Zeitschrift: Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und

Hygiene = Travaux de chimie alimentaire et d'hygiène

Herausgeber: Bundesamt für Gesundheit

Band: 19 (1928)

Heft: 2-3

Artikel: Beitrag zur Frage der Wirkung von Chlor auf die Bakterien des Wassers

Autor: Düggeli, M.

DOI: https://doi.org/10.5169/seals-984279

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Beitrag zur Frage der Wirkung von Chlor auf die Bakterien des Wassers.

Von Professor Dr. M. DÜGGELI.

(Aus dem landwirtschaftlich-bakteriologischen Institut der Eidg. Technischen Hochschule in Zürich.)

Bei der bedeutungsvollen Rolle, welche die Bakterien im Kreislauf der Stoffe in der Natur spielen, wird der Mensch im allgemeinen gut daran tun, sie in ihrer Tätigkeit nicht zu stören. Von besonderer Wichtigkeit ist ihre Beteiligung am Abbau der Pflanzen- und Tierreste, an der sogenannten Mineralisation der organischen Stoffe. Die Spaltpilze schaffen dabei nicht nur Platz für neue Generationen von Lebewesen, sondern stellen auch erforderliche Nährstoffe bereit.

Dank ihrer leichten Verbreitbarkeit und des immensen Vermehrungsvermögens stellen sich die Bakterien überall da in Masse ein, wo die Existenzbedingungen für sie erträgliche oder gar günstige sind. Das intensive Vermehrungsvermögen gestattet aus einer Zelle in 35 Stunden 1000 m³ Bakteriensubstanz durch den Spaltungsvorgang entstehen zu lassen. Diese unter günstigen Verhältnissen riesige Vermehrbarkeit, verbunden mit dem Umstand, dass die Zellen zufolge ihrer Kleinheit eine im Verhältnis zum Inhalt sehr grosse Körperoberfläche besitzen, erklären uns ihre erstaunliche Leistungsfähigkeit. Wenn auch in der Natur die mögliche Vermehrungsintensität nur selten oder nie erreicht wird, so lehrt uns doch die Erfahrung, dass überall da, wo Bakterien sich unter annehmbaren Lebensbedingungen vorfinden, sehr grosse Mengen tätig sind. Störend auf den Effekt der Vermehrung können wirken: Konkurrenz durch andere Mikroorganismen, Nahrungsmangel, Störung durch eigene Stoffwechselprodukte, Verzehrtwerden durch andere niedere Lebewesen etc. Der Kampf ums Dasein spielt bei den Spaltpilzen keine geringere Rolle als bei den höhern Lebewesen.

Es gibt aber auch Fälle, in denen wir die Bakterientätigkeit nicht dulden können, sei es, dass sie für uns wertvolle Substanzen, wie beispielsweise Nahrungsmittel, zersetzen und dadurch unbrauchbar machen, sei es, dass sie Mensch, Tier oder Pflanze durch Krankheit schädigen. Sobald uns die Spaltpilztätigkeit lästig wird, suchen wir sie mit mehr oder weniger Erfolg zu bekämpfen. Die gebräuchlichen Bekämpfungsmethoden sind physikalischer, chemischer oder kombinierter Natur.

Unter den in der Neuzeit häufig verwendeten chemischen Mitteln zur Vernichtung der Bakterien kommt dem *Chlor* besondere Bedeutung zu, da es oft zur *Entkeimung von Trink- und Brauchwasser* angewendet wird. Die Chlorierung des Wassers fand ihre wissenschaftliche Begründung in Deutschland und ihre Anwendung im Grossen in den Vereinigten Staaten von Nordamerika.

In den immens wachsenden Grosstädten mit ihrem riesigen Wasserverbrauch ist es in den meisten Fällen unmöglich, einwandfreies Trinkund Brauchwasser, aus Quellen oder Grundwasserströmen bezogen, in genügender Menge zur Verfügung zu stellen. Wird doch der tägliche Wasserverbrauch pro Kopf in der Union auf 100 Gallonen, also 380 L Wasser geschätzt; der Konsum soll aber in warmen Zeiten das doppelte Quantum erreichen. Man ist dort hinsichtlich der Wasserlieferung auf Oberflächenwasser, bezogen aus Flüssen und Seen, angewiesen. In den meisten Fällen sind diese Wasserlieferanten durch Einleiten von Schmutzwasser aber derart verunreinigt, dass an die Verwendung des Wassers im gebotenen Zustand nicht gedacht werden kann. Da setzt die Filtration zur Beseitigung der Trübungsstoffe und das Chlorieren zur Vernichtung oder doch zur Dezimierung der Bakterien ein.

Erfahrungsgemäss werden mehrere vom Darm ausgehende Infektionskrankheiten des Menschen wie: Bazilläre Ruhr, Typhus und Cholera oft durch den Genuss schlechten Wassers verbreitet. Deshalb müssen an das Trink- und Brauchwasser bestimmte Anforderungen hinsichtlich seiner bakteriologischen Beschaffenheit gestellt werden.

In welcher Form wird das Chlor ins Wasser gebracht? Entweder in Form der Hypochlorite des Kalziums und Natriums, als Hypochlorit-lauge oder als komprimiertes, verflüssigtes Chlorgas. Von den oft verwendeten Materialien seien genannt:

Der Chlorkalk, das älteste Mittel, erhalten durch Leiten von Chlorgas über trockenes Kalziumhydroxyd bei 25° bis zur Sättigung, ist eine Mischung von Kalziumhypochlorit, Kalziumchlorid und Kalziumhydroxyd [Ca(OCl)₂, CaCl₂ u. Ca(OH)₂]. Leider ist der Gehalt an wirksamem Chlor stark schwankend und bei der Verwendung bildet sich lästiger, weisser Schlamm. Die beobachteten Nachteile (Unsicherheit der Wirkung, leicht im Wasser eintretende Geschmacksverschlechterung, die Unmöglichkeit der automatischen Dosierung) überwiegen die Vorteile (Billigkeit, Entstehung keiner giftigen Nebenprodukte, Möglichkeit der Improvisation) derart, dass der Chlorkalk immer seltener verwendet wird.

Das Natrium- und das Kalziumhypochlorit [NaOCl u. Ca(OCl)₂], letzteres unter dem Namen Caporit im Handel erhältlich, lässt 70 bis 75% Chlor nachweisen. Sie besitzen die Nachteile des Chlorkalkes nicht, sind aber in der Verwendung teurer.

Die *Hypochloritlauge*, Eau de Labarraque, mit einem Chlorgehalt von 7—12%.

Komprimiertes, verflüssigtes Chlorgas, das modernste Mittel, das in Stahlflaschen bezogen, durch passende Verteilungsanlagen dem Wasser zugeführt wird.

Die nachstehend verzeichneten Ergebnisse meiner Untersuchungen, die ich über die Wirkung des Chlors auf die Bakterienflora verschiedener Wasserqualitäten anstellte, sind noch keineswegs abgeschlossen, sondern sind vielmehr als vorläufige Mitteilungen aufzufassen, die mir durch einen über das Thema in der Naturforschenden Gesellschaft Luzern gehaltenen Vortrag nahegelegt worden sind. Leider eignen sich die anlässlich des Vortrages vorgewiesenen Bakterienkulturen nicht zur bildlichen Darstellung. Mit wenig Ausnahmen, bei denen komprimiertes Chlorgas zur Anwendung gelangte, verwendete ich zu meinen Versuchen Caporit.

Bei der ungünstigen Wirkung des Chlors auf die Bakterien des Wassers dürften folgende drei Momente eine wichtige Rolle spielen:

1. Die Entwicklung von naszierendem Sauerstoff, weshalb das Chlor nur bei Anwesenheit von Wasser bakterienschädigend wirkt. Folgende Gleichung bringt dies zum Ausdruck:

$$H_2O + 2 Cl = 2 HCl + 0.$$

Es ist deshalb zu erwarten, dass bei steigendem Zusatz von Chlor zum Wasser in ihm zunehmende Mengen freien Sauerstoffes nachweisbar seien. Um dies zu beweisen, fügte ich im Januar 1928 dem Zürcher Leitungswasser steigende Chlordosen zu und bestimmte nach zehn Minuten mittels der Winkler'schen Methode den Sauerstoffgehalt. Ich erhielt bei dem Versuch folgende Werte an freiem Sauerstoff:

Wasser	ohr	1e	Chlo	or-Z	Zusat	Z				38,8	cm^3	pro	L
Wasser	+	1	mg	C1	pro	\mathbf{L}				40,7	>>	>>	>>
>>	+	2	>>	>>	>>	>>				44,0	>>	>>	>>
>>	+	3	>>	>>	. »	>>				48,4	>>	>>	>>
>>	+	4	>>	· »	>>	>>				48,6	>	>>	»
»	+	5	à	>>	>>	>>				52,1	>>	· »	>>
>>	+	6	>>	>>	>>	>>			. ,	56,1	>>	>>	>>
»	+	7	>>	>>	>>	>>				56,8	>>	>>	>>
>>	+	8	>>	>>	>>	>>				59,2	>>	>>	>>
>> -	+ 1	0	>>	>>	>>	>>				63,6	>>	>>	>>

Tatsächlich nahm im Zürcher Leitungswasser mit der Menge des zugefügten Chlores auch der Gehalt an freiem Sauerstoff zu. Anders werden sich die Verhältnisse gestalten müssen, wenn das zu chlorierende Wasser grössere Mengen leicht oxydierbarer organischer Substanz enthält, indem der naszierende Sauerstoff zu Oxydationszwecken ganz oder grösstenteils verbraucht wird. Ich versetzte im Januar 1928 das Zürcher Abwasser, das den Absitzbecken zufliesst, mit steigenden Chlorquantitäten und bestimmte nach zehn Minuten mit folgenden Ergebnissen den Gehalt an freiem Sauerstoff:

Abwasser	ohne	Chlor-Z	Zusatz			12,6	$\rm cm^3$	pro	L
Abwasser	+ 1	mg Cl	pro L			12,8	>>	>>	· »
»	+ 2	» »	» »			12,9	>>	*	>>
>>	+3	» »	» »			12,5	>>	>>	>>
»	+4	» »	» »			12,7	>>	»	>>
»	+5	» »	» »			12,6	>>	>>	>>
»	+6	» »	» »			12,9	>>	>>	>>
»	+7	» »	» »			13,0	>>	>>	»
»	+ 8	» »	» »			13,2	>>	>>	>>
>>	+ 10	» »	» »			14,7	>>	>>	>>

Im Abwasser, das reich an leicht oxydierbaren organischen Stoffen ist, rufen erst bedeutende Chlordosen einer bescheidenen Erhöhung des Gehaltes an freiem Sauerstoff.

- 2. Der Entzug von Wasserstoffatomen aus organischen Stoffen, also auch aus Bakterienplasma; an Stelle des Wasserstoffes tritt dann Chlor. Die dabei entstehenden Substanzen sind bisweilen giftig; so ist dies von den Lipoiden und den Proteinsubstanzen der Bakterien bekannt. Durch den Entzug von Wasserstoff ist auch die bleichende Wirkung des Chlors erklärbar.
- 3. Die entstehende Salzsäure, die sich aber an die Mono- und Bikarbonate des Wassers bindet.

Es ist einleuchtend, dass die schädigende Wirkung des Chlors auf die Bakterienflora des Wassers in erster Linie abhängig ist von der Grösse der Chlorgabe. Es sei dies an zwei Befunden erörtert.

Tabelle 1.

Einfluss der Chlormenge auf die Bakterienflora des Wassers des Zürichsees.

14. November 1927.

Keimgehalt pro cm³ Wasser an gelatinewüchsigen Spaltpilzen.

	Ze	eit		Ohne Chlor	0,2 mg Chlor p. L	0,3 mg Chlor p. L	0,4 mg Chlor p. L	0,5 mg Chlor p. L	0,7 mg Chlor p. L	1 mg Chlor p. L	1,5 mg Chlor p. L	2 mg Chlor p. L
So	fort nach de	r Mischu	ng	1530	1460	1440	1350	1350	1290	1100	810	6
1	Minute	später .		1510	970	830	78	66	37	31	6	6
3	Minuten	später		1560	521	391	49	51	27	31	6	6
5	»	» ·		1500	341	385	46	49	29	27	5	6
10	»	»		1480	285	281	40	47	24	21	5	3
15	»	»		1420	272	265	31	35	20 .	16	5	4
30	»	»		1360	238	243	28.	31	16	9	5	.2
60	»	»		1240	219	205	23	26	15	7	4	2

Mit erhöhter Chlorgabe steigt die schädigende Wirkung auf die mittels Gusskulturen von Nährgelatine im Wasser des Zürichsees nachweisbaren Spaltpilze.

Tabelle 2.

Einfluss der Chlormenge auf die Bakterienflora des Wassers der Glatt.

27. Okt. 1927. Gehalt an gelatinewüchsigen Keimen pro cm³ Wasser.

Zeit	Ohne Chlor	0,2 mg Chlor p. L	0,3 mg Chlor p. L	0,4 mg Chlor p. L	0,5 mg Chlor p. L	0,7 mg Chlor p. L	1 mg Chlor p. L	1,5 mg Chlor p. L	2 mg Chlor p. L
Sofort nach der Mischung	8300	8200	8500	7300	7400	7400	5200	3700	27
1 Minute später	8100	8300	8200	6700	7100	7300	3800	2300	14
3 Minuten später .	8200	8400	8100	6500	6800	6100	3700	2160	9
5 » » .	7800	7600	8100	5200	5800	5320	2900	2180	4
10 » » .	7900	7700	7400	4300	4100	4030	2850	1740	0
15 » » .	7500	7100	6700	4100	3900	3760	2710	1130	0
30 » » .	7700	6700	6100	3400	3000	2840	1430	760	0
60 » » .	7300	6300	5400	2700	2150	1930	1120	430	0

Auch im Wasser der Glatt werden die Bakterien um so intensiver geschädigt, je mehr Chlor zugefügt wird.

Für den Wirkungsgrad einer bestimmten Chlordosis sind eine Reihe äusserer Umstände bedeutungsvoll, so die herrschende Temperatur, der Zutritt von Licht, der Gehalt des Wassers an organischen Stoffen und insbesondere der Zerteilungszustand des Chlors und der Substanz, auf welche das Chlor wirken soll. Bei der Kleinheit der Bakterien ist deshalb eine stark schädigende Wirkung zu erwarten. In der Tat genügt im Liter sauberen Wassers eine Chlormenge von 0,2 bis 1 mg, um die Bakterien in kurzer Zeit zu schädigen. Von diesen Faktoren sei auf die Bedeutung der herrschenden Temperatur und des Gehaltes an organischer Substanz in den folgenden Uebersichten eingegangen. Der Keimgehalt bezieht sich auf die mittels Gusskulturen von Nährgelatine eruierbaren Bakterienmengen.

Tabelle 3.

Einfluss der herrschenden Temperatur (5°, 18° u. 30°) hinsichtlich Wirkung des Chlors auf die Bakterien des Zürichseewassers. Keimgehalt pro cm³ Wasser.

Anfang Januar 1928.

Chlarmanna	Nac	h 5 Minu	ten	Nach	30 Min	uten	Nac	ch 6 Stun	den	Nac	h 24 Stun	den
Chlormenge	5°	18°	30 °	5°	18 °	30 °	5°	18°	30°	5°	18°	30 °
Ohne Chlor .	830	1050	1320	830	1350	1010	680	5050	720	9000	48000	410
0,2 mg Cl p. L	247	210	185	180	190	121	154	110	87	120	86	65
0,4 » »	138	128	103	130	86	82	110	17	71	90	30	29
0,6 » »	124	113	92	110	21	51	90	9	31	30	10	4
0,8 » »	85	70	70	45	5	30	20	0	5	0	0	2
1 » »	75	30	32	0	0	5	0	0	2	0	0	C
1,5 » »	4	2	2	0	0	0	0	0	0	0	0	(
2 » »	0	0	0	0	0	. 0	0	0	0	0	0	(

Aus der Tabelle 3 ist ersichtlich, dass, abgesehen von einigen kleinen, durch die Untersuchungsmethodik bedingten Unregelmässigkei-

ten, die Wirkung des Chlors auf die Bakterien des Wassers umso kräftiger ist, je höhere Temperaturgrade herrschen.

Tabelle 4.

Einfluss des Gehaltes eines Wassers an organischer Substanz hinsichtlich Wirkung des Chlors auf die Bakterien, demonstriert am Zürcher Abwasser. Keimgehalt in Tausenden pro cm³ Abwasser. Versuchstemperatur 18° C. Anfang Januar 1928.

	1. P	robe	2. P	robe	3. P	robe	4. P	robe
Chlormenge	nach 1 Std.	nach 6 Std.						
Ohne Chlor	680	1230 *	1340	4280	2570	8420	980	2790
0,2 mg Chlor p. L	710	2370	1670	4710	2780	9700	1140	3430
0,5 » »	770	2840	1830	5200	2830	9600	1230	3210
1 » »	760	2730	1720	4980	2690	9100	1420	3200
2 » »	780	2710	1750	5180	2740	8700	1360	3160
5 » »	820	2530	1620	4630	2790	9200	1430	3370
10 » »	540	312	810	430	1210	540	830	610

Aus den Befunden, die in der Tabelle 4 zusammengestellt sind, darf der Schluss gezogen werden, dass kleine Dosen von Chlor die Bakterienentwicklung in einem Wasser, das reich an organischen Stoffen ist, begünstigen. Es dürfte eine aufschliessende Wirkung durch das Chlor erfolgen. Erst grosse Chlormengen wirken auf die Spaltpilzflora dezimierend.

Tabelle 5.

Einfluss der herrschenden Temperatur (10° u.30°) und des Gehaltes an organischer Substanz hinsichtlich Wirkung des Chlors auf die Bakterien des Zürcher Abwassers. Keimgehalt in Tausenden pro cm³. Februar 1928.

Chlarmanga	Nach 5	Minuten	Nach 30	Minuten	Nach 6	Stunden	Nach 24	Stunden
Chlormenge	10°	30°	10°	30 °	10°	30°	10°	30 °
Ohne Chlor	1180	1230	920	1420	2320	5700	5400	28 300
0,2 mg Chlor p. L	1190	1260	940	970	2750	6300	6300	31 500
1 » »	1070	1220	930	900	2640	6100	5900	32 300
2 » »	1090	1030	910	840	1900	4300	3200	7 300
4 » »	860	790	810	760	630	520	315	286
10 » »	750	660	720	650	430	215	292	254
g = 1 1 1 11° 11					187 37 2 18			10 100 7 700

Aus den in der Tabelle 5 enthaltenen Befunden dürfen wir schliessen, dass erst bei höheren Chlorkonzentrationen bei 30° eine stärkere bakterientötende Wirkung als bei 10° feststellbar ist, da der Gehalt an organischer Substanz im Abwasser bei niedriger Konzentration das Chlor an seiner schädigenden Wirkung auf die Bakterien hindert.

Interessante Beobachtungen konnte ich hinsichtlich des Bakteriengehaltes des mit Chlor versetzten Wassers eines Schwimmbades machen. Bei 48 Proben, verschiedenen Stellen und Tiefen entnommen, konnte ich einen mittleren Bakteriengehalt an gelatinewüchsigen Keimen pro cm³ feststellen:

Bei	24	Wasserprobe	n				5 - 6	Keime
>>	22	>>					61	>>
>>	1	Wasserprobe					3330	>>
>>	1	»					5400	>>

Mit Hülfe der Lupe war feststellbar, dass die keimreichen Proben kleine Flöckchen von *Scenedesmus*- und *Chlamydomonas-Spezies* enthielten, durch welche die Bakterien vor der schädigenden Wirkung des Chlors bewahrt wurden.

Diese Beobachtung veranlasste mich Wasserproben verschiedener Herkunft kleine Mengen von Algenrasen zuzufügen und die Wirkung der verabreichten Chlordosis auf die mittels Gusskulturen von Nährgelatine züchtbaren Bakterien zu studieren.

Tabelle 6.

Einfluss einer kleinen Algenwatte auf die bakterienschädigende Wirkung des Chlors im Zürichseewasser. Im Liter Wasser befand sich 0,5 g Oedogonium-Substanz. Keimgehalt pro cm³ Wasser.

Zeit	Ohne Chlor	0,2 mg Chlor pro L	0,5 mg Chlor pro L	1 mg Chlor pro L	2 mg Chlor pro L
Sofort nach dem Mischen .	550	510	505	307	216
1 Minute später	580	530	470	230	160
3 Minuten später	570	550	460	170	98
5 » »	640	530	310	95	41
10 » »	710	680	280	38	5
15 » »	740	760	190	32	. 0
30 » »	970	830	70	21	0
60 » »	1200	1150	50	17	0

Nach diesem Befund vermögen Algenwatten die schädigende Wirkung kleiner Chlormengen auf die Bakterien des Wassers bedeutend abzuschwächen.

Tabelle 7.

Der Einfluss steigender Mengen Algensubstanz auf die bakterienvernichtende Wirkung des Chlors im Wasser der Glatt. Gearbeitet wurde mit einer Chætophora-Spezies bei 1 mg Chlor pro Liter. Keimgehalt pro cm³ Wasser.

(Siehe folgende Seite.)

Aus diesen Erhebungen geht hervor, dass steigende Mengen Algensubstanz die bakterienschädigende Wirkung des Chlors immer intensiver hemmen.

Es war von Interesse experimentell festzustellen, wie tote organische Stoffe auf die bakterienschädigende Wirkung des Chlors im Was-

ser wirken können, weshalb ich in einem Versuche eine kleine Quantität Milchzucker, in einem andern etwas Pepton dem verwendeten Zürichseewasser zusetzte.

Zeit	Ohne Algen	0,1 g pro L Algen	0,5 g pro L Algen	1 g pro L Algen	2 g pro L Algen	5 g pro L Algen
Sofort nach der Mischung	6200	6700	8300	11 200	19 300	27 500
1 Minute später	1540	2430	4200	10 300	19 700	29 300
3 Minuten später	830	1480	2600	9 200	20 400	31 400
5 » »	410	630	1730	10 600	21 600	34 300
10 » »	97	105	1280	11 300	22 700	37 000
15 » »	17	41	1130	12 700	27 300	39 200
30 » »	4	19	960	18 300	41 500	47 000
60 » »	0	3	810	29 700	84 000	87 000

Tabelle 8.

Der Einfluss einer kleinen Menge Milchzucker (0,1 g pro L) auf die bakterienschädigende Wirkung des Chlors im Zürichseewasser. Oktober 1927. Keimgehalt pro cm³ Wasser.

		Zeit					Ohne Chlor	0,2 mg Chlor pro L	0,5 mg Chlor pro L	1 mg Chlor pro L	2 mg Chlor pro L
Sofo	rt nach	der M	Iisc	hu	ng		1830	1720	1630	1120	7
1 I	Inute s	später				٠.	1780	1530	1130	605	8
3 I		später	r.				1790	1480	729	300	6
5	>>	»					1730	1210	690	88	6
10	»	»					1680	1120	510	17	5
15	»	»					1630	870	312	12	0
30	»	»			1		1650	610	87	9	0
60	>	>>					1570	420	18	0	0

Verglichen mit den Ergebnissen beim Zürichseewasser, dem kein Milchzucker zugeführt worden ist, können wir keine hemmende Wirkung dieses organischen Materiales auf das Chlor konstatieren.

Tabelle 9.

Einfluss einer kleinen Menge Pepton (0,1 g pro L) auf die bakterienschädigende Wirkung des Chlors im Zürichseewasser. Okt. 1927. Keimgehalt pro cm³ Wasser.

		Zeit					Ohne Chlor	0,2 mg Chlor pro L	0,5 mg Chlor pro L	1 mg Chlor pro L	2 mg Cblor pro L
Sofo	rt nach	der I	Iisc	hu	ng		840	820	840	830	820
1 1	Minute s	päter					840	810	800	840	800
3 1	Minuten	später	r.				790	830	820	800	780
5	»	»					780	800	800	820	760
10	»	»					790	840	760	810	790
15	>>	>					680	820	780	830	820
30	»	»					630	810	800	800	770
60	>>	>>					540	800	750	730	740

Die in der Tabelle 9 enthaltenen Untersuchungsresultate zeigen, dass bedeutende Chlormengen durch den Zusatz von 0,1 g Pepton im Liter beinahe gänzlich an ihrer bakterienschädigenden Wirkung gehindert werden können.

Es ist deshalb der Gehalt eines Wassers an bestimmten organischen Stoffen von grundlegender Bedeutung für die schädigende Wirkung des Chlors. Ein Wasser, das bedeutende Mengen bestimmter organischer Stoffe enthält, wird trotz der Behandlung mit grossen Chlordosen nicht bakterienarm, da das Chlor oder der naszierende Sauerstoff mit den organischen Stoffen erst Verbindungen eingeht und nur jenes Chlor, bezw. jener Sauerstoff, der übrig bleibt, auf die Spaltpilze zu wirken vermag. Wir nennen die Menge Chlor, die durch die organischen Stoffe des Wassers verbraucht wird, die *Chlorbindungszahl* oder kurz die *Chlorzahl*. Zu ihrer Bestimmung setzen wir einem Liter des zu prüfenden Wassers reichliche Chlormengen zu, warten eine Stunde und bestimmen durch Zurücktitrieren mit Natriumthiosulfat die Menge des noch freien Chlors. Die Differenz liefert uns die Chlorzahl. Diese Chlorzahl beträgt bei reinem Wasser 0,1—0,2 mg pro Liter, bei stark verschmutztem dagegen 50 und mehr mg.

Um bei der Chlorierung des Trink- und Brauchwassers gute Resultate zu erzielen, muss die Chlorgabe richtig bemessen werden: Nicht zu wenig, nicht zu viel. Um das richtige Mass anwenden zu können, ist das Bestimmen der Chlorzahl unerlässlich. Zu kleine Chlordosen sind wirkungslos oder schwächen die Bakterien ungenügend. Ueberdosieren dagegen führt zu einer Geschmacks- eventuell auch Geruchsverschlechterung des Wassers, indem ein fader, laugenartiger Geschmack und eventuell auch Chlorgeruch auftritt. Der Mensch vermag mit dem Geruchssinn ausnahmsweise 0,3—0,4 mg, in der Regel 1—2 mg Chlor im Liter wahrzunehmen. Es ist die Möglichkeit gegeben, mit einem sogenannten Antichlormittel wie Natriumthiosulfat, Soda und Wasserstoffperoxyd den Chlorgeschmack zu beseitigen. Ein Wasser, das Spuren von Produkten der trockenen Teerdestillation enthält, zeigt nach dem Chlorieren einen intensiven «Apothekengeschmack», der nicht mehr beseitigt werden kann.

Bei der hohen Giftigkeit des Chlors für die Bakterien sind die Auslagen, die beim Chlorieren entstehen, sehr kleine und dürften 0,03 bis 0,04 Rappen pro m³ betragen. Die Bakterien müssen beim Chlorieren nicht alle vernichtet werden, um das Wasser einwandfrei zu machen, sondern im allgemeinen genügt es, wenn der mittels Gusskulturen von Nährgelatine feststellbare Keimgehalt im Kubikzentimeter Wasser weniger als zehn beträgt und in 100 cm³ behandelten Wassers kein Bacterium coli Escherich mehr nachweisbar ist.

Das beim Chlorieren des Trinkwassers übrig bleibende Chlor soll nach den Angaben in der Literatur nicht schädlich wirken, da es durch die organischen Stoffe im Magen gebunden werde. Trotz der intensiv schädigenden Wirkung des Chlors auf die Bakterien des Wassers ist doch eine öftere bakteriologische Kontrolle des chlorierten Wassers sehr erwünscht, ja durchaus notwendig, da in der Zuleitung des Chlors unvorhergesehene Störungen auftreten können und durch eintretende stärkere Verschmutzung des Rohwassers die notwendige Chlordosis erhöht werden muss.

Früher hat man es vorgezogen, dem Wasser grosse Dosen Chlor einzuverleiben, um die Bakterien stark zu beeinflussen; heute unterwirft man das Wasser lieber einer Vorfiltration, wendet nur kleine Chlorquantitäten an, vermischt sie aber gründlich mit dem Wasser und lässt sie längere Zeit wirken (1—2 Stunden).

Theoretisch und praktisch wichtig ist die Beantwortung der Frage: Tötet das Chlor die Bakterien ab, oder aber schädigt es sie bloss, indem es Hemmung, Lähmung bedingt? In der Literatur wird allgemein der Meinung Ausdruck verliehen, dass das Chlor die Bakterien töte, da dieselben mittels der gebräuchlichen Kulturmethoden nicht mehr nachweisbar sind. Auf Grund meiner Beobachtungen neige ich zur Ueberzeugung, dass nur hohe Chlorgaben die Bakterien des Wassers abtöten und kleinere Dosen, wie sie zum Chlorieren von Fluss- und Seewasser gebräuchlich sind, bloss eine Lähmung, die nach einiger Zeit überwunden werden kann, herbeiführen. Das in den folgenden drei Tabellen enthaltene Untersuchungsmaterial sei als Stütze meiner Ansicht angeführt.

Tabelle 10.

Verhalten der Bakterienflora des Eulach-Wassers, das pro Liter 0,4—1 mg
Chlor erhalten hat, bei längerer Aufbewahrung (18°). Keimzahl pro cm³ Wasser.

Zeit	Probe	Probe 2	Probe	Probe	Probe 5	Probe 6
In frischem Zustand .	28 000	29 400	29 500	27 000	48 000	28 400
Nach Zusatz von Chlor	236	38	36	28	32	32
5 Stunden später	50	37	43	27	28	26
20 » »	27	19	27	25	19	24
27 » »	23	21	25	21	22	19
44 » »	25	24	26	28	23	21
68 » »	320	370	530	230	170	270
92 » »	6 900	8 700	5 300	9 600	7 300	11 400
140 » »	11 700	10 200	17 200	12 800	9 700	15 300

Die durch die Wirkung des Chlors stark zurückgedrängte Bakterienflora des Wassers der Eulach erholte sich vom dritten Tage an wieder. Die Bakterien sind in diesem Falle durch das Chlor nicht getötet, sondern in einen Zustand versetzt worden, der ihnen die Vermehrung und damit den Nachweis nicht mehr gestattete.

Tabelle 11.

Verhalten der Bakterien in chloriertem Eulachwasser, dem 1% Badewasser mit 2700 Keimen pro cm³ zugefügt wurde. Keimzahl pro cm³ Wasser.

Zeit	Probe	Probe 2	Probe 3	Probe	Probe 5	Probe
In frischem Zustand .	28 000	29 400	29 500	27 000	48 000	28 400
Nach Zusatz von Chlor	236	38	36	28	32	32
5 Stunden später	50	37	43	27	28	26
Nach Zusatz von Badewasser	63	57	72	52	64	67
15 Stunden später	52	36	48	51	43	47
22 » •	56	42	53	52	56	48
39 » »	64	53	68	59	69	57
63 » »	530	640	430	570	730	390
87 » »	18 700	21 300	16 000	28 000	17 800	15 200
135 « »	19 300	24 200	19 300	32 700	18 200	16 000

Im aufbewahrten chlorierten Eulachwasser entwickelten sich sowohl die ursprünglich im Wasser vorhandenen, durch Chlorwirkung geschwächten, wie die zugefügten Kokken des Badewassers recht gut.

Tabelle 12.

Verhalten chlorierter Wasserproben aus dem Zürichsee bei längerem Aufstellen im Dunkeln bei 18°. Januar 1928.

Zeit	O mg Chlor pro L	0,1 mg Chlor pro L	0,3 mg Chlor pro L	0,5 mg Chlor pro L	0,75 mg Chlor pro L	1 mg Chlor pro L
Frisch .	1 910	82	6	4	1	0
1 Tag.	298 000	1 100	4	2	0	0
2 Tage	240 000	28 000	0	0	0	0
3 »	172 000	900	20	0	0	0 -
4 »	189 000	441 000	320 000	- 0	0	0
6 »	16 400	730 000	194 000	0	0	0
7 »	7 700	34 000	172 000	2 400	0	0
8 »	 28 000	77 000	268 000	143 000	0	0
9 »	32 000	44 000	2 800	6 100	0	0
10 »	840 000	700 000	76 000	226 000	0	0
11 »	5 670 000	21 000	374 000	850 000	0	0

Diese Befunde berechtigen zum Schlusse, dass die Bakterien des Seewassers durch bescheidene Chlorgaben nicht getötet, sondern vorerst nur an der Entwicklung gehemmt werden.

Bei voller Anerkennung der guten Dienste, welche das Chlorieren von Wasser in der Beseitigung von Bakterien leisten kann, möchte ich doch auf drei Vorsichtsmassnahmen, die nicht ausser acht gelassen werden dürfen, hinweisen.

- 1. Die richtig dosierte, weder zu kleine noch zu grosse Chlormenge ist von einem zuverlässig arbeitenden Apparat dem Wasser derart zuzufügen, dass eine gleichmässige Durchmischung stattfindet und das Chlor genügend lange wirken kann. Zur richtigen Dosierung ist die Bestimmung der Chlorzahl unerlässlich, ein Umstand, dem noch zu wenig Beachtung geschenkt wird.
- 2. Ein Wasser, das organische Trübungsstoffe oder gar organisches Material in Flockenform enthält, muss vor dem Chlorierungsprozess filtriert werden, da die an und in den Suspensa sitzenden Bakterien vom Chlor nicht oder nicht genügend geschädigt werden.
- 3. Wird ein mit bescheidenen Chlordosen behandeltes Wasser (nach meinen Versuchen bis 0,5 mg Chlor im Liter), das dadurch anscheinend bakterienarm oder bakterienfrei geworden ist, einige Zeit bei Zimmertemperatur aufgestellt, so können sich darin sehr grosse Mengen von Spaltpilzen entwickeln, die den anfänglichen Bakteriengehalt um das Mehrfache übertreffen.

Nach meinem Dafürhalten sollte in allen den Fällen, wo unter Aufwand erschwinglicher Mittel gutes Quell- oder Grundwasser zur Verfügung gestellt werden kann, nicht Oberflächenwasser in chloriertem Zustand zur Verwendung gelangen.

Ist der Gebrauch von Aluminiumkochgeschirr vom hygienischen Standpunkt aus zu empfehlen?

Von Dr. Th. von FELLENBERG.

(Aus dem Laboratorium des Eidgenössischen Gesundheitsamtes, Vorstand: Dr. J. Werder.)

Vor kurzem brachte die in Bern erscheinende Zeitschrift der «Vereinigung ernster Bibelforscher» 1) die Uebersetzung eines in Amerika erschienenen Artikels von William Held über die Schädlichkeit der Verwendung von Aluminiumkochgeschirren.

Unter Zitierung zwölf verschiedener amerikanischer Autoren wird dargetan, dass beim Kochen der Speisen in Aluminiumgefässen Aluminium in Lösung gehe, wodurch schwere Gesundheitsstörungen erfolgten. So sollen bei einem Festessen in Kansas City mehr als 150 Personen erkrankt sein, weil die Speisen, die sie genossen hatten, noch eine Zeitlang nach dem Kochen in den Aluminiumgefässen gestanden waren.

^{1) «}Das goldene Zeitalter», 6, 13, 1928.