Zeitschrift: Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und

Hygiene = Travaux de chimie alimentaire et d'hygiène

Herausgeber: Bundesamt für Gesundheit

Band: 38 (1947)

Heft: 4-5

Artikel: Trennung der Zuckerarten

Autor: Fellenberg, Th. von

DOI: https://doi.org/10.5169/seals-983031

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

MITTEILUNGEN

AUS DEM GEBIETE DER

LEBENSMITTELUNTERSUCHUNG UND HYGIENE

VERÖFFENTLICHT VOM EIDG. GESUNDHEITSAMT IN BERN Offizielles Organ der Schweiz. Gesellschaft für analytische und angewandte Chemie

TRAVAUX DE CHIMIE ALIMENTAIRE ET D'HYGIÈNE

PUBLIÉS PAR LE SERVICE FÉDÉRAL DE L'HYGIÈNE PUBLIQUE À BERNE

Organe officiel de la Société suisse de chimie analytique et appliquée

ABONNEMENT: Schweiz Fr. 15.- per Jahrgang. Preis einzelner Hefte Fr. 2.75 Suisse fr. 15.- par année. Prix des fascicules fr. 2.75

BAND XXXVIII

1947

HEFT 4/5

Trennung der Zuckerarten

Von Th. von Fellenberg (Aus dem Laboratorium des Eidgenössischen Gesundheitsamtes)

1.

Die gebräuchliche gravimetrische Zuckerbestimmung leidet an verschiedenen Mängeln. Es wird in den Vorschriften nirgends erwähnt, dass ein Blindversuch mit Fehlinglösung vorzunehmen sei und doch ist ein solcher bei genauen Bestimmungen notwendig, da die anfänglich nur geringe Selbstreduktion der alkalischen Seignettesalzlösung im Laufe der Zeit erheblich zunimmt. Man sollte deshalb auch in den Vorschriften darauf hinweisen, dass nicht mehr von dieser Lösung herzustellen sei, als innert einigen Wochen verbraucht wird.

Ein Übelstand, der sich besonders bei der Bestimmung mehrerer Zucker neben einander geltend macht, besteht darin, dass die Vorschriften für die einzelnen Zuckerarten, die ja von verschiedenen Autoren herrühren, teilweise verschiedene Erhitzungszeiten verlangen. Sind mehr als zwei Zucker vorhanden, so versagen die üblichen Methoden überhaupt. Man ist auch gelegentlich im Ungewissen, ob wirklich der Zucker vorliegt, auf welchen man die Reduktion berechnet.

Ich suchte nun, zu Handen der Neuauflage des schweizerischen Lebensmittelbuches einen Analysengang auszuarbeiten, welcher eine sichere Charakterisierung der einzelnen Zuckerarten und ihre Trennung, auch wenn 3 oder 4 Zucker vorliegen, gestattet. Ein solcher Analysengang könnte dann, nachdem er sich auch in andern Händen bewährt haben würde, als vorläufige, unverbindliche Methode aufgenommen werden.

Als Grundlage für die Trennungen dient die Zuckerbestimmungsmethode von *Hadorn* und mir ¹), welche im Prinzip darin besteht, dass das entstandene Kupfer (I)-oxyd auszentrifugiert, auf geeignete Weise in Lösung gebracht und mit Jod titriert wird. Nach Abzug des Blindwertes wird der Jodverbrauch in

Zucker umgerechnet.

Die Hauptvorzüge des Verfahrens bestehen darin, dass mehrere Bestimmungen nebeneinander ausgeführt werden können, dass die Erhitzungszeit überall dieselbe ist, dass keine Tabellen notwendig sind, da innert eines weiten Bereiches für jede Zuckerart ein bestimmter Faktor verwendet werden kann. Die Hauptbedingung für die Richtigkeit der Bestimmung ist selbstverständlich eine genaue Titerstellung der verwendeten Jodlösung.

Die Faktoren, mit welchen die cc 0,02 n - Jodlösung multipliziert werden müssen, um mg-Zucker zu erhalten, sind in Tabelle 1 angegeben.

Tabelle 1
Zuckerfaktoren

Invertzucker	0,731
Glucose	0,687
Fructose	0,775
Saccharose	0,694
Lactosehydrat	0,986
Maltosehydrat	1,200

Der Reduktion kann auch eine schwache oder starke Inversion der Diund Polysaccharide vorausgehen. Ferner lassen sich Methoden auf die nicht invertierten und die invertierten Lösungen anwenden, welche entweder nur die Monosaccharide oder nur die Aldosen oder nur de Ketosen umfassen. Durch geeignete Kombination dieser möglichen Bestimmungen lassen sich die einzelnen Zuckerarten voneinander trennen.

Unter schwacher Inversion verstehen wir die gewöhnliche Saccharoseinversion, wobei in der Regel 1 cm³ n-HCl auf 50 cm³ Flüssigkeit verwendet wird, also die Inversion in 0,02n-salzsaurer Lösung während 30 Minuten. Die starke Inversion erfolgt in n-salzsaurer Lösung während 45 Minuten²).

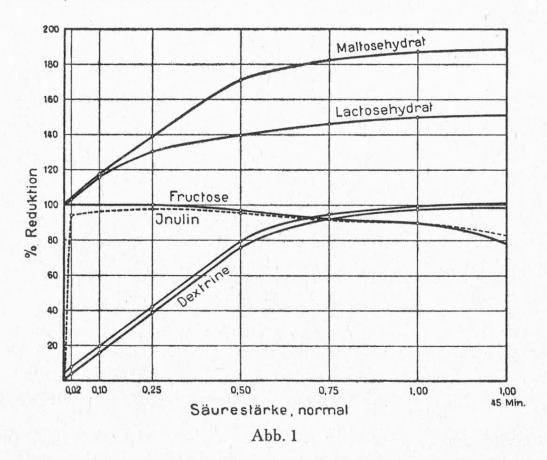
Es schien nun zur Charakteristik der einzelnen Kohlenhydrate nicht uninteressant, auch die Zwischenstufen dieser Inversionen kennen zu lernen. Man erhitzte die einzelnen Kohlenhydrate je 30 Minuten lang im siedenden Wasserbad in 0,02, 0,1, 0,25, 0,5, 0,75, ln-salzsaurer Lösung und ferner 45 Minuten in ln-salzsaurer Lösung und erhielt die in Tabelle 2 wiedergegebenen Werte.

Tabelle 2 Inversion der Kohlenhydrate bei steigender Salzsäurekonzentration

Inversion: n-HCl: Min.:	nicht Inv.	schwache Inv. 0,02 30	0,1 30	0,25	0,5 30	0,75 30	1 30	starke Inv. 1 45
Glucose	100		-	_	_			100
Fructose	100	100	100	100	96,4	91,4	91,1	78.1
Saccharose	0	100		_	_	_	_	89,0
Lactosehydrat	100	102,3	117,0	130,9	140,0	147,5	149,6	151,4
Maltosehydrat	100	102,3	117,8	139,1	171,5	183,1	187,2	188,9
Dextrine als Glucose	117							
Nr. 1	1,41	4,28	16,4	39,0	77,5	95,0	100,0	105,0
Nr. 2	1,73	3,97	16,0	40,0	75,5	89,1	99,0	104,0
Nr. 3	2,13	5,54	17,2	42,2	76,0	93,2	98,7	103,7
Nr. 4	4,25	7,40	17,8	40,7	80,2	95,1	101,0	106,0
Inulin	0	94,0	96,4	97,9	96,0	92,9	90,4	83,4

Die relativen Viscositäten der Dextrine, bestimmt in 10% iger Lösung, bezogen auf Wasser von 20% und ihre Farbenreaktionen mit Jod sind:

Dextrin	Nr. 1	Nr. 2	Nr. 3	Nr. 4
Mittlere Kettenlänge	71	58	47	23,5
rel. Visc.	3,823	3,171	2,157	1,917
Färbung mit J	blauviolett	purpur	rot	orangerot


Das Dextrin ist der Tabelle als Glucose, Inulin als solches unter Anwendung des mit 0,9 multiplizierten Fructosefaktors berechnet.

Da Dextrin kein einheitlicher Körper ist, wurde eine Trennung in verschiedene Fraktionen vorgenommen. Ein weisses Dextrin des Handels wurde in Waser gelöst und durch vorsichtigen Alkoholzusatz fraktioniert gefällt, indem man jedesmal Alkohol bis zur Trübung zusetzte und tage- und wochenlang bis zur Klärung stehen liess. Man erhielt 4 Fraktionen, welche nochmals mit Alkohol umgefällt und mit Alkohol und Äther entwässert wurden. Man bestimmte ausser der Reduktion nach verschieden langer Inversion auch die relative Viskosität bei 20%, bezogen auf Wasser, im Viscosimeter nach Ostwald und die Farben-

reaktionen mit Jod. Diese zogen von Nr. 12 bis Nr. 6 des 24teiligen Ostwaldschen Farbenkreises, d. i. vom 3. Violett bis zum 3. Orange.

Die Eigenreduktion der Dextrine bewegt sich zwischen 1,41 und 4,25. Wenn wir annehmen, dass kein direkt reduzierender Zucker in den 4 Fraktionen als Verunreinigung enthalten ist, sondern dass es sich um endständige Aldehydgruppen handelt, die reduzieren und dass diese gleich stark reduzieren, wie die Aldehydgruppe der Glucose, kommen wir auf mittlere Kettenlängen von 71, 58, 47 und 23,5.

Als weiteres Polysaccharid wurde Inulin untersucht. Es wurde aus Topinambourknollen gewonnen. Die Knollen wurden zerrieben und gepresst. Das Inulin wurde aus dem Saft mit Alkohol gefällt und noch mehrmals fraktioniert umgefällt. Dabei fielen zuerst unreine, dunkle Fraktionen aus und erst zum Schluss reines, weisses Inulin.

Die Hauptwerte der Tabelle sind in Abb. 1 graphisch eingezeichnet. Glucose bleibt bei der Säurebehandlung unverändert. Fructose hält noch eine Erhitzung in 0,5n-HCl während 30 Minuten ohne Schädigung aus, mit 0,75n-Säure beginnt aber die Zersetzung, die mit einem Verlust von 22 % endet.

Inulin reduziert direkt nicht im geringsten. Es wird aber bereits in 0,02n-HCl zu 95 % aufgespalten. Die weitere Hydrolyse geht nur allmählich vor sich und erreicht ihr Maximum bei 0,5n-HCl. Dann beginnt auch hier der Zufall der entstandenen Fructose.

Durch Gegenwart anderer Zucker scheint die Inversion verzögert zu werden. Bei einem Topinamboursaft, dessen Analyse später gegeben wird, betrug die Aufspaltung des Inulins in 0,02n-HCl nur 74 %.

Lactose zeigt bekanntlich bereits bei 0,02n-HCl eine leichte Erhöhung der Reduktion. Die Kurve steigt allmählich und geht schliesslich nach 45 Minuten langem Erhitzen in n-HCl auf 151% des urspünglichen Wertes hinauf.

Maltose zeigt bei 0,02n-HCl denselben Wert, wie Lactose. Die Kurve steigt dann aber zunächst steiler an, als bei Lactose und zwar bis 0,5n-HCl nahezu geradlinig. Dann wird der Anstieg schwächer. Es werden schliesslich 189% des Anfangswertes erreicht.

Bei den Dextrinen ist die Eigenreduktion der 4 Fraktionen wie erwartet etwas verschieden in dem Sinn, dass das höchstmolekulare am wenigsten, das niedrigst molekulare am stärksten reduziert. Bei höhern Säurekonzentrationen gleichen sich die Unterschiede bald einigermassen aus.

Die Dextrinkurve zeigt dieselbe Eigentümlichkeit, wie die Maltosekurve, dass sie bis zu 0,5n-HCl nahezu geradlinig verläuft und sich dann allmählich abflacht. Bei vollständiger Hydrolyse sollten aus 100 Teilen Dextrin (C6H10O5) 111 Teile Glucose entstehen. Wir kommen aber nur auf zirka 105%. Die Umwandlung scheint somit keine vollständige zu sein.

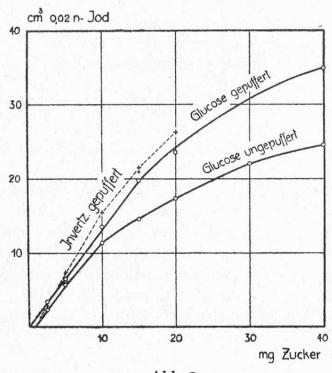
Für unsere Berechnungen benötigen wir von dieser Tabelle nur die Werte der schwachen und der starken Inversion (30 Minuten in 0,02n- und 45 Minuten in n-HCl). Man könnte zwar auch, besonders etwa bei Anwesenheit von Dextrin, irgendeine mittelstarke Inversion zu Rate ziehen, es würde dies aber die ohnehin nicht einfachen Berechnungen allzusehr komplizieren.

II. Bestimmung der Monosaccharide mit Barfoedlösung

Barfoed ³) stellte bereits vor mehr als 70 Jahren fest, dass Glucose eine mit wenig Essigsäure versetzte Kupfer (II) - acetatlösung reduziert, während Dextrin unter diesen Bedingungen nicht reagiert. Er fand, dass auch Saccharose und Lactose dabei unverändert bleiben.

Diese qualitative Reaktion von Barfoed ist im Laufe der Zeit von verschiedenen Seiten aufgegriffen und zur Bestimmung von Glucose neben Maltose verwendet worden. Besonders eingehend haben sich Braun und Bleyer 4) damit befasst. Sie stellten fest, dass zwar auch die reinste Maltose eine gewisse, leichte Reduktion aufweist, dass diese aber sehr viel geringer ist, als diejenige der Glucose, so dass Bestimmungen von Glucose neben Maltose möglich sind. Ich selbst 5) habe die Barfoedreaktion zur Untersuchung von Malzextrakt und Stärkesirup verwendet.

Barfoedlösung wird meist als ein typisches Reagens auf Glucose angesehen; sie ist aber ein Reagens auf alle Monosaccharide. Fructose reagiert noch stärker, als Glucose. Die Disaccharide reduzieren das Reagens sehr schwach, aber doch merkbar. Die Bestimmungen mit Barfoed-Lösung sind etwas heikel. Um vergleichbare Werte zu erhalten, muss man sich streng an eine einmal aufgestellte Vorschrift halten. Jede Abweichung gibt ganz bedeutende Fehler, wenn nicht direkt unbrauchbare Werte.


Das Reagens, welches beispielsweise Braun und Bleyer anwenden, besteht aus einer Lösung von 25 g Kupfer(II)-acetat + H2O und 3 cm³ Eisessig im Liter. Ich habe auf Rat von H. Hadorn hin die Lösung durch Zusatz von 10 g Natriumacetat zum Liter gepuffert, da vorauszusehen war, dass das pH sich während der Reaktion durch Bildung von Säure aus Zucker erniedrigt. Die ungepufferte Lösung ging denn auch bei Verwendung von 5 mg Glucose von pH 4,75 auf pH 4,3 zurück. Der Natriumacetatzusatz an sich erhöhte das pH nur auf 4,80. Trotzdem stieg der Jodverbrauch ziemlich erheblich.

Einfluss der Erhitzungsdauer

Je 15 mg Glucose, gelöst zu 5 cm³ Wasser, wurden mit 15 cm³ ungepufferter Barfoedlösung verschieden lang im siedenden Wasserbad erhitzt. Darauf wurde abgekühlt und das entstandene Kupfer(I)-oxyd nach *Hadorn* und *von Fellenberg* titriert. Man fand:

Tabelle 3

Erhitzungsdauer	cc 0,02n-J auf 15 mg Glucose
5 Minuten	9,38
10 Minuten	14,57
15 Minuten	17,57

270

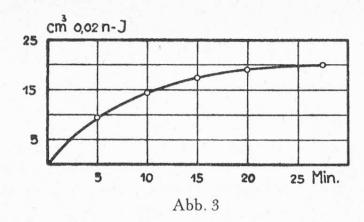
Abb. 2

Die Reaktion geht nur langsam ihrem Endwert entgegen. Nach der Abb. 2, wobei die höheren Werte extrapoliert sind, dürfte sie ihn nach ungefähr 25 Min. langem Erhitzen erreicht haben. Bei so langem Erhitzen wäre aber die Gefahr vorhanden, dass gleichzeitig vorhandene Saccharose in der sauren Lösung weitgehend invertiert würde. Ich entscholss mich aber zu nur 10 Minuten langem Erhitzen. Eine Minute mehr oder weniger macht dabei, wie aus der Kurve hervorgeht bei Glucose, etwa 2 cm³ Jodlösung aus, was etwa 1,5 mg Glucose entspricht. Man wird sich also bestreben müssen, die vorgeschriebene Zeit möglichst genau einzuhalten, wobei aber einige Sekunden mehr oder weniger noch nicht ins Gewicht fallen.

Dass die Reduktion auch von der Menge des überschüssigen Reagens abhängt, ist früher ⁵) gezeigt worden. Unter allerdings wesentlich andern Reaktionsbedingungen fand ich damals mit steigenden Mengen Barfoedlösung mit je 200 mg Glucose folgende Zunahme im Jodverbrauch:

```
20 cm³ Barfoedlösung + 40 cm³ Wasser + 20 cm³ Glucoselösung = 8,67 cm³ 0,05n - J 40 cm³ Barfoedlösung + 20 cm³ Wasser + 20 cm³ Glucoselösung = 27,38 cm³ 0,05n - J 60 cm³ Barfoedlösung + 20 cm³ Glucoselösung = 47,64 cm³ 0,05n - J
```

Die Werte zeigen, dass ein grosser Überschuss an Reagens von vorneherein notwendig ist.


Steigende Glucosemengen ohne und mit Acetatpuffer

Von den vielen Arbeitsmöglichkeiten wählte ich folgende als endgültig. 5 cm³ Zuckerlösung werden mit 15 cm³ Barfoedlösung in einem geräumigen Reagensglas 10 Minuten im siedenden Wasserbad erhitzt von Beginn des Wiedersiedens an gerechnet. Man verbrauchte mit ungepufferter und gepufferter Lösung unter Verwendung von Glucose folgende Jodmengen:

mg Glucose Faktor mg Glucose ungepuffert cc 0,02 n - J gepuffert mg Glucose Faktor Fehler Fehler cc 0,02 n - J 0,89 0.76 - 0,30 2,5 2.47 2,20 3,30 2,51 +0.015,62 5,00 6,35 4,82 -0.185 0 11,29 10.05 + 0.0510,40 10 13.62 +0.414.57 13,00 19,77 15,0 15 -2.00 20 17,38 15,45 -4,5523,64 18,1 -1,922,07 30 19,64 -10,3640 24,57 21,87 -18,1335,00 26,6 -13,4

Tabelle 4

Der Jodverbrauch ist bei der gepufferten Lösung erheblich grösser, als bei der ungepufferten.

Ich habe die Faktoren ausgerechnet, mit welchen die cm³ J multipliziert werden müssen, um mg Glucose zu geben. Bei der ungepufferten Lösung ist der Faktor 0,89 (3. Kolonne), bei der gepufferten 0,76 (6. Kolonne). Multiplizieren wir damit wieder die Jodwerte, so erhalten wir ohne Pufferung nur bis zu 10 mg oder 11,3 cm³ Jod richtige Werte, mit Pufferung hingegen bis 15 mg Zucker oder rund 20 cm³ Jod, wie das auch die Abb. 3 zeigt. Die Pufferung hat also die gewünschte Wirkung ausgeübt, aber nur bis zu einem gewissen Zuckergehalt. Ob ein Zusatz von noch mehr Natriumacetat noch günstiger gewirkt hätte, ist nicht ausprobiert worden. Durch 15 mg Glucose ist nur etwa ½2 des vorhandenen Kupfers reduziert worden.

Die Pufferung der Barfoedlösung mit 10 mg Natriumacetat zum 1 wurde bei allen weitern Bestimmungen angewendet.

Reduktion der Barfoedlösung durch Invertzucker

Die folgende Tabelle gibt den Jodverbrauch steigender Mengen Invertzucker an. (Siehe auch Abb. 3.)

Tabelle 5
Steigende Invertzuckermengen

mg Invertzucker	cc 0,02n-J	Faktor	mg Inv. nach Tab. 6 ber.
2,5	2,95	0,850	2,98
2,5	2,89	0,862	2,95
5,0	7,50	0,667	5,08
5,0	7,28	0,686	4,84
10,0	15,41	0,649	9,98
10,0	15,41	0,667	9.98
15,0	21,49	0,698	15,35
15,0	20,93	0,716	14,76
20,0	26,27	0,761	20,0

Die Werte sind nicht sehr regelmässig. Sie lassen sich nicht wie bei der Glucose durch einen einheitlichen Faktor berechnen. Man muss eine Berechnungstabelle zu Hilfe nehmen. In der 4. Kolonne sind die nach Tab. 5 berechneten Werte wiedergegeben.

Tabelle 6 Berechnungstabelle für Invertzucker mit Barfoedlösung

cc 0,02n-J	mg Invertzucker	ce 0,02 n - J	mg Invertzucker
3	2,5	15	9,7
4	3,0	16	10,4
5	3,6	17	11,2
6	4,2	18	12,1
7	4,8	19	13,0
8	5,4	20	13,9
9	6,05	21	14,85
10	6,7	22	15,8
11	7,35	. 23	16.75
12	7,95	24	17,75
13	8,55	25	18,75
14	9,1	26	19,75

Auch andere Monosaccharide als Glucose und Fructose sind nach Barfoed bestimmbar. Arabinose gibt beispielsweise Faktoren, die um 1 herum liegen.

Reduktion der Disaccharide nach Barfoed

Es ist notwendig, dass wir uns auch über die Reduktion der Disaccharide Rechnung geben. Da die Barfoedlösung schwach sauer ist, können wir vermuten, dass Saccharose zu einem kleinen Betrag invertiert wird und dann die Lösung reduziert. Da Lactose und Maltose bereits zu den reduzierenden Zuckern gehören, ist auch durch sie eine gewisse Reduktion zu gewärtigen.

Die ganz kleinen Werte sind bei der Reduktion nicht ganz zuverlässig. Man erhöhte daher die Reduktionswirkung durch Zusatz von 10 mg Glucose zu 100 mg Disaccharid und erhielt:

Tabelle 7

Je 10 mg Glucose +	cc 0,02 n - J	Zucker als Glucose	Disaccharid als Glucose
100 mg Saccharose	14,92	11,34	1,34
100 mg Lactose	15,92	12,20	2,20
100 mg Maltose	18,27	13,89	3,89

Als Glucose berechnet reduziert Saccharose 1,34, Lactose 2,20 und Maltose 3,89 %. Es sind daher bei der Untersuchung von Lebensmitteln entsprechende Korrekturen zu machen.

III. Bestimmung der Aldosen

Bereits vor 50 Jahren wies Romijn 6) darauf hin, dass Aldosen im Gegensatz zu den Ketosen durch Hypojodit zu den enstprechenden Carbonsäuren oxydiert werden. Inzwischen ist von vielen Seiten über diese Methode gearbeitet worden. Besonders gründlich sind die Untersuchungen Kolthoffs 7). Er gibt als Beispiel folgende Arbeitsweise an.

«Zu 10 cm³ der Zuckerlösung, die höchstens 1,1 % Glucose enthalten darf, setzt man 25 cm³ 0,1n-Jodlösung und darauf unter Umschütteln 30 cm³ 0,1n-Lauge. Nach 3—10 Mnuten langem Stehen im verschlossenen Gefäss säuert man mit verdünnter Schwefel- oder Salzsäure an und titriert den Jodüberschuss mit Thiosulfat zurück.»

Das Jod soll in doppeltem oder nahezu doppeltem Überschuss vorhanden sein. In dem Beispiel von Kolthoff ist es in 2,5-fachem Überschuss da. Um die bei den andern Zuckerbestimmungen verwendete 0,02 n-Jodlösung auch hier benutzen zu können, habe ich die Konzentrationen etwas geändert, ohne jedoch das von Kolthoff als Optimum erkannte Verhältnis zwischen Zucker und Lauge zu ändern; den auf dieses Verhältnis kommt es sehr an. Ein zu geringer Überschuss genügt nicht, bei einem zu grossen ist Gefahr vorhanden, dass die verschiedenen Zuckerarten sich teilweise ineinander umgewandelt haben, bevor sie oxydiert sind, wie ja Lobry de Bruyn und Alberda van Eckenstein ⁸) diese Umwandlung bei der Einwirkung von Alkali auf Zucker festgestellt haben.

Den von Kolthoff abweichenden Konzentrationsverhältnissen habe ich folgendermassen Rechnung getragen.

Man versetzt die Zuckerlösung, am besten 3—8 cm³, in einem 100-cm³-Erlenmeyerkolben mit Glasstopfen oder in einer Stöpselflasche mit 20 cm³ 0,02n-Jodlösung und gleich darauf unter Umschwenken mit 0,5 cm³ n-NaOH, verschliesst, lässt 3—5 Minuten im Dunkeln stehen, setzt 1 cm³ n-HCl zu und titriert den Überschuss an Jod zurück.

Die Reaktion verläuft stöchiometrisch nach der Formel:

$$R-CHO + J_2 + 3 NaOH = R-COOH + 2 NaJ + 2 H_2O.$$

1 cm³ 0,02n - Jod entspricht 1,8 mg Glucose oder 3,6 mg Lactose- oder Maltosehydrat oder, falls man Pentosen bestimmt, 1,5 mg Pentose.

Da die Methode bereits durch Kolthoff sehr gründlich durchgearbeitet worden ist, erübrigt sich die Angabe von viel Zahlenmaterial.

IV. Bestimmung der Fructose

Bereits Kolthoff 7) weist darauf hin, dass sich nach Oxydation der Aldosen durch Hypojodit sehr gut die Fructose bestimmen lässt, die einzige Ketose, die in Nahrungsmitteln nachgewiesen ist. Man muss aber in diesem Fall das Jod nicht mit Thiosulfat zurücktitrieren, weil sich dabei Tetrathionat bildet, welches Fehlinglösung verbraucht, sondern mit Sulfit in der sauren Lösung. Besonders eingehend ist die Fructosebestimmung von Kruisheer 9) bearbeitet worden.

Meine Arbeitsweise, welche sich ganz an diejenige von Kolthoff und Kruisheer anschliesst, aber unter Benützung der Jodtitration nach Hadorn und von Fellenberg, ist folgende:

Man wiederholt anschliessden an die Aldosenbestimmung die Oxydation mit Jod in alkalischer Lösung unter Verwendung von doppelt so viel Jodlösung, wie bei der Aldosenbestimmung verbraucht worden ist. Man kann auch, was bei sehr kleinen Fructosemengen zu empfehlen ist, eine entsprechende Menge 0,1n-statt 0,02n-Jodlösung verwenden. Man säuert auch hier wieder mit 1 cm⁹ n-HCl an und titriert das Jod mit einer frisch bereiteten etwa 2 % igen Sulfitlösung zurück. Man kann statt dessen auch festes Natriumbisulfit sorgfältig in ganz kleinen Anteilen zugeben, bis die Jodfärbung eben verschwunden ist. Dann gibt man 1 Tropfen (nicht mehr) Stärkelösung zu und titriert mit Jod wieder bis zum Erscheinen des ersten blauen Schimmers. Nun neutralisiert man mit NaOH sorgfältig gegen Methylorange bis in die Nähe des Neutralpunktes, macht aber keinesfalls alkalisch. Wegen der puffernden Wirkung der aus dem Zucker entstandenen Säure erfolgt der Umschlag allmählig und kann gut beobachtet werden.

Die Lösung wird nun in der Regel in ein 50-cm⁹-Massklöbchen übergeführt und zur Marke aufgefüllt, worauf man in einem aliquoten Teil, meist in 20 cm³, den Zucker nach *Hadorn* und *von Fellenberg* bestimmt. Bei sehr kleinen Fructosemengen kann man auch, falls die Lösung weniger als 20 cm³ beträgt, diese in ein mit Marke versehenes Reagensglas übergiessen und nach Auffüllen auf 20 cm³ die ganze Menge zur Reduktion verwenden.

Durch Multiplikation der nach Abzug des Blindversuches verbrauchten cm³ 0,02n-Jodlösung mit 0,775 (Siehe Tab. 1) erhält man mg Fructose.

Bei der Glucose- und Fructosebestimmung nach der starken Inversion stören die entstandenen Zersetzungsprodukte. Kolthoff (1. c.) entfernt sie durch Schütteln der nahezu neutralisierten Lösung mit möglichst wenig Tierkohle. Ich gehe so vor, dass ich die braune Lösung mehrmals mit wenig Äther ausschüttle und die Ätherlösung mit einer Saugpipette entferne. Dann wird Metylorange zugesetzt, mit möglichst wenig Tierkohle geschüttelt, der Rest des Äther im Wasserbad entfernt, filtriert und mit Wasser bis zu einem bestimmten Volumen nachgewaschen. In einem bestimmten Teil der Lösung wird die noch vorhan-

dene Säure titriert. Dann wird die Glucose und die Fructose bestimmt, wobei man nach dem Jodzusatz ausser der vorgeschriebenen NaOH-Menge noch die zur Neutralisation benötigte zusetzt.

V. Anwendung der Trennungsverfahren

Nach den beschriebenen Untersuchungsmethoden lassen sich eine ganze Reihe von Einzelbestimmungen ausführen, die teils zur Trennung der Zucker dienen, teils als Kontrolle willkommen sind. Theoretisch sind die folgenden Möglichkeiten gegeben, von denen aber nur einige wenige notwendig sind.

1. Vor der Inversion

- a) Direkte Reduktion nach Hadorn und von Fellenberg. Es reduzieren Glucose, Fructose, Lactose, Maltose. Die Berechnung erfolgt nach Tab. 1 je nach Umständen als Invertzucker, Glucose, Lactose oder Maltose.
- b) Monosaccharide nach Barfoed. Es reduzieren Glucose und Fructose, in ganz geringem Grade die Disaccharide (siehe Tab. 7). Die Berechnung erfolgt bei Glucose mit Faktor 0,76 bei Invertzucker nach Tab. 6.
- c) Aldosen. Es reduzieren Glucose, Lactose, Maltose. Die Berechnung erfolgt bei Glucose mit Faktor 1,8, bei Lactose- und Maltosehydrat mit Faktor 3,6.
- d) Fructose. Sie wird nach Tab. 1 mit Faktor 0,775 berechnet.

2. Schwache Inversion

- a) Reduktion nach Hadorn und von Fellenberg. Es reduzieren Glucose, Fructose, aus Saccharose entstandener Invertzucker, Lactose, Maltose, letztere beiden Zuckerarten nach Tab. 2 um 2,3% stärker, als vor der Inversion.
- c) Aldosen. Es reduzieren vorgebildete und aus Saccharose entstandene Glucose, ferner Lactose und Maltose, letztere beiden 2,3 % stärker, als vor Inversion.
- d) Fructose. Es reduziert vorgebildete und aus Saccharose entstandene Fructose.

3. Starke Inversion

- a) Reduktion nach Hadorn und von Fellenberg. Es reagieren vorgebildete und aus Saccharose entstandene Glucose, ferner Lactose, Maltose und Dextrin als Glucose, ferner 78 % der vorgebildeten und aus Saccharose, eventuell aus Polysacchariden (Trifructosan, Inulin) entstandenen Fructose, ferner allfällige Pentosane als Pentosen.
- c) Aldosen. Es reagieren dieselben Zucker wie bei a, ausser Fructose.
- d) Fructose. Es reagieren 78% der vorgebildeten und durch Hydrolyse entstandenen Fructose.

Die Reaktion nach Barfoed wird nur vor der Inversion ausgeführt, weil dabei nur die vorgebildeten, nicht die durch Inversion entstandenen Monosaccharide von Interesse sind. Auch stören die bei der Inversion hinzugekommenen Chlorionen die Reaktion durch Ausfällen von Kupfer(I)-chlorid, somit durch Änderung der Konzentration der Kupferionen.

Die Faktoren, welche zu unsern Berechnungen benötigt werden, sind in

Tab. 8 nochmals zusammengefasst.

Tabelle 8
Allgemeine Faktorentabelle

1cc 0,02n-J entspricht		Änderung durch Inversion in %		
nach Hadorn und von Fe	ellenberg	schwache Inversion	starke Inversion	
Invertzucker	0,731		— 11	
Glucose	0,687			
Fructose	0,775		— 22	
Saccharose	0,694	+100	- 11	
Lactosehydrat	0,986	+ 2,3	+ 51,4	
Maltosehydrat	1,200	+ 2,3	+ 88,9	
Dextrin als Glucose		+ 2,7	+105	

Bei der Barfoedreaktion entspricht 1 cm³ 0,02n-J = 0,76 mg Glucose. Für Invertzucker ist Tab. 5 zu benützen. Von den Disacchariden reduzieren

je 100 mg bei Saccharose wie 1,34 mg Glucose Lactosehydrat wie 2,20 mg Glucose Maltosehydrat wie 3,90 mg Glucose

Bei der Aldosenbestimmung entspricht 1 cm³ 0,02n-J = 1,8 mg Glucose oder 3,6 mg Lactose- oder Maltosehydrat.

Die Berechnung kann im einzelnen Fall verschieden vorgenommen werden. Sie lässt sich schwer in Formeln ausdrücken. Am besten verständlich dürfte es sein, sie an einigen Beispielen zu zeigen. Man sieht dann daraus auch gleich, dass man in der Regel mit einigen wenigen Bestimmungen auskommt.

1. Rohrzucker des Handels

Es handelte sich hier nur darum, die verschiedenen Methoden an einem einfachen Fall nachzuprüfen. Nach der schwachen Inversion fand man folgende Werte:

2a) Reduktion nach Hadorn und von Fellenberg.

10,5 mg Invertzucker = 14,26 cm³ 0,02n - J. 0,731 = 10,42 mg oder $104,2^{0}/_{0}$ Invertzucker, ber. $105^{0}/_{0}$.

2b) Monosaccharide

10,5 mg Invertzucker = 16,15 cm³ J. 0,66 = 10,66 mg oder $106,6^{\circ}/_{\circ}$ Invertzucker, ber. $105^{\circ}/_{\circ}$.

2c) Glucose

36,75 mg Invertzucker = 10,22 cm³ J. 1,8 = 18,40 mg oder 52,56% of Glucose, ber. 52,5% o.

2d) Fructose

14,7 mg Invertzucker = 9,95 cm³ J. 0,775 = 7,70 mg oder $54,85^{\circ}/_{\circ}$ Fructose, ber. $52,5^{\circ}/_{\circ}$.

Der Invertzucker nach Barfoed und die Fructose sind etwas zu hoch ausgefallen. Man könnte vermuten, dass ein wenig Glucose bei der kurzen Einwirkungsdauer der alkalischen Jodlösung sich der Oxydation entziehe und dann als Fructose bestimmt werde. Ein Versuch mit 18 mg Glucose ergab aber bei der Fructosebestimmung einen Wert, der den Blindversuch um nur 0,01 cm³ Jod übertraf, also praktisch Null war.

2. Milchschokolade

Die Reinigung erfolgt mit Carrez-Lösung. Zu bestimmen sind Lactose und Saccharose. Es ist jedoch die Möglichkeit vorhanden, dass noch Invertzucker da ist. Dadurch würde der Lactosewert, aus der gewöhnlichen Reduktion berechnet, bedeutend erhöht. Aus Tab. 1 ergibt sich, dass 1 Teil Invertzucker $\frac{0.986}{0.731} = 1.35$ Teile Lactose vortäuscht.

Ob Invertzucker da ist, zeigt in diesem Fall ohne weiteres die Bestimmung der Monosaccharide nach Barfoed. Wir bestimmen daher folgende Werte:

1a) Reduktion nach Hadorn und von Fellenberg

50 mg Schokolade = 5,54 cm³ J. 0,986 = 5,46 mg = 10,92 % als Lactosehydrat oder 5,54 cm³ J. 0,731 = 4,05 mg = 8,10 % als Invertzucker

1b) Monosaccharide

200 mg Schokolade = 0,92 cm 3 J. 0,687 = 0,63 mg = 0,31 $^{\rm 0/0}$ als Glucose

1c) Aldosenbestimmung

200 mg Schokolade = 5,94 cm³ J. 3,8 = 21,4 mg = 10,70 % Lactosehydrat

2a) Schwache Inversion

 $25 \text{ mg Schokolade} = 15,06 \text{ cm}^3 \text{ J. } 0,731 = 11,79 \text{ mg} = 44,71 \% \text{ Invertzucker}$

Davon subtrahieren wir den Wert der direkten Reduktion als Invertzucker berechnet = 8,10 %. Die Differenz, 36,66 % mit 0,95 multipliziert gibt 34,83 % Saccharose.

Nach Barfoed finden wir nahezu Null; somit ist kein Invertzucker vorhanden und der Wert der direkten Reduktion rührt allein von Lactose her. Dass es wirklich Lactose und nicht etwa Maltose ist, geht ausser aus der Beschaffenheit des Produkts mit Sicherheit daraus hervor, dass der Wert der Aldosenbestimmung mit der direkten Reduktion, als Lactose berechnet, übereinstimmt. Als Maltose berechnet würde man 13,3% gegenüber 10,7 bei der Aldosenbestimmung erhalten.

Wir finden somit in der Milchschokolade 10,8% Lactosehydrat und 34,8% Saccharose.

Wenn es auf grösste Genauigkeit ankommt, sind allerdings noch kleine Korrekturen anzubringen. Für jedes % Saccharose sind vom Lactosewert 0,009 % abzuziehen %), da Saccharose selbst in diesem Ausmass reduziert. Es sind somit von dem durch direkte Reduktion gefundenen Wert 0,30 % abzuziehen. Es bleiben 10,62 % in guter Übereinstimmung mit den durch die Aldosenbestimmung gefundenen 10,70 %.

An dem Saccharosewert ist auch noch eine kleine Korrektur anzubringen, und zwar wegen der Erhöhung des Lactosewertes durch die schwache Inversion nach 2 a) (siehe Tab. 2). Sie beträgt 2,3 mg für 100 mg Lactosehydrat als Glucose oder 3,1 mg als Lactosehydrat, für 10,9 % Lactose also 0,34 %, so dass der korrigierte Saccharosewert 34,83—0,34 = 34,5 % beträgt.

Die Milchschokolade enthält somit 10,7 % Lactosehydrat und 34,5 % Saccharose.

3. Kakaoersatz

Ein viel Schleimstoffe enthaltendes Präparat, welches Trockenmilch und Zucker enthalten soll. Mit Carrez-Lösung gelang es hier wie in allen andern Fällen, ein gut filtrierbares, klares Filtrat zu erhalten.

1a) Direkte Inversion

50 mg Material = $9.55 \text{ cm}^3 \text{ J. } 0.986 = 9.40 \text{ mg} = 18.80 \text{ } 0/0 \text{ als Lactosehydrat}$ $9.55 \text{ cm}^3 \text{ J. } 0.731 = 6.98 \text{ mg} = 13.,96 \text{ } 0/0 \text{ als Invertzucker}$

1c) Aldosen

200 mg Material = $10,38 \text{ cm}^3 \text{ J. } 3,6 = 37,36 \text{ mg} = 18,68 \%$ als Lactosehydrat

2a) Schwache Inversion

 $50 \text{ mg Material} = 11,98 \text{ cm}^3 \text{ J. } 0,731 = 8,76 \text{ mg} = 17,52 \text{ } 0/0 \text{ als Invertzucker}$

Wir subtrahieren davon den Wert der direkten Reduktion als Invertzucker = 13,96% und multiplizieren die Differenz mit 0,95 und erhalten so 3,38% Saccharose.

Die gute Übereinstimmung des Lactosewertes der direkten Reduktion und der Aldosenbestimmung zeigt, dass es sich auch hier um reine Lactose handelt und dass weder Invertzucker, noch Glucose da ist. Es sind somit 18,8% Lactosehydrat und 3,4% Saccharose vorhanden.

4. Säuglingsnahrung

- 1a) Direkte Reduktion
 500 mg Material = 4,60 cm³ J. 0,731 = 3,36 mg = 0,67 % Invertzucker
- 2a) Schwache Inversion
 50 mg Material = 14,70 cm³ J. 0,731 = 10,73 mg = 21,43 % Invertzucker
 Daraus berechnet sich der Saccharosegehalt zu (21,43—0,67) . 0,95 =
 19.75 % Saccharose.

Eine weitere Zuckerart ist nicht vorhanden. Das Präparat besteht nur aus Weissmehl und Zucker.

5. Kindernährmilch, getrocknet

- 1a) Direkte Reduktion
 50 mg Material = 12,16 cm³ J. 0,731 = 8,731 = 17,78 % als Invertzucker
 . 0,986 = 11,99 mg = 23,98 % als Lactosehydrat
- 1b) Monosaccharide nach Barfoed 250 mg Material = 3,0 cm³ J. 0,85 = 2,55 mg = 1,02 % Invertzucker
- 1 c) Aldosen $150~{\rm mg} = 9,80~{\rm cm}^3~{\rm J}.~3,6 = 35,28~{\rm mg} = 23,52\,{\rm ^{0}/_{0}}~{\rm Lactosehydrat}$
- 2a) Schwache Inversion
 37,5 mg Material = 18,79 cm³ J. 0,731 = 13,74 mg = 36,63 % Invertzucker

 17,78

 18,85.0,95 = 17,91% Saccharose

Der Lactosewert der direkten Reduktion stimmt mit demjenigen der Aldosenbestimmung gut überein, was beweist, dass keine weitern direkt reduzierenden Kohlenhydrate ausser Lactose vorhanden sind, wie dies ja auch aus der Abwesenheit von Monosacchariden nach Barfoed hervorgeht. Das Präparat enthält 23,8% Lactose und 17,9% Saccharose.

6. Birnenkonzentrat mit Magermilchpulver

- 1a) Direkte Reduktion
 30 mg Konzentrat = 16,79 cm³ J. 0,731 = 12,26 mg = 40 % als Invertzucker
- 1b) Monosaccharide nach Barfoed 30 mg Konzentrat = 8.32 cm³ J. 0.68 = 5.66 mg = 18.86 % als Invertzucker 0.76 = 6.32 mg = 20.74 % als Glucose

1 c) Aldosen

75 mg Konzentrat = 10,58 cm³ J . 1,8 = 19,04 mg = 25,39
0
/₀ als Glucose . 3,6 = 38,08 mg = 50,78 0 /₀ als Lactosehydrat

1d) Fructose

30 mg Konzentrat =
$$5.24$$
 cm³ J. $0.775 = 4.05$ mg = 13.50 % Fructose

2a) Schwache Inversion

30 mg Konzentrat = 17,87 cm³ J. 0,731 = 13,07 mg
$$43,57 \% \text{ als Invertzucker}$$

$$40,87$$

$$2,70 \cdot 0,95 = 2,65 \% \text{ Saccharose}$$

Berechnung. Die Differenz zwischen der direkten Reduktion und der Reduktion nach Barfoed entspricht der Lactose. Wir verzichten auf eine kleine Korrektur, die wegen der Reduktion der Lactose am Barfoedwert anzubringen wäre. Die Differenz zwischen Aldosen als Lactose berechnet und dem gefundenen Lactosegehalt gibt Glucose als Lactose, die durch Division durch 2 in Glucose umgerechnet wird. Wir haben also:

Roh-Invertzucker 40,87
Invertzucker nach Barfoed 18,86
$$22,01 \cdot \frac{0,986}{0,731} = 29,68\% \text{ Lactosehyarat}$$
Aldosen als Lactose 50,78
Lactose (ber.) 29,68
$$21,10 : 2 = 10,55\% \text{ Glucose}$$

Somit enthält das Präparat:

2,65 % Saccharose 29,68 % Lactosehydrat 10,55 % Glucose 13,50 % Fructose

Der bedeutende Überschuss an Fructose gegenüber Glucose ist für Birnensaft charakteristisch.

7. Saft aus Topinambourknollen

Bekanntlich bestehen die Kohlenhydrate der Topinambourknollen grossenteils aus Inulin, einem aus Fructosemolekülen aufgebauten Polysaccharid.

Die Knollen wurden am 20. März geerntet. Sie wurden geraspelt, gepresst und der Saft zentrifugiert. Zur Untersuchung verdünnte man den Saft auf ein bestimmtes Volumen und verwendete aliquote Teile der Verdünnung. Ausser den Kohlenhydraten wurden auch der Wassergehalt, die Asche und die Proteinstoffe bestimmt, um eine Bilanz aufstellen zu können.

- 1 a) Direkte Reduktion vor Inversion
 3157 mg Saft = 5,63 cm³ J. 0,731 = 4,35 mg = 0,14 % als Invertzucker
- 2 a) Reduktion nach schwacher Inversion

 158 mg Saft = 19,50 cm³ J. 0,687 = 13,38 mg = 8,50 % als Glucose

 . 0,775 = 15,11 mg = 9,56 % als Fructose
- 2 c) Aldosen nach schwacher Inversion 632 mg Saft = 6,19 cm³ J. 1,8 = 11,03 mg = 1,75 % als Glucose
- 2 d) Fructose nach schwacher Inversion 126 mg Saft = 12,55 cm³ J. 0,775 = 9,73 = 7,73 ⁰/₀ als Fructose
- 3 a) Reduktion nach starker Inversion 39,45 mg Saft = 7,95 cm³ J. 0,775 = 6,16 mg = 16,60 % als Fructose
- 3 c) Glucose nach starker Inversion
 315,6 mg Saft = 9,69 cm³ J. 1,8 = 17,44 mg = 5,52 % als Glucose

Berechnung. Die Saccharose können wir nicht nach der Formel (2a—1a). 95 berechnen, da viel zu wenig Glucose da ist. Sie ergibt sich durch Verdopplung der Glucose nach 2c) und Multiplikation mit 0,95. Wir finden so (2.1,75). 0,95 = 3,33 % Saccharose.

Die Restreduktion nach ders chwachen Inversion von 8,50-1,75=6,75% als Glucose oder 6,75. $\frac{0,775}{0,687}=7,62\%$ als Fructose stimmt mit der nach 2d) gefundenen Fructose, 7,70% gut überein.

Nach der starken Inversion haben wir $16,60\,^{\circ}/_{\circ}$ als Fructose. Davon ist die Glucose, die nach 3c) gefunden worden ist, als Fructose abzuziehen. Es ist dies $5,52 \cdot \frac{0.775}{0,687} = 6,22\,^{\circ}/_{\circ}$. Nach Abzug dieses Betrags bleiben $10,40\,^{\circ}/_{\circ}$ Fructose. Da bei der starken Inversion $22\,^{\circ}/_{\circ}$ der Fructose zerstört werden, ist der wahre Gehalt $\frac{10,40}{0,78}$ Fructose oder 0,9 mal so viel Inulin. Wir kommen so auf $12\,^{\circ}/_{\circ}$ Inulin.

Nach der starken Inversion sind 5,52 % Glucose gefunden worden gegenüber 1,75 nach der schwachen Inversion. Durch Multiplikation dieser Differenz mit 0,9 ergibt sich der Gehalt an Dextrin. Es sind 3 % Dextrin da.

Die Bilanz des Topinamboursaftes ergibt:

Inver	tzucker	0,14
Sacch	narose	3,33
Inuli	n	12,00
Dext	rin	3,00
Asch	e	0,78
Prote	in	2,23
Wass	er	77,15
	Summe	98,63 %

8. Malzpräparat

Um die Darstellung zu vereinfachen, werden nur noch die Resultate der einzelnen Bestimmungen in % angegeben.

1 a) Direkte Reduktion	40,16 % als Invertzucker
1b) Monosaccharide nach Barfoed	11,18 % als Invertzucker
oder	30,96 % als Glucose 61,92 % als Maltose
1 d) Fructose	5,19 0/0
2a) Reduktion nach schwacher Inversion	43,64 % Invertzucker 40,16 %
	3,58.0,95 = 3,40 % Saccharose
2 c) Aldosen nach schwacher Inversion	32,00 % als Glucose
2 d) Fructose nach schwacher Inversion	4,12 % Fructose
3 a) Reduktion nach starker Inversion	73,03 % Glucose
3 c) Aldosen nach starker Inversion	65,32 º/o Glucose
3 d) Fructose nach starker Inversion	5,89 % Fructose, korr.

Berechnung. Die Monosaccharide nach Barfoed betragen 11,18%, als Invertzucker berechnet. Auf einen ähnlichen, etwas niedrigern Wert kommen wir durch Verdoppelung der Fructose, nämlich auf 10,38%. Dieser Wert verdient mehr Beachtung, weil die Barfoedbestimmung durch vorhandene Maltose etwas erhöht wird.

Wenn wir nun den Invertzucker von der direkten Reduktion abziehen, bleiben $40,16-10,38=29,78\,\%$ Maltose als Invertzucker. Durch Multiplikation mit $\frac{1,2}{0,731}$ ergeben sich daraus $48,9\,\%$ Maltosehydrat.

Wir können die Maltose zur Kontrolle auch aus der Aldosenbestimmung berechnen. Wir setzen für die Glucose den gleichen Wert wie für Fructose. 5,19 % und ziehen ihn vom Aldosenwert, berechnet als Glucose ab und finden so 30,96—5,19 = 25,77 % Maltose als Glucose oder durch Verdoppelung 51,54 % Maltosehydrat in befriedigender Übereinstimmung mit den vorhin berechneten 49,9 %. Wir können den Mittelwert nehmen und haben dann 50,27 % Maltose.

Man könnte sich fragen, ob die direkte Reduktion neben dem Invertzucker wirklich Maltose ist und nicht etwa Lactose, die ja ebenfalls direkt reduziert. Um Maltosehydrat in Lactosehydrat umzurechnen, müssen wir sie mit $\frac{0.986}{1.2}$ multiplizieren und finden dann 40.16% Lactose. Dieser Wert ist bedeutend niedriger, als der aus der Aldosenbestimmung berechnete, der ja für Lactose gleich wie für Maltose 51.54% beträgt. Somit ist die Anwesenheit von Lactose ausgeschlossen.

Die starke Inversion gibt einen Gehalt von $73,03\,\%$ 0 als Glucose berechnet. Darin sind $4,12\,\%$ 0 Fructose (unkorr.) enthalten, was auf Glucose umgerechnet $4,12\,.\frac{0,687}{0,775}=3,65\,\%$ 0 ausmacht. Wir ziehen dies von den $73,03\,\%$ 0 ab und erhalten $69,38\,\%$ 0 Glucose. Darin sind inbegriffen die gefundenen $50,27\,\%$ 0 Maltose sowie der Glucoseanteil des Invertzuckers, also $3,58/2=1,79\,\%$ 0. Ziehen wir diese beiden Beträge ab, so bleiben $69,38-(50.27+1,79)=17,32\,\%$ 0 überschüssige Glucose, die, mit 0,95 multipliziert, das vorhandene Dextrin ergibt. Wir finden so $16.45\,\%$ 0 Dextrin.

Als Saccharose haben wir einen vorläufigen Wert von 3,4 %, entsprechend 3,58 % Invertzucker gefunden. An diesem Wert müssen wir nun noch 2 Korrekturen anbringen. Durch die schwache Inversion wird die Maltose etwas hydrolysiert und zwar erhöht sich ihr Reduktionswert um 2,3 % als Glucose. Auf die vorhandenen 50 % Maltose macht das 1,15 % als Glucose oder $\frac{0,731}{0,687}$ mal mehr, also 1,23 % als Invertzucker aus. Ebenfalls wird Dextrin um eine Kleinigkeit angegriffen. Die Erhöhung entspricht etwa 2,7 % oder auf 15,6 % Dextrin 0,38 %. Wenn wir diese beiden Beträge abziehen, finden wir 3,58—(1,23+0,38) . 0.95 = 1,87 % Saccharose.

Der Fructosewert ist nach der starken Inversion um 0,7 % höher, als nach der schwachen Inversion. Im Roggen ist nach Tillmanns 11) ein Trifructosan enthalten. Ich habe dieses Kohlenhydrat auch im Weizen vorgefunden 12) und auch

aus Malzextrakt konnte ich durch fraktionierte Alkoholfällung Fraktionen erhalten, die reich an Fructose waren, so dass die Anwesenheit von Trifructosan auch hier wahrscheinlich ist. Die 0,7 % erst durch starke Inversion abgespaltene Fructose würde 0,65 % Trifructosan entsprechen.

Wir haben schliesslich in unserm Malzpräparat:

Invertzucker		10,38
Saccharose		1,87
Maltose		50,27
Dextrin		16,45
Trifructosan	4	0,65

9. Flüssiger Malzextrakt

Die Reinigung geschieht mit je 1,5 cm³ Carrez-Lösung I und II auf 3 g Extrakt.

1 a) Direkte Reduktion	40,99 ⁰ / ₀ als	Invertzucker
1 b) Monosaccharide nach Barfoed	13,93 º/o als	Glucose
1 c) Aldosen	33,12 º/o als	Glucose
1 d) Fructose	$5,66^{0}/_{0}$	
2 a) Reduktion nach schwacher Inversion	42,27 º/o als	Invertzucker
3 a) Reduktion nach starker Inversion	77,77 º/o als	Glucose
0 IV E / 1 / 1 I I ' 1' 1' 1'		

3 d) Fructose nach starker Inversion direkt gefunden 4,6 korrigiert durch Multiplikation mit $\frac{1}{0.78}$ 5,90 %

Berechnung. Für die Saccharosebestimmung subtrahieren wir zunächst 1a) von 2a) und erhalten: $42,27-40,99=1,28\,^{\circ}/_{\circ}$ als Invertzucker. Davon ist die Vermehrung der Reduktion abzuziehen, die durch Maltose und Dextrin durch die schwache Inversion bewirkt wird. Wir nehmen dabei Maltosehydrat zu 41 und Dextrin zu 17 $^{\circ}/_{\circ}$ an und haben

für Maltose
$$0,023 \cdot 41 = 0,94$$

für Dextrin $0,027 \cdot 17 = 0,46$
 $1,40 \, ^{0}/_{0}$

Dieser Abzug macht bereits 0,12% mehr aus, als die gefundene Vermehrung. Somit ist Saccharose nicht vorhanden.

Die Monosaccharide nach Barfoed (1 b) geben 13,93%. Davon sind 3,9% des vorhandenen Maltosehydrats, also 0,039.41 = 1,70% wegen dessen Reduktion abzuziehen. Es bleiben 2,23% Glucose.

Wir ziehen nun diesen Betrag von den nach 1c) gefundenen Aldosen ab. Es bleiben 33,12 — 12,23 = 20,89 %. Diese Differenz gibt, mit 2 multipliziert, 41,78 % Maltosehydrat oder nach Multiplikation mit 0,95 39,69 % wasserfreie Maltose. Wir müsseo die Maltose hier als wasserfrei berechnen, weil wir eine Bilanz aufstellen wollen, bei welcher das Wasser besonders aufgeführt wird.

Die Fructose ist nach der starken Inversion um 0,24 % höher, als die direkt gefundene. Das deutet auf Spuren von Fructosen hin, kann aber, da nahezu innert der Fehlergrenze, vernachlässigt werden.

Die starke Inversion 3a) gibt 65,00 % als Glucose. Ziehen wir davon den Fructosewert vor der Korrektur, 4,6, umgerechnet in Glucose = 4,07 % ab, so bleiben 60,93 % als Glucose. Nach Abzug der gefundenen 12,23 % Glucose bleiben 48,70 %. Ziehen wir weiter Maltosehydrat ab, welchem ja dieselbe Menge Glucose entspricht, so bleiben für Dextrin 8,57 % als Glucose. Wie wir gesehen haben, müssen wir nicht den theoretischen Umrechnungsfaktor 0,9, sondern den praktisch gefundenen 0,95 zur Umrechnung verwenden. Wir finden dann 8,57 % Dextrin.

In dem Malzextrakt sind auch Wasser, Asche und Protein bestimmt worden, so dass wir versuchen können, eine Bilanz aufzustellen. Sie lautet:

Wasser	23,12 %
Asche	1,42
Protein	4,42
Glucose	12,23
Fructose	5,66
Saccharose	0
Maltose, wasserfrei	39,69
Dextrin	8,57
	95,11

Die Summe der Komponenten beträgt nur 95 %. Das Resultat ist nicht sehr befriedigend. Bei so komplizierten Mischungen, wie sie im Malzextrakt vorliegen, treten offenbar gewisse Störungen auf. Die Hydrolyse des Dextrins bei der starken Inversion ist in Gegenwart der vielen Maltose und Glucose wahrscheinlich geringer, als nach der Berechnung. Vielleicht sind auch gewisse schwer hydrolysierbare Dextrine vorhanden, die mit den 4 untersuchten Dextrinen nicht identisch sind.

Zusammenfassung der Methode

a) Titrimetrische Zuckerbestimmung nach Hadorn und von Fellenberg.

Die Vorbereitung der Zuckerlösung geschieht am besten mit Carrez-Lösung. 5—6 g Material werden in Wasser gelöst, mit je 1,5 cm³ Carrez-Lösung I und II versetzt, zu 100 cm³ verdünnt und filtriert.

Reagentien: Fehlinglösung I und II nach Lebensmittelbuch.

HCl-NaCl-Lösung, bereitet durch Versetzen von 800 cm³ gesättigter Kochsalzlösung in einem 1000-cm³-Messzylinder mit 57 cm³ konz. HCl und Verdünnen mit Wasser zum Liter.

Bicarbonat-Seignettesalzlösung, durch kaltes Auflösen von 8 g Natriumbicarbonat und 5 g Seignettesalz zu 100 cm³. Die Lösung ist meist nur wenige Wochen haltbar und schimmelt dann. Es schadet nichts, wenn das Bicarbonat anfänglich nicht vollständig gelöst ist.

0,02n-Jodlösung, 0,02n-Thiosulfatlösung.

Die Zuckerlösung, die am besten so bemessen ist, dass sie einem Jodverbrauch von 5—20 cm³ 0,02n-Jod entspricht, wird in das Reagensglas (20/160 mm) einpipettiert und mit Wasser auf 20 cm³ ergänzt. Man setzt 5 cm³ Fehlinglösung (frische Mischung von I und II) zu, stellt das Reagenzglas in ein siedendes Wasserbad und erhitzt, falls das Sieden nicht unterbrochen wird, 7 Minuten. Falls bis zum Wiederbeginn des Siedens 3—5 Minuten verstreichen, genügen 5 Minuten. Ein etwas längeres Erhitzen ist ohne Einfluss.

Man kühlt das Reagensglas unter fliessendem Wasser ab und zentrifugiert 5 Minuten in einer Gerberzentrifuge. Eine Kautschukplatte am Boden der Trägerhülse verhindert den Bruch des Reagensglases. Nach dem Zentrifugieren giesst man die überstehende Flüssigkeit sorgfältig, aber in einem Guss ab, indem man Sorge trägt, dass kein Kupfer(I)-oxyd mitgerissen wird. Eher lässt man einige Tropfen Flüssigkeit im Glas. Man verdrängt nun die Luft durch CO2, fügt je nach der Menge des Niederschlags 1—2 cm³ NaCl-HCl-Lösung zu und schüttelt kurz um, wobei sich das Cu2O auflöst. Man setzt nun sofort die doppelte Menge Bicarbonat-Seignettelösung zu und beginnt mit der Jodtitration. Es wird Jod unter Umschwenken zugesetzt, bis sich die bei grössern Zuckermengen anfangs entstehende weissliche Fällung von Kupfer(I)-oxyd wieder vollständig gelöst hat und bis eine grüne Färbung aufgetreten ist. Das Jod muss also in deutlichem Überschuss zugesetzt werden. Die grüne Färbung soll der einer Fehlingschen Kupferlösung entsprechen, welcher man auf 20 cm³ die Menge von 0,5 cm³ 0,0n-Jod zugesetzt hat.

Man fügt nun einen Tropfen Stärkelösung zu und nimmt den Überschuss an Jod durch Titration mit wenig überschüssigem Thiosulfat wieder weg. Nun titriert man mit der Jodlösung wieder auf Dunkelblau.

Bei grössern Mengen ist das Titrieren in den Reagensgläsern nicht mehr bequem. Man giesst dann die Flüssigkeit nach Zusatz der Hauptmenge der Jodlösung in einen Erlenmeyerkolben und titriert darin zu Ende.

Berechnung. Vom Jodverbrauch wird der Betrag eines Blindversuchs abgezogen, der mit Wasser und Fehlinglösung allein erhalten wird. Der verbleibende Rest wird durch Multiplikation mit dem geeigneten Faktor in Zucker umgerechnet.

1 cm³ 0,02n-Jod entspricht den in Tab. 8 angegebenen Zuckermengen.

b) Bestimmung der Monosaccharide

Reagens. Lösung nach Barfoed: 25 g Kupfer(II)-acetat + H₂O, 3 cm³ Eisessig und 10 g Natriumacetat + 3H₂O zum 1. Da sich das Kupferacetat sehr schwer löst, verreibt man es mit wenig Wasser in einer grossen Reibschale, giesst Flüssigkeit ab und wiederholt das Verreiben so oft mit neuem Wasser, bis das Salz vollständig gelöst ist. Nach Zusatz der übrigen Reagentien erwärmt man nahezu zum Siedepunkt, kühlt ab und füllt zum Volumen auf.

Für die Bestimmung werden 5 cm³ Zuckerlösung in einem Reagensglas (20/160 mm) mit 15 cm³ Reagens versetzt, in ein siedendes Wasserbad gestellt und nach Wiederbeginn des Siedens genau 10 Minuten erhitzt. Die Zeit ist peinlich genau einzuhalten. Man fährt nun fort, wie unter a) angegeben.

1 cm³ 0,02n-Jod entspricht 0,76 mg Glucose. Für Invertzucker ist Tab, 5 anzuwenden.

Von den Disacchariden reduzieren je 100 mg

bei Saccharose gleich wie 1,3 mg Glucose bei Lactosehydrat gleich wie 2,2 mg Glucose bei Maltosehydrat gleich wie 3,9 mg Glucose

c) Bestimmung der Aldosen

Man versetzt die Zuckerlösung, am besten 3—8 cm³, in einem 100-cm³-Erlenmeyerkolben mit Glasstopfen oder in einer Stöpselflasche mit 20 cm³ 0,02n-Jodlösung und gleich darauf unter Umschwenken mit 0,5 cm³ n-NaOH, verschliesst, lässt 3—5 Minuten im Dunkeln stehen, setzt 1 cm³ n-HCl zu und titriert den Überschuss an Jod zurück. Es muss mindestens die Hälfte des Jods zurücktitriert werden; sonst ist der Versuch mit weniger Zuckerlösung zu wiederholen.

1 cm³ 0,02n-Jod entspricht 1,8 mg Glucose oder 3,6 mg Lactose- oder Maltosehydrat.

d) Bestimmung der Fructose

Man wiederholt anschliessend an die Aldosenbestimmung die Oxydation mit Jod in alkalischer Lösung unter doppelt so viel Jodlösung wie bei der Aldosenbestimmung verbraucht worden ist. Falls bei kleinen Fructosegehalten mehr als 8 cm³ Zuckerlösung verwendet wird, empfiehlt es sich, 0,1n-Jodlösung statt der 0,02 nomalen zu benützen. Man säuert auch hier wieder nach 3—5 Minuten langem Stehen im Dunkeln mit 1 cm³ n-HCl an, titriert aber das Jod nicht mit Thiosulfatlösung zurück, da sich dabei Tetrathionat bildet, welches Fehlinglösung verbraucht, sondern man bindet das Jod durch Zugabe von festem Natriumbisulfat in ganz geringen Gaben, gibt nun einen Tropfen Stärkelösung (nicht mehr) hinzu und titriert sorgfältig mit Jod bis zum ersten blauen Schimmer. Nun neutralisiert man mit NaOH sorgfältig gegen Methylorange bis in

die Nähe des Neutralpunktes, macht aber nicht alkalisch. Der Umschlag erfolgt allmählich und kann gut beobachtet werden.

Die Lösung wird nun in der Regel in ein 50-cm³-Kölbchen übergeführt und zur Marke aufgefüllt, wonach man mit 20 cm³ der Lösung den Zucker nach *Hadorn* und *von Fellenberg* bestimmt. Bei kleinen Fructosemengen kann man auch, falls die Lösung weniger als 20 cm³ beträgt, diese in ein mit Marke versehenes Reagensglas übergiessen und nach Auffüllen auf 20 cm³ die ganze Menge zur Reduktion verwenden.

 $1 \text{ cm}^3 0.02\text{n-Jod} = 0.775 \text{ mg Fructose.}$

Da nach der starken Inversion die entstandenen braunen Zersetzungsprodukte bei der Aldosen- und Fructosebestimmung stören, wird die Lösung mehrmals mit etwas Äther ausgeschüttelt und die Ätherlösung mit einer Saugpipette entfernt. Man neutralisiert nun gegen Methylorgane nahezu, fügt möglichst wenig Tierkohle hinzu, entfernt den Rest des Äthers im Wasserbad, filtriert und wäscht bis zu einem bestimmten Volumen nach. In einem bestimmten Teil der Lösung wird noch vorhandene Säure titriert. Dann werden die Glucose und die Fructose bestimmt, wobei man nach dem Jodzusatz ausser der vorgeschriebenen NaOH-Menge noch die zur Neutralisation benötigte zusetzt.

Schwache Inversion

Sie geschieht durch 30 Minuten langes Erhitzen von 50 cm³ Zuckerlösung mit 1 cm³ n-HCl im siedenden Wasserbad. Man kann auch kleinere Mengen im Reagensglas invertieren, wobei ein Trichterchen auf das Reagensglas gesetzt wird.

Starke Inversion

Sie geschieht durch 45 Minuten langes Erhitzen von 50 cm³ Zuckerlösung mit 25 cm³ 3n-HCl, also in normal salzsaurer Lösung nach Th. von Fellenberg. Man kann auch hier viel kleinere Mengen im Reagensglas invertieren, beispielsweise die Menge, welche man für eine Bestimmung braucht.

Bei der Neutralisation der invertierten Lösung verfahre man sehr sorgfältig, um alkalische Reaktion zu vermeiden. Es empfiehlt sich, erst nach Zugabe der Fehlinglösung die der HCl entsprechende Menge n-NaOH zuzufügen, wonach das Gesamtvolumen 25 cm³ betragen muss.

Es ergeben sich durch Kombination dieser Verfahren eine Reihe von Bestimmungsmöglichkeiten, die im Abschnitt V angegeben sind. Man wählt im einzelnen Fall die Passenden aus. Die Übrigen können in gewissen Fällen zur Kontrolle benützt werden.

Bezüglich der möglichen Einzelbestimmungen wird auf Abschnitt V verwiesen.

Die anzuwendenden Methoden richten sich im Einzelfall nach dem Material. Handelt es sich beispielsweise um ein Produkt, welches Milch neben Saccharose oder Invertzucker oder Glucose enthalten kann, so bestimmt man zunächst die direkte Reduktion 1a). Ferner bestimmt man die Monosaccharide 1b). Findet man nahezu Null Monosaccharide, so sind Glucose und Invertzucker ausgeschlosen und man hat es nur mit Lactose und Saccharose zu tun, welch letztere nach der schwachen Inversion unter 2a) bestimmt wird.

Findet man nach 1b) eine erhebliche Reduktion, welche nur von Glucose oder Invertzucker herrühren kann, so bestimmt man weiter die Aldosen 1c) und die Fructose 1d). Ist Fructose nicht vorhanden, so bestehen die Monosaccharide nur aus Glucose. Man berechnet in diesem Fall die Monosaccharide auf Glucose, zieht sie von 1a), berechnet als Glucose, ab und rechnet die Differenz durch Multiplikation mit $\frac{0.986}{0.687}$ in Lactosehydrat um.

Anderseits werden die Aldosen als Glucose berechnet, davon der Glucosewert nach 1 b) abgezogen und die Differenz durch Multiplikation mit 2 in Lactosehydrat umgerechnet. Stimmt der so gefundene Wert mit dem aus 1a) und 1b) gefundene Lactosehydrat überein, so ist das ein Beweis, dass tatsächlich Lactose vorliegt. Wäre beispielsweise Maltose zugegen statt Latcose, so würde nach 1a) und 1b) ein Mehrwert von $\frac{1,2}{0,986}$ gegenüber der nach 1c) gefundenen Lactose resultieren. Es wären dann übrigens auch Dextrine vorhanden, da Maltose, stamme sie nun von Stärkesirup oder von Malzextrakt, stets Glucose

Wenn nach 1d) auch Fructose gefunden worden ist, so subtrahiert man diese von den Monosacchariden und erhält als Differenz Glucose. Von 1a) werden beide Zucker abgezogen und die Differenz in Lactosehydrat umgerechnet. Von den Aldosen 1c), als Glucose berechnet zieht man den Glucosewert ab und berechnet aus der Differenz durch Verdopplung die Lactose, die wiederum mit dem nach 1a) und 1b) gefundenen Wert übereinstimmen muss.

Bei diesen Rechnungen ist stets darauf zu achten, dass man Gleiches von Gleichem subtrahiert, dass man, was mit Hilfe der gegebenen Faktoren leicht ist, stets vor den Subtraktionen die Werte auf den gleichen Zucker umrechnet.

Es ist nun noch nicht darauf Rücksicht genommen, dass die Disaccharide nach 1b) eine kleine Reduktion aufweisen. Man hat also diese Korrektur vorzunehmen und die Rechnung nochmals durchzuführen.

Falls Maltose und Dextrin vorhanden sind, ist auch die starke Inversion auszuführen. Man bestimmt in der invertierten Lösung die Reduktion nach Hadorn und von Fellenberg 3a) und die Fructose 3d). In der direkten Inversion sind inbegriffen vorgebildete und aus Saccharose entstandene Glucose und Fruc-

und Dextrin enthält.

tose, letztere unter Verlust von 22 %, ferner Maltose und Dextrin als Glucose. Wir subtrahieren von 3a), berechnet als Glucose, die unkorrigierte Fructose, durch Multiplikation mit $\frac{0.687}{0.775}$ in Glucose umgerechnet, die Glucose und die Maltose und rechnen den Rest durch Multiplikation mit 0.95 in Dextrin um.

Zusammenfassung

Es werden Methoden zur Bestimmung der einzelnen Zuckerarten nebeneinander beschrieben. Sie beruhen auf einer Kombination der titrimetrischen Zukkerbestimung von *Hadorn* und *von Fellenberg* mit der Bestimmung der Monosaccharide, der Aldosen und der Ketosen, wobei einzelne dieser Bestimmungen auch nach schwacher und starker Inversion ausgeführt werden können.

Résumé

Des méthodes de dosage individuel des sucres dans leurs mélanges sont décrites. Elles reposent sur une combinaison de la méthode volumétrique de *Hadorn* et von Fellenberg avec le dosage des monosaccharides, des aldoses et des kétoses, certains de ces dosages pouvant être également exécutés après une faible ou une forte inversion.

Literatur

- 1) H. Hadorn und Th. von Fellenberg, diese Mitt. 36, 359 (1945).
- 2) Th. von Fellenberg, diese Mitt. 11, 129 (1920).
- 3) C. Barfoed, Z. an Ch. 12, 27 (1873).
- 4) W. Braun und B. Bleyer, Z. an Ch. 76, 1 (1929).
- ⁵) Th. von Fellenberg, diese Mitt. 26, 182 (1935).
- 6) Romijn, Z. an Ch. 36, 349 (1897).
- 7) J. M. Kolthoff, Z.U.G. 45, 131 (1923).
- 8) Lobry de Bruyn und Alberda van Eckenstein, Ber. 28, 3079 (1895).
- 9) C. I. Kruisheer, Z.U.L. 58, 261 (1929).
- 10) Th. von Fellenberg, diese Mitt. 28, 75 (1937).
- 11) J. Tillmanns, Z.U.L. 56, 191 (1929).
- 12) Th. von Fellenberg, diese Mitt. 25, 260 (1934).