Zeitschrift: Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und

Hygiene = Travaux de chimie alimentaire et d'hygiène

Herausgeber: Bundesamt für Gesundheit

Band: 36 (1945)

Heft: 6

Artikel: Die quantitative Analyse des Weizenkeimöles, zugleich Beitrag zur

rhodanometrischen Analyse der Fette

Autor: Iselin, Ernst

DOI: https://doi.org/10.5169/seals-982835

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

²⁷) A. Mehlitz, In Bamann-Myrbäck, Meth. Fermentforsch. 2865 (1941).

²⁸) A. Mehlitz und H. Maass, Bioch. Z. 276, 66 und 86 (1935).

²⁹) A. Mehlitz und H. Maass, Z. Unters. Lebensmitt. **70**, 180 (1935). ³⁰) A. Mehlitz und M. Scheuer, Bioch. Z. **268**, 345 und 355 (1935).

³¹) A. Perrier, C. r. **193**, 547 (1931). ³²) W. Pilnik, diese Mitt. **36**, 149 (1945).

33) G. A. Pitman und W. U. Cruess, Ind. Eng. Chem. 21, 1292 (1929).

³⁴) H. D. Poore, Fruit Prod. J. Amer. Vin. Ind. **14**, 170 (1935).

35) E. Popowa, Rev. Appl. Mycol. 15, 103 (1936).

³⁶) K. Täufel, Chem. Z. **59**, 165 (1935).

³⁷) S. C. Werch, A. A. Dag, R. W. Jung und A. C. Ivy, Proc. Soc. Exp. Biol. Med. 46, 569 (1941).

³⁸) A. Widmer, diese Mitt. **25**, 216 (1934); **27**, 347 (1936); Schweiz. Z. Obst- und Weinbau (1937/41).

³⁹) J. J. Willaman und Z. I. Kertesz, Fruit Prod. J. Amer. Vin. Ind. 11, 39 (1931); New York State Agr. Exp. Stat. Bull. 178, 1 (1931).

40) W. Zimmermann, L. Malsch und R. Weber, Vorratspflege und Lebensmittelforsch. 2, 271 (1939).

Die quantitative Analyse des Weizenkeimöles, zugleich Beitrag zur rhodanometrischen Analyse der Fette

Von Ernst Iselin

(Mitteilung aus dem Kant. Laboratorium in Basel)

Das aus den Keimlingen von Triticum vulgare gewonnene Ol ist wegen der im Unverseifbaren vorkommenden schönkristallisierbaren sterinartigen Verbindungen «Tritisterine»¹) zu einer gewissen Bedeutung gelangt. Es handelt sich dabei um Vitamin E-wirksame Stoffe, die sogenannten Tocopherole (Alpha und Beta Tocopherol). Der chemische Name weist auf die Bedeutung für die Fortpflanzung hin: tokos = Geburt; phero = trage. Vitamin E-Mangel soll Schäden der Fortpflanzungsorgane hervorrufen. Bei der Frau sollen sich diese durch Fruchttod, Abort und Frühgeburt zeigen, beim Manne durch Sterilität. Während der Schwangerschaft soll der Tagesbedarf ca. 2—5 mg betragen.

Die Getreidekeime sind die reichsten Vitamin E-Quellen: 100 g Weizenkeimöl enthalten 300—520 mg. Für den Fett- und Proteingehalt der Weizenkeime wurden folgende Werte gefunden:

Keimlinge, aus der Mühle gezogen

Abgesiebte Weizenkeime

Ol

Protein

7,1 %

26,1 %

33,7 %

33,7 %

Angaben über die Kennzahlen des Weizenkeimöles finden sich in der Bibliographie der Fette von W. Halden und A. Grün²) und ferner in einer Arbeit von Ch. D. Ball³). Die Angaben sind dürftig, die Kennzahlen zeigen grosse Schwankungen.

Das Kennzahlensystem, d. h. die Erfassung nur bestimmter Gruppen der Fettbestandteile genügt aber dem heutigen Fettchemiker nicht mehr, die Ermittlung der Einzelbestandteile, insbesondere der ungesättigten Fettsäuren der Fette nach Art und Menge wird von einer systematischen Fettanalyse gefordert. Über die Hauptkomponenten des Weizenkeimöles fanden wir nur die Angaben von Halden-Grün in der vorerwähnten Bibliographie der Fette und von G. S. Jamieson und W. F. Baughman 4), zitiert von Hefter-Schönfeld 5), die hier wieder-

gegeben werden:

Severi Werderi.			Halden-Grün Glyceride		Hefter-Schönfeld Fettsäuren	
			0	0/0	0	/o
	Gesättigte Fett	säure		11,8		15,1
	bestehend aus:	Palmitinsäure	7,7		13,8	
		Stearinsäure	3,5		1,0	
		Arachinsäure	0,4			
		Lignocerinsäure	0,2		0,3	
	Ölsäure			45,4		30,0
	Linolsäure	· · · · · · · · · · · · · · · · · · ·		40,9		44,1
	Linolensäure			_	1	10,8

Auch wenn man die von Hester-Schönfeld angegebenen Werte auf Glyceride umrechnen würde, um diese mit den Angaben von Halden-Grün zu vergleichen, so ergäbe sich doch ein ganz wesentlicher Unterschied in der Zusammensetzung beider Weizenkeimöle. Wir waren deshalb der Sektion für Speisesette und Speiseöle des Eidg. Kriegsernährungsamtes dankbar, dass sie dem kantonalen Laboratorium eine Probe Weizenöl durch die Firma «Astra», Fett- und Olwerke AG. in Steffisburg, zur Verfügung stellte, die uns ermöglichte, eine systematische Fettanalyse durchzuführen.

Wir haben die Analyse des Weizenkeimöles nachstehend benützt, um den Nachweis zu erbringen, dass die rhodanometrische Analyse einwandfreie Werte liefert.

Qualitative Analyse

Von grösstem Interesse war die Frage abzuklären, ob Weizenkeimöl tatsächlich Linolensäure enthält. Der Nachweis der Linolen- und Linolsäure wurde nach dem Bromadditionsverfahren der internationalen Methode der Polybromidzahl (BrxZ) erbracht⁶).

5,0405 g Ol wurden verseift, vom Unverseifbaren abgetrennt, die Fettsäuren abgeschieden, in 100 cm³ Äther gelöst und bei unter +50 mit 100 cm³ einer gekühlten ätherischen Bromlösung (4 cm³ Brom pro 100 cm³ Äther) unter ständigem Rühren (Rührwerk) bromiert. Der nach 24stündigem Stehen im Kühlschrank erhaltene Niederschlag wurde durch einen Glasfiltertigel 2G₃ abfiltriert, nach Vorschrift mit kaltem Äther (gesättigt mit Hexabromstearinsäure) gewaschen und im Dampfschrank getrocknet.

Erhalten 0,3625 g Bromide = 7,2 % (1). Schmp. 183 (nach Umkristallisieren aus heissem Benzol), entsprechend dem Schmp. der Hexabromstearinsäure C18H30Br6O2.

Aus dem Filtrat der Hexabromide konnten durch völliges Abdunsten des Äthers und Lösen des Rückstandes in Petroläther 2,3375 g Tetrabromstearinsäure = 46,4 % (2) isoliert werden. Schmp. 116 (nach Umkristallisieren aus einer Mischung von 30 cm³ Petroläther + 9 cm³ Äther).

Das Weizenkeimöl enthält demnach die Linolen- und Linolsäure. Zur Kontrolle der quantitativen Verhältnisse zwischen Linolsäure und Linolensäure wurden weitere 5,0425 g Ol, resp. die vom Unverseifbaren befreiten Fettsäuren in Petrolätherlösung nach der Methode der BrxZ bromiert und 51,3 % Bromide (Hexa- und Tetrabromide) erhalten, welche mit der Menge der Bromide (1) und (2) nahezu übereinstimmt. Die den Bromiden entsprechenden Fettsäuren lassen sich berechnen:

- (1) 7,2 % Hexabromstearinsäure \times 0,367 = 2,6 % α -Linolensäure.
- (2) $46.4 \, \%$ Tetrabromstearinsäure $\times 0.4667 = 21.7 \, \%$ α -Linolsäure

Die Olsäure wurde auf präparativem Wege im nachstehenden durch partielle Oxydation mit alkalischer Permanganatlösung als Dioxystearinsäure nachgewiesen und auch quantitativ bestimmt.

Quantitative Analyse

I. Rhodanometrische Analyse

Praktisch kommen nur C18-Säuren in Betracht; neben gesättigten Fettsäuren sind Olsäure, Linolsäure und Linolensäure vorhanden. Die rhodanometrische Analyse derartiger Gemische haben wir des öftern durchgeführt⁷) und auch festgestellt, dass die Rhodanzahl von grosser Zuverlässigkeit und oft genauer als die Jodzahl ist. Die höheren gesättigten Fettsäuren G wurden nach der Mehode von Bertram⁸) in der Ausführungsform von J. Pritzker und R. Jungkunz⁹) unter Verwendung eines Rührers und solider Extraktionshülse (zur Filtration und Extraktion) durchgeführt. Der Glycerinrest (C3H2) Gl wurde aus der Verseifungszahl (VZ × 0,02259) berechnet und das Unverseifbare Unv. nach der internationalen Methode mit Petroläther bestimmt⁶). Die Werte für Olsäure Oe, Linolsäure L und Linolensäure Le lassen sich aus den umgeformten Annäherungsgleichungen von H. P. Kaufmann¹⁰) berechnen, wobei in die Gleichungen für Linolensäure enthaltendes Weizenkeimöl folgende Werte eingesetzt werden:

	JZ	RhZ
Ölsäure	90,6	90,6
Linolsäure	$2 \times 90,6 = 181,2$	90,6
Linolensäure	$3 \times 90.6 = 271.8$	$2 \times 90.6 = 181.2$

Es wurden bestimmt: JZ, RhZ, G, Unv., Gl.

G + Oe + L + Le + Unv. + Gl = 100
2 Le + L + Oe =
$$\frac{100}{90.6}$$
 RhZ
3 Le + 2 L + Oe = $\frac{100}{90.6}$ JZ

Nach Umformung erhält man:

$$\begin{array}{lll} \text{Oe} &=& (100 \text{ - Unv. - Gl - G}) - 1,104 \text{ (JZ-RhZ)} \\ \text{L} &=& (100 \text{ - Unv. - Gl - G}) - 1,104 \text{ (2 RhZ-JZ)} \\ \text{Le} &=& - (100 \text{ - Unv. - Gl - G}) + 1,104 \text{ (RhZ)} \end{array}$$

Die Hydroxylzahl (OHZ) wurde nach der internationalen Methode durchgeführt 6).

Das Resultat der Untersuchung ist aus folgender Zusammenstellung ersichtlich:

Weizenkeimöl (Huile de germes de blé) raffiniert «Astra», Steffisburg (Triticum vulgare, Fam. Gramineae)

Aussehen	gelbbraunes, klares Öl
Geruch und Geschmack	eigenartig, mild, etwas nach Rüböl
Verdorbenheitsreaktion	negativ
Peroxyd-Zahl	2,0
Bellier-Reaktion	intensiv, dunkelolivgrüne Farbe
Spez. Gew. bei 150	0,9274
${ m n}_{ m D}^{ m 400}$	1,4700
RZ 40°	66,4
Bellier-Zahl	. 15
SZ	2,3
VZ	184,8
JZ (Hanus)	122,8
RhZ (Kaufmann)	73,6
OHZ	7,6
BrxZ	7,2
Unv. (Petroläther)	3,6 %
Gesättigte Fettsäuren (Bertram)	17,4 0/0

Zusammensetzung des Weizenkeimöles

Gesättigte Fettsäuren	17,4 0/0
Olsäure	20,5 %
Linolsäure	47,9 0/0
Linolensäure	$6,4^{0}/_{0}$
Unverseifbares	$3,6^{0/0}$
Glycerinrest (C ₃ H ₂)	4,2 0/0
- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	

II. Oxydationsanalyse

Um die Richtigkeit der rhodanometrisch erhaltenen Werte zu beweisen, wurde mit Hilfe der Oxydation nach Hazura¹¹) die Olsäure auf präparativem Wege bestimmt. Während die Hazura-Oxydation eine völlige Hydroxylierung ungesättigter Verbindungen erstrebte, konnten durch selektive Oxydation nach H. P. Kaufmann¹²) ein- und mehrfach ungesättigte C18-Säuren durch Oxydation getrennt werden. Im vorliegenden Weizenkeimöl, resp. seinem Fettsäurengemisch von Olsäure, Linol- und Linolensäure gelang es, die Olsäure quantitativ als Dioxystearinsäure zu erfassen

CH₃ · (CH₂)₇ · CH = CH · (CH₂)₇ COOH Ölsäure
$$\downarrow$$
 CH₃ · (CH₂)₇ · CH (OH) · CH (OH) · (CH₂)₇ · COOH Dioxystearinsäure,

während die beiden mehrfach ungesättigten Fettsäuren aufgespalten wurden. Gleichzeitig konnte auch die Bestimmung der gesättigten Fettsäuren durchgeführt werden.

5,06 g Ol wurden mit 20 cm³ 5n-alkoholischer KOH verseift, das Unverseifbare mit Petroläther ausgeschüttelt, die Seifenlösung von Alkohol befreit und im 3 l-Becherglas zu 1 l Seifenlösung verdünnt, auf unter 0° abgekühlt und innerhalb 30 Min. 1 l einer Permanganatlösung (14 g KMn O4/1) unter ständigem Rühren (Rührwerk) zutropfen gelassen (Kühlung mit Eis-Kochsalzmischung, damit die Temperatur von 0° oder höchstens +4° nicht überschritten wurde). Anschliessend wurde 15 Min. in der Kälte weitergerührt, darauf mit Natriumbisulfit und Schwefelsäure entfärbt, die Fettsäuren durch Glasfiltertiegel 2G3 oder Extraktionshülse abfiltriert, gewaschen, über P2O5 getrocknet, im Mörser mit Bimssteinpulver zerrieben, 12 Std. im Soxhlet-Apparat mit Petroläther extrahiert und, wie üblich, nach Bertram die gesättigten Fettsäuren mit Magnesiumsulfat gereinigt.

Erhalten 1,005 g gesättigte Fettsäuren = 18,1 % (1). Der Filtertiegel, resp. die Extraktionshülse mit dem verbleibenden Rückstand wird durch Abdunsten vom Petroläther befreit, getrocknet und während 80—100 Std. mit Äther, worin die Dioxystearinsäure schwer löslich ist, extrahiert.

Erhalten 1,1070 g Dioxystearinsäure = 21,88 %, entsprechend 19,5 % Olsäure (2).

Durch gleichzeitige Ermittlung der Jodzahl des Weizenkeimöles (JZ 122,8), der Werte für die gesättigten Fettsäuren (1) und der Olsäure (2) kann der Gehalt an Linolsäure und Linolensäure nach folgender Berechnungsweise gefunden werden:

$$G + Oe + L + Le + Unv. + Gl = 100$$

18,1 19,5 54,6 3,6 4,2

Durch Mischungsrechnung lässt sich aus den Gleichungen (1), (2) und (3) der Linolsäuregehalt ermitteln:

L 181,1 + Le 273,8 =
$$100 \times 192,8$$

Le = $100 - L$
181,1 L + $27380 - 273,8$ L = 19280
 $27380 - 19280 = (273,8-181,1)$ L
 8100 92,7
L = 8100 92,7
 $670,0$

Auf 54,6 g (L + Le), resp. auf das Ol bezogen, erhält man demnach 47,7 % Linolsäure, 6,9 % Linolensäure.

In folgender Tabelle sind die gefundenen Werte zusammengestellt und mit denjenigen der rhodanometrischen Analyse verglichen.

Zusammensetzung des Weizenkeimöles

Methode	Oxydationsanalyse	Rhodanometrische Analyse	
	0/0	0/0	
Gesättigte Fettsäuren	18,1	17,4	
Ölsäure	19,5	20,5	
Linolsäure	47,7	47,9	
Linolensäure	6,9	6,4	
Unverseifbares	3,6	3,6	
Glycerinrest (C3H2)	4,2	4,2	

Die Tabelle zeigt gute Übereinstimmung in den Zahlenwerten beider Methoden, wobei in Anbetracht des experimentell nicht ganz einfachen und zeitraubenden Verfahrens der selektiven Oxydation gegenüber der Rhodanometrie durchaus kein Vorteil zu erblicken ist. Die nach zwei ganz verschiedenen Methoden erhaltenen Werte für Olsäure stimmen unter sich befriedigend überein, zeigen dagegen eine starke Abweichung von den Werten, die Halden-Grün mit 45,4 % und Hefter-Schönfeld mit 30 % angeben. Trotzdem stimmt die Art und Menge der übrigen Fettbestandteile in unserer Tabelle am besten mit den von den zuletzt genannten Autoren angeführten Analysenwerten überein.

Der nach dem Bromadditionsverfahren der Polybromidzahl von uns ermittelte Gehalt für Linolsäure 21,7 % und für Linolensäure 2,6 % entspricht nur etwa der Hälfte der oben angeführten Werte. Neben den schwerlöslichen Bromiden (α-Form) treten durch unkontrollierbare sterische Verlagerungen stets leichter lösliche Isomere auf.

Um die Richtigkeit der von uns früher auf rhodanometrischem Wege ermittelten Zusammensetzung eines Mohnöles¹³) zu beweisen, haben wir nachträglich auch dieses Ol der Oxydationsanalyse unterworfen.

Oxydationsanalyse von Mohnöl

A. Qualitative Analyse

Die qualitativen Feststellungen der vorhandenen Fettsäuren sind notwendig, wenn wir zur Ermittlung des quantitativen Gehaltes an diesen Säuren die durch selektive Oxydation erhaltene Dioxystearinsäure und die gesättigten Fettsäuren auswerten wollen.

- 1. Bromierung in Petroläther nach der Methode der BrxZ⁶)
 Einwage 5,245 g Mohnöl
 Bromid-Niederschlag 3,074 g = 58,6 %
 (umkristallisiert aus einer Mischung von 20 cm³ Petroläther + 6 cm³ Äther)
 Schmp. 114,2%.
- 2. Quantitative Bestimmung des Bromgehaltes nach der Methodik von Baubigny und Chavanne¹⁴) im Apparat nach Dr. G. Walter¹⁵)
 Prinzip: Zersetzung der organischen Verbindung durch K2Cr2O7 + H2SO4 bei Gegenwart von Silbersulfat. Brom entweicht gasförmig und wird in einem Gemisch von Lauge und Perhydrol zu NaBr umgesetzt. Titration nach Volhard. Einwage 351 mg Bromide. Verbrauch 22,4 cm³ 0,1n-AgNO3-Lsg. 22,4 × 7,992 = 179 mg Brom, entsprechend 51,0 %.
 Es handelt sich demnach um fast reine Tetrabromstearinsäure.

(C18H32Br4O2 Schmp. 114—116°, Bromgehalt 53,3°/0) 58,6°/0 Tetrabromide \times 0,4667 = 27,3°/0 Linolsäure.

Von mehrfach ungesättigten Säuren ist also nur die Linolsäure vorhanden.

B. Quantitative Analyse

Eingewogen 5,015 g Mohnöl

(mit 20 cm³ 5n alkohol. KOH verseift, Alkohol abgedunstet und mit einer Lösung von 14 g KMnO4/l, wie früher angegeben, bei 0° bis höchstens 4° oxydiert).

1. Gesättigte Fettsäuren

(Extraktion mit Petroläther 8 Std., Reinigung mit MgSO₄) erhalten 0,563 g = 11,2 % (G).

2. Dioxystearinsäure

(C17H33(OH)2 COOH, Schmp. 132—136,5°, SZ 177,4 Mol. Gew. 316) Durch Extraktion mit Äther 90 Std. erhalten 1,294 g = 25,8 °/°

gef.: Schmp. 133,5°, SZ 172, Mol. Gew.
$$\frac{56110}{SZ} = 326$$
 25,8 °/° Dioxystearinsäure entsp. 23,0 °/° Olsäure (Oe).

3. Linolsäure L

L = 100-G-Oe-Unv.-Gl.

Die gefundenen Werte sind in folgender Tabelle zusammengestellt und stimmen gut mit den rhodanometrischen überein:

Zusammensetzung des Mohnöles

Methode	Oxydationsanalyse	Rhodanometrische Analyse	
	0/0	0/0	
Gesättigte Fettsäuren	11,2	9,5	
Olsäure	23,0	23,8	
Linolsäure	61,1	61,9	
Glycerinrest aus VZ berechnet	4,4	4,4	
Unverseifbares (Petroläther)	0,3	0,3	

Die der Rhodanometrie zugrunde liegende Auffassung, wonach sich Rhodan nur an eine der beiden Doppelbindungen in Fetten vorhandener Linolsäure anlagert, konnte auf dem Umweg über die Oxydationsanalyse bestätigt werden. Dagegen konnte durch die Bromadditionsmethode (BrxZ) die Linolsäure nur etwa zur Hälfte erfasst werden.

Zusammenfassung

Es wird die qualitative und mittels der rhodanometrischen Analyse gewonnene quantitative Zusammensetzung des Weizenkeimöles angegeben. Entgegen den Angaben von Halden-Grün wurde Linolensäure nach der Bromadditionsmethode als Hexabromstearinsäure nachgewiesen und rhodanometrisch bestimmt.

Die aus Weizenkeimöl und Mohnöl nach dem Bromadditionsverfahren der Polybromidzahl isolierten festen Hexabromide und Tetrabromide stellen Mindestwerte dar; die daraus errechneten Mengen Linolensäure und Linolsäure be-

tragen nur etwa die Hälfte der rhodanometrisch gefundenen Werte.

Auf präparativem Wege wurde durch die Oxydationsanalyse die Olsäure quantitativ als Dioxystearinsäure gewonnen und aus dem gleichzeitig ermittelten Wert der gesättigten Fettsäuren und der Jodzahl die Zusammensetzung des Weizenkeimöles errechnet, wobei sich eine Übereinstimmung mit dem rhodanometrischen Befund ergab.

Mit gleichem Erfolg konnte die durch rhodanometrische Analyse ermittelte Zusammensetzung eines Mohnöles mit Hilfe der selektiven Oxydation bestätigt

werden.

Damit kann an der, den Formeln nach *Kaufmann* zugrunde liegenden selektiven Addition des Rhodans, nämlich an der ¹/₂-Addition der Linolsäure und an der ²/₃-Addition der Linolensäure nicht mehr gezweifelt werden.

Résumé

La composition de l'huile de germes de blé est donnée d'une part qualitativement, d'autre part quantitativement en se servant des résultats de l'analyse rhodanométrique. Contrairement aux données de *Halden-Grün*, l'acide linolénique fut identifié comme acide hexabromostéarique par la méthode d'addition de brome et déterminé rhodanométriquement.

Les hexabromures et tétrabromures solides, qui furent isolés de l'huile de germes de blé et de l'huile de pavot d'après le procédé de détermination de l'indice de polybromures par addition de brome représentent des valeurs minima; les quantités d'acide linolénique et d'acide linoléique calculées ainsi ne se mon-

tent qu'à environ la moitié des valeurs trouvées rhodanométriquement.

Par voie préparative on a obtenu quantitativement, par l'analyse par oxydation, l'acide oléique sous forme d'acide dioxystéarique, et on a calculé, à partir de la teneur en acides gras saturés obtenue en même temps et de l'indice d'iode, la composition de l'huile de germes de blé. Les résultats obtenus concordaient avec ceux de l'analyse rhodanométrique.

Avec le même succès on a pu confirmer au moyen de l'oxydation sélective la composition, déterminée par l'analyse rhodanométrique, d'une huile de pavot.

Ainsi donc il n'est plus possible de douter de l'addition sélective du sulfocyanogène, qui est à la base des formules de *Kaufmann*, à savoir la demi-addition de l'acide linoléique et l'addition aux ²/₃ de l'acide linolénique.

Literatur

¹) P. Karrer, Helv. **20,** 424 (1937).

2) Analyse der Fette und Wachse, Bd. II, S. 27 (1929).

3) Z.U.L., **62,** 421 (1931). 4) Oil & Soap, **9,** 136 (1932).

5) Chemie und Gewinnung der Fette, Bd. I, S. 79 (1936).

6) Fette und Seifen, **46,** 499 (1939). Seifen und Waschmittel, herausgegeben von der Schweiz. Ges. f. anal. u. angew. Chemie, Bern, 1944.

7) R. Viollier, «L'analyse rhodanométrique des matières grasses», diese Mitt. 36, 167 (1945).

s) Z.U.L., **55**, 181 (1928); **59**, 523 (1930); **60**, 452 (1930.

Pharm. acta Helv. 7, 48 (1932).
 Fette und Seifen, 48, 657 (1941).

¹¹) M. **9**, 198 (1888).

Grün, Analyse der Fette und Wachse, Bd. I, S. 237 (1925).

Fette und Seifen, 46, 569 (1939); 51, 4 (1944).
Iselin, Rapsöl und Mohnöl, Pharm. acta Helv. 19, 263 (1944).
Z. anal. Ch., 43, 56 (1904); 47, 518 (1908); 49, 375 (1910).

¹⁵) Glasbläserei Gerber, Spiegelgasse 4, Zürich.

Über die Zuckerbestimmung in Weizenkeimen und andern Mahlprodukten

Von H. Hadorn

(Aus dem Laboratorium des Eidg. Gesundheitsamtes, Bern)

Weizenkeime und Keimlingsmehle sind ein wertvolles Nahrungsmittel, da sie reich an hochwertigen Eiweisstoffen, Lipoiden und Vitaminen sind. Ihre Gewinnung erfolgt durch das sog. «Spitzen» des gequollenen Weizens, einer Operation, bei der die Keimlinge maschinell aus dem Weizenkorn entfernt werden, wobei meistens auch grössere oder kleinere Anteile von Kleie und Mehl dazu gelangen. Ein Präparat ist um so wertvoller, je reiner es ist, da die Schutzstoffe fast ausschliesslich in den Keimen enthalten sind. Während der Mehlkörper zur Hauptsache aus Stärke besteht, enthält der Keimling viel Eiweiss, Fett und Zucker. Der Zuckergehalt eines Keimlingspräparates gibt denn auch einen Anhaltspunkt über seine Reinheit. Nach Angaben im «Handbuch der Lebensmittelchemie»¹) findet man im Weizenkorn nur 0,1 bis 0,3 % direkt reduzierenden und etwa 1 % durch Hydrolyse mit schwacher Säure nachträglich gebildeten Zucker, während der Keimling 15 bis 18 %, davon mehr als 4/5 Saccharose enthält.

Die Analyse ist mit einigen Schwierigkeiten verbunden, weil im Keimling Fermente enthalten sind, welche während der Auflösung des Zuckers Veränderungen herrufen können. Es ist vor allem die Amylase, welche stört, indem sie einen Teil der vorhandenen Stärke zu Zucker abbaut. Bestimmt man den Zucker