Zeitschrift: Macolin : revue mensuelle de l'École fédérale de sport de Macolin et

Jeunesse + Sport

Herausgeber: École fédérale de sport de Macolin

Band: 48 (1991)

Heft: 4

Artikel: Déficit de la musculature lombaire et douleurs dorsales : une approche

expérimentale des liens de causalité

Autor: Fritz, Christiane

DOI: https://doi.org/10.5169/seals-997759

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Déficit de la musculature lombaire et douleurs dorsales: une approche expérimentale des liens de causalité

Christiane Fritz

Traduction: Cornelius Waltert

Les Américains dépensent chaque année 40 millions de dollars pour remédier à leurs problèmes de dos. De la prolifération des disciplines médicales qui se consacrent à la pathologie du dos est née, il y a 17 ans, une spécialisation qui s'intéresse plus particulièrement à la région lombaire. Le présent article décrit les résultats d'un projet de recherche commencé en 1987, qui a pour but de cerner les causes principales des syndromes de la colonne lombaire et de proposer des solutions thérapeutiques. Cette étude a été réalisée au «Center for Exercise Science» et conduite, à l'Université de Floride, plus précisément à Gainesville, par le Dr M. Pollock, ancien président de l'«American College of Medicine». Elle part de l'hypothèse que tout déficit de la musculature de la colonne vertébrale constitue un facteur de risque. L'application d'une nouvelle technique computérisée (MedX) a permis la mise en œuvre des procédés expérimentaux et thérapeutiques nécessaires à la réalisation de cette étude.

Pour un pourcentage élevé de syndromes de la colonne lombaire, les mécanismes de cause à effet ont pu être objectivés grâce à l'identification de trois facteurs de risque:

- la spécificité de la réaction musculaire à la charge
- la prédominance des fibres musculaires «rapides»
- l'atrophie de la musculature dorsale par suite de non-utilisation chronique.

Méthode

Elle consiste en une activation sélective des muscles extenseurs de la co-Ionne Iombaire, obtenue par le biais d'une stabilisation du bassin qui exclut toute intervention de la musculature pelvi-crurale dans les mouvements à tester (mouvements de flexion et d'extension de la colonne lombaire). Dans ces conditions, les extenseurs lombaires se contractent en isométrie. Un myodynamomètre permet de mesurer leur force de contraction maximale à différents stades du mouvement. Il importe que le mouvement soit effectué dans toute son amplitude. Les résultats de ces mesures sont mis sur ordinateur puis complétés par interpolation. L'ensemble des valeurs ainsi obtenues permet de tracer une ligne appelée courbe de force.

La mesure de la force de contraction des extenseurs lombaires requiert les préparatifs suivants:

- immobilisation de la hanche
- activation isolée des extenseurs lomhaires
- alignement de la ligne coaxiale avec l'axe des muscles érecteurs du tronc
- tarage de la composante cinétique propre à la machine
- détermination de l'axe central du tronc
- tarage du tronc
- positionnement de la tête et des

De plus, elle doit satisfaire les critères de:

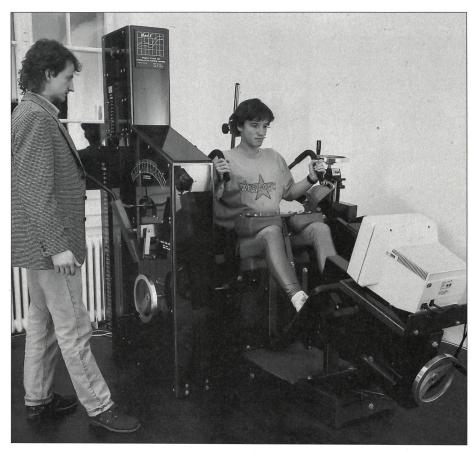
- corrélation entre le couple mesuré et la précision de l'angle de flexion/extension
- reproductibilité des résultats du test.

L'enregistrement graphique des contractions musculaires par des courbes de force permet de mesurer le travail des muscles en tenant compte de tous les paramètres physiologiques; il révèle les points faibles et les anomalies, l'intensité de la force en début d'effort, la fatigue et la capacité de récupération; de plus, il constitue un moyen de contrôle fiable du gain de force et des progrès thérapeutiques.

A la différence des contractions isotoniques, les contractions isométriques peuvent être évaluées à l'aide de mesures directes et ponctuelles. C'est la raison pour laquelle l'établissement d'une courbe de force se fait toujours sur la base de contractions isométriques. S'il était fondé sur des contractions isotoniques, caractérisées par une alternance d'accélérations et de décélérations, il devrait se contenter de valeurs moyennes déterminées par calcul.

La figure 1 montre une représentation simplifiée de trois courbes de force. Bien qu'elles illustrent toutes les trois un fonctionnement musculaire normal, une seule d'entre elles possède une pente correcte.

Si la mesure des extenseurs lombaires est faite soigneusement et en activation parfaitement isolée, on devrait obtenir une droite. Tout écart par rapport à cette droite signe une anomalie dans la région des lombes.


Les trois courbes ont pour point commun l'intensité initiale de la force en position fléchie. La courbe supérieure représente une courbe théoriquement parfaite. La courbe inférieure est caractéristique des sujets dits de type «S» (angl.: specific), alors que la courbe médiane est propre aux sujets de type «G» (angl.: general).

Facteur de risque 1:

la spécificité de la réaction musculaire à la charge

La musculature des sujets de type «S» réagit à l'application localisée d'une charge par un effet d'entraînement localisé lui aussi: l'apparition d'une fatigue et d'un progrès dû à l'entraînement se limite à la partie de la musculature que la portion du mouvement exécutée a effectivement stimulée. La spécificité de cette réaction constitue un facteur de risque: le muscle ne se développe que dans la partie sollicitée (par les mouvements de la vie courante, l'entraînement sportif), tandis qu'il dégénère dans la partie non sollicitée. La confrontation soudaine de la partie non entraînée du muscle avec une charge expose à un risque de blessure.

Par contre, la musculature des sujets de type «G» répond à l'application loca-

MedX-Test. Le premier appareil qui permet une mesure précise de la force de contraction des extenseurs lombaires et un dosage soigneux de l'entraînement.

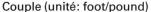
lisée d'une charge par un effet de fatique et d'entraînement global, qui correspond à des mouvements exécutés dans toute leur amplitude.

Plusieurs milliers de personnes ont participé au test (on dispose de quelque 20 000 résultats). Environ 80 pour cent d'entre elles ont présenté une réaction de type «S» et quelque 18 pour cent une réaction de type «G», si bien que seuls 2 pour cent des participants avaient une courbe de force dotée d'une pente normale.

Autrement dit, les individus appartiennent en majorité au type «S»; dans la pratique, on constate qu'ils ont beaucoup de peine à exécuter un mouvement d'extension, voire qu'ils sont incapables d'atteindre la position d'extension complète. Cependant, même pour les individus de type «G», la force musculaire requise pour l'extension reste inférieure de 40 à 50 pour cent aux valeurs théoriquement normales.

La figure 2 permet des constatations très intéressantes. Elle présente les courbes de force de deux personnes qui ont presque la même force initiale en position de flexion. Si la mesure de la force de contraction n'était effectuée que dans cette position, on serait tenté de conclure que ces deux personnes sont de force égale. Or, il n'en est rien.

Sitôt après la mesure de la contraction musculaire, elles se sont livrées à un exercice dynamique concentré sur leur musculature lombaire. Résultat: le participant de type «G» était en mesure d'accomplir neuf fois le mouvement dans toute son amplitude et avec opposition d'une résistance de 200 livres américaines. Le participant de type «S» était incapable de répéter ne fût-ce qu'une seule fois le mouvement complet, quand bien même il n'avait à vaincre qu'une résistance de 150 livres.


Cet exemple montre que les mesures de force maximale ne sont utilisables à des fins de comparaison qu'à condition de porter sur des mouvements exécutés dans toute leur amplitude.

Facteur de risque 2: la prédominance des fibres musculaires «rapides»

On distingue deux grands groupes de fibres musculaires:

- les fibres musculaires du groupe I, encore appelées fibres musculaires rouges ou fibres musculaires à contraction lente (angl.: slow twitch)
- les fibres musculaires du groupe II, dites aussi fibres musculaires blanches, fibres musculaires à glycolyse rapide ou fibres musculaires à contraction rapide (angl.: fast twitch).

La fourniture d'énergie à la cellule musculaire en vue de la contraction se fait selon deux voies métaboliques: la voie aérobie (soit avec apport d'oxygène) et la voie anaérobie (sans apport d'oxygène). Les cellules musculaires lentes couvrent leurs besoins énergétiques par voie aérobie. Par rapport aux cellules musculaires rapides, elles possèdent un réseau capillaire plus dense et des mitochondries plus nombreuses.

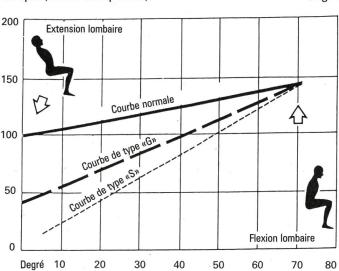
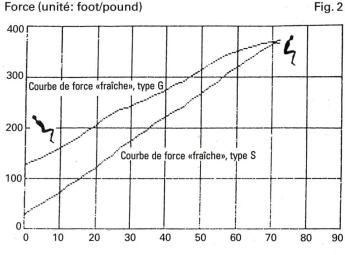



Fig. 1 Force (unité: foot/pound)

Angle de flexion/extension

1er test: 28 août 1987; 2e test: 4 novembre 1987

15

Fig. 4 400 Test avant exercice 300 Test après exercice 200 100 90 10 20 30 40

1re date: 9 octobre 1987, test avant exercice

1re date: 9 octobre 1987, test avant exercice

Par ailleurs, elles contiennent moins de glycogène.

Quant aux cellules musculaires rapides, leur couverture énergétique se fait principalement par voie anaérobie, et plus précisément à partir du glycogène accumulé dans les muscles (mode de stockage de l'énergie).

Le test de capacité fonctionnelle décrit ci-après est la première méthode non invasive permettant de déterminer quel type de fibres musculaires domine chez un individu donné. Ce test comporte trois étapes:

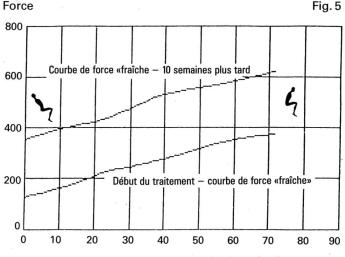
- · La détermination de la force maximale en contraction isométrique d'après les mesures faites à plusieurs stades du mouvement;
- Un exercice dynamique consistant à exécuter le mouvement dans toute son amplitude, avec un poids équivalant à 50 pour cent de la force maximale calculée sous 1°, jusqu'à épuisement complet du muscle (cette étape dure environ deux minutes);
- La répétition de l'étape 1°, effectuée aussitôt après.

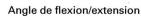
Les valeurs mesurées sous 1° et sous 3° servent à établir deux courbes de force (avant/après exercice) qui permettent de calculer la diminution de la force due à la fatigue. L'ampleur de cette diminution de force indique la prédominance de l'un ou de l'autre type de fibres musculaires. Les biopsies musculaires confirment les résultats du test.

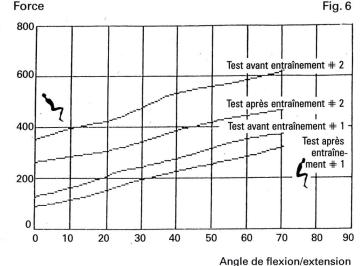
Force

Les deux courbes de force de la figure 3 illustrent la réaction caractéristique d'une musculature composée d'une majorité de fibres «rapides». La diminution de la force apparaît nettement. lci, l'exercice n'a pas été prolongé jusqu'à épuisement complet du muscle, sinon la perte de force aurait atteint 80 pour cent.

Les individus chez lesquels cette catégorie de fibres domine ont beaucoup de force, compte tenu du volume physique de leurs muscles; en revanche, ils n'ont qu'une capacité très limitée à soutenir des efforts d'endurance, qui sollicitent des groupes musculaires particuliers. De plus, ils se fatiguent rapidement, même lors de l'accomplissement d'une activité légère (règle d'ergométrie).

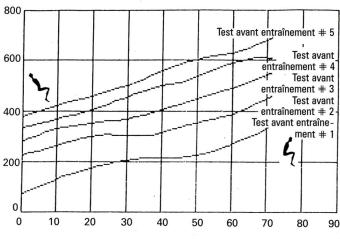

Angle de flexion/extension

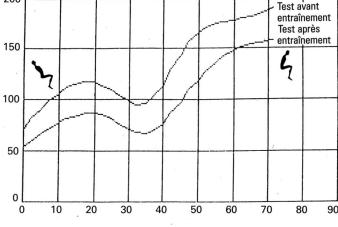

La figure 4 illustre le même test, exécuté cette fois-ci par un sujet chez lequel ce sont les fibres musculaires «lentes» qui dominent. S'il est vrai que sa force en début d'effort est beaucoup plus faible, on constate cependant qu'elle a augmenté de 8 pour cent à la seconde mesure.


Une prédominance de fibres musculaires lentes traduit une capacité élevée à soutenir des efforts d'endurance; le graphique montre bien que l'exercice dynamique n'a absolument pas fatigué cette personne.

Les résultats expérimentaux recueillis jusqu'ici permettent d'affirmer que la musculature lombaire comporte une proportion relativement élevée de fibres musculaires rapides dans près de 30 pour cent des cas, tandis que les fibres musculaires lentes dominent dans quelque 10 pour cent des cas.

Environ 60 pour cent des participants au test bénéficent d'une répartition équilibrée des deux types de fibres; la diminution moyenne de leur force après un





Test avant entraînement: 28 août 1987; 10 semaines plus tard

1re date: 28 août 1987, test avant entraînement

Angle de flexion/extension

Angle de flexion/extension

1re date: 28 août 1987, test avant entraînement

1re date: 23 mai 1987, test avant entraînement

exercice prolongé «jusqu'à l'épuisement» est de quelque 20 pour cent.

L'appartenance à l'un ou à l'autre groupe est héréditaire et ne peut, par conséquent, être modifiée d'aucune manière. D'autre part, la présente étude a montré que les allégations selon lesquelles des fibres musculaires rapides se «mueraient» en fibres musculaires lentes sont dues à des erreurs d'interprétation et à l'imprécision des méthodes de mesure employées.

Une proportion élevée de fibres musculaires rapides accroît le risque de blessures du dos, parce que la force statique des structures anatomiques est relativement faible par rapport à la force dynamique que les muscles sont capables de développer.

Facteur de risque 3:

atrophie de la musculature dorsale par suite de non-utilisation chronique

Sur les deux courbes de la figure 5, la force de contraction des extenseurs lombaires correspond à une force «fraîche», non entamée, mesurée sans exercice préalable. La courbe inférieure a été tracée au début de l'entraînement, la courbe supérieure 10 semaines plus tard. On constate un gain de force extrêmement élevé, qui atteint plus de 68 pour cent en position de flexion et exactement 180 pour cent en position d'extension.

Exerçant le métier de physiothérapeute, Christiane Fritz s'est spécialisée dans les problèmes de dos. Elle a profité d'un séjour d'études à Gainesville pour recueillir les données contenues dans cet article. On peut l'atteindre à l'Institut de musculation du Dr Gabriela Kieser, case postale 344, 8026 Zurich.

Normalement, un accroissement de force d'une telle ampleur n'est pas possible pour les autres muscles du corps. Le gain de force observé ici témoigne en fait de la gravité de l'atrophie de la musculature dorsale.

Les deux tests de capacité fonctionnelle de la figure 6 ont été accomplis à différents moments par une seule personne. Les deux courbes inférieures ont été tracées au début de l'entraînement, les deux courbes supérieures 10 semaines plus tard.

Les progrès sont considérables: l'intensité de la force «épuisée» du second test est toujours supérieure au double de la force «fraîche» mesurée lors du premier test.

La figure 7 montre l'enregistrement, sur une période de cinq mois et huit jours, de cinq courbes de force établies pour une personne qui fait régulièrement de la musculation depuis 20 ans.

Le gain de force atteint plus de 100 pour cent en position de flexion maximale, et plus de 450 pour cent en position d'extension.

Les résultats des travaux antérieurs consacrés au thème de la «force de contraction des muscles extenseurs de la colonne lombaire» sont pratiquement inutilisables, parce qu'ils n'ont tenu aucun compte de la compensation des déficits éventuels des muscles extenseurs de la colonne lombaire par les muscles des jambes et du bassin, beaucoup plus puissants. Lors de la mesure de la force des extenseurs lombaires en activation isolée, il s'est avéré que même des sujets qui bénéficient apparemment d'une bonne préparation physique peuvent avoir des extenseurs lombaires gravement atrophiés.

La figure 8 présente deux courbes au tracé manifestement anormal, témoignant d'un problème à la fois mystérieux et grave. Pourtant, cette personne n'avait pas de douleurs et les radiographies, pas plus que les investigations de tomographie computérisée, n'ont révélé d'anomalie. Il a fallu aller jusqu'à un examen de tomographie par résonance magnétique nucléaire pour découvrir finalement l'existence d'une hernie discale.

Conclusion

L'atrophie des extenseurs lombaires constatée chez plus de 90 pour cent des participants au test; l'appartenance de plus de 80 pour cent d'entre eux au type «S» et la limitation, à un dixième de la valeur théoriquement normale, de leur force de contraction en extension; enfin, pour 30 pour cent des participants, la proportion élevée de fibres musculaires à contraction rapide, qui porte à surestimer leur force réelle: telles sont les causes que la présente étude a définies comme étant clairement et indiscutablement à l'origine des douleurs dorsales.

Il convient d'insister encore une fois sur les deux composantes communes à toutes les blessures: la force et l'intégrité anatomique. Lorsqu'une partie du corps subit une charge dont l'intensité dépasse son intégrité anatomique, la survenue d'une blessure est inévitable. S'il n'est pas possible de contrôler les forces qui agissent sur le corps et auxquelles il est exposé, chacun peut cependant améliorer son intégrité anatomique et réduire ainsi considérablement sa vulnérabilité.

Comme le montre cette étude:

Un entraînement de moins de cinq minutes par semaine suffit pour renforcer rapidement et durablement les capacités fonctionnelles et les qualités anatomiques de la musculature lombaire, à condition de la travailler par des mouvements analytiques (activation isolée) d'amplitude maximale.