Zeitschrift: Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und

Hygiene = Travaux de chimie alimentaire et d'hygiène

Herausgeber: Bundesamt für Gesundheit

Band: 35 (1944)

Heft: 5

Artikel: Phosphorsäurebestimmung in Lebensmitteln mit Hilfe des

Stufenphotometers nach Pulfrich

Autor: Wuhrmann, Hans / Högl, Otto

DOI: https://doi.org/10.5169/seals-983555

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

PHOSPHORSÄUREBESTIMMUNG IN LEBENSMITTELN MIT HILFE DES STUFENPHOTOMETERS NACH PULFRICH

Von Hans Wuhrmann und Otto Högl, Bern (Aus dem Laboratorium des Eidg. Gesundheitsamtes)

I. Allgemeines

Dem Element Phosphor kommt in der Chemie der Lebensmittel eine hervorragende Bedeutung zu. Die dieses Element führenden Verbindungen, meist veresterte Phosphorsäure enthaltend, nehmen durch ihre Eigenart und besondere Reaktionsfähigkeit eine Schlüsselstellung bei vielen Stoffwechselvorgängen ein.

Wir nennen die Nucleoproteide, welchen in den Zellkernen als Chromosomen wesentlichste Bedeutung bei der Vererbung und Zellteilung und damit beim Wachstum des Organismus zukommt, die Phosphorproteide, deren wichtigster Vertreter, das Casein, den Hauptanteil der stickstoffhaltigen Baustoffe des jungen Tieres darstellt. In den Fetten, speziell in denjenigen für Leben und Vermehrung besonders wichtiger Körperteile, wie Gehirn, Mark, Sperma, Eisubstanz, treten die Lecithine, Kephaline, Sphingomyeline auf, Verbindungen von Glyzerin, Fettsäuren, Phosphorsäure und Aminoalkoholen, die wichtigsten Funktionen zu dienen haben. In den Keimgeweben der Pflanzen findet sich schliesslich das Phytin, Inosithexaphosphat vor, ein Körper, dessen Bedeutung noch nicht genau bekannt, aber gewiss von Wichtigkeit ist.

Die ausserordentliche Veränderlichkeit der hier — keineswegs erschöpfend — aufgezählten Verbindungen befähigt sie, in zahlreichen Stoffwechselvorgängen sozusagen als Katalysatoren, Vermittler, aufzutreten. Ein gewisser Phosphatgehalt ist entsprechend bei vielen fermentativen Vorgängen unbedingt erforderlich. Wir nennen die Atmungsvorgänge in der Zelle, die verschiedenen Arten der Gärungen usw. Da solche Umsetzungen für die Erhaltung des Lebens der

meisten Lebewesen von grösster Bedeutung sind, zeigen entsprechend auch die natürlichen, fabrikatorisch wenig veränderten Lebensmittel als biogene Substanzen vielfach einen ziemlich konstanten, manchmal charakteristischen Phosphorgehalt.

Die leichte Spaltbarkeit der hier erwähnten organischen Phosphorverbindungen bringt es andererseits mit sich, dass Verderbnis von Lebensmitteln, d. h. Zersetzungsvorgänge wiederum enzymatischer oder bakteriell-fermentativer Art, meist mit einer starken Veränderung dieser Verbindungen einhergehen. Grössere, Phosphor enthaltende Komplexe werden in kleinere, einfachere Anteile aufgespalten.

So wie der Phosphorgehalt als Ganzes oder in besonderer Bindungsform unter Umständen eine charakteristische Zahl für ein bestimmtes Lebensmittel liefern kann, so kann die Feststellung der relativen Bindungsverhältnisse Auskunft über den Zustand des Lebensmittels, dessen Frische oder fortschreitende Verderbnis geben.

Den Bestimmungsmöglichkeiten des Phosphors in Lebensmitteln kommt daher in recht verschiedener Hinsicht grösstes Interesse zu. Von Bedeutung ist dabei weiter, wie genau, wie rasch und in welcher Menge des Lebensmittels der Phosphorgehalt noch bestimmbar ist. Da die Phosphorbestimmung stets eine Mineralisierung, eine nasse oder trockene Verbrennung der organischen Substanz voraussetzt, wird die Bestimmung kleiner Mengen insofern von Interesse sein, als hierbei die Mineralisierung viel rascher und leichter gelingt als bei grösseren Quantitäten.

Unsere Studien über die Verderbnis von Mahlprodukten¹) und Eierkonserven hatten uns die Wichtigkeit der Phosphorbestimmung erkennen lassen. Wir gingen daher daran, die Phosphorsäurebestimmungsmethoden einer kritischen Überprüfung zu unterziehen.

II. Auswahl der Methode

Die klassische Methode der Fällung als Ammonium-Phosphor-Molybdat (nach Woy und von Lorenz) ermöglicht die Bestimmung recht kleiner Mengen Immerhin ist in einzelnen Lebensmitteln mit sehr geringen Mengen zu rechnen. Wir nennen z. B. die sog. «Tafelgetränke mit Fruchtsaft», die gemäss eidg. LMV. nicht mehr als 4 % Fruchtsaft enthalten müssen. Der ohnehin nicht sehr hohe Phosphatgehalt des reinen Fruchtsaftes erfährt eine nochmals 25 fache Verdünnung, so dass hier wirklich kleine Mengen zur Bestimmung gelangen. Ähnliches ist zu sagen vom Phosphatgehalt von Mehlauszügen, von Honig und vielen andern Produkten.

Schon vor Jahren hat der eine von uns²) darauf hingewiesen, dass die Mo-Blau-Reaktion nach Zinzadze³) sich sehr gut für die Bestimmung kleiner Phosphorsäuremengen eigne. In Ermangelung eines Photometers konnte jedoch damals keine grosse Genauigkeit erzielt werden.

Ein ganz ähnlicher Vorschlag wurde einige Jahre später von Mohler, Hämmerle und Hartnagel⁴) für die Bestimmung des Phosphatgehaltes in Tafel-

getränken publiziert.

Bei der Aufnahme unserer neuerlichen Arbeiten in dieser Richtung versuchten wir nun, die Molybdänblaumethode in ihren verschiedenen Modifikationen kennen zu lernen. Ein Stufenphotometer nach Pulfrich stand nunmehr zur Verfügung, so dass die colorimetrischen Bestimmungen mit aller wünschbaren Genauigkeit durchgeführt werden konnten. Nach reiflicher Prüfung fiel unsere Wahl auf die Methode Fiske-Subbarow⁵), in der Modifikation von Theorell⁶). Auch hier wird eine Blaufärbung in saurer Lösung erzeugt. Im Gegensatz zum Verfahren nach Zinzadze ist jedoch eine Entwicklung durch Reduktion notwendig. Die in saurer Lösung entstehende Phosphormolybdänsäure wird durch ein organisches Reduktionsmittel in den Molybdänblau-Komplex (Tschopp⁷))

4 MoO3 . MoO2 . 2 H3PO4 . 4 H2O

übergeführt.

Als besondere Vorteile dieser Methode sind hervorzuheben die gute Genauigkeit selbst bei sehr kleinen Mengen Phosphat und entsprechend die Möglichkeit, mit sehr geringen Mengen Substanz auszukommen. Wir versuchten, die unterste Grenze einer exakten Bestimmbarkeit zu erfassen, wobei es uns gelang, gegenüber den bisherigen Publikationen nochmals um etwa eine Zehnerpotenz tiefer zu gelangen, wie weiterhin gezeigt werden soll.

Es ist hier eventuell am Platze, sich kurz über die Anwendbarkeit solcher photometrischer Methoden zu äussern. Es ist uns bekannt, dass eine Reihe amtlicher Laboratorien in der Schweiz bereits mit Erfolg sich des Stufenphotometers bedient. Andernorts fehlt dieses nützliche Instrument noch, doch sind die Vorteile desselben so gross, dass es sich unseres Erachtens empfiehlt, das Gerät wo immer möglich anzuschaffen. Alle Vorteile der colorimetrischen Methoden, deren Spezifität, Erfassbarkeit sehr geringer Mengen und damit Raschheit der Bestimmung, die ausserordentlich vielseitigen Möglichkeiten werden bei Besitz eines solchen Gerätes ergänzt durch die Genauigkeit, mit welcher hier die Messung erfolgen kann.

Am Beispiel der Molybdänblaumethode erläutert, kann in allen Fällen, wo homogene Substanzen vorliegen, d. h. vor allem bei klaren Flüssigkeiten, anstelle von bisher 20—50 cc, von 1—2 cc ausgegangen werden, wobei natürlich eine exakte Abmessung notwendig ist. Die nasse Verbrennung mit wenig Schwefelund Salpetersäure ist rasch beendigt. Dem Prinzip der Methode folgend, kann nun im gleichen Glase die Ammoniummolybdatlösung zugegeben werden, worauf mit einem organischen Reduktionsmittel die Molybdänblaufärbung entwickelt wird. Alle diese Operationen nehmen in der Regel nicht mehr als ca. 30 Minuten in Anspruch. Es folgt nun die Messung der Farbintensität, die insbesondere bei Serien ein sehr rasches Arbeiten gestattet. Verglichen mit der klassischen Methode, die eine langdauernde Verbrennung, Fällung, Filtration und Wägung

notwendig macht, lassen sich ganz bedeutende Zeiteinsparungen erreichen. Dasselbe gilt bezüglich Materialaufwand, was speziell in der heutigen Zeit mit knapper Molybdänversorgung ins Gewicht fällt.

Damit kann eine Anwendung der Methode in Fällen ins Auge gefasst werden, wo bisher der Aufwand an Zeit und Material eine Bestimmung verhinderte.

III. Eigene Untersuchungen

Obwohl bereits mehrfach über die besprochene Methode in der Literatur berichtet wurde, sahen wir uns dennoch veranlasst, in verschiedener Richtung Überprüfungen vorzunehmen. Die Literaturangaben sind nicht in allen Punkten exakt. Ferner wurde nicht mit den gleichen Objekten gearbeitet, mit denen wir es vorwiegend zu tun haben. Ausserdem sind die Angaben zerstreut und beziehen sich nicht auf die gleichen Voraussetzungen. So schien uns eine kritische Sichtung notwendig, wobei möglichst viele Bedingungen unter den für uns massgebenden Verhältnissen berücksichtigt wurden.

Wir haben in der Folge versucht, den Einfluss der einzelnen Faktoren einzeln festzustellen und daraus die massgebende Arbeitsweise abzuleiten.

a) Benötigte Menge Ausgangsmaterial: Fiske und Subbarow haben die colorimetrische Phosphatbestimmungsmethode für biologisches Material, vor allem für Körperflüssigkeiten ausgearbeitet. Bei der Übertragung der Modifikation Theorells auf Lebensmittel wird man daher zweckmässig an flüssige Lebensmittel wie Wein, Süsswein, Fruchtsäfte, Limonaden, Milch und andere denken; denn gerade hier kann der Vorteil der colorimetrischen Methode gegenüber derjenigen von Lorenz voll ausgenutzt werden. Da die flüssigen Materialien ihrer grösseren Homogenität wegen die Verwendung einer wesentlich kleineren Ausgangsmenge gestatten, lässt sich die der Bestimmung vorangehende Mineralisierung in kürzester Zeit durchführen. Für Süssmost haben wir 0,2 cc Material mit 0,55 cc H2SO4 1+3 und wenig conz. HNO3 versetzt und ohne Schwierigkeiten innert 10 Minuten über der Sparflamme eines normalen Bunsenbrenners verbrannt. Für Milch oder ähnliche, phosphorreiche Produkte benötigte man nur den 4 ten Teil dieser Menge, also 0,05 cc! Bei Limonaden, deren Fruchtsaftgehalt auf mindestens 4 % festgesetzt ist, kann man mit 5 cc auskommen.

Normalerweise wird man aber nicht solch kleine Mengen verwenden. Am besten stellt man von der zu untersuchenden Flüssigkeit in einem 10- oder 25 cc-Messkölbehen eine Verdünnung her, von der 1 cc verbrannt wird. Von Limonaden verwendet man 5 cc unverdünnte Substanz, von phosphorreichen Produkten entsprechend grössere Verdünnungen.

Bei Anwendung der Methode auf feste Lebensmittel kann die Ausgangsmenge nicht beliebig verringert werden. Soll das Resultat dem wirklichen mittleren Phosphatgehalt möglichst nahe kommen, so muss auch die zur Analyse verwendete Substanz ein gewisses Minimalgewicht aufweisen, welches mit zu-

nehmender Homogenität sinkt. Unter 1 g wird man hier nicht gehen können. Bei der Mineralisierung kann man damit nicht viel Zeit einsparen, wohl aber mit der Bestimmung selbst. Liegt die kalte, klare Lösung vor, so benötigt man zur Entwicklung der Blaufärbung und zur Messung etwa 20—25 Minuten, wobei man leicht 2 Doppelbestimmungen nebeneinander ausführen kann.

b) Versuche an Modellösungen: Wir haben zunächst Vergleichsbestimmungen an Lösungen ausgeführt, die einerseits nur Phosphat, andererseits Phosphat und Zucker enthielten. Der Zweck war, die Genauigkeit der gravimetrischen mit der photometrischen Methode zu vergleichen. Der Zuckerzusatz erfolgte, um die Wirkung der Veraschung, vor allem eine allfällige Reduktionswirkung bei der Verkohlung zu verfolgen.

Wir verwendeten KH₂PO₄ «Merk», welches zuerst bei 105 °C 30 Minuten getrocknet wurde. In der folgenden Tabelle sind die mit reinen Phosphatlösungen gravimetrisch und colorimetrisch bestimmten Werte zusammengestellt. Versuch 1 wurde genau nach dem Schweizerischen Lebensmittelbuch (4. Aufl. S. 132) ausgeführt, die Versuche 2 und 3 nur mit 25 cc Flüssigkeit und 25 cc Lorenzreagenz. Da zwischen den gravimetrischen Bestimmungen mit der vollen und der halben Menge keine wesentlichen Unterschiede gefunden wurden, sind alle im nachfolgenden mit «gravimetrisch» bezeichneten Bestimmungen aus Sparsamkeit mit der halben Menge, also 25 cc ausgeführt worden.

Tabelle 1

Nr.	G od. C	Vorgelegt	Gefunden	Differenz	M
1	G	11,44 mg / 50 cc	11,38 mg	$0.06 \text{ mg} = 0.53 ^{0}/_{0}$	50 cc
2	G	11,44 mg / 25 cc	11,43 mg	$0.01 \text{ mg} = 0.09 ^{0}/_{0}$	25 cc
3	G	1,14 mg / 25 cc	1,11 mg	$0.03 \text{ mg} = 2.6^{-0/0}$	25 cc
4	C	28,62 mg/Lt	28,80 mg/Lt	$0.18 \text{ mg} = 0.63 ^{0}/_{0}$	1—4 cc

C = colorimetrische Bestimmung

G = gravimetrische Bestimmung

M = die zur Bestimmung verwendete Menge

In einer zweiten Versuchsreihe wurden Phosphatlösungen mit 8 % Saccharose versetzt und vor der Bestimmung trocken oder nass verbrannt. Die erhaltenen Werte sind in Tabelle 2 wiedergegeben:

Tabelle 2

Nr. G od. C		Vorgelegt	Gefunden	Differenz	V	
1	G	14,31 mg P ₂ O ₅	13,96 mg P2O5	$-2,5^{0}/_{0}$	trocken	
2	G 14,31 mg P2O5		14,62 mg P2O5	+ 2,2 0/0	trocken	
3	G 14,31 mg P2O5		14,15 mg P2O5	- 1,1 º/o	trocken	
4	G 14,31 mg P2O5		8,62 mg P ₂ O ₅	— 40 °/0	trocken	
5	C	1,431 mg P2O5	1,38 mg P ₂ O ₅	— 3,5 º/o	trocken	
6	C	1,431 mg P2O5	1,48 mg P2O5	$+3,4^{0/0}$	trocken	
7	C	1,431 mg P2O5	1,42 mg P2O5	$-0.8^{0/0}$	trocken	
8	C	1,431 mg P2O5	1,39 mg P2O5	$-2,9^{0/0}$	nass	

V = Art der Verbrennung

G = gravimetrische Bestimmung

C = colorimetrische Bestimmung

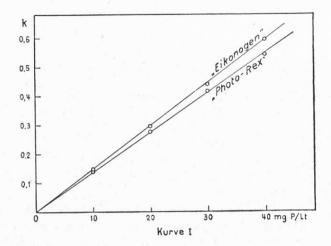
Die Werte Nr. 5—8 zeigen, dass die photometrische Methode zur Phosphatbestimmung durchaus brauchbar ist. Die Schwankungen sind um etwa 1% grösser als bei der gravimetrischen Methode (Nr. 1—3). Dem Wesen der photometrischen Methode folgend, wurde bei dieser jeweilen nur ½ der Menge von Nr. 1—3 verwendet, was aber auf die Genauigkeit kaum von Einfluss ist.

Bei der als Nr. 4 bezeichneten Probe (gravimetrische Methode) wurde bei der Verbrennung kräftig geglüht, was beträchtliche Verluste an Phosphor mit sich brachte. Es ist daher in dieser Hinsicht Vorsicht am Platze (siehe nächster Abschnitt).

c) Mineralisierung der organischen Substanz: Über die Verbrennung soll hier ebenfalls kurz berichtet werden. Wie schon erwähnt, zeigt Versuch Nr. 4 in Tabelle 2, dass man bei unsachgemässer Behandlung unter Umständen völlig falsche Werte erhalten kann. Richtige Zahlen wurden bei folgender Arbeitsweise gefunden: Von den Modellösungen wurden 25 cc mit 1 cc n/1 Calciumacetatlösung in einer Platinschale zur Trockne eingedampft und über einer schwachen, farblosen Bunsenflamme verbrannt. Sobald keine Glimmerscheinungen mehr sichtbar waren, wurden die Schalen vom Feuer genommen und nach Erkalten mit wenig Wasser befeuchtet. Durch vorsichtiges Kippen der Schalen kann man erreichen, dass die ausgelaugte Kohle auf die eine, der mehr oder weniger klare wässrige Auszug auf die andere Seite zu liegen kommt. In dieser Stellung verdampft man wieder auf dem Wasserbad zur Trockne und verbrennt wie oben. Meist genügt ein zweimaliger Auszug, um eine weisse Asche zu erhalten. Durch diese Behandlung vermeidet man das Schmelzen der Asche, was namentlich bei phosphatreichen Produkten sehr leicht eintritt und dann infolge Einschluss von Kohleteilchen auch bei Erhitzen bis zur hellen Rotglut keine hellgraue bis weisse

Asche mehr liefert. Abgesehen von der unvollständigen Verbrennung treten offenbar nach Versuch 4 in Tabelle 2 Verluste durch Verflüchtigung oder Reduktion ein. Zur trockenen Verbrennung sollte man daher so niedrig wie möglich erhitzen.

Zur nassen Verbrennung wurden 1, 2 oder mehr cc Lösung mit 0,55 oder 1,1 cc H₂SO₄ 1+3 in einem Jenaer Reagenzglase (150×15) versetzt und über freier Flamme mit nach und nach 2 — 3 cc konz. HNO₃ erhitzt, bis keine Verkohlung mehr auftrat. Schliesslich wurde bis zum Auftreten weisser SO₃-Dämpfe abgeraucht. Das Reagenzglas wurde hierauf abgekühlt, mit wenig Wasser versetzt (zur Zersetzung der gebildeten Nitrosylschwefelsäure) und nochmals kurz abgeraucht. Nach erfolgter Abkühlung ist die Probe zur colorimetrischen Bestimmung fertig. Die Entwicklung der Molybdänblaufarbe kann nun im gleichen Glase erfolgen, was eben nur bei Anwendung kleiner Substanzmengen möglich ist. Man vermeidet das Abpipettieren aliquoter Teile oder ein quantitatives Überführen in grössere Gefässe und damit auch eine häufige Fehlerquelle.


d) Vorbereitung zur Photometrie: Die nunmehr vorliegende klare, schwefelsaure Lösung wird nun zur colorimetrischen Bestimmung vorbereitet. Geht man von der trockenen Verbrennung aus, so wird die Asche mit H2SO4 1+3 versetzt, auf bestimmtes Volumen aufgefüllt und filtriert.

Zur Colorimetrie sollte immer auf gleiches Volumen aufgefüllt werden. Dieses Totalvolumen ist von *Theorell* auf 26,5 cc fixiert worden. Wir haben es für unsere Zwecke auf 10 cc verringert, weil dadurch sowohl die Genauigkeit der Bestimmung erhöht, als auch die nötige Menge des heute schwer erhältlichen Ammoniummolybdates herabgesetzt wurde.

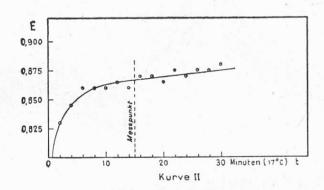
Bei der nassen Verbrennung fallen bei Verwendung von 1 cc Lösung und 0,55 cc H₂SO₄ 1+3 erfahrungsgemäss etwa 0,2 cc Flüssigkeit an. Diese werden nun unter Verwendung von Stabpipetten mit 1 cc 5% iger Ammoniummolybdatlösung versetzt, mit 8,3 cc Wasser auf 9,5 cc Flüssigkeit gebracht und hierauf 0,5 cc Reduktionsreagenz zugegeben. Damit beträgt das Totalvolumen genau 10 cc. Die zur Absolutcolorimetrie nötige Blindprobe bereitet man aus 8 cc Wasser, 1 cc Ammoniummolybdat, 0,5 cc H₂SO₄ 1+3 und 0.5 cc Reduktionsreagenz, wie in Tabelle 4 angegeben. Durch Versuche konnten wir feststellen, dass sich eine Verbrennung der Blindprobe erübrigt.

e) Reduktion der Phosphat-Molybdat-Lösung zu Molybdänblau: Das verwendete Reduktionsreagenz ist nach Theorell zusammengesetzt aus 0,5 g trokkener 1,2,4-Aminonaphtholsulfonsäure, 195 cc 15% iger Natriumbisulfitlösung und, je nach der zur völligen Lösung nötigen Menge (5—30 cc) 20% iger Natriumsulfitlösung. Es soll nicht älter sein als 2—3 Wochen.

E. und E. Tschopp 7) haben über die zur Reduktion des Phosphorammoniummolybdates brauchbaren organischen Substanzen berichtet. Sie stellten fest, dass von den in Frage kommenden organischen «Entwicklersubstanzen» die von Fiske-Subbarow angegebene 1,2,4-Aminonaphtolsulfonsäure und das p-Methylaminophenolsulfat sich am besten bewährten. Beide sind in ihrer Reduktionswirkung von der Acidität der Lösung weitgehend unabhängig, und sogar relativ hohe Salzkonzentrationen stören die Bildung von Molybdänblau nicht. Die erste war bis vor 5 oder 6 Jahren unter dem Namen «Eikonogen-Agfa» im Handel, die zweite ist unter dem Namen «Photo-Rex» bekannt. Die Aminonaphtolsulfonsäure stellten wir uns nach der von O. Folin⁸) sehr genau angegebenen Vorschrift selbst her und verwendeten ausschliesslich dieses Reduktionsmittel für unsere Versuche. Das im Handel erhältliche «Photo-Rex» verhält sich aber sowohl nach den Angaben Tschopps als auch nach unseren Versuchen sehr ähnlich. Als Beispiel führen wir eine Eichkurve an, welche wir mit diesen beiden «Entwicklern» und reiner KH2PO4-Lösung aufstellten.

Die mittels «Photo-Rex» erhaltene Kurve zeigt einen weniger steilen Anstieg als die «Eikonogen»-Kurve. Der Extinktionsverlauf ist jedoch in beiden Fällen linear, das Beer'sche Gesetz also erfüllt. Es sei hier noch angefügt, dass die Redoxlösungen anstatt mit NaHSO3 auch mit Kaliummetabisulfit hergestellt werden können, ohne dass Veränderungen eintreten. Das Kaliummetabisulfit hat den Vorteil, dass die Lösungen klarer werden.

Wie schon oben erwähnt, ist die Intensität der so erhaltenen Molybdänblaufärbungen nach Tschopp in weiten Grenzen von der Acidität der Lösung unabhängig. Um ganz sicher zu sein (bei der nassen Verbrennung bleiben, je nach Erhitzungsgrad, wechselnde Mengen H2SO4 zurück!), haben wir einen Versuch mit vier verschiedenen H2SO4-Konzentrationen durchgeführt und das Resultat in Tabelle 3 wiedergegeben.


Tabelle 3

cc H ₂ SO ₄ 1+3	cc H ₂ O	k
0,25	8,25	0,430
0,50	8,00	0,425
0,75	7,75	0,4275
1,00	7,50	0,4275

Die k-Werte, das ist die auf die Cuvettenschichtdicke = 1 cm reduzierte Extinktion, werden also auch bei einer doppelt so grossen H₂SO₄-Konzentration, wie sie bei der Messung reiner Phosphatlösungen verwendet wurde, nicht wesentlich verändert.

Bei der quantitativen Auswertung der mit organischen Reduktionsmitteln hergestellten Molybdänblaufärbung sind 2 Faktoren zu beachten:

- 1. die Abhängigkeit der Farbintensität von der Reaktionszeit, und
- 2. die Temperaturabhängigkeit dieser Farbreaktion.
- 1. Die Farbintensität ist nicht konstant, sondern nimmt mit der Zeit zu. Die Kurve 2 veranschaulicht den Anstieg der Extinktion mit der Zeit.



Die Angabe Theorells (l. c.), wonach das Maximum der Intensität bereits nach 6 Minuten erreicht ist, trifft mehr oder weniger zu. Immerhin mussten wir feststellen, dass, wie aus Kurve 2 hervorgeht, die Farbtiefe langsam weiter zunimmt.

Um reproduzierbare Werte zu erhalten, gingen wir so vor, dass wir die mit Redox-Reagenz versetzten Lösungen sofort durch Umschütten in ein zweites Reagenzglas mischten und in ein Wasserbad von 20 °C einsetzten. Die Reagenzgläser wurden nach 12—14 Minuten aus dem Bad herausgenommen und nach genau 15 Minuten gemessen. Wie die Eichkurve (Kurve 4) zeigt, liefern die auf diese Weise mit reinen Phosphatlösungen hergestellten Färbungen einen bis 50 γ P geradlinigen Extinktionsverlauf.

- 2. Bei diesem Vorgehen schaltet man gleichzeitig den zweiten Faktor, die Temperaturabhängigkeit aus. Mit steigender Temperatur verschiebt sich die Kurve 2 nicht unwesentlich gegen die Ordinatenachse, so dass nach 15 Minuten ein höherer Wert gefunden wird. Bei einer Farbentwicklung bei 27 ° C haben wir in dem wiedergegebenen Bereich nach 15 Minuten eine Extinktionsdifferenz von 0,5 Einheiten gefunden. Aus diesem Grunde empfiehlt es sich, die Temperatur von 20 ° C ± 1° C einzuhalten.
- f) Das Aufstellen der Eichkurve: Das Maximum der Lichtabsorption von Molybdänblau liegt offenbar im Ultra-Rot, hart an der Grenze des sichtbaren Gebietes. Wir haben den Verlauf der Absorption in Abhängigkeit von der

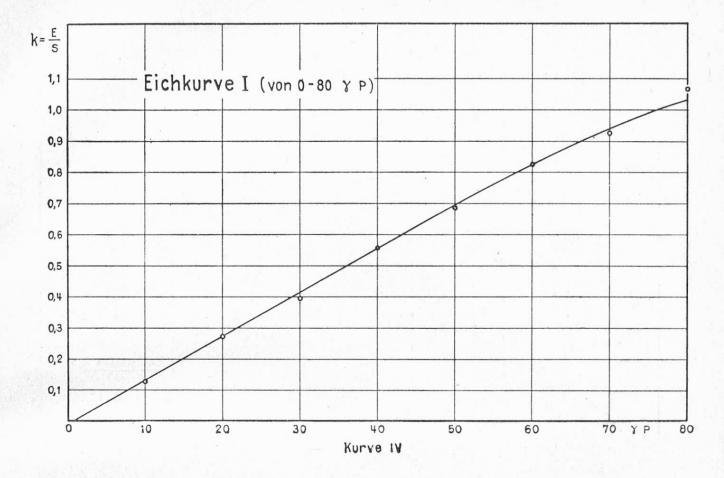
Wellenlänge der Filterschwerpunkte in Kurve 3 wiedergegeben. Zur Messung werden daher am besten die beiden im Gebiet des Absorptionsmaximums gelegenen Filter S 72 oder S 75 verwendet. Diese beiden Filter zeigen nur kleine Farbdifferenzen in beiden Gesichtshälften. (Diese Farbdifferenzen treten immer dann auf, wenn man Filter zur Messung benutzt, in deren Spektralbereich die Absorption stark ab- oder zunimmt.)

Zur Aufstellung der Eichkurve verwendeten wir Lösungen von KH₂PO₄ «Merk». Das Salz wurde zuvor bei 105 °C 30 Minuten getrocknet. 0,4388 g wurden im Liter gelöst und 50 cc der so erhaltenen Lösung auf 500 cc gebracht (Lösung I). 1 cc dieser Lösung I enthielt somit 10 γ P/cc oder 10 mg P/Lt. Nach dem in Tabelle 4 angeführten Schema wurde die Eichkurve (Kurve 4) aufgestellt.

Tabelle 4

Cc Lösung I	CC H ₂ SO ₄	cc Molybd. Lsg.	CC H ₂ O	cc Redox. R	S	Е	k
1	0,5	1	7	0,5	2	0,2526	0,1263
2	0,5	1	6	0,5	2	0,544	0,272
3	0,5	1	5	0,5	2	0,790	0,395
4	0,5	1	4	0,5	2	1,114	0,557
5	0,5	1	3	0,5	2	1,370	0,685
6	0,5	1	2	0,5	1	0,825	0,825
7	0,5	1	. 1	0,5	1	0,925	0,925
8	0,5	1	0	0,5	1	1,066	1,066
	0,5	1	8	0,5			

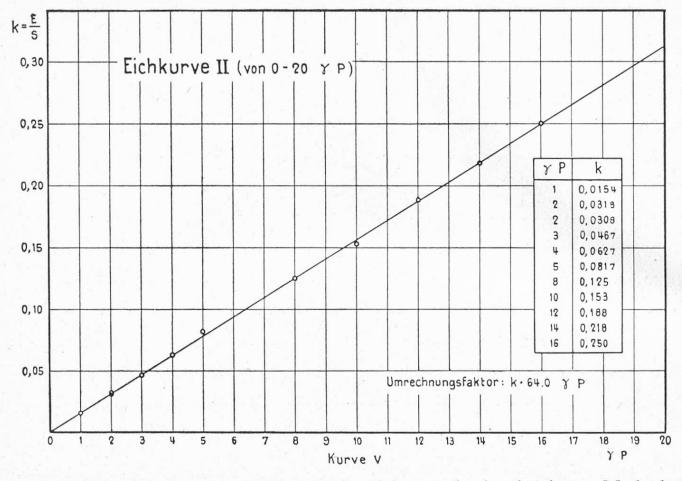
S = Schichtdicke der Cuvetten in cm


E = Extinktion

k = E/S

Filter = S 72 (Nr. 11)

Totalvolumen 10 cc


Temperatur 20°C

Der Verlauf der Eichkurve zeigt deutlich, dass die Beziehung zwischen der Farbintensität (k-Werte) und dem Phosphatgehalt der Lösung nur zwischen $0-50 \gamma$ P graphisch aufgetragen eine Gerade ergibt. Bei grösserem PO4'''-Gehalt nimmt der k-Wert nicht mehr im selben Masse zu. Der Schnitt der Eichkurve mit der + X-Achse ist ein kleiner Schönheitsfehler und wohl auf nicht ganz richtige Einstellung des Photometers zurückzuführen. Von $0-50 \gamma$ P gilt für die Kurve 4 die Beziehung: γ P = $(k \cdot 70.6) + 0.8$; alle im folgenden mitgeteilten Werte sind in diesem Kurvenbereich bestimmt und nach dieser Formel berechnet worden.

Es sei hier noch kurz auf die Wahl der Cuvetten hingewiesen. Die genauesten Werte erhält man, wenn die abgelesene Extinktion zwischen 0,3 und 1 beträgt. Das zur Messung verfügbare Volumen von 10 cc Flüssigkeit reicht zur Füllung der 1 und 2 cm-Cuvetten. Für die Benutzung der 3 cm-Cuvetten muss der Ansatz verdoppelt werden. Bei einer gegebenen Farbtiefe hat man es daher durch Wahl der geeigneten Cuvettenlänge in der Hand, die Extinktion in das gewünschte Gebiet fallen zu lassen.

Interessehalber haben wir auch noch Verdünnungen der Lösung I in 5 cm-Mikrocuvetten durchgemessen. Die erhaltenen Werte haben wir in Kurve 5 wiedergegeben. An Hand von hier nicht aufgeführten Versuchsreihen konnten wir feststellen, dass man mit dieser Anordnung zwischen 1 und 20 γ P mit einer Genauigkeit von \pm 0,5 γ P und einer Erfassungsgrenze von 1 γ P arbeiten kann.

Über die absolute Menge Phosphor, welche mit der beschriebenen Methode quantitativ noch erfasst werden kann, sei hier kurz folgendes angefügt: Wenn nach Kurve 4 in 3 cm-Cuvetten mit doppeltem Ansatz (20 cc Totalvolumen) gearbeitet wird, stehen nach Tabelle 4 maximal 16 cc Versuchslösung zur Verfügung. Da die untere Grenze der genau messbaren Extinktion 0,1 beträgt, wird E/S = 0,1:3=k=0,033; dies entspricht einer Menge von 3 γ P. Mit Mikrocuvetten von 5 cm Länge und unter Benutzung von Kurve 5 kommt man noch tiefer. Wir konnten feststellen, dass sich 1 γ P noch gut reproduzierbar bestimmen lässt. Aber auch damit ist die untere Grenze noch nicht erreicht. Die Firma C. Zeiss liefert noch Cuvetten von 15 cm Länge, für deren Füllung ein einfacher Ansatz genügt. Es lässt sich leicht errechnen, dass nach Kurve 5 noch 0,4 γ P bestimmt werden könnten.

g) Genaue Arbeitsvorschrift:

Reagenzien: Schwefelsäure 1+3, Salpetersäure D=1,40, 50/0ige Lösung von Ammoniummolybdat.

Redox-Reagenz: 195 cc einer 15% igen Lösung von Kaliummetabisulfit oder Natriumbisulfit werden mit 0,5 g «Eikonogen» oder «Photo-Rex» versetzt, unter Umschwenken 5—30 cc einer 20% igen Na2SO3-Lösung zugesetzt, je nach der zur völligen Lösung nötigen Menge, und hierauf filtriert und in einer gut schliessenden braunen Flasche aufbewahrt.

1. Mineralisierung der Substanz:

- a) Flüssigkeiten. 0,2—5 cc Flüssigkeiten (je nach dem zu erwartenden Phosphatgehalt) werden in einem Jenaer-Reagenzglase 150 × 15 mm mit 0,55 cc H₂SO₄ 1+3 versetzt und unter portionenweiser Zugabe von konz. HNO₃ (Total 2—3 cc) über freier Flamme so lange erhitzt, bis die Flüssigkeit völlig farblos geworden ist und weisse SO₃-Dämpfe auftreten. Hierauf lässt man erkalten, fügt wenig Wasser hinzu (zur Zersetzung der gebildeten Nitrosylschwefelsäure) und raucht nochmals leicht ab.
- b) Feste Substanzen. 1 g Substanz wird mit 1 cc n/1 Calcium-Acetatlösung befeuchtet und, wie auf S. 278 beschrieben, verbrannt. Die hellgraue bis weisse Asche wird mit 4 6 Tropfen konz. Schwefelsäure und Wasser aufgenommen, in einen Messkolben von 100 cc übergeführt und zur Marke aufgefüllt. Je nach dem Phosphatgehalt muss eventuell stärker verdünnt werden.

2. Colorimetrie:

Zu dem erkalteten Inhalt des Reagensglases gemäss 1a) oder zu einer entsprechenden Menge der Lösung gemäss 1b) fügt man nun nacheinander 1 cc 50/oige Ammoniummolybdatlösung, Wasser (in einer Menge, dass zum Schluss 10 cc Gesamtlösung vorliegen) und 0,5 cc Redox-Reagenz. Die Flüssigkeit wird durch zweimaliges Überschütten in ein zweites Reagenzglas gemischt und in ein Wasserbad von 20 ° C ± 1° C eingesetzt. Gleichzeitig bereitet man sich eine Blindprobe aus 0.5 cc H₂SO₄ 1+3, 1 cc Ammoniummolybdatlösung, 8 cc Wasser und 0,5 cc Redox-Reagenz und setzt sie ebenfalls in das Wasserbad ein. Nach 12-14 Minuten werden die Proben herausgenommen und in die Cuvetten von entsprechender Länge übergeführt. Die Messung erfolgt nach genau 15 Minuten unter Verwendung von Filter S 72 oder S 75. Die Trommel desjenigen Strahlenganges, in welchem sich die Probelösung befindet, dreht man ganz auf (E = O) und blendet durch Drehen der Trommel den anderen Strahlengang, in welchem sich die Blindprobe befindet, solange ab, bis beide Hälften des Gesichtsfeldes gleich hell erscheinen. Man liest auf der roten Teilung die Extinktion E ab und wiederholt die Einstellung noch 4-5 mal. Das Mittel der Ablesungen wird durch die Länge der verwendeten Cuvetten dividiert und die zu dem so erhaltenen k-Wert gehörige Phosphatmenge aus einer Eichkurve entnommen. Die Eichkurve stellt man sich zweckmässig mit Lösungen von reinem KH2PO4 «Merk» her und kann damit den Umrechnungsfaktor ableiten.

Bemerkung: Es sei noch erwähnt, dass Kieselsäure und Arsensäure die gleiche Reaktion geben wie die Phosphorsäure. Die Arsensäure dürfte nur unter aussergewöhnlichen Umständen und auch dann nur in sehr geringen Mengen auftreten. Mit Störungen von dieser Seite braucht im allgemeinen nicht gerechnet zu werden. Die Kieselsäure wird bei der trockenen Verbrennung unlöslich und bei der nassen Verbrennung durch die starke Säure ausgefällt, so dass auch ihre Anwesenheit keine Fehlerquelle bedeutet.

IV. Anwendung auf die Untersuchung von Lebensmitteln

An flüssigen Lebensmitteln haben wir Wein und Süssmost sowie Milch untersucht. Wir sind dabei folgendermassen vorgegangen:

1. Gravimetrische Bestimmung:

50 cc Flüssigkeit und 1 cc n/1 Calciumacetatlösung wurden in der Platinschale zur Trockne eingedampft und über freier Flamme verascht. Lösen des Rückstandes mit 7 Tropfen konz. HNO3 und Überspülen in ein 100 cc-Becherglas, auffüllen auf 25 cc, zum Sieden erhitzen, umschwenken und mit 25 cc Lorenz-lösung fällen. g Niederschlag multipliziert mit 0,03314 und 20 = g P₂O₅ im Liter.

Bei Milch wurden, des hohen P2O5-Gehaltes wegen, nur 10 cc zur Bestimmung verwendet.

2. Colorimetrische Bestimmung:

a) Trockene Verbrennung: 4 cc Lösung in einer Platinschale mit 1 cc n/10 Calciumacetat zur Trockne eingedampft und über freier Flamme verascht. Rückstand mit 4—6 Tropfen konz. H₂SO₄ und Wasser versetzt und in einen 100 cc-Messkolben gespült und aufgefüllt.

Von dieser Lösung wurden 6, 7 und 8 cc nach dem in Tabelle 4 angegebenen Schema zur Colorimetrie verwendet. Man bestimmt also den Phosphatgehalt derselben Lösung über drei verschiedene Punkte der Eichkurve. Jedes Resultat wird gesondert auf 100 cc mineralisierte, resp. 4 cc Ausgangslösung berechnet.

Für unsere Eichkurve gilt folgender Ansatz:

$$\begin{array}{l} \text{für 6 cc:} \\ \text{für 7 cc:} \left[\left(k \cdot 70,6 \right) + \left[0,8 \right. \right] \cdot \left\{ \begin{matrix} 16,66 \\ 14,3 \\ 12,5 \end{matrix} \right\} \cdot 2,5 \cdot 2,289 \cdot 10^{-4} = \text{gr. P}_2 O_5 / \text{Lt.} \end{array}$$

Der Faktor 2,289 dient der Umrechnung von P in P₂O₅, da wir unsere Eichkurve nach γ P aufgestellt haben.

Für 8 cc gibt es, bei Zusammenzug der verschiedenen Faktoren, folgende Formel:

$$\left[(k\cdot70,6)+0,8\right]\cdot0,00715_3=gr.\ P_2O_5$$
 / Liter fl. Lebensmittel.

b) Nasse Verbrennung: Auf die gleiche Weise, wie wir die nasse Verbrennung der Saccharosehaltigen Modellösungen durchführten, wurde hier 1 cc einer Lösung 1+4 mit 0,55 cc H₂SO₄ (1+3) und konz. HNO₃ verbrannt. Der mit Wasser nochmals verdünnte und wieder abgerauchte Rückstand wird mit 1 cc Molybdat, 8,3 cc Wasser und 0,5 cc Redox-Reagenz versetzt und 15 Minuten entwickelt. Ausrechnung:

$$\begin{split} \left[(k \cdot 70,6) + 0,8 \right] \cdot 5 \cdot 2,& 289 \cdot 10^{-3} = gr. \ P_2O_5 \ / \ Lt. \\ oder \ vereinfacht: \\ \left[(k \cdot 70,6) + 0,8 \right] \cdot 0,& 0114_5 = gr. \ P_2O_5 \ / \ Lt. \end{split}$$

Tabelle 5

Wein (Neuchâtel) Wein (3. Pressung) Tresterwein (Piquette)	G C C C C C C C C C C C C C C C C C C C	trocken trocken nass trocken trocken trocken trocken nass nass	0,240 0,274 0,252 0,244 0,329 0,330 0,338 0,343 0,343 0,347 0,314	G 0,240 0,329	0,263 0,340	C nass	Nr. 10 c 10 b 10 a 11 a 11 a 11 c
(Neuchâtel) Wein (3. Pressung)	G G C C C C	trocken trocken trocken trocken trocken trocken nass nass	0,274 0,252 0,244 0,329 0,330 0,338 0,343 0,343 0,332 0,347			0,244	10 b 10 b 10 a 11 a 11 a
(Neuchâtel) Wein (3. Pressung) Tresterwein	G G C C C C	trocken trocken trocken trocken trocken trocken nass nass	0,274 0,252 0,244 0,329 0,330 0,338 0,343 0,343 0,332 0,347			0,244	10 b 10 b 10 a 11 a 11 a
Wein (3. Pressung) Tresterwein	G G C C C C	trocken trocken trocken trocken trocken nass nass	0,252 0,244 0,329 0,330 0,338 0,343 0,332 0,347	0,329		0,244	10 b 10 a 11 a 11 a
(3. Pressung) Tresterwein	G G C C C C	trocken trocken trocken trocken nass nass	0,244 0,329 0,330 0,338 0,343 0,332 0,347	0,329	0,340	0,244	10 a 11 a 11 a
(3. Pressung) Tresterwein	G G C C C C	trocken trocken trocken trocken nass nass	0,329 0,330 0,338 0,343 0,332 0,347	0,329	0,340	0,244	11 a 11 a
(3. Pressung) Tresterwein	G C C C C	trocken trocken trocken nass nass	0,330 0,338 0,343 0,332 0,347	0,329	0,340		11 a
Tresterwein		trocken trocken nass nass	0,338 0,343 0,332 0,347	0,329	0,340		
Tresterwein		trocken nass nass	0,343 0,332 0,347		0,340		11 c
		nass nass nass	0,332 0,347		0,340		
		nass	0,347				11 c
		nass					11 b
		nass			N-1	0,331	11 b
	G G	trocken					11 b
	G		0,100				12 a
(Piquette)	The second of the second	trocken	0,112	0,106			12 a
	C	trocken	0,120				12 c
	C	trocken	0,129		0,124		12 c
	Č	nass	0,113				12 b
	č	nass	0,115			0,114	12 b
C"	G	trocken	0,162				13 a
Süssmost	G	trocken		0,161			
R.	G		0,161				13 a
	0	trocken	0,168		0,168		13 c
The state of the state of	C	trocken	0,168				13 c
	C	nass	0,168				13 b
	GGCCCCC	nass	0,170			0,169	13 b
		nass	0,171				13 b
Süssmost	G	trocken	0,137	0.127			14 a
O	G	trocken	0,138	0,137			14 a
0.	C	trocken	0,140		0,140		14 c
	C	nass	0,146				14 b
	C	nass	0,144	×		0,145	14 b
	G C C C	nass	0,144				14 b
Süssmost	G	trocken	0,176				15 a
	G	trocken	0,176	0.176	1 m 2 m		15 a
St.	C	trocken	0,171			The second	15 a
	C	trocken	0,171		0,177		15 c
	C		0,184				15 c
	CCC	nass	0,187			0,188	15 b
Süsswein	G	trocken	0,228	0,227			16 a
(Vin de Porto)	G	trocken	0,227	0,20,			16 a
	C	trocken	0,247		0,245		16 c
	G C C C	trocken	0,243		0,245		16 c
	C	nass	0,225		St. Carte Same	0.220	16 b
	С	nass	0.234			0,229	16 b
Milch	G	trocken	2,144	2,144			19 a
	C	trocken	2,130		2 120		19 c
1000	C	trocken	2,130		2,130		19 c
	0000	nass	2,100				19 b
A CONTRACTOR OF THE PARTY OF TH	C	nass	2,090			2,120	19 b
	C	nass	2,170			-1120	19 b

Schliesslich haben wir noch 3 feste Lebensmittel vergleichend auf ihren Phosphatgehalt untersucht. Wir verwendeten Backmehl, Volleipulver und Vollfettkäse.

- 1. Backmehl: Zur gravimetrischen Bestimmung wurden 5 g verascht. Zur trokkenen Verbrennung für die colorimetrische Bestimmung verwendeten wir 1 g und füllten auf 500 cc auf. Bei der nassen Verbrennung wurde 1 g mit 5 cc konz. H2SO4 und konz. HNO3 im Kjeldahlkolben versetzt und bis zur Farblosigkeit abgeraucht. Hierauf mit einigen Tropfen Wasser verdünnt, nochmals abgeraucht und auf 500 cc aufgefüllt. Von dieser Lösung wurden 3 cc mit 0,38 cc H2SO4 (1+3), 5,12 cc Wasser, 1 cc Molybdat und 0,50 cc Redox-Reagenz versetzt und entwickelt.
- 2. Volleipulver: zur gravimetrischen Bestimmung 3 g, zur colorimetrischen Bestimmung für die nasse und trockene Verbrennung je 1 g und Auffüllen auf 500 cc.
- 3. Käse: zur gravimetrischen Bestimmung 2 g, zur colorimetrischen Bestimmung durch nasse Verbrennung 1 g und Auffüllen auf 500 cc, durch trockene Verbrennung 0,5 g und Auffüllen auf 250 cc.

Tabelle 6

Lebensmittel	G oder C	V	gr P2O5/Kg.	Mittel			Nr.
Lebensiiittei	Goder C			G	C trocken	C nass	- Nr.
Backmehl	G	trocken	0,860	0.054			17 a
	G	trocken	0,848	0,854	0,874		17 a
	C	trocken	0,874				17 c
	G C C C	trocken	0,875				17 c
	C	nass	0,865			0.070	17 b
	C	nass	0,875			0,870	17 b
Volleipulver	G	trocken	1,520	1,520			18 a
, one parter	C	trocken	1,580		1 572		18 0
	C	trocken	1,565		1,572		18 c
	G C C C	nass	1,540			1,537	18 b
	C	nass	1,535			1,557	18 b
Gruyère	G	trocken	1,439				20 a
vollfett		trocken	1,434	1,436			20 a
	G C C	trocken	1,442				20 c
(Hartkäse)	C	trocken	1,442		1,442		20 c
	С	nass	1,438			1,438	20 b
Gruyère	G	trocken	1,090				21 a
vollfett	G	trocken	1,100	1,095			21 a
	C	trocken	1,108		1004		21 0
(Schmelzkäse)	C C C	trocken	1,085		1,096		21 c
	C	nass	1,090		V I I		21 b
	C	nass	1,100			1,095	21 8

G = gravimetrische Bestimmung, C = colorimetrische Bestimmung, V = Art der Verbrennung

Wenn man die einzelnen Daten der beiden Tabellen 5 und 6 näher betrachtet, so fällt auf, dass in den meisten Fällen die Resultate der nassen Verbrennung den gravimetrisch ermittelten P-Werten näher kommen. In jedem Falle (ausser bei Milch) sind die gravimetrisch ermittelten Resultate am niedrigsten. Angesichts der sehr kleinen, zur Wägung gelangenden Substanzmengen ist es denkbar, dass die Löslichkeit des Ammoniumphosphormolybdates hier doch schon eine Rolle spielt.

Wird die Schwankungsbreite der Werte bei Doppelbestimmungen in Rechnung gesetzt, so ergibt sich bei der gravimetrischen Bestimmung eine mittlere Abweichung von 1.85 %. Bei der colorimetrischen Methode nach vorangegangener trockener Verbrennung beträgt dieser Wert 2,72 %, nach nasser Mineralisation 2,33 %. Die colorimetrische Phosphatbestimmung kann damit als brauch-

bare Schnellmethode angesprochen werden.

Zusammenfassung

Die von Theorell modifizierte, colorimetrische Phosphatbestimmungsmethode nach Fiske-Subbarow wird unter Berücksichtigung verschiedener Faktoren eingehend überprüft. In etwas abgeänderter Form gelangt sie schliesslich zur praktischen Anwendung. Die Methode liefert zwar etwas weniger genaue Werte als die gravimetrische Bestimmung nach Lorenz. Da die zur Bestimmung benötigte Substanzmenge jedoch stark verringert werden kann, ist sowohl der Zeit- als auch der Materialaufwand ganz wesentlich geringer, so dass eine Anwendung in Fällen möglich wird, wo bisher davon abgesehen werden musste.

Résumé

La méthode colorimétrique de dosage des Phosphates d'après Fiske-Subbarow, modifiée par Theorell, est contrôlée exactement en tenant compte de différents facteurs. Finalement on peut l'appliquer pratiquement sous une forme quelque peu modifiée. La méthode donne cependant des valeurs moins exactes que le dosage gravimétrique d'après Lorenz. Mais comme la quantité de substance nécessitée par le dosage peut être fortement réduite, la dépense de temps et aussi de matériel est très sensiblement plus faible, de sorte qu'une application devient possible dans les cas où jusqu'ici il fallait en faire abstraction.

Literatur

1) Wuhrmann, Mitt. 34, 338 (1943).

2) Högl, Protokoll der 89. Sitzung des Verbandes der Kantons- und Stadtchemiker d. Schweiz v. 17. Dez. 1937.

3) Handbuch der Lebensmittelchemie II/2 S. 1262, Berlin 1935. 4) Mohler, Hämmerle und Hartnagel, Mitt. 32, 99 (1941).

5) Fiske-Subbarow, J. of. Biol. Chem. 66, 375 (1925). 6) Theorell, Biochem. Ztschr. 230, 1. (1931). 7) Tschopp, Helv. chim. acta 15, 793 (1932).

8) Folin, J. Biol. Chem. 51, 386 (1922).