedriger als beim Olivenöl, schwankt aber innerhalb weiter Grenzen (3-245). Bei den meisten Speiseölen liegen die Werte etwa zwischen 20 und 60 mg $^{\circ}/_{\circ}$. Nur

Traubenkernöl und Paranussöl besitzen bedeutend höhere Kohlenwasserstoffgehalte (169—245). Die untersuchten festen Fette fallen durch ihre relativ niedrigen Zahlen auf. Die Squalenzahl, das wichtigste Charakteristikum des Olivenöles ist bei sämtlichen geprüften Speiseölen bedeutend niedriger als bei Olivenöl. Sie bewegt sich bei den verschiedenen Olen zwischen 4—36 (mittlere Squalenzahl von Olivenöl zirka 275). Eine Ausnahme macht nur das Paranussöl, welches einen ziemlich hohen Gehalt an Squalen aufweist und eine Squalenzahl von 143—155 besitzt. Paranussöl kam aber nur ausnahmsweise während des Krieges als Speiseöl auf den Markt. Zur Fälschung von Olivenöl kommt es wegen seines hohen Preises jedoch nicht in Frage. Beim Vergleich unserer Squalenzahlen (Tabellen 6 und 7) mit den Rohsqualengehalten nach Grossfeld (Tabellen 1 und 2) erkennt man, dass die Grossfeld'sche Methode bei einigen Olen viel zu hohe Werte liefert. Es wurden beispielsweise gefunden:

	mg ⁰ /0 Rohsqualen nach <i>Grossfeld</i>	Squalenzahl (in mg 0/0)
Sesamöl	150	9,9
Teesamenöl	180	15,0
Soyaöl	100	13,2
Leinöl	180	13,6

Der Grund hierfür liegt eben, wie bereits früher betont, darin, dass im Unverseifbaren andere ungesättigte Verbindungen nach Grossfeld mitbestimmt und nach unserer Methode abgetrennt werden.

8. Nachweis des Olivenöls in Öl- oder Fettmischungen

Aus den Zahlen der Tabellen 6 und 7 ist ersichtlich, dass der Nachweis und die ungefähre Bestimmung des Olivenöls in Mischungen beliebiger Ole oder Fette prinzipiell möglich ist, da Olivenöl eine rund 10mal höhere Squalenzahl besitzt als die übrigen Ole. In einer Olmischung setzen sich Kohlenwasserstoffund Squalengehalte additiv aus den entsprechenden Mischungsanteilen zusammen. Diese Tatsache soll durch zwei Beispiele belegt werden. Für Beispiel I wurde eine Mischung, bestehend aus 80 % Teesamenöl und 20 % Olivenöl, benutzt. Es wäre durchaus möglich, diese Mischung als reines Olivenöl anzusehen, weil sich Teesamenöl und Olivenöl in ihren Gehaltszahlen kaum unterscheiden. Auf Grund der Farbenreaktion nach Fitelson 1) lässt sich zwar feststellen, ob Teesamenöl vorhanden ist, dagegen konnte bisher nicht entschieden werden, ob die Mischung auch Olivenöl enthält. Mittelst der Squalenzahl kann dieser Nachweis mit Sicherheit geführt werden, wobei auch quantitative Schlüsse bezüglich der Olivenölmenge möglich sind. Die Ergebnisse in der Tabelle 8 zeigen, dass die gefundenen Kennzahlen (KWSt und SqZ) der Mischung gut mit den theoretisch berechneten übereinstimmen.

Tabelle 8

Bezeichnung der Mischungen	Kennzahlen der einzelnen Öle resp. Fette		Kennzahlen auf die Mischungsanteile berechnet	
	KWSt	SqZ	KWSt	SqZ
Beispiel I				
Olivenöl 20 º/o	321	266	64,2	53,2
Teesamenöl 80 º/o	41,6	18,6	33,3	14,9
ber. Kennzahlen	_		97,5	68,1
gef. Kennzahlen		-	100,6	70,7
Beispiel II				
Olivenöl 10 º/o	321	266	32,1	26,6
Kokosfett 30 %	23	6	6,9	1,8
Schweinefett 30 ⁰ / ₀	3	2,5	0,9	0,8
Butterfett 30 ⁰ / ₀	15,2	11.4	4,6	3,1
ber. Kennzahlen	19.		44,5	32,3
gef. Kennzahlen	1000		44,8	35,4

Für Beispiel II wurde eine Mischung einiger Speisefette herangezogen. Die Mischungsverhältnisse sind aus Tabelle 8 ersichtlich. Die Werte für Kohlenwasserstoffgehalt und Squalenzahl sind bedeutend höher als diejenigen der verwendeten Speisefette, was nur auf die Anwesenheit von Olivenöl zurückzuführen ist. Wie aus der Bilanz in Tabelle 8 hervorgeht, stimmen die gefundenen Zahlen auch hier recht gut mit den berechneten überein.

Berechnung des Gehaltes an Olivenöl

Um den Gehalt an Olivenöl in einem Öl-Fett-Gemisch zu berechnen, wird zunächst die Squalenzahl nach der später angegebenen Methode bestimmt. Als Grundlage für eine solche Berechnung mögen folgende Zahlen dienen. Olivenöl besitzt eine mittlere Squalenzahl von 275. Die Squalenzahl der meisten Speiseöle schwankt zwischen 5 und 35. Im Mittel beträgt sie bei Ölen zirka 20, bei festen Fetten zirka 10.

Zur Berechnung des Olivenölgehaltes einer Ol- oder Fettmischung dient folgende Formel der Mischungsrechnung:

$$^{0}/_{0}$$
 Olivenöl = $\frac{\operatorname{Sq}Z_{3}-\operatorname{Sq}Z_{2}}{\operatorname{Sq}Z_{1}-\operatorname{Sq}Z_{2}}$. 100

Es bedeuten:

SqZ₁ = Squalenzahl des Olivenöls

SqZ₂ = Squalenzahl der olivenölfreien Öl- oder Fettmischung

 $SqZ_3 = Squalenzahl der Mischung.$

Für SqZ₁ setzen wir die mittlere Squalenzahl von Olivenöl = 275 in die Formel ein. Bei Olmischungen verwenden wir als Mittelwert für SqZ₂ = 20, bei Fettmischungen SqZ₂ = 10, und erhalten somit folgende 2 Formeln, worin SqZ die ermittelte Squalenzahl der Mischung bedeutet.

$$^{0/0}$$
 Olivenöl in Speiseöl $=$ $\frac{\text{Sq}Z-20}{275-20}$. $100 =$ $\frac{\text{Sq}Z-20}{2,55}$ $^{0/0}$ Olivenöl in Speisefett $=$ $\frac{\text{Sq}Z-10}{275-10}$. $100 =$ $\frac{\text{Sq}Z-10}{2,65}$

Diese beiden Formeln auf die früher erwähnten Mischungsbeispiele angewendet, ergeben nachstehende Werte:

Beispiel I: SqZ der Olmischung gefunden =
$$70.7$$
 $0/0$ Olivenöl = $\frac{70.7 - 20}{2.55}$ = 19.9 $0/0$

vorhanden = 20.0 $0/0$

Beispiel II: SqZ der Fettmischung gefunden = 35.4
 $0/0$ Olivenöl = $\frac{35.4 - 10}{2.65}$ = 9.6 $0/0$

vorhanden = 10.0 $0/0$

Fehlergrenze

Die Squalenzahlen von Fetten und Olen sind recht genau reproduzierbar. Bei Olivenölen werden bei Parallelbestimmungen Differenzen von ± 5 Einheiten erhalten, was einem absoluten Fehler von zirka $\pm 1,7\,$ % entspricht. Für ein Olivenöl wurden z. B. von verschiedenen Analytikern folgende Squalenzahlen gefunden: SqZ = 244, 245, 248.

Bei der Analyse olivenölhaltiger Mischungen sind in Modellversuchen, bei welchen die Squalenzahlen der einzelnen Komponenten bekannt waren, annähernd richtige Werte für den Olivenölgehalt gefunden worden.

In der Praxis sind der Genauigkeit dieser Berechnungsart jedoch Grenzen gesetzt durch die natürlichen, erfahrungsgemäss recht erheblichen Schwankungen der Squalenzahlen verschiedener Olivenöle.

Die Methode gestattet mit Sicherheit festzustellen, ob eine Öl- oder Fettmischung Olivenöl enthält oder nicht. Ferner lässt sich der ungefähre Olivenölgehalt schätzen; genaue quantitative Werte werden jedoch nur dann erhalten, wenn die Squalenzahl des in der Mischung anwesenden Olivenöles bekannt ist, was wohl nur selten der Fall sein wird.

Q. Methodik

Prinzip

Die Bestimmung der Kohlenwasserstoffe und der Squalenzahl erfolgt nach folgenden Operationen:

- 1. Verseifen des Ols und Isolierung des Unverseifbaren.
- 2. Nochmalige Verseifung und Bestimmung des sterinarmen Unverseifbaren.
- 3. Chromatographische Adsorptionsanalyse des Unverseifbaren.
- 4. Bestimmung der Kohlenwasserstoffe im Filtrat (KWSt = mg Kohlenwasserstoffe in 100 g Ol).
- 5. Bestimmung des Halogenverbrauchs der Kohlenwasserstoff-Fraktion nach der Methode *Hanus* und Berechnung als Squalenzahl (SqZ = mg Squalen in 100 g Ol).

Reagenzien

0,2n-JBr-Lösung nach *Hanus* (20,7 g JBr werden in 1 Liter Eisessig gelöst). Kaliumjodidlösung (10 g in 100 cm³ Wasser).

Al2O3 zur chromatographischen Adsorptionsanalyse, speziell aktiviert.

Zur Aktivierung wird das nicht zu feinkörnige Al₂O₃ mit verdünnter Salpetersäure (2—3 ⁰/₀) gewaschen. Bereits gebrauchtes Al₂O₃ wird vorher durch Waschen mit Alkohol und Äther vom grössten Teil der adsorbierten Substanzen befreit und nachher mit verdünnter Salpetersäure gewaschen. Auf einer Nutsche wird scharf abgesaugt und das Präparat hierauf an der Luft getrocknet. (Nicht im Trockenschrank wegen der Säuredämpfe!) Das luftgetrocknete Präparat wird in einer Platinschale über freier Flamme vorsichtig erhitzt. Zuerst entweichen Wasserdämpfe, später, bei stärkerem Erhitzen, braune Dämpfe von Stickoxyden. Gleichzeitig werden die letzten Reste noch zurückgebliebener organischer Substanzen verbrannt. Man glüht nun noch kurze Zeit sehr stark und lässt in einem Exsikkator erkalten. Das stark hygroskopische Präparat wird nun mit wenig reinem Benzol versetzt, damit es nicht nachträglich Wasser anzieht. Es ist für unsere Zwecke gebrauchsfertig und in gut verschlossener Flasche unbegrenzt haltbar.

Arbeits vorschrift

1. Erste Verseifung

Von Olivenöl werden in der Regel 20 g in Arbeit genommen, im Notfall genügen auch 10 g. Bei allen übrigen Olen müssen mindestens 40 g, bei Fetten mit sehr niedrigen Squalenzahlen 80—100 g verarbeitet werden. Dabei erhöht man alle Reagenzienmengen im gleichen Verhältnis. 20 g Olivenöl werden in einem 250-cm³-Stehkolben abgewogen, mit 6 g Kaliumhydroxyd-Plätzchen und 80 cm³ 96 % gem Alkohol versetzt und während einer Stunde

am Rückflusskühler gekocht. Die noch nicht ganz erkaltete Seifenlösung (um ein Erstarren zu vermeiden) wird in einen zirka ½ Liter fassenden Scheidetrichter übergeführt und der Verseifungskolben mit 200 cm³ Petroläther nachgespült. Daraufhin wird der Scheidetrichter-Inhalt mit Wasser gekühlt und hernach kräftig geschüttelt. Es entsteht eine homogene Lösung. Nun erst setzt man 80 cm³ Wasser zu und schwenkt mehrmals um, worauf Schichtentrennung erfolgt. Man lässt mindestens 2 Stunden stehen, bis die alkoholische Seifenlösung völlig klar erscheint, worauf sie abgelassen werden kann. Der verbleibende Petroläther wird abdestilliert und der Rückstand anschliessend nochmals verseift.

2. Zweite Verseifung

Das nach Ziffer 1 aus 20 g Öl erhaltene sterinarme Unverseifbare wird sodann mit 20 cm³ 0,5n-alkoholischer Kalilauge während 20—30 Minuten am Rückflusskühler nochmals erhitzt. Die alkoholische Lösung wird mit 100 cm³ Petroläther in einen Scheidetrichter gespült und mit 20 cm³ Wasser versetzt. Man lässt wiederum etwa 2 Stunden (besser über Nacht) stehen, bis die untere alkoholische Phase völlig klar geworden ist, worauf man sie ablässt. Die Petrolätherschicht wird mit 50 % igem Alkohol, dem eine Spur Phenolphtalin zugesetzt wurde, alkalifrei ausgewaschen und hierauf mit wasserfreiem Natriumsulfat getrocknet. Der Petroläther wird aus einem gewogenen Kölbchen abdestilliert, der Rückstand bei 1000 unter öfterem Durchblasen von Luft getrocknet (zirka 15 Minuten) und gewogen. Dieses sogenannte sterinarme Unverseifbare enthält geringe Mengen von Sterinen und alle petrolätherlöslichen unverseifbaren Bestandteile des Ausgangsmaterials.

3. Chromatographische Adsorptionsanalyse

Ein unten verengtes und mit einem kleinen Wattebausch verschlossenes Glasrohr von 13 mm lichter Weite und zirka 40 cm Länge wird mit 10 g aktiviertem Al₂O₃ beschickt. Um eine gleichmässige Säule zu erhalten, wird das Al2O3 durch einen Trichter langsam eingefüllt. Dabei wird das Rohr, stets senkrecht gehalten, langsam gedreht und damit auf die Tischplatte geklopft. Man erhält eine zirka 10 cm hohe Säule, welche unter schwachem Absaugen zunächst mit Benzol durchtränkt wird. Wenn das Benzol unten abtropft, wird das in 5 bis 10 cm³ Benzol gelöste Unverseifbare durchfiltriert und mit 50 bis 60 cm³ Benzol nachgewaschen. Es ist darauf zu achten, dass das Al2O3 immer mit Flüssigkeit bedeckt ist. Die Säule, die nicht weiter verwendet wird, kontrolliert man unter der Quarzlampe. Zu oberst befindet sich eine schmale, gelbbraun leuchtende Zone mit adsorbierten Farbstoffen, darunter eine graue, nicht fluoreszierende Schicht mit den Sterinen. Weiter unten folgt eine weiss fluoreszierende Zone, die jedoch nicht bis zum untern Ende der Säule reichen darf. Die untersten 2-4 cm der Säule sollen keine Substanz enthalten und nicht merklich fluoreszieren.

4. Bestimmung der Kohlenwasserstoffe

Das Filtrat (Durchlauf), welches die Kohlenwasserstoffe enthält, muss farblos sein. Andernfalls wird es nochmals durch eine frische Schicht von zirka 5 g Al₂O₃ filtriert und nachgewaschen. Der farblose Durchlauf wird in ein Jodzahl-Kölbchen übergeführt und das Benzol abdestilliert. Dazu taucht man das Kölbchen in ein siedendes Wasserbad. Der Rückstand wird im Trockenschrank bei 100° getrocknet und das Kölbchen zur Entferung der Benzoldämpfe öfters ausgeblasen. Nach dem Erkalten wird gewogen. Um Wägefehler auszuschalten, wird das leere, sowie das den Rückstand enthaltende Kölbchen einige Zeit neben der Waage aufbewahrt. Der Rückstand stellt die Kohlenwasserstoffe dar. Das Resultat wird in mg Kohlenwasserstoffe in 100 g Öl berechnet (mg⁰/₀).

5. Bestimmung der Squalenzahl

Zur Ermittlung des Halogenverbrauchs der Kohlenwasserstoffe empfiehlt es sich, wenn möglich Doppelbestimmungen durchzuführen. Der gewogene Rückstand wird dazu in zwei Teile geteilt, z. B. indem ein Teil der geschmolzenen Kohlenwasserstoffe mittels einer Kapillare entnommen und in einem Glasbecherchen genau abgewogen wird. Der im Kolben verbliebene Anteil wird ebenfalls zurückgewogen. Etwas rascher kommt man zum Ziel, wenn man die Kohlenwasserstoffe in 10 cm3 Chloroform löst und mittels einer Pipette 5 cm3 Lösung entnimmt. Die Pipette wird mit etwas Chloroform in den ersten Kolben ausgespült. Da der Halogenverbrauch der Kohlenwasserstoffe merklich vom Überschuss an Jodmonobromid abhängt, muss der Reagenszusatz jeweils genau der Substanzmenge angepasst werden. Man lässt die Jodmonobromidlösung aus einer Bürette langsam zu den in 5 cm3 Chloroform gelösten Kohlenwasserstoffen fliessen. Für jedes Milligramm Substanz werden 0,3 cm3 Reagens zugesetzt, wobei die Reagensmenge auf ganze cm³ auf- oder abgerundet wird. Zum Beispiel zu 36 mg Substanz werden $0.3 \cdot 36 = 10.8 \text{ cm}^3$, aufgerundet 11 cm³ 0.2n-IBr-Lösung zugesetzt. Man verschliesst nun den Kolben mit Glasstopfen und lässt 15 Minuten im Dunkeln stehen. Eine etwas längere Reaktionszeit ist ohne Einfluss auf das Resultat. Das Reaktionsgemisch wird hierauf mit 5 cm³ 10 % iger KJ-Lösung und 50 cm3 Wasser versetzt und der Jodüberschuss mit 0,1n-Thiosulfatlösung unter Verwendung von Stärke als Indikator zurücktitriert. Der Titer der Hanus-Lösung wird in einem Blindversuch unter gleichen Bedingungen bestimmt.

6. Berechnung

Die bei der Reaktion verbrauchte Halogenmenge wird in Squalen umgerechnet. 1 cm³ 0,1n-J entspricht 3,42 mg Squalen. Unter Squalenzahl (SqZ) versteht man die Menge Squalen in mg, die nach obiger Vorschrift in 100 g Öl gefunden wird.

Zusammenfassung

- 1. Eine von Täufel und Mitarbeitern ausgearbeitete Methode zum Nachweis von Squalen in Olen, basierend auf seiner Abscheidung als Squalenhexahydrochlorid, wurde modifiziert. Squalen findet sich ausser in Olivenöl noch in zahlreichen andern pflanzlichen Olen. Wir haben es im Teesamenöl, im Paranussöl und im Haselnussöl zum ersten Mal mit Sicherheit nachweisen können. Aus unseren diesbezüglichen Befunden darf geschlossen werden, dass alle pflanzlichen Ole in wechselnden Mengen Squalen enthalten (Spuren bis 155 mg⁰/₀, Olivenöle 230 bis 400 mg⁰/₀).
- 2. Die von Grossfeld und Timm angegebene und von Philippe und Henzi etwas modifizierte Methode zur Bestimmung des Rohsqualengehaltes wurde überprüft. Diese Methode, welche auf der Jodzahl des Unverseifbaren beruht, gibt zu hohe und bei einigen Olen unrichtige Werte, weil im Unverseifbaren ausser Squalen noch andere, ungesättigte Verbindungen (Sterine, Theasin usw.) vorkommen, die ebenfalls Jod verbrauchen.
- 3. Es wird durch Versuche gezeigt, dass die Jodzahlbestimmung des Unverseifbaren unter Umständen unrichtige Werte liefert, weil sie stark von den Versuchsbedingungen abhängig ist.
- 4. Es wird eine neue Methode angeführt, welche gestattet, sowohl die Kohlenwasserstoffe als auch das Squalen in Olen und Fetten zu bestimmen. Die Trennung der Kohlenwasserstoffe von den übrigen Bestandteilen des Unverseifbaren erfolgt durch chromatographische Adsorptionsanalyse an Al₂O₃. Der Squalengehalt wird aus dem Halogenverbrauch der Kohlenwasserstoff-Fraktion berechnet.
- 5. Wir bezeichnen mit Squalenzahl die mg⁰/₀ Squalen, ermittelt nach der dafür angegebenen Methode. Sie bewegt sich bei Olivenöl zwischen 230 und 458, und bei den übrigen Speiseölen schwankt sie zwischen 4 und 36. Es werden zwei Formeln angegeben zur Berechnung des ungefähren Olivenölgehaltes in Ol- oder Fettmischungen. Die Brauchbarkeit der Methode ist an Hand von Beleganalysen erwiesen worden.

Résumé

- 1º On a modifié une méthode mise au point par *Täufel* et ses collaborateurs pour déceler le squalène dans les huiles en se basant sur son isolement comme hexachlorhydrate. Le squalène se rencontre non seulement dans l'huile d'olive mais encore dans de nombreuses autres huiles végétales. Nous avons pu montrer sa présence avec certitude, pour la première fois, dans l'huile de graines de thé, dans l'huile de noix de Para et dans l'huile de noisette. Des résultats, que nous avons obtenus dans ce domaine on peut conclure que toutes les huiles végétales contiennent du squalène, en quantité variable (traces à 155 mg⁰/₀; huile d'olive 230 à 400 mg⁰/₀).
- 2º On a contrôlé la méthode de détermination de la teneur en squalène brut indiquée par Grossfeld et Timm et légèrement modifiée par Philippe et Henzi. Cette méthode, qui repose sur la mesure de l'indice d'iode de l'insaponifiable, donne des valeurs trop élevées et fausses pour quelques huiles, parce que, à part le squalène, il se trouve encore d'autres substances non saturées dans l'insaponifiable (Stérines, Théasine, etc.) qui consomment également de l'iode.
- 3º On montre par des essais que le dosage de l'indice d'iode de l'insaponifiable livre, suivant les circonstances, des valeurs fausses parce qu'il dépend fortement des conditions expérimentales.
- 4. On décrit une nouvelle méthode qui permet de doser dans les huiles et les graisses aussi bien les hydrocarbures que le squalène. La séparation des hydrocarbures des autres constituants de l'insaponifiable est faite par adsorption chromatographique sur Al₂O₃; le squalène est obtenu par dosage de l'indice d'iode de la fraction des hydrocarbures.
- 5º Nous appelons indice de squalène les mgº/o de squalène trouvés par la méthode indiquée dans ce but. Cet indice varie entre 230 et 458 pour l'huile d'olive et pour les autres huiles comestibles entre 4 et 36. On donne deux équations pour le calcul approximatif de la teneur en huile d'olive dans une huile ou dans des mélanges de graisse. L'applicabilité de la méthode a été démontrée par des analyses de contrôle.

Literatur

- 1) H. Hadorn und R. Jungkunz, diese Mitt. 38, 303 (1947).
- 2) K. Täufel, H. Thaler und G. Widmann, Biochem. Ztschr. 300, 354 (1939).
- 3) J. Grossfeld und H. Timm, Z.U.L. 77, 249 (1939).
- 4) E. Philippe und H. Henzi, diese Mitt. 35, 94 (1944).
- 5) H. Hadorn und R. Jungkunz, diese Mitt. 39, 259 (1948).
- 6) I. Grossfeld und K. Höll, Z.U.L. 76, 478 (1938).
- 7) M. Tsujimoto, J. Ind. and Engin. Chem. 8, 889 (1916).
- 8) A. Ch. Chapman, J. Chem. Soc. London 111, 56 (1917).
- 9) J. M. Heilbron, J. Chem. Soc. London 1630 (1926).
- 10) K. Täufel, H. Thaler und G. Widmann, Biochem. Ztschr. 300, 354 (1939).
- 11) K. Täufel, Biochem. Ztschr. 303, 324 (1939)
- 12) K. Täufel und W. Heimann, Biochem. Ztschr. 306, 123 (1940).
- 13) P. Karrer, Helv. chim. acta 14, 78 (1931).
- ¹⁴) J. Schmitt, Liebigs Annalen **547**, 115—22 (1941).
- ¹⁵) H. Marcelet, J. Pharmac. Chim. 24, 213—25 (1936), Compt. Rend. Paris 202, 867 (1936).
- ¹⁶) J. J. A. Wijs, Ztschr. für analyt. Chemie 37, 277 (1898).
- ¹⁷) Ingle, Journ. Soc. Chim Ind. **21**, 587 (1902) **23**, 422 (1904) und **27**, 314 (1908).
- 18) B. M. Margosches und R. Baru, Ztschr. für angew. Chemie 34, 454 (1921).
- 19) Schweizer und Lungwitz, Ztschr. für angew. Chemie S. 254 (1895).
- ²⁰) Ponzio und Gastaldi, Z.U.L. 25, 562 (1913).
- ²¹) Prof. Dr. H. Beckurts, «Methoden der Massanalyse», Verlag Friedr. Vieweg & Sohn, Braunschweig (1913).
- ²²) W. Fahrion, Ztschr. für angew. Chemie 14, 1225 (1901).
- ²³) J. Marcusson, siehe L. Ubbelohde: Handbuch der Chemie und Technologie der Ole und Fette (Leipzig 1908).
- ²⁴) G. Loew, Chem. Zbl. II, 929 (1931).
- ²⁵) B. Ricca und R. Lamonica, Chem. Zbl. II, 2497 (1932).
- ²⁶) T. Thorbjarnarson und J. C. Drummond, Analyst. 60, 23 (1935).
- ²⁷) E. R. Bolton und K. A. Williams, Analyst. **55**, 5 (1930).
- ²⁸) F. Reindel und E. Walter, Liebigs Ann. 460, 212 (1928).
- ²⁹) D. Holde, Untersuchung der Kohlenwasserstoffe und Fette, 5. Aufl., S. 567 (1918) (Verlag J. Springer, Berlin).
- 30) T. Thorbjarnarson und J. C. Drummond, Analyst. 60, 23 (1935).
- 31) J. C. Drummond, A. Santos Ruiz und T. Thorbjarnarson, An. Soc. Espan. Fisica Quim. 33, 680 (1935).
- 32) E. M. Trautner und M. Roberts, Analyst. 73, 140 (1948).
- 33) H. Hadorn, diese Mitt. 37, 352 (1946).