Zeitschrift: Jugend und Sport : Fachzeitschrift für Leibesübungen der

Eidgenössischen Turn- und Sportschule Magglingen

Herausgeber: Eidgenössische Turn- und Sportschule Magglingen

Band: 37 (1980)

Heft: 9

Artikel: Bodenbeläge für Sportanlagen : Grundlagen und Auswahlkriterien

Autor: Baumgartner, Urs / Léchot, Frédy

DOI: https://doi.org/10.5169/seals-993908

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Bodenbeläge für Sportanlagen

Grundlagen und Auswahlkriterien

Urs Baumgartner Frédy Léchot

Fachstelle Sportstättenbau ETS

Referat gehalten am «Bodenseminar» vom 4. September 1980 des Laboratoriums für Biomechanik der ETH Zürich

Einleitung

Dem Bodenbelag kommt im ganzen Spektrum der Rahmenbedingungen für die sportliche Betätigung im weitesten Sinne eine wichtige, wenn nicht sogar entscheidende Bedeutung zu: Er soll für die Benützung der Sportanlage möglichst günstige Voraussetzungen schaffen.

Das Angebot der Bodenbeläge für Sportanlagen präsentiert eine äusserst vielfältige Auswahl verschiedenster Belagstypen und -systeme. Da diese zudem einem stetigen und zeitlich raschen Innovationsprozess unterliegt und von unterschiedlichen Einflussgrössen abhängt, ist eine klare Übersicht und umfassende Beurteilung äusserst schwierig.

In den folgenden Ausführungen wird in einem ersten Teil eine Übersicht über die Gliederung, Einstufung und den zahlenmässigen Bestand an belagsabhängigen «Turn- und Sportanlagen» gegeben. Das Kapitel «Bodenbeläge» enthält nach einer Abgrenzung des Stoffgebietes eine Beschreibung der Grundlagen für die Auswahl, an die sich eine schematische Darstellung der Marktsituation und der verschiedenen Bodenbeläge für die einzelnen Sportanlagen anschliesst.

Turn- und Sportanlagen

Gliederung

Die Sportanlagen mit dem Bodenbelag als wesentliches Kriterium der baulichen Gestaltung können wie folgt gegliedert werden:

Sportanlage	Тур	Art					
Freianlagen	Spielwiese						
	Rasensportfeld						
	Trockenplatz						
	Leichtathletik-Anlage	Gerade Laufbahn					
		Rundbahn					
		Stoss-, Sprung- und Wurfanlage					
Turn- und Sporthallen	Turnhalle						
	Sporthalle	Polysportive Halle					
		Mehrfachhalle					
		Spielhalle					
	Spezialhalle						
	Mehrzweckhalle						
	Spezialraum						
Tennisanlagen	Freianlage						
	Hallenanlage						
	Kombinationsanlage						
Kombinationsanlagen	Polysportive Anlage						
-	Mehrzweckanlage						

Einleitung

Turn- und Sportanlagen

Gliederung Einstufung

- Freianlagen
- Turn- und Sporthallen
- Tennisanlagen

Statistik

Bodenbeläge

Abgrenzung

Grundlagen für die Auswahl

- Kriterien
- Normen und Rechtsgrundlagen
- Fachinstitute und Materialprüfungsanstalten

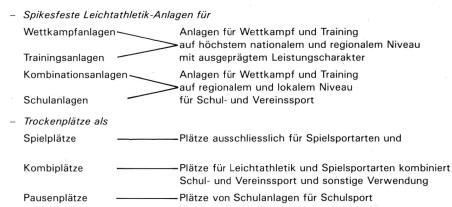
Marktsituation

Bodenbeläge für Freianlagen

Belagssysteme

Bodenbeläge für Turn- und Sporthallen

Belagssysteme


Bodenbeläge für Tennisanlagen

Belagstypen und -systeme

Einstufung

Vielfach wird der notwendigen Differenzierung einer Einstufung der Anlagen nicht in genügendem Umfang Rechnung getragen. Einerseits wird der Wettkampftätigkeit auf höchster Ebene eine übermässige Bedeutung beigemessen, anderseits zwingen Kostenargumente zu einer Einschränkung des erwünschten und erforderlichen Ausbaustandards.

Freianlagen

Turn- und Sporthallen

Im Gegensatz zu den Freianlagen sind die Möglichkeiten der grundsätzlichen Einstufung der Anlage primär durch die baulichen Kriterien der Dimension und Ausrüstung gegeben. Probleme können sich zuweilen bei der Abgrenzung einer sportlichen Mehrfachnutzung oder sogar sportfremder Nutzungsmöglichkeit zeigen.

Tennisanlagen

Die verbandsinternen Regelungen beschränken die Einstufungsprobleme der Tennisanlagen auf ein Minimum. Im Prinzip gibt es keine eigentlichen Unterschiede zwischen Trainings- und Wettkampfanlagen hinsichtlich Masse, Ausrüstung und Beläge.

Statistik

Eine im Jahre 1975 gesamtschweizerisch durchgeführte Erhebung über den Stand der Sportanlagen zeigt in Tabelle 1 für die einzelnen, belagsabhängigen Anlagen folgendes Bild:

Sportanlage	Тур	Charakterisierung	Total Anlage-	Baujahr	1964-	
	*		teile	-1963	1975	1976
Freianlagen	Spielwiesen	kleiner als 1500 m²	1519	728	586	43
		mind. 1500 m ²	2188	870	939	77
	Rasensportfelder	mind. $30 \times mind$. 60 m	510	182	286	42
		mind. $45 \times mind$. 90 m	1258	565	612	81
		mind. $68 \times \text{mind}$. 105 m	559	248	270	41
	Trockenplätze	kleiner als 20/40 m	1646	864	723	59
		mind. 20/40 m	1645	497	1003	145
	Leichtathletik-	Rundbahnen 300/333/400 m	211	84	112	15
	Anlagen	Gerade Laufbahnen 80 bis 110 m	1218	351	731	136
		Stoss-, Sprung- und Wurfanlagen	5332	2390	2596	346
Turn- und	Turnhallen	kleiner als 10/18 m	511	371	136	4
Sporthallen		mind. 10 × mind. 18 m	807	560	224	23
		mind. 12 × mind. 24 m	1629	816	741	72
		mind. 14 × mind. 26 m	899	213	586	100
		mind. 22 × mind. 44 m	83	8	60	15
		mind. $27 \times mind. 45 m$	45	2	30	13
	Spezialräume	mind. 50 m²	505	217	245	43
	Spezialhallen	Mehrzweckhallen	346	154	164	28
Tennis-	Tennisfelder	im Freien	1719	773	809	137
anlagen		in Hallen	89	15	65	9

Tabelle 1: Statistik 1975 von Sportanlagen

Bodenbeläge

Abgrenzung

Das Belagssystem kann generell in einen Unterbau und eine Belagsschicht, die im folgenden als Bodenbelag bezeichnet wird, aufgeteilt werden.

Der Unterbau hat die Funktion eines Fundaments. Er steht in einer direkten Abhängigkeit vom eigentlichen Bodenbelag und wird deshalb vom Lieferanten oder der Einbaufirma entsprechend vorgeschrieben. Je nach gewähltem Belagssystem oder -typ kann dieser hinsichtlich Material, Aufbau, Dicke und technischer Eigenschaften sehr verschieden sein. In den Schnittzeichnungen wird der Unterbau schematisch einheitlich dargestellt.

Da je nach baulicher und betrieblicher Zweckbestimmung der Anlage wesentliche Unterschiede im technischen Anforderungsprofil bestehen, werden die Bodenbeläge für Freianlagen, Turn- und Sporthallen sowie Tennisanlagen differenziert behandelt. Im gleichen Sinne sind die generellen Auswahlkriterien je nach Sportanlage von unterschiedlichem Stellenwert.

Die nachfolgenden Ausführungen umfassen generell alle Bodenbeläge mit Ausnahme von Natur- und Kunstrasen sowie Tennenflächen.

Grundlagen für die Auswahl

Kriterien

Bei der Auswahl eines Bodenbelages gelangen eine Vielzahl von Kriterien verschiedenster Art zur Anwendung. Diese sind einerseits normativ und technisch eindeutig definiert, bilden anderseits Gegenstand laufender Forschungsprojekte ohne abschliessende wissenschaftliche Aussage oder können überhaupt nur nach subjektiven Vorstellungen eingestuft werden.

Bezogen auf das vielfältige Angebot der verschiedensten Beläge, deren unterschiedliche, manchmal auch polyvalente Zweckbestimmung und die heterogene Palette der Einflussgrössen stellt sich allgemein die Problematik einer Gewichtigung dieser Kriterien nach sachlichen, persönlichen und politischen Gesichtspunkten im Sinne eines Optimierungsverfahrens.

In Tabelle 2 wird versucht, die Kriterien in der Form einer Checkliste systematisch und folgerichtig aufzuzeigen, die im folgenden summarisch erläutert werden:

- Grundlage und Vorgabe für die weitere Beurteilung bilden primär einmal die Rahmenbedingungen hinsichtlich Zweckbestimmung, Einstufung und örtliche Lage der Anlage.
- Die technischen Eigenschaften sind jene belagsspezifischen Beurteilungskriterien, die meist objektiv definiert sind und auch gemessen werden können.
- In ähnlicher Form wie die technischen können auch die sport- und schutzfunktionellen

Eigenschaften konkretisiert werden; ein Problem zeigt sich meist in der konsequenten Zuordnung dieser Kriterien zu den relevanten Rahmenbedingungen.

 Die medizinischen, biomechanischen, ökologischen und psychologischen Aspekte haben in den letzten Jahren durch die vermehrte Grundlagenarbeit einen ihrer Bedeutung angemessenen Stellenwert erlangt, finden aber vielfach durch Sachzwänge zu wenig oder aber zu generelle Interpretation und Aussagen eine übermässige Anerkennung.

 Dass sich Kosten- und Angebotsfaktoren nicht nur auf die erstmaligen Erstellungskosten beschränken, zeigt sich in den meist unverhältnismässigen Auswirkungen längerfristiger Art.

Rahmenbedingungen

Zweckbestimmung

Benützungsart Benützerkategorien Benützungsintensität

Einstufung

Trainings- und/oder Wettkampfanlage Anlage mit nationaler, regionaler oder lokaler

Bedeutung

Örtliche Lage

Klima

Einflüsse

Temperatur

Sonneneinstrahlung (UV-Strahlung)

Niederschläge, Feuchtigkeit

natürlicher biologischer chemischer Art

Technische Eigenschaften

Unterbau

Material Aufbau Dicke Oberfläche

Wärme- und Feuchtigkeitsisolation

Frostsicherheit

Belagstyp und -system

Material Aufbau

Dicke

Wärmeisolation Geräuschentwicklung Erschütterungsausbreitung Temperaturabhängigkeit Wasserdurchlässigkeit

Belastbarkeit und Verschleissverhalten

Ebenheit

Verdichtungsgrad Verbindung und Haftung

Unterschicht

Verschleiss-/Gehschicht

Minimaldicke

Verstärkung von Absprungzonen

Gleichmässigkeit

Nutzbarkeit im nassen/feuchten Zustand Trocknungszeit nach Regen/Feuchtigkeit

Frostsicherheit Bodendurchbiegung

Bodenhülsen und -öffnungen

Spikesfestigkeit Nutzungsdauer Alterung

Sportfunktionelle Eigenschaften

Härte

Bodendurchbiegung

Kraftabbau

Standardverformung

Bodenrückfederung

Schwingverhalten

Flächenelastizität Punktelastizität

Gleitverhalten

Haftreibung Gleitreibung

Ballverhalten

Leistungsverhalten

Medizinische und Biomechanische Aspekte

Sportverletzungen

Sportschäden

Schürfungen, Verstauchungen irreversible Folgen der Belastung

288

vertikal horizontal

Ökologische Aspekte

Umweltbelastung

Verwendung von Schwermetallen (Quecksilber, Blei usw.)

Psychologische Aspekte

Motivation zur Bewegung Sicherheitsgefühl Leistungsfördernde Wirkung Persönliches Wohlbefinden

Kostenfaktoren

Bau- und Betriebskosten

Erstellung Unterhalt

Verzinsung und Amortisation

laufender Unterhalt Reparaturaufwand Reparaturmöglichkeit

Angebotsfaktoren

Hersteller, Lieferant, Einbaufirma

Fachkenntnisse und -personal

Referenzen Geschäftspolitik

Einhaltung von Garantieverpflichtungen

Produkt

Materialdeklaration

Einbaubedingungen

Abnahme des Unterbaus Meteorologische Verhältnisse Material und Einrichtungen

Tabelle 2: Auswahlkriterien für Bodenbeläge von Sportanlagen

Normen und Rechtsgrundlagen

Die gemäss Tabelle 3 vom Deutschen Institut für Normung e.V. herausgegebenen DIN-Normen für Sporthallen und Sportplätze beinhalten eine Reihe allgemeingültiger Normen, die als solche auch anerkannt sind:

Bezeichnung	Ausgabe	Titel
DIN 18032 - Teil 1	Juli 1975	Sporthallen
		Hallen für Turnen und Spiele
		Richtlinien für Planung und Bau
DIN 18032 - Teil 2	Dezember 1978	Sporthallen
		Hallen für Turnen und Spiele
		Prüfung des Kraftabbaus des Bodens
DIN 18035 - Teil 1	August 1976 - Entwurf	Sportplätze
		Planung und Abmessungen
DIN 18035 - Teil 4	Oktober 1974	Sportplätze
		Rasenflächen
		Anforderungen, Pflege, Prüfung
DIN 18035 - Teil 5	Mai 1973	Sportplätze
		Tennenflächen
		Anforderungen, Prüfung, Pflege
DIN 18035 - Teil 6	April 1978	Sportplätze
		Kunststoff-Flächen
		Anforderungen, Prüfung, Pflege

Tabelle 3: DIN-Normen für Sporthallen und Sportplätze

Allgemein bestehen gewissen Unklarheiten über die rechtlich festgehaltenen Pflichten der Vertragspartner, insbesondere die Bestimmungen hinsichtlich Ersatzpflicht, Haftung und

SIA – Schweizerischer Ingenieur- und Architekten-Verein

Schadenersatz:

SIA 118 – Allgemeine Bedingungen für Bauarbeiten, Norm (1977):

Ziffer 1.3 Pflichten der Vertragspartner
1.31 Hauptpflichten und Haftung

Art. 23 ¹Mit dem Abschluss des Werkvertrages werden Bauherr und Unternehmer verpflichtet, den Vertrag gewissenhaft zu erfüllen.

²Für Nichterfüllung und nicht richtige Erfüllung haften die Parteien nach Massgabe der einschlägigen Vertragsbestimmungen und des Gesetzes (Art. 97 ff. OR und Art. 363 ff. OR)

OR - Schweizerisches Obligationenrecht

Allgemeine Bestimmungen

Ausbleiben der Erfüllung

I. Ersatzpflicht des Schuldners Art. 97/ 98 OR

II. Mass der Haftung und Umfang des

Schadenersatzes 99-101 OR

Der	Werkvertrag
-----	-------------

	the statement of the statement of		
_	A. Begriff	Art.	363 OR
_	B. Wirkungen	36	4-371 OR
_	C. Beendigung	36	5-379 OR

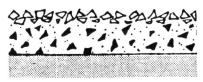
Marktsituation

Differenziert nach Anwendungsgebiet und Angebotsstruktur zeigt Tabelle 5 eine Gesamtübersicht der gegenwärtigen Marktsituation von Bodenbelägen für Sportanlagen:

	Anzahl							
Anwendungsgebiet	Liefe- ranten	Einbau- firmen	Belagsmarken/ Belagstypen/ Belagssysteme					
Freianlagen: Trockenplätze	20	25	30					
Freianlagen: Leichtathletik-Anlagen	20	25	44					
Turn- und Sporthallen	25	16*	70					
Tennisanlagen: Wassergebundene Plätze	25	25	2					
Tennisanlagen: Hart- und Kunststoffplätze	40	70	65					

^{*} Zusätzlich zu den 16 Einbaufirmen werden verschiedene Belagssysteme von Spezialfirmen und Parkettfachgeschäften eingebaut.

Tabelle 5: Marktsituation der Bodenbeläge für Sportanlagen


Auf europäischer und schweizerischer Ebene befassen sich verschiedene Institute und Anstalten mit Teilaspekten der Bodenbeläge generell für Sportanlagen. Tabelle 4 enthält die Anschriften und Arbeitsgebiete. Tabelle 4: Fachinstitute und Materialprüfungsanstalten von Bodenbelägen für Sportanlagen	Prüfungsbericht/Prüfungszeugni	Materialprüfung	Gutachten	Fachpublikationen	Beratungsstelle	Wissenschaftliche Forschung	- Biomechanische Aspekte	- Medizinische Aspekte
Afd. Sportaccomodaties Nederlandse Sport Federatie Burgemeester von Karnebeeklaan 6 S-Gravenhage Niederlande	x	х	x	x	Χ.	x		
Amtliche Forschungs- und Materialprüfungsanstalt für das Bauwesen – «Otto-Graf-Institut» der Universität Stuttgart – FMPA Pfaffenwaldring 4, D-7 <i>Stuttgart 80</i> (Vaihingen) Bundesrepublik Deutschland	x	x	x	X		x		
Bundesanstalt für Materialprüfung – BAM Unter den Eichen 87, D-1 <i>Berlin 45</i> Bundesrepublik Deutschland	x	x				x		
Ministère de la Jeunesse, des Sports et des Loisirs Services de l'Equipement Laboratoire central des sols sportifs 11, avenue du Tremblay, 75012 <i>Paris</i> Frankreich	x	x	x			x		
Österreichisches Institut für Schul- und Sportstättenbau – OEISS Prinz-Eugen-Strasse 12, A-1040 <i>Wien</i> Österreich				X		x		x
Staatliches Materialprüfungsamt Nordrhein-Westfalen D-46 <i>Dortmund</i> Bundesrepublik Deutschland	x	X	įs	-		a.		
Staatliche Versuchsanstalt für Chemie und Kunststoffe Versuchsanstalt für Kunststofftechnik Währingerstrasse 59, A-1090 <i>Wien</i> Österreich	x	x	x			×		s
Eidg. Materialprüfungs- und Versuchsanstalt für Industrie, Bauwesen und Gewerbe – EMPA Überlandstrasse 129 8600 <i>Dübendorf</i>	x	x		s				
Eidg. Technische Hochschule Zürich – ETH Laboratorium für Biomechanik ETH-Zentrum 8092 <i>Zürich</i>	i i			х		х	x	
Eidg. Turn- und Sportschule – ETS Fachstelle Sportstättenbau 2532 <i>Magglingen</i>				x	x			
Institut für Sportbodentechnik – IST Dipl. Ing. H.J. Kolitzus Basadingerstrasse 40, 8253 <i>Diessenhofen</i>	x	×	x	x	х	x		
Tabelle 4: Fachinstitute und Materialprüfungsanstalten von	on B	oden	beläg	en fü	ır Spo	rtanla	agen	

Fachinstitute und Materialprüfungsanstalten

Bodenbeläge für Freianlagen

Belagssysteme

Im Bereich der Kunststoffbeläge für Freianlagen können folgende Belagssysteme unterschieden werden:

Ortseinbau

A Einschichtige Voll-Kunststoffbeläge

Aufbau

Massiv und homogen

Unterschicht:

Polyurethanharz mit 20-30% Füllstoff (schwarzes Gummi-

granulat)

Verschleissschicht:

durchgefärbtes Gummigranulat in Polyurethanschicht einge-

streut (Dicke ca. 3 mm)

Eigenschaften

wasserundurchlässig

spikesfest

sehr widerstandsfähig

Einbau

Ortseinbau in einem oder mehreren Arbeitsgängen

Ortseinbau

vorfabriziert + Ortseinbau

B Zweischichtige Kunststoffbeläge

Aufbau

Sandwichkonstruktion

Unterschicht:

schwarzes Gummigranulat mit Polyurethan verbunden (Orts-

einbau oder vorfabriziert)

Verschleissschicht:

durchgefärbtes Gummigranulat in Polyurethanschicht einge-

streut (Dicke ca. 6 mm)

Eigenschaften wasserundurchlässig

spikesfest

weniger widerstandsfähig als Belagssystem A

Einbau

Einbau kombiniert in zwei Arbeitsgängen mit Ortseinbau

und/oder vorfabrizierten Bahnen

Ortseinbau

vorfabriziert

porös vorfabriziert

C Einschichtige kunststoffgebundene Beläge

Aufbau

Homogen und porös:

farbiges Gummigranulat mit Polyurethan verbunden und ver-

dichtet

Eigenschaften

wasserdurchlässig

Einbau

Ortseinbau in einem Arbeitsgang

D Einschichtige vorfabrizierte kunststoffgebundene Beläge

Aufbau

Homogene vorfabrizierte Bahnen porös oder massiv

Eigenschaften

wasserundurch- oder -durchlässig

Einbau

- streifenverklebt in Bahnen lose verlegt in Bahnen

Bemerkung

Die schwarzen Beläge werden in der Regel als elastische Unter-

schicht für die Belagssysteme B und E verwendet.

vorfabriziert + beschichtet

vorfabriziert + versiegelt

Aufbau

Unterschicht:

schwarzes Gummigranulat mit Polyurethan verbunden in

vorfabrizierten Bahnen

Verschleissschicht:

- Polyurethanbeschichtung mit eingestreutem farbigem

Gummigranulat im Guss- oder Spritzverfahren

– Polyurethanversiegelung aufgerollt oder im

Spritzverfahren

Eigenschaften

beschichtet: wasserundurchlässig

– versiegelt: wasserdurchlässig

Einbau

Einbau kombiniert in zwei Arbeitsgängen mit Ortseinbau und

vorfabrizierten Bahnen

Ortseinbau + beschichtet

Ortseinbau + versiegelt

F Zweischichtige kunststoffgebundene Beläge mit Polyurethanbeschichtung oder -versiegelung

Aufbau

- Unterschicht:

schwarzes Gummigranulat mit Polyurethan verbunden und

verdichtet

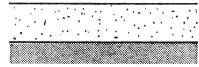
Verschleissschicht:

- Polyurethanbeschichtung mit eingestreutem farbigem

Gummigranulat im Guss- oder Spritzverfahren
Polyurethanversiegelung aufgerollt oder im

Spritzverfahren

Eigenschaften – beschichtet: wasserundurchlässig


versiegelt: wasserdurchlässig

Einbau Ortseinbau in zwei Arbeitsgängen

Bodenbeläge für Turn- und Sporthallen

Belagssysteme

Im Bereich der Bodenbeläge für Turn- und Sporthallen können folgende Belagssysteme unterschieden werden:

Ortseinbau oder vorfabriziert

A Einschichtige Voll-Kunststoffbeläge

Aufbau

Massiv und homogen

(durchschnittliche Dicke 10 mm)

- Unterschicht:

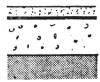
Polyurethanharz fugenlos gegossen

Verschleissschicht:
 Polyurethanversiegelung

Markierung:

matte Spezialfarbe für Polyurethanbeläge

Eigenschaften


sehr widerstandsfähig

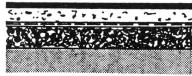
- punktelastisch

- geringer Dämpfungsgrad (Kraftabbau)

Einbau

Ortseinbau in zwei oder mehreren Arbeitsgängen

vorfabriziert + Ortseinbau


vorfabriziert + Ortseinbau

vorfabriziert

vorfabriziert

vorfabriziert

B Zweischichtige Kunststoffbeläge

B 1 Beläge auf Polyurethanbasis

Aufbau

Sandwichkonstruktion:

zweischichtiger Aufbau mit/ohne Druckverteilungsschicht

(durchschnittliche Dicke 10-13 mm)

Unterschicht:

elastischer Polyurethan- oder Verbundschaumstoff oder schwarzes Gummigranulat mit Polyurethan verbunden in

vorfabrizierten Bahnen

mit/ohne Druckverteilungsgewebe

Verschleissschicht:

- Polyurethanharz fugenlos gegossen

Polyurethanversiegelung

Markierung:

matte Spezialfarbe für Polyurethanbeläge

Eigenschaften

unterschiedliche Widerstandsfähigkeit je nach Dicke der Ver-

schleissschicht

kleinflächen- (Druckverteilungsschicht) oder punktelastisch

guter Dämpfungsgrad (Kraftabbau)

Einbau

Einbau kombiniert in zwei bis drei Arbeitsgängen mit Ortseinbau

und vorfabrizierten Bahnen

B 2 Beläge auf PVC-Basis

Aufbau

Sandwichkonstruktion

zweischichtiger Aufbau mit/ohne Druckverteilungsschicht

(durchschnittliche Dicke 10-12 mm)

Unterschicht:

vorfabrizierte elastische Materialien

Korkplatten oder

PVC-Schaumstoffbahnen

mit/ohne Druckverteilungsgewebe

Verschleissschicht:

PVC-Bahnen verklebt oder verspannt mit verschweissten

Fugen

mit/ohne Spezialversiegelung

Markierung:

matte Spezialfarbe für PVC-Beläge

unterschiedliche Widerstandsfähigkeit je nach Belagsqualität

- kleinflächen- (Druckverteilungsschicht) oder punktelastisch

guter Dämpfungsgrad (Kraftabbau);

jedoch abhängig von Belagsaufbau und -qualität

Einbau

Eigenschaften

Einbau mit vorfabrizierten Bahnen oder Platten

C Mehrschichtige Kunststoffbeläge

Beläge in verschiedenen Kombinationsformen von Einzelschichten wie PVC, «Poro-Gummi», Presskork, Korklinoleum, Druckverteilungsschicht usw.

Aufbau

Mehrschichtiger Aufbau mit Druckverteilungsschicht (durchschnittliche Dicke 10-13 mm)

Unterschicht:

 elastische Materialien wie PVC-Schaum, hohlraumreiches Gummigranulat usw.

Druckverteilungsgewebe

Verschleissschicht

PVC-Bahnen mit verschweissten Fugen oder Korklinoleum ausgefugt

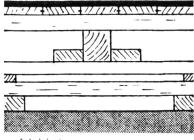
mit/ohne Spezialversiegelung

Markierung:

matte Spezialfarbe für PVC- oder Korklinoleumbeläge

Eigenschaften - unterschiedliche Widerstandsfähigkeit je nach Belagsqualität

kleinflächenelastisch


Dämpfungsgrad (Kraftabbau) abhängig von Belagsaufbau und -qualität

Einbau

Einbau mit vorfabrizierten Bahnen

293

JUGEND UND SPORT 9/1980

vorfabriziert

D Schwingböden und Böden mit ähnlichen Eigenschaften

D 1 Schwingbodenkonstruktion

Aufbau

Holzkonstruktion aus parallel und kreuzweise übereinander liegenden Hölzern (Dicke des Aufbaus zwischen 140 und 160 mm)

Unterschicht:

Holzkonstruktion mit schalldämmender Isolation

Gehschicht:

auf die Unterkonstruktion aufgeklebte Schicht aus Holz,

Korklinoleum, PVC oder Polyurethan

matte Spezialfarbe entsprechend dem für die Gehschicht ge-

wählten Material

Eigenschaften

- gute Widerstandsfähigkeit

flächenelastisch

allgemein guter Dämpfungsgrad (Kraftabbau)

Einbau

Ortseinbau in mehreren Arbeitsgängen

D 2 Elastik-Sportboden

Aufbau

Mehrschichtiger Aufbau

(Dicke des Aufbaus zwischen 40 und 45 mm)

Elastikplatten Rasterplatten

Deckplatten

Gehschicht:

vornehmlich auf PVC-Basis (mit verschweissten Fugen) mit/ ohne Schaumrücken

Markierung:

matte Spezialfarben entsprechend dem für die Gehschicht

gewählten Material

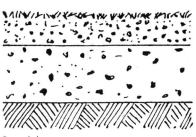
gute Widerstandsfähigkeit

flächenelastisch

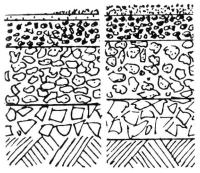
Dämpfungsgrad (Kraftabbau) abhängig von Belagsaufbau

und -qualität

Einbau


Eigenschaften

Ortseinbau in mehreren Arbeitsgängen


Bodenbeläge für Tennisanlagen

Belagstypen und -systeme

Im Bereich der Bodenbeläge für Tennisanlagen können folgende Belagstypen und -systeme unterschieden werden:

Ortseinbau

Ortseinbau

Belagstyp Belagssystem

Freianlagen - Outdoor

Naturbeläge

Naturrasen

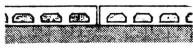
Spezialrasen (klimaabhängig)

Wassergebundene Beläge

Tennenbeläge

Sand-Mergelbeläge

Sandbeläge (ohne Mergel)

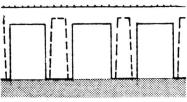

Unterbau: - Industrieschlacke

- Lavaschlacke

Ortseinbau

vorfabriziert

Ortseinbau oder vorfabriziert


Ortseinbau

Ortseinbau

Ortseinbau

vorfabriziert

vorfabriziert

vorfabriziert

vorfabriziert

Ortseinbau oder vorfabriziert

Ortseinbau

Ortseinbau

vorfabriziert + Ortseinbau

Ortseinbau

Beläge auf Asphalt-, Zement- und Tonbasis

Bitumengebundene Beläge

- rot durchgefärbtes Bitumen (Asphaltbeton)
- Kunststoff-Farbversiegelung
- Spachtelmasse auf Acrylbasis

Zementgebundene Beläge - rot durchgefärbtes Bindemittel

- Kunststoff-Farbversiegelung
- Spachtelmasse auf Acrylbasis

Tonplatten

vorfabrizierte Platten

Beläge auf Kunststoffbasis

Vollkunststoffbeläge

- Ortseinbau im Gussverfahren oder mit vorfabrizierten Bahnen
 - Polyurethanharz mit/ohne schwarzem Gummigranulat als Füllstoff
- Oberfläche:
 - genarbt
 - feinstrukturiert «Microsand»
 - Gummigranulat

Kunststoffgebundene Beläge (hohlraumreich)

Ortseinbau im Verdichtungsverfahren

- Polyurethan als Bindemittel
- durchgefärbtes Gummigranulat
- schwarzes Gummigranulat mit Oberflächenversiegelung

Kunststoffroste

Vorfabrizierte Platten mit Montage und Demontage mit unterschiedlicher Oberflächenstruktur (speziell geeignet für die Sommernutzung von Eisbahnen und anderen bestehenden Betonoder Asphaltflächen)

Hallenanlagen - Indoor

Textilbeläge

- Nadelfilz (Nadelfilz/-vlies)
- Nadelfloor gepflatscht
- Feinvelour getuftet

Kunstrasen

Kunstrasen speziell für Tennis

Beläge auf Kunststoffbasis

Vollkunststoffbeläge

- Ortseinbau im Gussverfahren oder mit vorfabrizierten Bahnen
 - Polyurethanharz mit/ohne schwarzem Gummigranulat als Füllstoff
- Oberfläche:
 - genarbt
 - feinstrukturiert «Microsand»
 - Gummigranulat

Kunststoffgebundene Beläge (hohlraumreich)

Ortseinbau im Verdichtungsverfahren

- Polyurethan als Bindemittel
- durchgefärbtes Gummigranulat

«Sandartiger» Kunststoffbelag

- Ortseinbau im Gussverfahren mit eingestreutem Gummigranulat oder vorfabrizierte Bahnen mit Beschichtung im Ortseinbauverfahren
- Oberfläche:

Streuung von losem Gummigranulat (Imitation eines Sandbelages)

Mögliche Belagssysteme Outdoor, die auch in Hallenanlagen eingebaut werden:

- Bitumengebundene Beläge
- Zementgebundene Beläge
- Tonplatten
- Kunststoffroste