Zeitschrift: Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und

Hygiene = Travaux de chimie alimentaire et d'hygiène

Herausgeber: Bundesamt für Gesundheit

Band: 18 (1927)

Heft: 5

Artikel: Zum Nachweis des Sojabohnenöls

Autor: Kreis, Hans / Wolf, Otto

DOI: https://doi.org/10.5169/seals-984148

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 22.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

MITTEILUNGEN

AUS DEM GEBIETE DER

LEBENSMITTELUNTERSUCHUNG UND HYGIENE

VERÖFFENTLICHT VOM EIDG. GESUNDHEITSAMT IN BERN

TRAVAUX DE CHIMIE ALIMENTAIRE ET D'HYGIÈNE

PUBLIÉS PAR LE SERVICE FÉDÉRAL DE L'HYGIÈNE PUBLIQUE A BERNE

ABONNEMENT: Schweiz Fr. 10. — per Jahrgang. — Suisse fr. 10. — par année. Preis einzelner Hefte Fr. 1. 80. — Prix des fascicules fr. 1. 80.

BAND XVIII

1927

HEFT 5

Zum Nachweis des Sojabohnenöls.

Mitteilung aus dem Laboratorium des Kantons-Chemikers Basel-Stadt.

Von HANS KREIS und OTTO WOLF.

Das Sojabohnenöl, oder wie es nachstehend kurz genannt sei, Sojaöl, ist uns aus den Kriegsjahren noch in unangenehmer Erinnerung.

Es heisst darüber in unserem Jahresbericht für 1918: «Im Frühjahr kam zum ersten Mal das Sojabohnenöl in den Handel und gab sogleich zu zahlreichen Klagen Anlass. Sowohl die tiefgelbe, in dicken Schichten braune Farbe, als auch der eigenartige Geruch und Geschmack und die etwas dickflüssige Beschaffenheit wurden beanstandet. Es wurde teils als Maschinenöl, teils als Leinöl, von anderen wieder einfach als verdorben und ungeniessbar bezeichnet. Nach kurzer Zeit musste es deshalb aus dem Verkehr zurückgezogen werden.»

Heute stellt sich uns dieses Oel, das aus den Samen von Soja (Glycine) hispida gewonnen wird, wesentlich einladender dar und es dürfte dazu bestimmt sein, sich mit der Zeit als gut verwendbares Speiseöl einzubürgern. Ich schliesse dies aus der Einfuhr bedeutender Mengen, die zunächst allerdings nur für die Kochfettfabrikation bestimmt zu sein scheinen. Die Sojabohne unterscheidet sich von den anderen als Nahrungsmittel verwendeten Leguminosen vor allem durch den fehlenden Stärke- und den hohen Oelund Eiweissgehalt. Beispiel: Proteingehalt bis 44,8 %, Fettgehalt bis 20,3 %.

Den Anlass zu den nun zu besprechenden Untersuchungen gab ein Olivenöl, das mit dem Auftrag übergeben wurde zu prüfen, ob es mit Sojaöl verfälscht sei. Durch die übliche Analyse liess sich zunächt folgendes feststellen:

Säuregrad: 1,8; Refraktionszahl: 55,3; Spezifisches Gewicht: 0,9186; Jodzahl: 89,5.

Bei der Reaktion nach Bellier trat eine schwache Violettfärbung ein, die bald einer dauernden Rotfärbung Platz machte, nach Blarez gab es eine geringe kristallinische Ausscheidung, nach der Kreis'schen Methode des Lebensmittelbuches liess sich aber kein Arachisöl nachweisen; ebensowenig waren Cottonöl und Sesamöl zu erkennen. Bei der Elaidinreaktion blieb das Oel teilweise flüssig.

Es sei hier eingeschaltet, dass die alte Elaidinreaktion bei Olivenöluntersuchungen immer noch nützlich sein kann und zwar empfehlen wir folgende Art der Ausführung: In einem Reagensglas werden 10 cm³ Salpetersäure 25 % und 1 g Kupferdraht mit 10 cm³ Oel überschichtet und mindestens 12 Stunden stehen gelassen. Reines Olivenöl gibt dabei immer eine feste, gelblich-weisse Masse.

Aus dem mitgeteilten Befund konnte nun mit Sicherheit geschlossen werden, dass kein reines Olivenöl vorlag; für die Annahme eines Zusatzes von Sojaöl waren aber noch keine genügenden Anhaltspunkte vorhanden.

Zufällig bekamen wir von der Grenzkontrolle eben zu rechter Zeit einige Proben von raffiniertem Sojaöl von vorzüglicher Qualität, deren Analysen nachstehend angegeben sind:

	1	2	3
Säuregrad	0,2	0,2	0,1
Refraktionszahl	63,8	63,8	63,2
Spezifisches Gewicht.	0,9267	0,9248	0,9246
Jodzahl	131,0	133,6	130,7

Bei der Bellier-Reaktion zeigt Sojaöl ein ganz charakteristisches Verhalten: nach dem baldigen Abblassen der ersten Violettfärbung stellt sich eine beständige dunkle Rotfärbung ein, die etwas an das Verhalten gewisser Trane bei der Bellier-Reaktion erinnert 1) und dies macht sich noch in den Mischungen mit Olivenöl bis zu 20 % hinunter bemerkbar. Nach Blarez erhält man Ausscheidungen, die einem Gehalt von etwa 10 % Erdnussöl entsprechen. Bei der Elaidinprobe bleibt Sojaöl vollständig flüssig.

Es fragte sich nun, ob die fraktionierte Fällung der Fettsäuren ein weiteres Merkmal zur Erkennung von Sojaöl bieten würde. Im Jahr 1913 2) hat der Eine von uns mit E. Roth gezeigt, dass die Fettsäuren der Fette und Oele bei der Fällung mit ungenügenden Mengen Bleiacetat Fraktionen von charakteristischen Eigenschaften liefern, die geeignet erscheinen, als Unterscheidungsmerkmale verschiedener Fette zu dienen. Später ist es dann gelungen, durch weitere Ausbildung dieser Methode Arachisöl 3) und Rüböl 4) in Mengen bis zu 5 % hinunter in Olivenöl nachzuweisen.

¹⁾ Kreis: Beitrag zur Untersuchung der Lebertrane, Schweiz. Wochenschr. f. Chem. u. Pharm., 1906, Nr. 43.

²⁾ Chem. Ztg., 1913, Nr. 6.

³⁾ Z. U. N. G., 1913, XXV, Heft 2.

⁴⁾ Ebenda, 1913, XXVI, Heft 1.

Es wurde jetzt das Sojaöl nach dem Verfahren zum Nachweis des Arachisöls, wie es zuletzt von Dr. Pritzker in seiner Arbeit über Murmeltierfett (Pharm. Acta helvet., 1926, Nr. 1) erwähnt wird, geprüft. Ergänzend sei dazu bemerkt, dass man die mit Bleiacetat versetzten alkoholischen Fettsäurelösungen zweckmässig während 24 Stunden bei einer nicht weit von 15° abliegenden Temperatur stehen lässt. Die Schmelzpunkte bestimmten wir auf dem Block Thiele 5), der, wenn viele Schmelzpunkte zu bestimmen sind, bestens empfohlen werden kann. Bei Fettsäuregemischen sind zwar die Schmelzpunkte auf dem Block nicht so genau zu ermitteln, wie im Capillar-Rohr, was ebenfalls im Block Thiele geschehen kann; aber wenn es, wie in unserem Fall, nur darauf ankommt, festzustellen, ob eine Fraktion über oder unter 70° schmelze oder wenn es sich um einheitliche Substanzen handelt, gibt es wohl kein einfacheres Verfahren.

Es sei hier daran erinnert, dass nach dem Verfahren von Kreis und Roth die Gegenwart von Arachisöl nachgewiesen ist, wenn aus 90 % Alkohol eine Kristallisation erhalten wird, deren Schmelzpunkt über 70 ° liegt. Dies ist bei Anwesenheit von mindestens 5 % Arachisöl bei der dritten Kristallisation der Fall. Es mag ferner bei dieser Gelegenheit angebracht sein, darauf hinzuweisen, dass nach den Untersuchungen von Ehrenstein und Stuewer) im Erdnussöl die als Arachinsäure bezeichnete Fettsäure C20H40O2 nicht vorkommt. Die hochschmelzende Säure ist Isobehensäure C22H44O2 vom Schmelzpunkt 75 °, während die bisher sogenannte Arachinsäure vom Schmelzpunkt 77 ° einen Bestandteil des Rüböls bildet.

Bei den Sojaölen lagen die Schmelzpunkte der verschiedenen Kristallisationen immer unter 70°. Auch die Form dieser Kristallisationen ist charakteristisch; es scheiden sich nicht wie beim Erdnussöl lose, blätterige Kristalle aus, sondern die Lösung erstarrt entweder gallertartig oder es bilden sich namentlich zu Beginn blumenkohlartige Gebilde.

Nach dem Kreis'schen Verfahren des Lebensmittelbuches gibt reines Sojaöl reichliche Ausscheidungen.

Bei dem eingangs erwähnten Olivenöl schmolz die erste Kristallisation bei 55° und nach 3 weiteren Kristallisationen stieg der Schmelzpunkt auf nur 59°. Damit war nunmehr sicher entschieden, dass das Oel kein Erdnussöl enthielt. Vielmehr durften wir aus diesem Befund in Verbindung mit den übrigen Ergebnissen der Analyse schliessen, dass das Olivenöl wirklich Sojaöl enthalte und auf Grund des spezifischen Gewichts und der Jodzahl schätzten wir den Gehalt auf etwa 20 %.

Die Methode der fraktionierten Fällung eignet sich aber leider nicht zur Bestimmung des Gehalts von Sojaöl in Gemischen mit Olivenöl; denn wir bekamen beispielsweise mit dem eingangs erwähnten Oel reichlichere Abscheidungen, als mit einer selbst hergestellten 20 % igen Mischung. Die

⁵⁾ Ztschr. f. angew. Chemie, 1902, 780.

⁶⁾ Zentralbl., 1923, III, 366.

Grenze der Nachweisbarkeit dürfte bei etwa 10 % liegen, wobei indessen bemerkt werden muss, dass die Kristallisationen nicht so prompt erfolgen wie bei Arachisöl, so dass man in manchen Fällen besser eine Stunde im Kühlbad belässt. Nach E. S. Wallis und G. H. Burows⁷) soll auch Sojaöl Arachinsäure enthalten.

Da seinerzeit mit Ausnahme von Erdnussöl und Rüböl nur die Schmelzpunkte der Fraktionen, ohne sie umzukristallisieren, bestimmt worden waren, erschien es geboten, noch einige andere Oele auf ihr Verhalten nach dem Verfahren zum Nachweis des Erdnussöls zu untersuchen. Da diese Untersuchungen aber noch nicht abgeschlossen sind und namentlich noch zu prüfen ist, wie sich diese Oele in Mischungen mit Olivenöl verhalten, dürfen die folgenden Mitteilungen nur als vorläufige aufgefasst werden.

Die Fraktionen von Sesamöl und Cottonöl geben beim Umkristallisieren ebenfalls Ausscheidungen, deren Schmelzpunkte ähnlich liegen wie beim Sojaöl. Das kann aber nicht zu Täuschungen Anlass geben, weil diese Oele sich von Sojaöl leicht durch die Farbenreaktionen unterscheiden lassen.

Anders verhält sich Rüböl, das zwar nicht mit Sojaöl, wohl aber mit Erdnussöl verwechselt werden könnte. Bei Rüböl liegt nämlich der dritte Schmelzpunkt über 70°, was nun erklärlich ist, seitdem man weiss, dass dieses Oel Arachinsäure enthält. Auch gibt es in Mischungen mit Olivenöl bis zu 10 % hinunter Kristallisationen mit über 70° liegendem Schmelzpunkt, so dass Verwechslungen mit Arachisöl möglich wären.

Glücklicherweise geben aber Mischungen mit bis zu 20 % Rüböl nach dem Kreis'schen Verfahren des Lebensmittelbuches keine Ausscheidungen, während allerdings mit reinem Rüböl nach diesem Verfahren Kristallisationen mit Schmelzpunkten bis zu 75,5° erhalten werden. Rüböl als solches kann aber von Arachisöl und Sojaöl auf anderem Wege leicht unterschieden werden. 8)

Zusammenfassend kann gesagt werden:

Mit Ausnahme des Olivenöls geben die bis jetzt untersuchten reinen Oele alle, sowohl nach dem Kreis'schen Verfahren des Lebensmittelbuches als bei der fraktionierten Fällung Ausscheidungen, deren höchste Schmelzpunkte nachstehend zusammengestellt sind:

			modiciei commenzpaniei						
				Nach Lo	ebensmittelbud	h	Bei der fra	aktionierten	Fällung
Sesamöl.		115	1.539		680			600	
Cottonöl.			1. 7		58 °			54 °	
Sojaöl .				über	70 °			68°	
Arachisöl	3.7			»	7.0 °		über	70 °	
Rüböl .			. 10	»	70°		» »	70 °	

In Mischungen mit Olivenöl ist nach dem Lebensmittelbuch-Verfahren nur Arachisöl nachweisbar; nach dem Verfahren der fraktionierten Fällung lassen sich auch Mischungen mit Sojaöl und Rüböl erkennen.

⁷⁾ Z. N. L., 1927, Bd. 53, S. 294.

⁸⁾ Holde u. Marcusson, Z. f. angew. Chemie, 1910, 1260; Tortelli u. Tortini, Chem. Ztg. 1910, 689; Kreis u. Roth, Mitt. d. Schweiz. Gesundheitsamts, 1915, 38.