Zeitschrift: Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und

Hygiene = Travaux de chimie alimentaire et d'hygiène

Herausgeber: Bundesamt für Gesundheit

Band: 16 (1925)

Heft: 1-2

Artikel: Etude de la fermentation panaire par la levure pressée

Autor: Schweizer, Charles / Werder, J.

DOI: https://doi.org/10.5169/seals-984338

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Statt beide Bestimmungen, die gravimetrische und die titrimetrische, zugleich auszuführen, kann man sich auch mit der einen oder andern begnügen. Die gegenseitige Kontrolle ist aber immer wertvoll.

Hat man das Bedürfnis, nun noch eine qualitative Prüfung auf Benzoesäure folgen zu lassen, so säuert man die Lösung wieder an, zieht mit Aether aus und führt wohl am besten die *Mohler*'sche Reaktion nach der Modifikation von *von der Heide* und *Jakob*) aus.

Etude de la fermentation panaire par la levure pressée.

Par CHARLES SCHWEIZER.

(Travail exécuté au Service fédéral de l'Hygiène publique Chef: D^r J. Werder.)

Dans un travail récent, je 1) suis arrivé à la conclusion que, dans certains cas, la mise en évidence de la levure de bière dans la levure pressée peut être assez difficile et qu'il vaudrait mieux de déterminer la valeur commerciale d'une levure de boulangerie d'après son pouvoir fermentateur dans la pâte.

Cet essai sur la farine a été fait par Will²), Metzler³ et Pollak⁴) dans des cylindres gradués en observant le volume de la pâte pendant deux heures à 30° C. Boutroux⁵) utilise un tube de verre ouvert aux deux bouts, du diamètre d'une éprouvette, dans lequel il tasse la pâte, de façon à lui donner également une forme cylindrique; le gonflement se traduit ainsi par une augmentation de longueur du pâton. La méthode de Boutroux ayant donné aucun résultat avec une pâte de maïs, Bruderlein⁶) a rempli exactement de cette pâte des boites de Petri et a mesuré, au bout d'un temps donné, de quelle quantité la pâte s'était élevée. v. Fellenbery ¹) a utilisé des tubes en verre d'un diamètre de 3 cm environ et qu'il fermait d'un bout par un bouchon en liège.

Avant d'appliquer la fermentation de la pâte à l'évaluation de la levure pressée, nous avons cru utile d'étudier d'abord les principaux facteurs qui interviennent dans la fermentation panaire par la levure pressée. Nous savons que la pâte se prépare avec des farines, de l'eau, de la levure et des sels.

⁹⁾ Z. U. N. G, 1910, 19, 141.

¹⁾ Trav. de Chim. alim. et d'Hyg., 15, 211 (1924).

²) Forschungsber. über Lebensmittel, 2, 143 (1895).

³⁾ American Brewer Review.

⁴⁾ Ztschr. f. Spiritusind., 27, 125 (1904).

⁵⁾ Le pain et la panification (Paris, 1997).

Panification du maïs (Thèse, Genève, 1917).
 Trav. de Chim. alim. et d'Hyg., 10, 237 (1919).

1º La farine.

On admet actuellement que l'utilisabilité d'une farine en boulangerie est liée à sa teneur en gluten. Ce protéine n'est contenue que dans le froment, le seigle et l'orge; le froment en contient le maximum.

D'après Wo. Ostwald⁸), la farine est un système colloïdal dans lequel sont dissout des sels, des sucres, des acides et de l'eau; on y trouve également des gaz à l'état dissout ou adsorbée. Cette compléxicité ainsi que d'autres facteurs qui tiennent à la récolte des grains, leur mode de transformation en farine et la conservation de cette dernière nous expliquent aisement la difficulté d'obtenir avec une même levure des valeurs comparables avec différentes farines. Nous avons pris pour nos essais une farine blanche de froment désignée par le boulanger comme «facilement panifiable».

2e L'eau.

Le volume du pain dépend beaucoup de la quantité d'eau dont on se sert à la préparation de la pâte. On doit donc employer tant d'eau que la farine peut absorber sans que la pâte perd la consistance désirée. Cette quantité varie pour chaque farine; on la détermine soit avec une quantité d'eau donnée, soit avec une quantité fixe de farine.

Pour la première méthode on peut par exemple remplir une capsule de porcellaine d'un grand excès de farine. Au milieu de la farine on fait un creux avec le dos d'une cuiller et on y laisse couler exactement 10 cm³ d'eau. On mélange lentement avec la farine et dès qu'une boule de pâte s'est formée on continue le pétrissage avec la main jusqu'à ce que la boule soit saturée de farine. Cette boule pesait dans notre cas 26,1 g; 10 g d'eau avaient donc saturé 16,1 g de farine.

D'autre part, nous avons préparé des pâtes avec 25 g de farine et en augmentant chaque fois la quantité d'eau jusqu'à ce que la pâte se collait à l'intérieur de la main. Ceci était le cas avec 16 cm³ d'eau, tandis qu'avec 15,5 cm³ ce n'était pas encore le cas. La limite est par conséquent représentée par le dernier chiffre.

100 g de farine fixaient donc d'après la première méthode 60 g d'eau, tandis que dans le second cas cette quantité était de 62 g, c'est-à-dire que les résultats ont été assez concordants. La première méthode étant plus simple et nécessitant qu'une seule détermination, nous la préférerons à la deuxième.

3º La levure.

Pour le choix de la quantité de levure, nous nous sommes basé sur un travail de Fornet⁹). Nous avons choisi la quantité minimum qui produisait une bonne levée de la pâte, c'est-à-dire 2 g de levure sur 100 g de farine. Connaissant maintenant les facteurs farine, eau et levure, nous avons préparé une pâte avec:

⁸⁾ Kolloid-Ztschr., 25, 26 (1919).

⁹⁾ Die Theorie der praktischen Brot- und Mehlbereitung (Berlin, 1923).

25 g de farine, 15 g d'eau distillée (60 pour 100 farine), 0,5 - de levure (2 pour 100 farine).

On dilue d'abord la levure dans l'eau, afin d'avoir une distribution uniforme des cellules. Ensuite on ajoute la farine et fait le pétrissage d'abord pendant deux minutes dans un mortier et ensuite pendant 2 minutes entre les mains.

Nous avons fait parallèlement un essai avec de la levure pressée du commerce et de la levure de brasserie, les deux levures contenaient 74% d'eau. La dernière était obtenue en exprimant la levure résiduelle d'une brasserie avec une simple presse de laboratoire. Pour la fermentation nous nous sommes servi des tubes de v. Fellenberg déjà mentionnés, que nous avons placés dans un bain-marie de 30° C. L'augmentation de la longueur a été mesurée tout les dix minutes et les résultats ont été les suivants:

Après minutes	Longueurs des	pâtons en cm	Anula minutas	Longueurs des	pâtons en cm
	avec levure pressée	avec levure de bière	Après minutes	avec levure pressée	avec levure de bière
0	$4,_{2}$	4,2	130	8,4	8,8
10	4,2	4,4	140	9,0	9,1
20	4,3	4,6	150	9,5	9,5
30	4,4	4,8	160	10,4	9,6
40	4,5	5,0	170	10,9	9,9
50	4,6	5,5	180	11,3	10,0
60	4,75	6,0	190	11,9	10,2
70	5,0	6,4	200	12,1	10,4
80	5,4	6,8	210	12,4	10,5
90	5,9	7,4	220	12,8	10,5
100	6,6	7,9	230	13,1	10,5
110	7,0	8,0	240	13,1	10,5
120	7,7	8,5	250	13,1	10,5

Nous trouvons ici confirmé le fait que la levure de brasserie se mette plus vite à fermenter mais que son action cesse déjà quand la pâte à levure pressée est encore en pleine fermentation. Pour pouvoir utiliser de la levure de bière en boulangerie on pourrait penser à mettre la pâte plus vite dans le four, mais nous verrons tout à l'heure que la levure de brasserie est très sensible au sel de cuisine.

4º Le chlorure de sodium.

Dans certains pays, on n'ajoute à la pâte que 1 à 1,5 g de sel pour 100 g de farine, mais ailleurs, comme par exemple en Suisse, on en emploit jusqu'à 3%. Comme précédemment, nous avons préparé des pâtes, mais en ajoutant en plus les quantités de sel indiquées cidessous. Dans le tableau suivant nous avons exprimé, en centimètres, la longueur du pâton préparé avec de la levure pressée:

				Quantité de sel							
	Aprè	S	27	0	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1,5 % 0,39 g	$^{2,50/0}_{0,62\mathrm{g}}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 ⁰ / ₀ 1 g		
0, 1	hrs.			4,2	4,2	4,2	4,2	4,2	4,2		
1/4	>			4,6	4,6	4,5	4,5	4,5	4,2		
1/2	>			5,0	5,0	5,0	4,6	4,6	4,2		
3/4	»			6,8	6,0	6,1	4,7	4,7	4,2		
1	>>			8,0	7,4	6,9	5,7	5,7	4,2		
$1^{1/2}$	>>			10,9	10,1	9,5	6,9	6,6	4,3		
2	«			12,6	12,1	11,6	9,0	8,0 -	4,8		

En faisant un même essai, mais en nous servant de la levure de brasserie au lieu de la levure pressée, les résultats furent les suivants:

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Quantité de sel												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,8 % 0,7 g		5 ⁰ / ₀ 37 g			$0.5 0/0 \ 0.12 \mathrm{g}$	0		Après				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4,2	4,2	4,2		4,2	4,2	4,2			hrs.	0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$4,_{2}$			1	,					>>	1/4		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,2	5.2			- 4,2					>	1/2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4,2	4,2	1,2							»	3/4		
	4,2		1,3		4,3	5,0				>>	1		
	4,2	7 77 - 1	1,5		4,5	6,0	6,0			>	1 1/2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,2	4,8	4,8		. 4,8	7,2	$7,_{2}$			» »	2		

Les levures sont donc assez sensibles à la présence du chlorure de sodium. Tandis que la levure de bière ne peut déjà plus agir à une dose de 2,8 g de sel pour 100 g de farine, la levure pressée supporte encore assez bien une dose de 3%; son action est seulement supprimée par 4% de chlorure de sodium. L'emploi de 2,5% de sel de cuisine est très fréquent et nous proposerons donc d'en prendre 2,8% pour la détermination de la valeur d'une levure dans la fermentation panaire.

Nous avons voulu savoir si cette différence de sensibilité envers le sel de cuisine pourrait servir à mettre en évidence une falsification de la levure pressée par la levure de bière. Une dose d'1% de sel ayant suffit d'arrêter pratiquement la fermentation panaire, nous nous sommes servi de 2% dans ces essais. En même temps nous avons dû contrôler de combien le volume de la pâte diminue par une réduction de la levure pressée seule. Le tableau suivant nous résume les longueurs de pâton ainsi obtenues.

En réduisant la levure pressée de 20%, on constate également une réduction nette du volume de la pâte en fermentation, mais en remplaçant ce manque de 20% par de la levure de bière, les volumes se rapprochent de nouveau des valeurs obtenues avec 100% de levure pressée, et cela malgré la présence d'une quantité de sel qui aurait suffit d'entraver

l'action de la levure de bière seule. L'action du chlorure de sodium n'est donc pas assez nette pour servir à la recherche de la levure de bière dans la levure pressée.

	Après				Avec 0,5 g de levure pressée	Avec 0,4 g de levure pressée	Avec 0,4 g de levure pressée + 0,1 g levure de bière
0	hrs.				$4,_{2}$	$4,_{2}$	4,2
1/4	*				4,3	4,3	4,5
1/2	»	٠.			4,4	4,4	4,7
8/4	>>				4,6	4,6	4,9
1	»	,			5,2	4,8	5,1
11/4	»				6,0	5,4	5,5
1 1/2	>>			٠.	6,5	5,8	$6,_{2}$
1 8/4	»		٠.		7,2	6,6	7,3
2	»				9,3	7,8	8,2
21/4	»				9,9	8,8	9,2
21/2	*				10,6	9,9	10,4
28/4	» ·				11,4	10,9	11,4
3	»				12,0	11,5	12,0
			6		,-	,0	

5° L'action d'autres sels.

La Ward Baking Company, dans ses nombreuses succursales aux Etats Unis, avait constaté que les résultats de la fermentation panaire varient d'un lieu à l'autre. D'après $Kohman^{10}$), ce fait serait dû à la composition différente de l'eau. Nous avons donc préparé des pâtes de la composition suivante:

25 g de farine,

15 g d'eau,

0,5 g de levure pressée,

0,7 g de sel de cuisine,

en prenant pour un essai l'eau distillée et pour un autre l'eau de la ville de Berne. Les longueurs des pâtons, en centimètres, furent les suivantes:

Après					Avec eau distill	ée	Avec eau	ı de la ville	de Berne
0	hrs.				4,2			$4,_{2}$	
1/4	>>				4,3			4,3	
1/2	»				4,4			$4,_{4}$	
8/4	»				4,6			4,5	
1	«				4,8			4,7	
2	«				7,7			7,8	
3	>				11,2			11,5	
12	»				12,6			12,6	

Une différence n'était donc guère à constater. L'eau de la ville de Berne étant particulièrement pauvre en sulfate de calcium, nous avons encore voulu étudier l'influence d'une eau riche en gypse. Comme une pareille eau ne se trouvait pas à notre disposition, nous avons artifi-

¹⁰) Journ. Industr. and Engineering Chemistry, 8, 781 (1916).

ciellement saturé l'eau de Berne avec du sulfate de calcium (0,24%). Nous obtenâmes les résultats que voici:

	Aj	orès		Avec eau de la ville de Berne	Avec cette même eau $+$ 0,24 $^{\rm o}/{\rm o}$ de gypse
0	hrs.			4,2	4,2
1/2	»			4,5	4,5
1	*			6,1	6,1
1 1/2	»			8,4	8,4
2	>			10,3	10,1

La présence de sulfate de calcium ne favorisa donc non plus la fermentation de la pâte. Cette différence avec les résultats américains s'expliquerait peut-être par le fait que l'on emploit chez nous une dose plus élevée de chlorure de sodium, dont l'action inhibitrice serait déjà tellement grande que l'influence favorable des sels de l'eau ne peut plus se faire remarquer.

En se basant sur leurs obsérvations en Amérique, la Ward Baking Company a composé un mélange de sels, appelé Arkady Yeast Food, qui devrait servir à obtenir un meilleur rendement en panification. Les principaux composants de ce mélange sont le chlorure d'ammonium, le sulfate de calcium et le bromate de potassium. Le chlorure d'ammonium sert à la production de nouvelles cellules de levure, par le plus grand nombre de cellules la production de gaz carbonique est forcément augmentée, et la meilleure fermentation contribue de sa part à une meilleure texture du pain. Le sulfate de calcium, par son soufre, semble également contribuer à la formation de substances organiques dans la cellule de levure. Ce sel aurait aussi une action favorable sur le gluten. Le bromate de potassium est complétement décomposé en bromure de potassium, avec perte d'oxygène qui contribue également à la multiplication de la levure. Les effets du mélange «Arkady» devraient donc être les suivants:

- 1º Economie de 40% de levure pressée;
- 2º Economie de 11/2 à 2% de farine;
- 3º Amélioration de la qualité du pain;
- 4º Uniformité malgré les conditions variables qui se rencontrent en des endroits différents.

C'est surtout cette uniformité qui nous aurait parue particulièrement précieuse pour une méthode d'évaluation de la levure commerciale. A une pâte préparée comme précédemment nous avons donc ajouté 0,5% ou 0,12 g de poudre «Arkady» pour 25 g de farine et les résultats furent les suivants avec de la levure pressée:

	Après				Sans	« Arkady »	Avec 0,5 % d'« Arkady »
0	hrs.					4,2	4,2
1/2	>					4,8	4,7
1	»			. ,		6,1	6,3
1 1/2	>>					8,4	8,1
2	»					10,1	10,3

Nous n'avons donc pas pu constater une influence bien nette de l'«Arkady». Ce fait est probablement encore dû à notre dose relativement élevée de chlorure de sodium que nous employons dans nos essais. Il se peut également que l'action de l'«Arkady» ne se fasse remarquer que plus tard.

D'après Van Haelen 11), l'infériorité de la levure de bière en boulangerie serait surtout dûe à un manque de certains sels, particulièrement de phosphates. Nous avons voulu voir si le mélange «Arkady» serait également à même de rendre cette levure utilisable pour la panification. L'essai précédent fut donc répété en remplaçant la levure pressée par de la levure de bière, ce qui donna les longueurs de pâtons suivantes:

Après						Sans « Arkady »	Avec 0,5 º/o d'« Ar	kady »
0	hrs.					4,2	4,2	
1/2	»					4,3	4,3	
1	>>					4,4	4,5	
$1^{1/2}$	>>					4,7	4,7	
2	>>					5,0	5,5	

La dose habituelle d'«Arkady» ne suffit donc pas pour éffacer la différence entre la levure pressée et la levure de bière, au-moins à une concentration de 2,8% de chlorure de sodium.

Conclusion.

Pour une méthode pouvant servir à l'évaluation de la levure dans la panification, nous proposerons de prendre 25 g de farine et d'en faire une pâte avec la quantité d'eau que cette farine peut absorber et que l'on a déterminée dans un essai précédent. La quantité de levure à ajouter serait de 0,5 g, celle de sel de cuisine de 0,7 g. Nous nous proposons d'étudier encore l'influence de la cuisson sur les résultats obtenus avec la fermentation panaire et de comparer ensuite tous ces résultats avec la simple fermentation en solution sucrée. — Nous avons constaté que la levure de bière est bien plus sensible au chlorure de sodium que c'est le cas pour la levure pressée; ceci serait peut-être un des facteurs qui expliquerait l'infériorité de la première en boulangerie.

Monsieur le Docteur Th. de Fellenberg a bien voulu mettre à ma disposition ses connaissances approfondies de la chimie des farines. Je tiens à lui exprimer ici mes meilleurs remerciements.

¹¹) Institut Sup. Fermentat. de Gand, 24, 326 (1923).