Zeitschrift: Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und

Hygiene = Travaux de chimie alimentaire et d'hygiène

Herausgeber: Bundesamt für Gesundheit

Band: 39 (1948)

Heft: 4-5

Artikel: Über Sonnenblumenpektin

Autor: Stoikoff, St.

DOI: https://doi.org/10.5169/seals-982112

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Literatur

1) R. B. French, H. S. Olcott, H. A. Mattill: Ind. Eng. Chem. 27, 724 (1935)

2) R. W. Riemenschneider, F. E. Luddy, S. E. Herb und J. Turer: Oil and Soap 22, 174 (1945)

3) J. J. Nady, F. C. Uibrans und H. R. Kraybill: Oil and Soap 21, 349 (1944)

4) Methodik siehe M. Dixon. Manometric Methods, Verlag MacMillan & Co., New York, 1934

5) W. R. Johnston und C. N. Frey: Ind. Eng. Chem., Anal. Ed. 13, 479 (1941)
J. J. Perkins: Ind. Eng. Chem., Anal. Ed 15, 61 (1943)

6) A. E. King, H. L. Roschen und W. H. Irwin: Oil and Soap 10, 105 (1933) R. W. Riemenschneider, J. Turer und R. M. Speck: Oil and Soap 20, 169 (1943)

7) E. Iselin, Mitt. 35, 113 (1944)

8) Dubouloz, M. P. Hedde, M. F. und C. Gasquy: Bull. Soc. Chim. Biol. Trav. Membres 25, 1186 (1943)

9) H. S. Olcott und H. A. Mattill: «Constituents of Fats and Oils affecting the Development of Rancidity», Chem. Reviews 29, 257 (1941)

Über Sonnenblumenpektin

Von St. Stoikoff, Plovdiv (Bulgarien)

1. Einleitung

Pektin findet vielseitige Verwendung zur Bereitung von Lebensmitteln, in Medizin und Industrie. Die wichtigsten, industriellen Pektinrohstoffe, die Zitrusund Apfeltrester, fallen nur in bestimmten Gegenden an. Wegen der steigenden Nachfrage nach Pektin besitzen daher neue Ausgangsmaterialien Interesse. Die folgende Mitteilung über das Auffinden reichlichen, gelierfähigen Pektins in den entkörnten Sonnenblumenkronen mag deshalb gerechtfertigt sein. Gleichzeitig soll auch ein Beitrag zum Studium dieses Pektins geliefert werden.

Es sei bemerkt, dass im Gebiet des Kaukasus und in Südosteuropa Sonnenblumen in grossem Maßstab angebaut werden. Die entkörnten Sonnenblumenkronen stellen bisher ein nutzloses Abfallprodukt dar, das meist verbrannt wird. Die Möglichkeit einer technischen Verwertung dieses Materials zur Gewinnung gelierfähigen Pektins ist nicht von der Hand zu weisen.

Über die Pektinstoffe der Sonnenblume (Helianthus annuus L.) finden sich bereits einige Angaben in der Literatur¹). Es wurde das Pektin der Früchte und vor allem des Stengelmarks untersucht; über Pektine der entkörnten Krone und über die Gelierfähigkeit der Sonnenblumenpektine wurde jedoch unseres Wissens noch nicht berichtet.

2. Ausbeute und Gelierfähigkeit von Pektinen der Sonnenblume

In den einzelnen Teilen der Sonnenblumenpflanze sind Pektinstoffe in verschiedenen Konzentrationen abgelagert. Auch die Qualität des extrahierten Pektins erweist sich als stark variabel. Bei den Bestimmungen der Tabelle 1 wurden lufttrockene Teile dieser Pflanze unter stets genau gleichen Bedingungen einer Oxalsäure-Extraktion unterworfen.

Es wurden je 20 g Material mit 350 cm³ 0,5 prozentiger Oxalsäure in einem 500-cm³-Rundkolben während genau einer Stunde am Rückflusskühler gekocht. Darauf wurde ein aliquoter Teil des Filtrates, der zunächst mit Ammoniak neutralisiert wurde, zur Pektinfällung mit so viel Alkohol versetzt, dass die Alkoholkonzentration der Mischung 70 Volumenprozent betrug. Der abfiltrierte Niederschlag wurde nun nach den Angaben von Schneider und Bock²) gereinigt. Nach gründlichem Waschen des Niederschlages mit 95 prozentigem Alkohol, der etwas konzentrierte Salzsäure enthielt, und reinem Alkohol wird das Pektin in warmem Wasser gelöst, wiederum mit Alkohol wie oben gefällt, das umgefällte Pektin mit Methanol, Aceton und Äther nachgewaschen und schliesslich bei 69° C während 8—12 Stunden bis zur Gewichstkonstanz getrocknet. Für die Berechnung der Pektinausbeuten der Tabelle 1 wurde noch die in den Präparaten enthaltene Stärke nach der Methode von Eckart³) in Abzug gebracht.

Tabelle 1

Pektinausbeute aus verschiedenen Teilen der Sonnenblume
Oxalsäure-Extraktion
Berechnung auf Ausgangsmaterial mit 10 % Wasser

Pflanzenteil	Pektin ⁰ / ₀
Entkörnte Krone	23,6
Parenchym der Krone	19,5
Stiele	10,5
Mark der Stiele	23,3

Nur das Pektin der entkörnten Krone besass eine zufriedenstellende Gelierfähigkeit. Seine Gelierkraft, nach der Methode von Geret 4) bestimmt, liegt bei 500. Die übrigen drei Pektinpräparate lieferten Werte für die Gelierkraft, die weit unter 300 liegen. — Die Quantität und Qualität des Pektins der entkörnten Sonnenblumenkrone hängen stark von der Extraktionsmethode ab. Bei den Versuchen der Tabelle 2 wurde mit verschiedenen Säuren bei pH 2,6 extrahiert.

Da das Pektin als Protopektin im Gewebe verankert ist, ist ein Aufschluss des Materials zum Herauslösen des Pektins nicht zu umgehen. — Die mit Salzsäure und Weinsäure extrahierten Pektine besassen eine Gelierkraft (nach Geret) von kaum 300. Nur bei Extraktion mit Oxalsäure wurde eine Gelierkraft von 500 erhalten.

Tabelle 2
Pektinausbeute aus entkörnten Sonnenblumenkronen bei Extraktion mit verschiedenen Säuren

Berechnung auf Ausgangsmaterial mit 10 % Wasser

Extraktion mit		Pektin ⁰ / ₀		
	Salzsäure	8,3		
	Weinsäure	23,7		
	Oxalsäure	23,6		

3. Ausbeute und Gelierfähigkeit von Pektinen verschiedener Pflanzenmaterialien

Um einen Vergleich zwischen dem oben beschriebenen, gelierfähigen Pektin aus entkörnten Sonnenblumenkronen mit Pektinen anderer Pflanzen zu ermöglichen, wurden aus einer grösseren Anzahl von Materialien Pektine extrahiert und analysiert. Es wurde genau nach der oben angegebenen Vorschrift mit 0,5 prozentiger Oxalsäure extrahiert. Die Menge des extrahierten Pektins wurde einerseits wie in den Tabellen 1 und 2 als gereinigter Alkohol-Niederschlag bestimmt, ausserdem aber noch als Calciumpektat nach Carré und Haynes 5) und zwar unter Verwendung der Arbeitsvorschrift von Griebel und Weiss 6). Die Gelierkraft wurde wiederum nach Geret 4) ermittelt. Zur Bewertung der Pektine wurden schliesslich noch die Nitropektine gewonnen und deren Viskosität nach Schneider und Bock 2) gemessen. In den Tabellen 3 und 4 sind die verwendeten rohen Früchte bzw. die Quantität und Qualität der daraus extrahierten Pektine zusammengestellt. In den Tabellen 5 und 6 finden sich die entsprechenden Angaben und Analysenzahlen für verschiedene lufttrockene Pflanzenteile.

Tabelle 3

Rohe Früchte Rohmaterialen der in Tabelle 4 untersuchten Pektine

Nr.	Sorte	Reifestadium	Lagerzeit	Einzelgewicht der Frucht	Extrakt des Saftes
		Quit	ten:	g	0/0
1	«Portugiesische»	nicht vollzeif	kurz	400 - 600	12,7
2	«Wilde»	reif	0	80—120	18,1
3	«Wilde»		6 Wochen		19,9
4	«Plovdiver»	fast reif	3 Wochen	280—320	15,6
		Äþ	fel:	ar har still	
5	«Ajwania»	nicht vollreif	3 Wochen	120-180	13,0
6	«Kurtovka»	reif	0	60-90	15,1
7	«Kalvil»	reif	0	180—200	15,8
8	«Wilde S»	reif	einige Woch.	18-30	13,1
9	«Wilde K»	unreif	0	20—22	11,0

Tabelle 4 Quantität und Qualität der aus rohen Früchten extrahierten Pektine

Quantität d		s Pektins	Qualität des Pektins		
Nr.	Alkohol-Niederschlag in % der rohen Frucht	Calciumpektat in % der rohen Frucht	Gelierkraft nach <i>Geret</i>	Viskositätszahl des Nitropektins nach S <i>c</i> hneider u. Bock	
		Quit	ten:		
1	1,57	0,87	740	40	
2	2,40	1,41	820	65	
3	2,71	1,60	720	40	
4	2,14	1,23	780	45	
		Äþ	fel:		
5	1,26	0,85	680	40	
6	2,13	1,42	500	35	
7	1,21	0,78	360	25	
8	2,37	1, 0	540	35	
9	1,54	1,03	740	45	

Tabelle 5 Verschiedene lufttrockene Pflanzenteile Rohmaterialien der in Tabelle 6 untersuchten Pektine

Nr.	Rohmaterial	Wasser- gehalt	Bemerkungen
I	Entkörnte Sonnen-blumenkronen	12,12	1 kg frische entkörnte Kronen ge- ben 125 g Material
II	Zuckerrüben- schnitzel	10,91	1 kg frische Schnitzel geben 83 g Material
III	Quittentrester	8,80	aus vorwiegend «Portugieser»
IV	Apfeltrester	9,20	aus fabrikmässig gepressten, ge- mischten Äpfeln
V	Entkörnte Mais- kolben	9,50	gewöhnliche, gelbe Maissorte
VI	Hanfstengel- abfälle	18,40	1 kg Hanfstengel gibt 750 g ein- geweichtes und getrocknetes Ma- terial und nach dem Verarbeiten 600 g Abfall

Tabelle 6 Quantität und Qualität der aus verschiedenen lufttrockenen Pflanzenteilen extrahierten Pektine

Nr.		Quantität	Qualität des Pektins			
	Alkohol-Niederschlag		Calciumpektat			Viskositäts-
	^{0/0} des lufttrockenen Materials	⁰ /0 des frischen Materials	⁰ /0 des lufttrockenen Materials	⁰ /0 des frischen Materials	Gelierkraft nach <i>Geret</i>	zahl des Nitropektins nach Schneider und Bock
I	23,15	2,90	22,00	2,75	500	31
II	20,47	1,74	18,60	1,58		12
III	16,70		9,85		450	27
IV	15,75		10,75		550	35
V	0,98	-	0,62			
VI	1,13		1,10	<u> </u>	1 2 1 1 1	1 17 4 17 7

Aus den Analysenergebnissen der Tabellen 4 und 6 ergibt sich unter anderem folgendes:

- a) Aus rohen Quitten und Äpfeln lässt sich hochwertigeres Pektin extrahieren als aus den getrockneten Trestern.
- b) Aus den entkörnten Sonnenblumenkronen, einem in Literatur und Praxis bisher unbekannten Pektinrohstoff, liess sich von den untersuchten Materialien am meisten Pektin extrahieren.
- c) Die Werte für den gereinigten Alkohol-Niederschlag sind stets höher als für das Calciumpektat. Bei der letzteren Bestimmung wird eher nur die Polygalakturonsäure erfasst. Die Differenz zwischen Alkohol-Niederschlag und Calciumpektat kann als Anhaltspunkt für vorhandene Verunreinigungen im Pektinpräparat betrachtet werden.
- d) Die Differenz zwischen Alkohol-Niederschlag und Calciumpektat ist beim Sonnenblumen- und Zuckerrübenpektin bedeutend geringer als beim Apfelund Quittenpektin.
- e) Das Sonnenblumenpektin ist in bezug auf Qualität dem Apfelpektin praktisch gleichwertig.
- f) Es ergibt sich eine weitgehende Parallelität der beiden Methoden, die zur Qualitätsbewertung des Pektins verwendet wurden.

4. Titrimetrische Bestimmungen an gelierfähigen Pektinpräparaten aus Sonnenblumen, Quitten und Äpfeln

Zur näheren Charakterisierung des gelierfähigen Sonnenblumen-Pektins (Präparat I der Tabellen 5 und 6) wurden noch titrimetrische Bestimmungen ausgeführt. Zum Vergleich wurden auch das Quittenpektin (Präparat III der Tabellen 5 und 6) und das Apfelpektin (Präparat IV der Tabellen 5 und 6) der gleichen Analysenmethode unterworfen. Die elektrometrische Titration der freien und veresterten Karboxylgruppen des Pektins erfolgte nach der Vorschrift von Deuel⁷). Zur Berechnung wurden die von Pallmann und Deuel⁸) zusammengestellten Formeln verwendet.

Von den drei Pektinpräparaten wurden nach Ergebnissen von Vorversuchen stets so viel eingewogen, wie 1,60 Milliäq. an Gesamtkarboxylen (Pektinsäure) entspricht. Die eingewogenen Mengen wurden nochmals gründlich auf der Nutsche mit Salzsäure-Alkohol und Alkohol gewaschen und in 100-cm³-Messkölbchen in destilliertem Wasser gelöst; anschliessend wird mit destilliertem Wasser genau bis zur Marke aufgefüllt. An je 10 cm³ dieser Lösungen wurden Titrationskurven mit 0,01-n-Natronlauge bei 18 °C aufgenommen (Chinhydron-Elektrode). Es wurden entsprechend den verschiedenen Veresterungsgraden der drei Pektine drei verschiedene Titrationskurven erhalten. Aus den Kurven konnte der Laugeverbrauch zum Erreichen eines pH 7 abgelesen werden; diese Laugemenge

entspricht dem Gehalt an freien Karboxylgruppen. Es wurden auch Titrationskurven nach der völligen Verseifung des Pektins mit Alkali aufgenommen. Dazu wurde mit 0,01-n-Schwefelsäure zurücktitriert. Für die drei Präparate aus Sonnenblume, Quitte und Apfel wurde ein und dieselbe Titrationskurve nach völliger Verseifung für die gebildete Pektinsäure erhalten. Der Gehalt an Gesamtkarboxylen betrug für alle drei Pektine genau 1,60 Milliäq. Aus den titrimetrischen Bestimmungen ergaben sich folgende, in Tabelle 7 zusammengestellte Resultate:

Tabelle 7 Ergebnisse der titrimetrischen Bestimmungen an drei Pektinpräparaten

	Sonnen- blume	Quitte	Apfel
Einwaage pro Versuch in g	0,335	0,351	0,372
Bestimmungen aus den Titrationskurven:			
Freie Karboxyle Milliäq, pro Einwaage	0,870	0,604	0,410
Gesamtkarboxyle Milliäq. pro Einwaage	1,600	1,600	1,600
Berechnungen aus den Titrationsergebnissen:			
Freie Karboxyle Äq. pro 100 g Präparat (x) Veresterte Karboxyle in Äq. pro 100 g	0,260	0,171	0,110
Präparat (y)	0,218	0,285	0,320
Reinpektin ⁰ / ₀ : (176 x + 190 y)	87,3	84,3	79,8
Veresterungsgrad ⁰ / ₀ : 100 y / (x + y)	45,7	67,0	74,2
Aquivalentgewicht: (176 x + 190 y) / x	336	492	727

Das Sonnenblumenpektin besitzt also einen sehr hohen Reinheitsgrad. Es weist einen geringeren Veresterungsgrad auf, als die unter gleichen Bedingungen aus Quitten und Äpfeln extrahierten Pektine.

Zusammenfassung

Aus den entkörnten Sonnenblumenkronen lässt sich mit Hilfe von Oxalsäure in der Hitze in guter Ausbeute (zirka 23 % der lufttrockenen Substanz) ein Pektinpräparat hohen Reinheitsgrades (zirka 87 % Reinpektin) isolieren. Die Bestimmungen der Gelierkraft nach Geret und viskosimetrische Messungen an acetonischen Lösungen der Nitropektine nach Schneider und Bock zeigen, dass es sich um hochwertiges Pektin bedeutenden Molekulargewichtes handelt. Der Veresterungsgrad dieses Pektins mit Methanol ist relativ gering (zirka 46%).

Nach der chemischen Untersuchung verhält sich das Pektin aus Sonnenblumenkronen ebenso wie Pektine gleichen Molekulargewichtes und Veresterungsgrades aus Apfel- oder Zitrustrestern. Bei geeigneter industrieller Gewinnung dürfte sich daher das Sonnenblumenpektin gut zur Herstellung zuckerreicher und auch trockensubstanzarmer Gelées eignen. — Die Untersuchungen an Pektinen der Sonnenblume werden fortgeführt.

Résumé

En traitant à chaud par l'acide oxalique les têtes de tournesol, débarrassées de leurs graines, on peut isoler avec un bon rendement (env. 23 % de la substance séchée à l'air) une pectine d'un haut degré de pureté (contenant env. 87 % de pectine pure).

La détermination du pouvoir gélifiant de cette pectine, selon *Geret*, ainsi que la mesure de la viscosité, selon *Schneider* et *Bock*, de solutions acétoniques de son dérivé nitré montrent qu'il s'agit d'un produit de poids moléculaire élevé. L'indice d'estérification de cette pectine par l'alcool méthylique est relativement bas (env. 46 %).

D'après l'examen chimique la pectine des têtes de tournesol se comporte de la même manière que les pectines de mêmes poids moléculaire et indice d'estérification obtenues à partir des marcs de pommes ou de résidus de citrons. La pectine de tournesol, obtenue industriellement d'une façon appropriée, pourrait bien se prêter à la préparation de gelées riches en sucre et également à celle de gelées pauvres en substance sèche.

Les recherches sur les pectines du tournesol sont poursuivies.

Literatur

- 1) A. Goldowski und A. Boshenko, Ol- und Fettind. (russ.) p. 30 (1932), ref. C. 1933, I, 3646; K. Griffioen, Rec. trav. bot. néerl. 35, 322 (1938); H. Colin und S. Lemoyne, C. r. (Paris) 211, 44 (1940); H. F. Müller und W. Overbeck, B. 75, 909 (1942); S. Lemoyne, Bull. assoc. chim. 60, 12 (1943).
- ²) G. G. Schneider und H. Bock, Z. angew. Ch. 51, 94 (1938).
- 3) H. Eckart, Chem. d. Zelle und Gewebe 12, 243 (1925).
- ⁴) L. Geret, Diese Mitt. 21, 116 (1930), Schweiz. Lebensmittelbuch, Bern, 1937, p. 188.
- 5) M. H. Carré und D. Haynes, Biochem. J. 16, 60 (1922).
- 6) C. Griebel und F. Weiss, Z.U.L. 58, 189 (1929).
- 7) H. Deuel, Diese Mitt. 34, 41 (1943); Ber. schweiz. bot. Ges. 53, 219 (1943).
- 8) H. Pallmann und H. Deuel, Chimia 1, 27, 51 (1947).