Zeitschrift: Macolin : revue mensuelle de l'École fédérale de sport de Macolin et

Jeunesse + Sport

Herausgeber: École fédérale de sport de Macolin

Band: 53 (1996)

Heft: 6

Artikel: La science du sport au service de l'éducation physique : VO2 max et

étude des effets d'un cycle d'endurance en milieu scolaire (1re partie)

Autor: Billat, Véronique

DOI: https://doi.org/10.5169/seals-998344

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

La science du sport au service de l'éducation physique

VO₂ max et étude des effets d'un cycle d'endurance en milieu scolaire (11° partie)

Véronique Billat, division STAPS, Université Parix XII

La course d'endurance, en athlétisme, demande une approche scientifique afin d'optimaliser la performance individuelle. C'est l'objet de la recherche de l'auteur qui s'est penché sur les méthodes d'entraînement, prenant en compte la vitesse à VO₂ max et la durée de la course à cette vitesse. (Ny)

L'exercice d'endurance connaît un engouement certain, depuis ces vingt dernières années. En France, par exemple, on recense quelques trois millions de coureurs de longue distance et près de 4500 épreuves de courses hors stade recensées dans de véritables «guides Michelin», donnant appréciation sur l'accueil, le parcours, l'organisation etc.

L'athlétisme donne un autre aspect de la pratique de la course d'endurance, plus intense, plus rationnelle, l'aventure humaine passant au second plan. Au regard des articles parus dans la même période au sein de la revue EPS, la connaissance de soi, de ses possibilités physiques, la gestion de celles-ci sont des objectifs clairement annoncés par les auteurs proposant des méthodes dans ce sens. Dans le même temps, la logique de l'activité athlétique, le demi-fond et le cross-country sont au centre du discours qui consiste à paramétrer la distance plutôt que la durée de course. L'environnement de cette pratique (le médecin, l'entraîneur, l'éducateur physique) doit faire face à la demande de conseils d'entraînement que le savoir-faire de terrain impose «par essai et erreur».

Sans rejeter cet empirisme qui a bien souvent inspiré des études plus formalisées, il est indispensable d'asseoir sur des bases de connaissances plus précises les effets de l'exercice selon la durée et l'intensité de celui-ci, pour à terme, individualiser les charges d'entraînement qui trop souvent ne prennent pas suffisamment en compte l'aptitude physique du sujet et donc, à terme, sa santé. Les données d'entraînement et de leur effet

Véronique Billat, physiologiste, est maître de conférences en sciences et techniques des activités physiques et sportives à l'Université Paris XII. Elle fut internationale universitaire en athlétisme et vainqueur de la course Sierre-Zinal en 1982.

sur le potentiel aérobie de l'enfant qui sont publiées depuis ces 20 dernières années (voir tableau) négligent trop souvent une méthode d'entraînement qui prend en compte, à la fois, la vitesse à VO₂ max (appelée également vitesse maximale aérobie: VMA) et la durée de course à cette vitesse: le temps limite à VMA (tlim VMA). Cette dernière grandeur, peu mesurée, s'avère très différente pour des sportifs ayant pourtant des valeurs similaires de VO₂ max et de VMA. En terme d'exercice d'endurance, cette notion de

temps limite ou temps pendant lequel le sujet est capable de maintenir sa puissance maximale aérobie, est cependant essentielle à connaître pour définir les durées de l'entraînement intermittent. C'est un souci déjà ancien de caractériser le mieux possible la charge d'entraînement en terme d'intensité-durée par rapport aux possibilités du sujet, depuis les travaux de Hill (1927) puis de Taylor et al. (1955) ou d'Astrand (1960), qui les premiers ont défini et montré l'importance de la mesure de la consommation maximale d'oxygène (VO2 max) pour l'appréciation de l'aptitude aérobie des sujets. Hill (1927) puis d'autres (Monod et Scherrer, 1965; Gleser et Vogel, 1973; Péronnet et Thibault, 1987) ont modélisé la relation intensité-durée de l'exercice qui illustre la mise en jeu de différentes voies métaboliques pour la resynthèse de l'ATP.

Le champ des sciences et techniques des activités physiques et sportives s'inscrit dans la nécessité de faire le lien entre les connaissances expérimentales qui négligent les variables indépendantes (l'exercice et son choix précis) au profil de la minutie apportée à la mesure des variables dépendantes que sont les paramètres physiologiques et leurs modifications. L'apport d'une dimension temporelle qui prend en compte le temps limite individuel à une vitesse donnée et notamment à VMA, permet d'affiner la maîtrise de l'exercice afin d'en mieux cerner les effets immédiats et à long terme.

Que connaît-on du temps d'épuisement à VO₂ max?

 La reproductibilité intra-individuelle du temps limite à VO₂ max

On sait que pour un sujet donné, le temps de maintien de sa consommation maximale d'oxygène (temps limite à 100% (VO₂ max) est reproductible d'une semaine à l'autre dans les mêmes conditions expérimentales (*Billat* et *al.*, 1994a).

 La variabilité interindividuelle du temps limite à VO₂ max

La variabilité interindividuelle de ce temps limite à $\dot{V}O_2$ max est grande puisque le temps limite est compris entre 4 et 11 minutes selon les sportifs, avec une valeur de consommation d'oxygène élevée (75 ± 5 ml.mn ⁻¹.kg⁻¹). Le coefficient de variation est de 30% contre 6% pour $\dot{V}O_2$ max et VMA.

Chez l'enfant de 14 à 16 ans, *Gerbeaux* et *al.* (1993) ont également mis en évidence une grande variabilité du temps limite à 100% de VMA.

 La relation inverse liant le temps limite à VMA et VO₂ max

Il a par ailleurs été montré que le temps limite à VMA avait tendance à être inversement corrélé au VMA (*Billat* et *al.*, 1994d). Ceci correspond à une notion intuitive selon laquelle les sportifs ayant une consommation maximale d'oxy-

9

Age (années)	Taille du groupe (sexe)	Type d'exercice	Intensité (FC bpm) ou vitesse (km/h)	Fréquence hebdomadaire	Durée (semaines)	VO₂ max ml/min/kg	Δ % $\dot{V}O_2$ max	Auteurs	Remarques
8-9 8-9	13 F 11 M	800 m course	FC max FC max	1	6	41,8 51,8	+3,5 +2,1	Mocellin & Wasmund, 1973	Pas de groupe contrôle
9-10 9-10	15 F 14 M	1000 m course	200 194	2 2	7 7	47,3 54,2	+3,4 +3,1	Mocellin & Wasmund, 1973	Pas de groupe contrôle
9-10	24 F	Course	Vitesse max	2, 3, 4	9	50,2	-1,6	Bar-Or, 1973	Pas de
9-10	22 M	24 min et jeux de balle	sur 24 minutes	2, 3, 4	9	44,2	+4,2	Bar-Or, 1973	groupe contrôle
8-12	16 M et F	*10-35 min de course (2 J); *45 min course et jeux	185	4	12	55,6	+7%	Lussier & Buskirk 1977	Gain de 1,4% du groupe contrôle
9-11	11 M et F	*10-35 min saut à la corde (2-3 J) *Jeux de balles (2 J)	168	4-5	8	42,4	+0,09	Benedict et al. (1985)	Pas de groupe contrôle
9-10	15 M	Vélo 4 × 4 min	170-190	5	8	40,5	+2	Gatch et Byrd (1979)	Pas de groupe contrôle
11-13	9 M	12 min	130-140 150-160 170-180	3	6	41	+11	Massicotte & Mac Nab (1972)	Seul le groupe entraîné à 170-180 (FC bpm) a un ΔVO_2 max positif
9-11	15 M/F	Natation de 2400 à 8000 m	75% de la FC de réserve	4	30	47,3	+17	Vaccaro & Mahon (1989)	Le groupe contrôle augmente son VO ₂ max (ml/min/kg) de 4,6%
8-13	12 F	Course lente	?	4-5	6-12	41	18,3	Brown et al. (1972)	Groupe contrôle
11	6 M	45 min course lente	?	3	6-12	40,5	10,3	Ekblöm (1969)	Groupe contrôle
9-11	15 M/F	45 min course lente	?	4	24	42	10	Vaccaro & Clarke (1978)	Groupe contrôle
11-13	9 M	60 min course lente	?	3	16	41	16	Ericksson & Koch (1973)	Pas de groupe contrôle
13	13 M	Football	- / /	3-5 h hebdo	24	55,7	0	Baxter-Jones et al. (1993) Baxter-Jones et al. (1993) Baxter-Jones et al. (1993) Baxter-Jones et al. (1993)	Pas de groupe contrôle Pas de groupe contrôle Pas de groupe contrôle Pas de groupe contrôle
11,4	12 M	Gymnastique	_	15 h hebdo	60	54,4	2,7		
11,7	18 M	Natation	- × ·	9 h hebdo	30	57,7	+0,6		
11,6	41 M	Tennis	-	8 h hebdo	60	54,1	+1		
10,2	28 M	Course intermittente	FC non précisée *3 × 600 m; R = 2,5 min *5 × 400 m; R = 2 min *6 × 150 m; R = 1,5 min	3 séances hebdo	9	54,2 vitesse 1 200 m 12,8 km/h avant et 14,3 km/h après	+8 +10%	Rotstein et al. (1986)	Groupe contrôle augmente sa vitesse sur 1200 m et son VO_2 max de 1,5% (Δ non significatif)
11,8	11 M	Football	?	3	9	49,8	0	Berg et al. (1985)	Groupe contrôle
12-13	7 M	Course lente et longue	?	3	12	?	FC sous max baisse	Shasby et Hagermann (1975)	Groupe contrôle
10-15	14 M coureur	Course lente et longue	?	3	88	42	0	Daniel et Oldridge (1971)	Pas de groupe contrôle
7-9	11 M/F	Course lente et longue	25 min	4	12	41	0	Gilliam et Freedson (1980)	Groupe contrôle
10-12	13 M	Course	1-3 min à 90% FC max (R = 1 min)	4	8	49,8	0	Stewart et Gutin (1976)	Groupe contrôle

Tableau: Les principales études expérimentales publiées dans la littérature scientifique concernant l'effet des séances d'entraînement en endurance chez l'enfant.

gène élevée sont ceux qui la maintiennent le moins longtemps. En outre, ce temps de maintien de VO2 max est positivement corrélé à la capacité d'utiliser une fraction importante de la consommation maximale d'oxygène (% VO2 max) sans accumuler d'acide lactique (Billat et al., 1994c). Les sujets qui ont un temps limite long ont également un seuil d'accumulation d'acide lactique retardé lorsqu'ils accomplissent un exercice à intensité progressivement croissante. Chez l'enfant, Gerbeaux et al. (1992) n'ont pas trouvé de corrélation entre VMA et son temps limite ce qui les a conduits à conclure que «ces deux qualités sont différentes».

Que sait-on des causes d'arrêt d'un exercice dont l'intensité sollicite la consommation maximale d'oxygène?

Des causes susceptibles d'être évoquées pour rendre compte de cette caractéristique, qu'elles soient cardiaques, ventilatoires, métaboliques, etc., l'une est vraisemblablement au centre de tous les processus physiologiques conduisant à l'arrêt de l'exercice maximal, c'est l'évolution de l'oxygène artériel. On sait depuis Dempsey et al. (1984) puis Williams et al. (1986) et Powers et al. (1988) qu'une relative désaturation artérielle est susceptible de s'installer au niveau de VO2 max, mais son importance varie avec les sujets puisque dans l'étude du groupe de Dempsey, par exemple, sur seize sujets sportifs de très haut niveau, huit présentaient des baisses de PaO₂ allant de 20 à 35 mmHg, quatre des baisses plus modestes, alors qu'elles étaient absentes chez les quatre derniers sujets. Les auteurs attribuaient ces modifications, pour l'essentiel, aux réductions des temps de transit pulmonaire, car peu d'éléments permettaient d'avancer d'autres hypothèses à l'origine des anomalies observées. D'autres travaux, dont certains plus récents (Caillaud et al., 1993) apportent des arguments aux hypothèses avancées par Dempsey et al. et soulèvent également l'éventualité d'une hypoventilation alvéolaire relative dans l'apparition de l'hypoxémie.

Dans une étude plus récente (*Billat* et al., 1995), l'hypoxémie induite par l'exercice (HIE) appréciée par une diminution d'au moins 15 mmHg de PaO₂ par rapport à une valeur contrôle mesurée au début de la période de maintien de l'exercice au niveau considéré est confirmée pour des exercices à charges constantes réalisés à 90, 100 et 105% de la puissance que sollicite VO₂ max, mais avec une variabilité individuelle superposable à celle soulignée par les différents auteurs. Rapportée au temps limite à 90% de VO₂ max (tlim 90), cette HIE était d'autant plus profonde que le tlim 90 était long.

Cette relation, qui est la seule établie pour rendre compte de la variabilité interindividuelle signalée précédemment, semble indiquer que certains sujets seraient mieux adaptés que d'autres à tolérer des hypoxémies non négligeables sur un temps long. Chez l'enfant, de telles études restent à faire, les questions éthiques sous-jacentes et la pose d'un cathéter artériel étant les principaux obstacles à leur réalisation.

Que sait-on des effets de l'entraînement sur le temps limite à VMA ?

Par ailleurs, l'influence de l'entraînement sur le temps limite à vitesse maximale aérobie et VMA elle-même a été mesurée dans une étude longitudinale d'une saison sportive (10 mois), à intervalles réguliers de huit semaines, sur 20 coureurs de niveau régional (VMA = 20 ± 1 km/h) suivant un programme strict d'entraînement intermittent prenant en compte le temps limite individuel et la VMA réajustés toutes les huit semaines. La VMA et le temps limite augmentaient alternativement: la VMA augmentait et le temps limite à cette nouvelle VMA baissait, puis il réaugmentait alors que la VMA restait stable (données en cours de publication).

Cet article expose la mise en œuvre de ces connaissances dans le contexte de l'enseignement de l'éducation physique à l'école.

Objectif de la recherche

La question était de savoir si les cycles d'entraînement, pour améliorer la vitesse sur un 2000 m, sont liés au suivi d'un entraînement élaboré sur des repères précis d'intensité et de durée, versus l'entraînement «instinctif» pratiqué actuellement dans les établissements scolaires.

Il s'agit d'examiner l'effet d'un cycle d'endurance sur :

- l'aptitude et la performance aérobie de l'enfant et,
- la capacité de l'enfant à gérer son potentiel physique dans la perspective de l'appropriation de l'exercice de longue durée dans sa vie d'adulte.

L'objectif spécifique est d'examiner l'influence de la quantité et de la qualité (repère de durée et de vitesse) de l'entraînement aérobie sur :

- la performance, c'est-à-dire le temps mis pour couvrir un 2000 m;
- la perception de la difficulté de l'exercice (Rate of Perception on Exercise de Borg et al., 1982) et la gestion de son potentiel aérobie (indice de régularité) par l'enfant de 11 ans (garçon et fille).

Bibliographie

Astrand, I.: Aerobic work capacity in men and women with special reference to age. Acta Physiol.Scand. 49, (suppl. 169), 1960.

Billat, V.; Pinoteau, J.; Petit, B.; Renoux, J.-C.; Koralsztein, J.-P.: Reproductibility of running time to exhaustion at VO2 max in sub-elite runners. Med. Sci. Sports Exerc. 26, pp. 254 à 257, 1994a.

Billat, V.; Pinoteau, J.; Petit, B.; Renoux, J.-C.; Koralsztein, J.-P.: Validation d'une épreuve de temps limite à vitesse maximale aérobie et à VO2 max. Science & Sports 9, pp. 3 à 12, 1994b. Billat, V.; Pinoteau, J.; Petit, B.; Bernard, O.; Koralsztein, J.-P.: Time to exhaustion at VO2 max and lactate steady-state velocity in sub-elite long-distance runners. Arch. Int. Physiol. Biochim. 102, pp. 10 à 15, 1994c.

Billat, V.; Pinoteau, J.; Petit, B.; Bernard, O.; Koralsztein, J.-P.: Times of exhaustion at 100 % of velocity at VO2 max and modelling of the timelimit / velocity relationship in elite long-distance runners. Eur. J. Appl. Physiol . 69, pp. 271 à 273, 1994d.

Billat, V.; Pinoteau, J.; Petit, B.; Renoux, J.-C.; Koralsztein, J.-P.: Hypoxémie et temps limite à la vitesse aérobie maximale chez des coureurs de fond. Can. J. Appl. Physiol. 20 (1), pp. 102 à 111, 1995.

Caillaud, C.; Anselme, F.; Mercier, J.; Préfaut, C.: Pulmonary gas exchange and breathing pattern during and after exercise in highly trained athletes. Eur. J. Appl. Physiol. 67, pp. 431 à 437, 1993

Dempsey, J.; Hanson, P.; Henderson, K.: Exercise-induced arterial hypoxemia in healthy persons at sea level. J. Physiol. (Londres) 355, pp. 161 à 175, 1984.

Gerbeaux, M.; Jacquet, A.; Lefranc, J.-F.; Dierckens, J.-M.; Savin, A.; Savin, N.: Estimation de l'endurance aérobie des élèves en milieu scolaire. Science et Motricité 17, pp. 26 à 32, 1992.

Gleser, M.A.; Vogel, J.A.: Endurance capacity for prolonged exercise on the bicycle ergometer. J. Appl. Physiol. 34, pp. 438 à 442, 1973. Hill, A.V.: Muscular movement in man. New York, Mc Graw - Hill, 1927.

Monod, H.; Scherrer, J.: The work capacity of synergy muscular groups. Ergonomics 8, pp. 329 à 338, 1965.

Péronnet, F.; Thibault, G.: Analyse physiologique de la performance en course à pied: révision du modèle hyperbolique. J. Physiol. (Paris) 82, pp. 52 à 60, 1987.

Powers, S.; Lawler, J.; Dodd, S.; Kirtley, M.; Landry, G.; Mcknight, T.; Grinton, S.: Incidence of exercise-induced hypoxemia in elite athlete at sea level. Eur. J. Appl. Physiol. 58, pp. 298 à 302, 1988.

Taylor, H.; Buskirk, E.; Henschel, A.: Maximal oxygen intake as an objective measure of cardiorespiratory performance. J. Appl. Physiol. 8, pp. 73 à 80, 1955.

Williams, J.; Powers, S.; Stuart, M.: Hemoglobin desaturation in highly trained athletes during heavy exercise. Med. Sci. Sports Exerc. 18, pp. 168 à 173, 1986. (Fin de la 1^{re} partie)