Zeitschrift: Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und

Hygiene = Travaux de chimie alimentaire et d'hygiène

Herausgeber: Bundesamt für Gesundheit

Band: 12 (1921)

Heft: 3-4

Artikel: Catalases végétales, applications de la catalase en hygiène alimentaire

Autor: Bornand, M.

DOI: https://doi.org/10.5169/seals-984241

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 21.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

douter sont les cervelas, car ils sont consommés tels quels sans procéder à une cuisson; le plus souvent on les voit séjourner empilés les uns sur les autres dans les magasins de charcuterie, les buffets de gare, dans les laiteries ou épiceries, sans aucune protection contre les mouches en particulier; les germes qui se trouvent à la surface peuvent traverser facilement l'enveloppe qui est très mince. Ainsi dans le cas des cervelas Nos 10 et 11 l'enveloppe était recouverte d'une couche visqueuse qui, examinée au microscope, était constituée comme par une culture pure de germes; le raclage de la partie interne permit de constater une aussi grande quantité de germes qu'à l'extérieur. Nombreux sont les cas d'empoisonnement ou d'indispositions graves par suite de la consommation de cervelas; on doit exercer une surveillance particulièrement sévère sur ces produits et ne pas tolérer la vente de cervelas qui présentent à la section une couleur grisâtre ou dont l'enveloppe serait visqueuse.

Conclusions.

- 1º Sur 22 produits de viandes travaillées cervelas, saucisses à rôtir, attriaux examinés tous ont montré la présence de germes revivifiables par les cultures.
- 2º Le Bacterium coli a été rencontré dans le 77,3 % des examens; Bacterium proteus s'est trouvé présent dans le 27,3 % des produits examinés.
- 3º Les germes ci-dessus pouvant provoquer des intoxications et, pénétrant dans les viandes le plus souvent par suite de malpropreté, il est absolument indispensable d'exercer une surveillance active sur les conditions hygiéniques dans lesquelles les produits de charcuterie sont travaillés.

Catalases végétales, applications de la catalase en hygiène alimentaire.

Par Dr M. BORNAND,
Privat-docent à l'Université de Lausanne

(Laboratoire cantonal du Service sanitaire, Lausanne).

En 1901, Loew 1) extrait des feuilles de tabac une enzyme qui décompose fortement l'eau oxygénée; il démontre son individualité, sa signification physiologique, ses propriétés; et conclut que la décomposition de H₂O₂ est dûe à un ferment particulier, non isolé jusqu'à ce jour et lui donne le nom de catalase.

Jusqu'à maintenant, on ne connaît pas de propriétés spécifiques de ce groupe d'enzymes autre que celle de décomposer H₂O₂. Cependant, la décomposition de H₂O₂ par des tissus et cellules animales et végétales est connue depuis un siècle déjà.

¹⁾ Cité par Battelli et Stern: Die Katalase, Ergebnisse der Physiologie, 1910, p. 541.

En 1819, Thénard, l'inventeur de l'eau oxygénée constate « que plusieurs matières animales et végétales possèdent avec l'or, le platine, l'argent la propriété de dégager l'oxygène de H₂O₂ sans éprouver d'altération » ¹). Il observe que les tissus de poumon, rein, rate coupés en tranches minces décomposent énergiquement H₂O₂, que la peau et les vaisseaux veineux la décomposent plus faiblement et enfin que l'urée, l'albumine, la gélatine sont sans action sur elle.

Quarante ans plus tard, ces observations sont reprises par *Schönbein* qui constate que la décomposition de H₂O₂ est produite par le sang, la salive différents tissus animaux, par des extraits de plantes, par des diastases; si ces substances sont portées à l'ébullition elles n'ont plus aucune action sur H₂O₂.

Schönbein conclut de ses expériences que la propriété de décomposer l'eau oxygénée est commune à toutes les diastases.

L'individualité de la catalase fut démontrée comme nous l'avons vu, par Loew, puis par Ville et Moitessier, par Senter en expérimentant, le premier avec les extraits de feuilles de tabac, les autres avec le sang. La différenciation entre peroxydase et catalase fut établie définitivement par Bach et Chodat ²).

A l'heure actuelle, les recherches d'un grand nombre d'expérimentateurs ont permis de démontrer la présence de catalase en plus ou moins grande quantité dans presque tous les organes ou sécrétions animales, dans les tissus, cellules des phanérogames, des cryptogames, chez les champignons inférieurs, blastomycètes, hyphomycètes et bactéries. Ce sont surtout les catalases d'origine animale qui ont été le plus étudiées et en particulier celles du sang de l'homme et de différents vertébrés.

Un très petit nombre d'observations seulement sont relatives aux catalases des phanérogames. J'ai déjà cité le travail de Loew sur les catalases des extraits de feuilles de tabac; cet expérimentateur isole deux enzymes décomposant $H_2 O_2$; une soluble dans l'eau (β catalase), l'autre insoluble (α catalase).

Hoffmann et Spiegelberg 3) rencontrent une forte proportion de catalases dans les parties périphériques du grain de blé. Tandis que l'amidon donne lieu avec H₂O₂ à un très léger dégagement, la boulange et le son, les fins sons sourtout, décomposent énergiquement l'eau oxygénée, Stanek 4) trouve des catalases dans la betterave et réparties surtout à la périphérie. Euler 5) en constate dans le ricin, le poivre, les graines de courge.

Liebermann 6) prépare un extrait avec des pommes de terre broyées qui décompose fortement H₂O₂; un chauffage à 36° détruit la catalase.

¹⁾ Annales de Chimie et Physique, T. II, 1819, p. 85.

²⁾ Cité par Battelli et Stern. Trav. cité.

³) Wochenschr. f. Brauerei, T. 22, 1905, p. 441.

⁴⁾ Cité par Battelli et Stern. Trav. cité, p. 575.
5) Cité par Battelli et Stern. Trav. cité, p. 575.

⁶⁾ Pflugers Archiv, T. 104, 1904, p. 201.

Cet expérimentateur en décèle aussi dans l'orge germée; de petits quantités dans les lentilles.

Paul Bert et Regnard n'en avaient pas trouvé dans cette légumineuse, par contre ces auteurs en remontrent une forte proportion dans les tissus des cryptogames, des truffes en particulier 1).

Depuis une dizaine d'années, un certaine nombre d'observations ont été faites sur les catalases des parasites végétaux inférieurs, surtout hyphomycètes et bactéries. Les premières recherches sur ce sujet sont celles de Gottstein²) qui constate que des cultures pures d'hyphomycètes et de bactéries décomposent très fortement H₂O₂; ces observations furent confirmées par Löwenstein³). Le premier travail systématique sur la catalyse d'origine bactérienne et celui de Giusti⁴) qui fait l'observation que les germes décomposent H₂O₂ avec une intensité différente les uns des autres, et que les hyphomycètes renferment aussi des catalases. Jorns⁵) démontre que dans les cultures microbiennes la catalase existe sous deux formes: une endocatalase à l'intérieure de la cellule, et l'ectocatalase dans le milieu de culture. Il remarque aussi que la catalase est quantitativement très inégale chez les diverses espèces. D. et M. Rywosch⁶) étudient le pouvoire catalytique des bactéries au point du vue quantitatif.

Pringsheim 7) examinant 17 hyphomycètes trouve des catalases dans 13 seulement. Dox 8) a constaté la présence de catalases dans 22 espèces de Penicillium et dans 12 espèces d'Aspergillus.

Mori⁹) établit qu'au moyen de la catalase on peut différencier certaines bactéries entre-elles, et Bujwid ¹⁰) divise les bactéries en quatre groupes suivant l'aptitude plus ou moins grande qu'elles possèdent de décomposer H₂O₂. Enfin, récemment, Tamchès ¹¹) étudie d'une façon systèmatique la catalyse d'origine bactérienne et il observe que les blastomycètes, hyphomycètes, bactéries décomposent H₂O₂; les spores des hyphomycètes sont sans action, tandis que celles des bactéries la décomposent. Que par cette méthode on peut établir une différenciation entre certaines bactéries du même groupe, de même que pour des germes de groupes différents. Ces catalases bactériennes passent à travers la bougie Silberschmidt, résistent à la chaleur 15—30' à 70°, 30' à 60° et 15' à 70° et à la dessication jusqu'à 29 jours.

¹⁾ Comptes-Rendus Ac. Sciences 1882, T. 94, p. 1382.

⁹) Cité par *Tamchès* Thése, Lausanne, 1918, p. 7.

⁸) Wiener Klinische Wochenschrift, 1903, p. 1393.

⁴⁾ Cité par Bakardjeff, Thèse, Lausanne, 1908, p. 12.

⁵) Archiv für Hygiene, T. 67, p. 150.

⁶) Centralbl f. Bakt. I. Abt. O. Bd. 44, p. 295.

⁷⁾ Ztschr. f. Physik. Chem. T. 62, p. 386.

⁸) Bulletin Pasteur, 1911, p. 696.

⁹) Cité par *Tamchès*, Thèse, Lausanne, 1918, p. 14. ¹⁰) Centralbl. f. Bact. I. Abt. O. Bd. 77, p. 440.

Recherches sur l'action catalytique des Blastomycètes, Hyphomycètes et Bactéries, Thèse de l'Institut d'Hygiène, Lausanne, 1918.

Application pratique des catalases.

A côté de l'intérêt scientifique que présente l'étude des catalases, la découverte de ce groupe d'enzymes dans les substances animales ou végétales a donné l'idée aux expérimentateurs de les appliquer d'une façon pratique. Nous venons de voir qu'au point de vue bactériologique le pouvoir catalytique des bactéries sur H₂O₂ permet une différenciation pour certaines espèces bactériennes.

En étudiant le pouvoir catalytique du sang de l'homme et celui de différentes espèces animales, van Jtalie 1) observe que les sangs de l'homme et du singe chauffés 30 à 63 ne perdent pas leur pouvoir catalytique, tandis que celui du sang des autres mammifères est complètement détruit. D'après cet expérimentateur ce procédé permettrait de différencier au point de vue médico-légal, le sang de l'homme de celui des animaux. Les expériences de van Jtalie n'ont pas été confirmée par Uhlenhuth, Pfeiffer, Fränkel, Daske et les conclusions de ces auteurs est que cette méthode ne présente pas de valeur pour être utilisée en médecine légale. 2)

En hygiène alimentaire, la catalyse de H₂O₂ a trouvé surtout une application pratique pour le contrôle du lait. C'est Babcock³) qui constate le premier en 1889 le pouvoir catalytique du lait; cette observation fut confirmée par un grand nombre d'expérimentateurs. On sait aujourd'hui que la catalase du lait peut avoir une quadruple origine: colostrum, leucocytes, globules rouges et bactéries. La valeur de la catalisimétrie pour le contrôle hygiènique du lait a suscité un très grand nombre de travaux qu'il serait trop long d'énumérer ici. Sans être exclusif quant à la valeur du procédé, on peut dire que la méthode catalisimétrique associée aux autres procédés biologiques de contrôle du lait, réductase, essai à l'alizarol, méthode de Tromsdorf etc. donne de bons résultats et apporte une preuve de plus que tel ou tel lait provient d'animaux atteints d'une affection de la mamelle, ou qu'il a été récolté ou manipulé d'une façon malpropre.

La propriété que possède H₂O₂ d'être décomposée par les hyphomycètes a aussi reçu en hygiène alimentaire une application pratique. Ori⁴) constate que des extraits de farines de maïs avariées décomposent H₂O₂, tandis que des extraits de farines saines sont sans action. Bakardjieff⁵) examinant des farines de maïs souillées artificiellement par des hyphomycètes arrive aux mêmes conclusions et préconise ce procédé pour reconnaître l'altération des farines de maïs. Mitchnik⁶) expérimente avec 102

¹) Cité par *Uhlenhuth:* Praktische Anleitung zur Ausführung des biologischen Eiweissdifferenzierungsverfahrens, Jena 1909, p. 39.

²⁾ Cité par Uhlenhuth. Trav. cité, p. 40.

³⁾ Cité par Bertin, Sans et Gaujoux: Revue d'Hygiène, 1912, p. 1020.

⁴⁾ Cité par Bakardjieff, Thèse, Lausanne, 1908, p. 12.

⁵) Recherches sur quelques procédés rapides pour le contrôle des farines. Thèse, Lausanne, 1908.

⁶⁾ Thèse de l'Institut d'Hygiène Lausanne, 1911, p. 33-38.

échantillons de farine de maïs achetés dans différents magasins de Bessarabie et en trouve le 85% altérés par des moisissures (Mucor Niger, Pen. Glaucum, Asp. niger) et dont les extraits décomposent H₂O₂.

La technique de la méthode est la suivante: 5 gr de farine de maïs sont additionnés de 15 cm³ d'eau glycérinée à 50%; le mélange est agité vigoureusement; on laisse reposer un quart d'heure et l'on filtre. Un cm³ du filtrat est placé dans un verre de montre placé sur fond noir et l'on ajoute 4—5 gouttes d'H₂O₂ à 3%. Si la farine est altérée, la décomposition de H₂O₂ se manifeste par la formation d'écume dans le mélange ou parde petites bulles.

Recherches personnelles.

Au cours de la guerre, pendant la réglementation des céréales panifiables dans notre pays, on a vu le marché inondé de farines diverses non soumises au régime des cartes. Un grand nombre de ces farines ont laissé à désirer quant à leur qualité, et beaucoup d'entre elles étaient fabriquées avec des graines avariées.

Il m'avait paru intéressant de rechercher si la méthode de la catalase préconisée par Ori pour déceler l'altération des farines de maïs était applicable aux différentes farines de céréales, légumineuses, etc.

En examinant un certain nombre de farines de haricots avariées ou non par la méthode d'Ori j'ai constaté que tous les extraits donnent lieu à la décomposition de H₂O₂; même observation avec de la farine de haricots que j'ai préparée par broyage des grains. Il résulte donc, que cette légumineuse renferme une catalase naturelle. Cette constatation m'engagea à rechercher quelles sont les céréales, légumineuses qui renferment de la catalase.

Les expériences ont été faits soit avec des farines provenant du commerce, soit avec la farine préparée au laboratoire par broyage des graines.

L'extraction de la catalase a été opérée par le procédé d'Ori au moyen de l'eau glycérinée à 50 %; j'ai constaté que la substance active s'extrayait plus difficilement avec l'eau distillée qu'avec l'eau glycérinée.

A 5 gr de farine sont ajoutés 15—20 cm³ d'eau glycérinée à 50 %; le mélange est agité vigoureusement pendant 3—5 minutes, on laisse reposer 15 minutes puis on filtre sur papier; pour les extraits de farines de légumineuses, il est préférable de filtrer en utilisant la trompe à eau. A 1 cm³ du filtrat placé dans un verre de montre est ajouté 4—5 gouttes d'eau oxygénée à 3 %. Suivant la quantité de catalase que renferme l'extrait, il se forme immédiatement ou après quelques secondes une forte écume, ou bien la décomposition se traduit par l'apparition de petites bulles plus ou moins espacées.

Les résultats de mes observations sont indiqués dans les tableaux ci-après 1).

¹⁾ Le signe ++++ indique décomposition immédiate, écume blanchâtre.

^{» +++ »} après quelques secondes, moins forte.

^{» » ++ » »} faible, pas d'écume.

^{» » +} vrès faible décomposition, bulles espacées.

^{» » —} aucune dégagement d'oxygène.

			Far	ine	d	e f	ron	ien	t.					R	éact	ion
3 écha:	ntill	lon	s f	ari	ne	féc	léra	ale	blı	ıtaş	ge	85	%	+	++	-+
Farine	flet	ır			•.										+	
» .	$1 \mathrm{er}$														+	
»	2e													-	++	+
»	tor	ref	iée													
Grains	de	fre	ome	ent	bı	oye	és -							_	++	+

Pour me rendre compte quelles sont les parties du grain de blé qui renferment le plus de catalases, j'ai prélevé des échantillons de farine au cours d'une mouture et obtenu les résultats suivants:

1 .			Fe	arir	108							$R\'eaction$
don	1		.a. (VI CI								
	broyage		•	•	•	•	•	•		•	٠	++
20	» »		٠	•	٠						•	+
Зе	»									•		. +
4e	>>							• 1				+ -
5€	>>											++
6е	»											+++
Farines de convertissage.												
3e 1	assage									11.1 0•1		
4e	»						-					+
7e	>>											++
8e	»											+++
11e	»											++++
	Far	ines	d	e a	lésa	igré	gea	ige.				
1er	gros gr											+ 28.1
2е	»	>>		KG.								++
5e	»	>>									7.	1+
7º :	Be case	rem	ou	lag	e							++++
	case bo			N (1)								++++
2е	»	>>		4				580				++++
1ers	bouton	S						150				
2в	»					1				4	N E	++
Зе	>>			90					10			+++
4°	»						•			in C		++++

D'après les résultats ci-dessus, on constate que les farines provenant de la partie centrale du grain de blé ne renferment que des traces de catalase; dès que dans la farine se trouvent les parties provenant de la couche à alleurone ou celles de l'enveloppe qui constituent les fins et les gros sons, leurs extraits glycérinés décomposent avec une grande énergie H₂O₂.

La farine de seigle donne sensiblement les mêmes résultats que celle de froment.

Farines de céréales.			$R\'{e}actions$
Avoine (grains réduits en farine)			++
» (farine pour soupe)			+
» » »			1
» » » »			
Maïs (commerce)			ah re <u>al</u> call
» (collection du laboratoire).			N = 100741
» (commerce)		in t	rio <u>di</u> Stip
» »			
» (broyage des grains)			The second second
Orge (commerce)	-1-2		
» »			++
» »			+
» (grains écrasés)			++
Riz (commerce)			date (150 graph)
» »			- T-22
Balles de riz (collection)			
Millet (farine pour potages)			2 (2 (2 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1
» » »	•	********	attal あいま
Farines de légumineuses.			
Haricots (grains écrasés)			++++
어디는 이 그리는 어림이 있다. 이용과 얼마를 하셨다면 하나 아니다 다른데	•	V	++++
»	•		++++
» »			++++
Pois jaunes (grains écrasés)			++++
» » (commerce)			++++
» » »			++++
Pois verts (grains écrasés)	n K		++++
» » (commerce)			++++
» »			++++
Fève (commerce)			++++
Lentille »			++++
Farines diverses.			
Fécule de pomme de terre			
» » » »			1 1 1 1
Farine de châtaignes (commerce)		•	++++
» » »		•	++++
» , » »	•		++++
» » »			++++

D'après les résultats ci-dessus on constate qu'à l'exclusion des farines de mais, de riz et de la fécule de pomme de terre, toutes les farines examinées renferment des catalases en plus ou moins forte quantité. Celles qui en continuent le plus sont les farines de légumineuses. Les farines

d'orge, d'avoine n'en renferment que très peu. Dans la grande majorité des cas les extraits des farines pour potages du commerce ne donnent pas lieu à la décomposition de H₂O₂ ou seulement une très faible réaction; cela provient du fait que ces farines ont subi l'action de la chaleur lors de leur préparation.

Il résulte des observations énumérées dans les tableaux ci-dessus que la méthode proposée par Ori pour reconnaître l'altération des farines n'est applicable que pour les farines de maïs, riz, et fécule de pomme de terre.

Action de la température sur les catalases végétales.

Comme les autres diastases, les catalases sont sensibles à l'action de la chaleur; mais la résistance aux températures varie suivant leur origine. On a vu que la catalase de l'extrait de malt est d'après Liebermann 1) affaiblie par un chauffage à 40—43°; que celle de l'extrait de pomme de terre est notablement affaiblie déjà à 36°. La catalase de Loew isolée des feuilles de tabac, en solution dans l'eau n'agit plus chauffée à 71—75° tandis qu'à sec elle résiste à 80° 2). D'après Giusti³) la catalase de Mic. pyogenes chauffée 15 minutes à 90° est détruite; d'après Bakardjieff 4), la catalase des extraits de farines avariées diminue au fur et à mesure de l'élévation de la température entre 60 und 90° pour être complètement détruite à l'ébullition. Tamchès 5) constate que les catalases bactériennes résistent 15—30' à 70° pour les unes et pour d'autres entre 30' à 60° et 15' à 70°.

Les catalases extraites de toutes les farines que j'ai examinées ne donnent plus lieu à la décomposition de H₂O₂ si elles ont été chauffées 10' à 100°.

J'ai soumis des extraits de quelques farines à l'action de différentes températures, les résultats sont indiqués dans les tableaux ci-dessus.

		Chauffage	pendant 1	0'.		
		60 °	700	80°	85°	900
Farine	froment	++	+	très faible		
>>	haricots.	+ *	+	» »	_	
»	pois	+	+	» »		_
>>	châtaignes	++++	+++	+	_	_
>	avoine	++	+	très faible	_	_
		Chauffage	pendant 3	0'.		
		55-60°	60 °	65°	75°	80°
Farine	froment	++	+		_	
>>	haricots.	+	<u>-</u>			_
»	pois	+	-			_

¹⁾ Travail cité.

²) Cité par Battelli et Stern, Travail cité.

³⁾ Travail cité.

⁴⁾ Travail cité.

⁵⁾ Travail cité.

				55-60°	60°	65°	75 °	80°
Farine	châtaign	es	. Toron	++++	+++	++	+	
>>	avoine			+	-	-	_	
»	seigle			+		13 - 1	_	100 000
>>	orge .			+				-37

Au point de vue de l'action de la température, on peut constater que les catalases soit des céréales ou des légumineuses sont peu résistantes à la chaleur et qu'à cet égard elles présentent les mêmes propriétés que les catalases isolées de différentes plantes.

Conclusions:

- 1° Les farines des céréales et des légumineuses renferment des catalases; ces dernières sont surtout localisées à la partie périphérique des graines, dans l'enveloppe et dans son voisinage.
- 2º Ces catalases naturelles sont sensibles à l'action de la chaleur; une température de 60-65° pendant 30' les détruit.
- 3º La méthode catalytique proposée par Ori pour déceler l'altération des farines ne peut être utilisée que pour les farines de maïs et de riz et pour la fécule de pomme de terre.

Beitrag zur titrimetrischen Bestimmung des Chlor- und Milchzuckergehaltes der Milch.

Von HANS WEISS.

(Mitteilung aus dem kantonalen Laboratorium St. Gallen, Vorstand: Dr. G. Ambühl.)

Trotzdem schon früher durch verschiedene Forscher wie Schaffer, Hess und Guillebeau¹) gelegentlich ihrer Untersuchungen über die Milch euterkranker Kühe darauf hingewiesen wurde, dass in solchen Fällen die Milch eine Erhöhung des Chlor- und eine Erniedrigung des Milchzuckergehaltes aufweise, wurde doch bei der Kontrolle der Konsum- und Käsereimilch diesen beiden Bestandteilen, speziell dem Chlorgehalt im ganzen wenig Bedeutung beigemessen. Neuestens weist Dr. G. Kæstler in seiner Arbeit: Zum Nachweis der durch Sekretionsstörungen veränderten Milch²) auf die hohe Bedeutung hin, die dem Gehalt der Milch an Chlor und Milchzucker und der aus diesen Werten berechneten Chlorzucker-Zahl für die hygienische Milchkontrolle beizumessen sei.

^{2011. 1)} Landw. Jahrb. der Schweiz. 1911. 19 11 angeld.) hab gaussanted ein ministr

²⁾ Diese Mitteilungen, 1920, 4, Seite 155. Seigeserie montanii Courb delle cob