Zeitschrift: Jugend und Sport : Fachzeitschrift für Leibesübungen der

Eidgenössischen Turn- und Sportschule Magglingen

Herausgeber: Eidgenössische Turn- und Sportschule Magglingen

Band: 31 (1974)

Heft: 9

Artikel: Der Einfluss verschiedener Ballmassen und Bewegungsarten auf die

Abwurfgeschwindigkeit beim Ballwerfen

Autor: Kunz, H.

DOI: https://doi.org/10.5169/seals-994980

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

FORSCHUNG

TRAINING

Sporttheoretische Beiträge WETTKAMPF Mitteilungen

RECHERCHE

Complément consacré à la théorie du sport

ENTRAINEMENT COMPÉTITION

REDAKTION: FORSCHUNGSINSTITUT DER ETS

RÉDACTION: INSTITUT DE RECHERCHES DE L'EFGS

Nach internationalem wissenschaftlichem Brauch erscheinen Publikationen in dieser 8 Seiten umfassenden Beilage in der Originalund werden durch die Redaktion lediglich mit einer anderssprachigen Zusammenfassung ergänzt.

Selon la coutume internationale dans les sciences, les publications de ce complément de 8 pages se font dans leur langue d'origine. La rédaction ajoute uniquement un bref résumé dans l'autre langue.

Aus dem Laboratorium für Biomechanik der ETH Zürich (Leitung: Prof. Dr. J. Wartenweiler)

Der Einfluss verschiedener Ballmassen und Bewegungsarten auf die Abwurfgeschwindigkeit beim Ballwerfen

H. Kunz

1. Problemstellung

Beim Ball- und Speerwerfen ist die Abwurfgeschwindigkeit, die dem Wurfobjekt erteilt wird, der wichtigste Faktor für eine gute Leistung. Bei gegebenem Abwurfwinkel und gegebenem Anstellwinkel des Speeres ist die Wurfweite von der Abwurfgeschwindigkeit des Speeres abhängig.

Von verschiedenen Autoren¹, ², ⁴, ⁶ und ⁷ wurde der Zusammenhang zwischen der maximalen statischen Muskelkraft und der Bewegungsgeschwindigkeit untersucht. Von Hochmuth³ und Marhold⁵ wurden grundsätzliche Überlegungen über den Einfluss der Ausholbewegung auf die Geschwindigkeit gemacht.

Toyoshima und Miashita⁸ untersuchten die Beziehung zwischen der Kraft und der Geschwindigkeit beim Werfen.

In der vorliegenden Arbeit wird bei einem Standwurf die Abwurfgeschwindigkeit beim Ballwerfen in Abhängigkeit der Ballmasse und der Bewegungsart untersucht.

2. Methode

2.1. Symbole und Begriffe

Symbol	ymbol Begriff							
S _{Ha}	Weglänge der Hand in positiver Bewegungsrichtung bis zum Abwurf	m						
S _{Hü}	Weglänge der Hüfte in positiver Bewe- gungsrichtung bis zum Abwurf	·m						
V_{Ha}	Maximale Geschwindigkeit der Hand beim Abwurf	m/sec						
$V_{H\ddot{u}}$	Maximale Geschwindigkeit der Hüfte	m/sec						
$V_{H\ddot{u}A}$	Geschwindigkeit der Hüfte beim Abwurf	m/sec						
M_{Ba}	Ballmasse	g						

Tabelle 1: Symbole und Begriffe.

2.2. Versuchsaufbau

In Fig. 1 ist der Versuchsaufbau dargestellt.

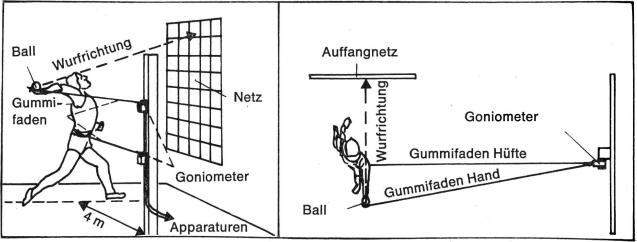


Fig. 1: Versuchsaufbau

Mit Hilfe von 2 Gummifadengoniometern¹⁰ wurde der Weg und die Geschwindigkeit (Differentiation) der Hand und der Hüfte gemessen. Die Goniometer waren - entsprechend der mittleren Bewegungsrichtung - unter einem Winkel von 30 Grad für die Hand und 10 Grad für die Hüfte montiert.

Der Gummifaden der Hand war am Zeigfinger befestigt, der Gummifaden der Hüfte war an einem Hüftgürtel montiert.

Der rechte Fuss stand auf einer Marke, die 4 m von der Drehachse des Goniometers entfernt war.

2.3. Testbewegungen

Die Testbewegungen sind in Tabelle 2 zusammengestellt.

. V	Ballmasse M _{Ba}					
Bewegungsart	0	80 g	400 g	800 g		
Wurf aus Ruhestellung mit gestrecktem Arm	Αo	Аво	A400	Авоо		
Wurf mit Ausholbewegung	Во	B80	B400	Ввоо		
Symbole	0	•	\triangle			

Tabelle 2: Zusammenstellung der Testbewegungen.

Jede Testbewegung wurde 3mal gemessen. Das beste Resultat wurde ausgewertet.

Die Versuchspersonen hatten die Aufgabe jeden Wurf mit maximalem Einsatz auszuführen.

2.4. Versuchspersonen (VP)

Für die Untersuchungen stellten sich 20 Versuchspersonen zur Verfügung.

Aufgrund der persönlichen Bestleistungen im Speerwerfen wurden 2 Gruppen eingeteilt:

Testgruppe 1: Gute Werfer, Bestleistungen zwischen 55 und 65 m.

Testgruppe 2: Schlechte Werfer, Bestleistungen zwischen 30 und 52 m.

2.5. Elektronische Messeinrichtungen

Die Winkelsignale α und die durch elektronische Differentiation gewonnenen Signale der Winkelgeschwindigkeit ω wurden mit Hilfe eines UV-Schreibers analog aufgezeichnet.

Die Weglänge (S_{Ha} , $S_{H\ddot{u}}$) wurde aus der Beziehung

$$S = \frac{2r \cdot \pi \cdot \alpha}{360} \text{ berechnet.}$$

Die tangentiale Geschwindigkeit wurde aus der Beziehung $\mathbf{V} = \boldsymbol{\omega} \cdot \mathbf{r} \quad \text{berechnet}.$

In Fig. 2 sind die Weg- und Geschwindigkeitsdiagramme der Hand und der Hüfte aufgezeichnet.

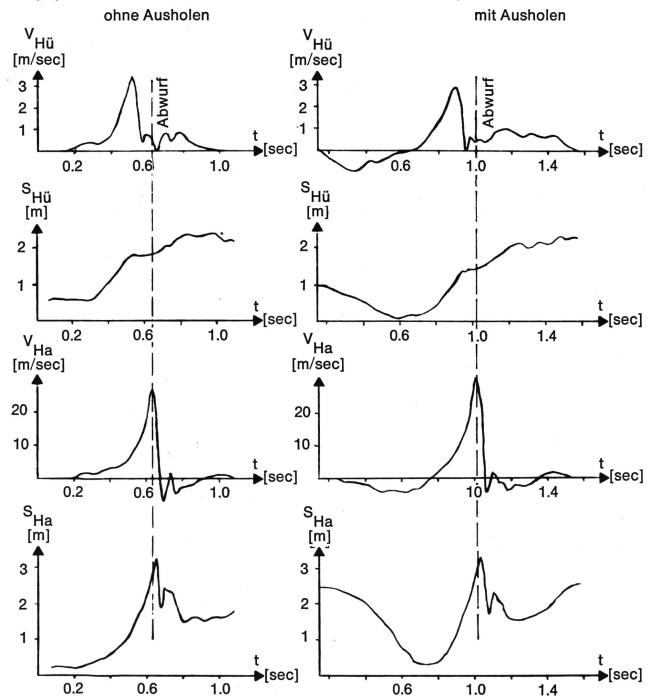


Fig. 2: Beispiel eines Weg- und Geschwindigkeitsdiagrammes der Hand und der Hüfte (guter Werfer, Ballmasse 80 g).

2.6. Relative Fehler der Messgrössen

Die relativen Fehler der Messgrössen sind in Tabelle 3 zusammengestellt.

Messgrössen	Relativer Fehler				
Elektronische Geräte	1%				
UV-Schreiber	2%				
Ablesefehler	2%				
Fehler in der Ausführung der Bewegung	10%				

Tabelle 3: Relative Fehler der Messgrössen

3. Resultate und Diskussion

3.1. Die Beziehung zwischen der persönlichen Bestleistung im Speerwerfen und der Geschwindigkeit der Hand beim Ahwurf

Die Untersuchungen wurden im Winter im Labor für Biomechanik durchgeführt (nur Standwurf möglich). Da das Ballwerfen aus Stand keine leichtathletische Disziplin ist, möchte man gerne wissen, ob die gewonnenen Resultate auch einen Aussagewert für das Speerwerfen haben.

Aus Fig. 3 wird ersichtlich, dass zwischen der persönlichen Bestleistung im Speerwerfen und der Geschwindigkeit der Hand beim Abwurf ein linearer Zusammenhang besteht. Die guten Werfer (Testgruppe 1) erreichen höhere Geschwindigkeitswerte beim Abwurf als die schlechten Werfer.

Der lineare Korrelationskoeffizient zwischen $V_{\mbox{\scriptsize Ha}}$ und der Speerbestleistung wurde zu 0.84 errechnet.

Bestleistung Speerwerfen

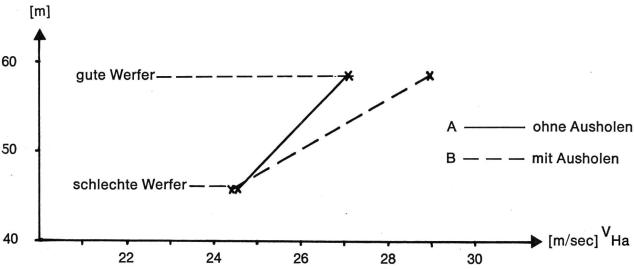


Fig. 3: Beziehung zwischen der persönlichen Bestleistung im Speerwerfen und der Geschwindigkeit der Hand beim Abwurf (Mittelw.)

Fig. 3 zeigt weiter, dass die guten Speerwerfer die Ausholbewegung besser ausnützen können.

3.2. Der Einfluss der Ballmasse auf die Geschwindigkeit der Hand beim Abwurf Die Geschwindigkeit der Hand beim Abwurf nimmt mit zunehmender Ballmasse ab

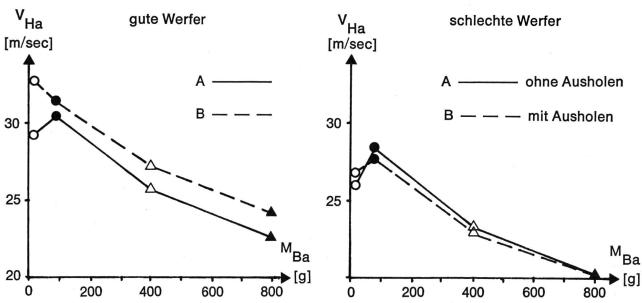


Fig. 4: Der Einfluss der Ballmasse auf die Geschwindigkeit der Hand beim Abwurf.

Interessant ist die Feststellung, dass bei den schlechten Werfern die Geschwindigkeitswerte ohne Ballmasse niedriger sind als mit einer Ballmasse von 80 g. Bei den guten Werfern (Bewegung A, ohne Ausholen) kann man dasselbe beobachten. Mögliche Gründe dafür sind mangelnder Einsatz und eine schlechtere Bewegungsführung (kürzerer Weg).

Die guten Werfer erreichen durchwegs höhere Geschwindigkeitswerte als die schlechten Werfer. Auch sind ihre Resultate mit der Ausholbewegung besser als mit der Bewegung aus einer Ruhestellung mit gestrecktem Arm. Bei den schlechten Werfern sind die Geschwindigkeitswerte beider Bewegungsarten ungefähr gleich.

3.3. Die Beziehung zwischen dem Weg der Hand, der Geschwindigkeit der Hand und der Ballmasse

Aus Fig. 5 wird ersichtlich, dass bei beiden Testgruppen die Abwurfgeschwindigkeit V_{Ha} mit zunehmender Weglänge S_{Ha} grösser wird.

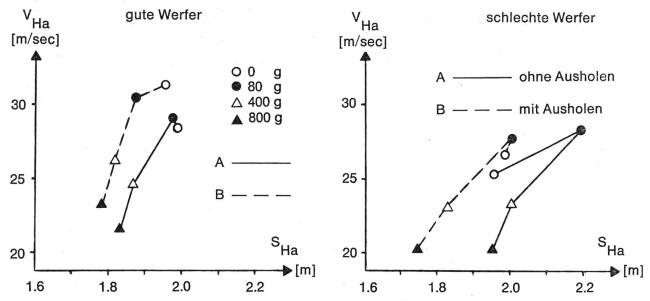


Fig. 5: Die Beziehung zwischen dem Weg der Hand und der Geschwindigkeit der Hand beim Abwurf.

Während die Versuchspersonen der Testgruppe 2 (schlechte Werfer) mit der Bewegung B auf einem kürzeren Weg die gleiche Abwurfgeschwindigkeit erreichen wie mit der Bewegung A, sind bei der Testgruppe 1 (gute Werfer) die Geschwindigkeitswerte der Hand mit der Bewegung B sogar grösser (kleinerer Weg, höhere Geschwindigkeit). Dies weist auf den grossen Vorteil der Ausholbewegung hin.

Aus Fig. 6 wird ersichtlich, dass die Weglänge der Hand mit zunehmender Ballmarse kleiner wird.

Fig. 6 zeigt nicht nus dass die Weglänge der Hand bei der Bewegung A kleiner ist als bei der Bewegung B. Man sieht auch, dass die Werfer der Testgruppe 2 den Ball auf einer längeren Strecke beschleunigen als die Werfer der Testgruppe 1 (vor allem bei der Testbewegung A). Auf diesen Punkt wird im nächsten Kapitel noch näher eingegangen. Die Differenz in der Weglänge zwischen den Testbewegungen A und B ist bei der Testgruppe 2 grösser als bei der Testgruppe 1.

Man kann daraus schliessen, dass die schlechten Werfer den Wurf mit der Ausholbewegung weniger beherrschen, und deshalb mit dieser Bewegung keine besseren Resultate erzielen.

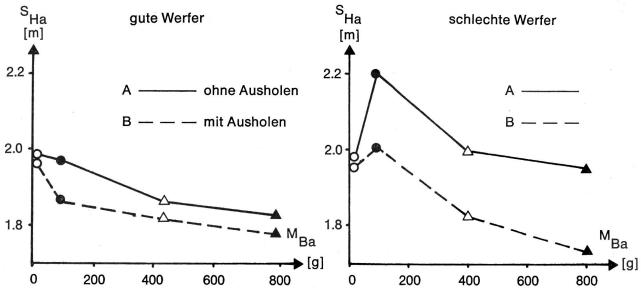


Fig. 6: Die Beziehung zwischen dem Weg der Hand und der Ballmasse.

3.4. Ursachen und Auswirkungen der Bewegungsunterschiede zwischen den 2 Testgruppen

Es wurde festgestellt, dass die Versuchspersonen der Testgruppe 1 höhere Abwurfgeschwindigkeiten erreichen.

Diese besseren Resultate resultieren zum Teil aus den besseren konditionellen Voraussetzungen (zum Beispiel Schnellkraft usw.) und zum Teil aus einer besseren Technik.

Auf die konditionellen Voraussetzungen wird nicht näher eingegangen. Unterschiede in der Technik zwischen den beiden Testgruppen:

Fig. 7 zeigt, dass die guten Werfer höhere maximale Hüftgeschwindigkeiten erreichen als die schlechten Werfer.

Dagegen sind ihre Hüftgeschwindigkeiten im Moment des Abwurfes wesentlich kleiner. Die Hüftbewegung wird im Moment des Abwurfes durch ein intensives «Stemmen» des vorderen Beines abgebremst (unterschiedliche Abwurfstellung). Dies hat zur Folge, dass die Weglänge der Hüfte und der Hand bei den guten Werfern kleiner ist (Fig. 6).

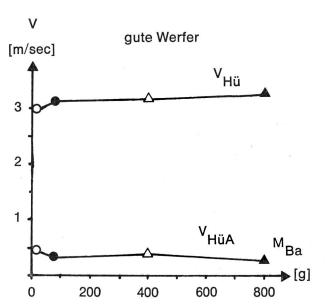
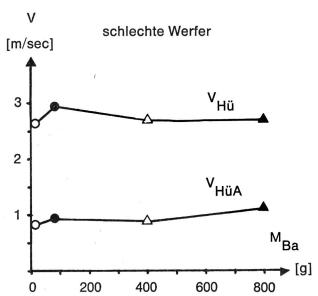



Fig. 7: Bewegungsunterschiede zwischen den 2 Testgruppen (Bewegung A).

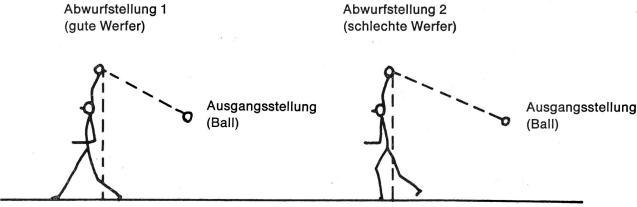


Fig. 8: Unterschiedliche Abwurfstellungen.

Bei der Abwurfstellung 2 ist der Weg der Hand wohl länger als bei der Abwurfstellung 1. Eine gute Bogenspannung ist aber nicht möglich, da das hintere Bein den Bodenkontakt zu früh verliert.

Die Weglänge der Hand beim Wurf muss nicht maximal, sondern den individuellen Fähigkeiten entsprechend optimal sein. Bei beiden Testgruppen ist die maximale Hüftgeschwindigkeit mit und ohne Ausholbewegung ungefähr gleich. Das heisst: Der Vorteil der Ausholbewegung auf die Geschwindigkeit beim Abwurf resultiert aus der durch die Ausholbewegung bedingten grösseren Spannung im Oberkörper und im Arm.

Zusammenfassung

Die Untersuchungen über das Ballwerfen aus Stand zeigten folgende wichtigen Resultate:

- Es besteht eine gute Korrelation zwischen der persönlichen Bestleistung im Speerwerfen und der Handgeschwindigkeit beim Abwurf (r = 0.84).
- Die Abwurfgeschwindigkeit und die Weglänge der Hand beim Wurf nehmen mit zunehmender Ballmasse ab.
- Die guten Werfer erzielen mit der Ausholbewegung bis zu 10 Prozent höhere Abwurfgeschwindigkeiten als mit der Bewegung aus einer Ruhestellung mit gestrecktem Arm.

Folgerungen:

- Die Erkenntnisse aus den Ballwurfuntersuchungen k\u00f6nnen auch auf das Speerwerfen angewandt werden.
- Mit einer Ausholbewegung sollten bessere Speerwurfresultate möglich sein. Vermutlich entstehen aber anfängliche Schwierigkeiten mit der Speerführung.

Tabelle: Zusammenstellung der Mittelwerte

Testgruppe 1: Mittelwert der Speer-Bestleistungen: 58.90 m

	ohne Ausholen (A)					mit Ausholen (B)						
Symbol	S _{Hü}	V _{Hü}	V _{HüA}	S _{Ha}	V_{Ha}	S _{Hü}	V _{Hü}	V _{Hü} A	S _{Ha}	V _{Ha}		
Einheit	m	m/sec	m/sec	m	m/sec	m	m/sec	m/sec	m	m/sec		
	0.62	3.0	0.42	1.98	29.4	0.54	3.1	0.50	1.96	32.6		
	0.54	3.1	0.26	1.97	30.4	0.53	3.1	0.32	1.87	31.6		
	0.59	3.2	0.40	1.86	25.8	0.55	3.3	0.42	1.81	27.3		
	0.59	3.3	0.34	1.83	22.8	0.59	3.3	0.26	1.78	24.4		
	•	Symbol S _{Hü} Einheit m 0.62 0.54 0.59	Symbol S _{Hü} V _{Hü} Einheit m m/sec 0.62 3.0 0.54 3.1 0.59 3.2	Symbol S _{Hü} V _{Hü} V _{HüA} Einheit m m/sec m/sec 0.62 3.0 0.42 0.54 3.1 0.26 0.59 3.2 0.40	Symbol SHü VHÜ VHÜA SHA Einheit m m/sec m/sec m 0.62 3.0 0.42 1.98 0.54 3.1 0.26 1.97 0.59 3.2 0.40 1.86	Symbol SHü VHÜ VHÜA SHA VHA Einheit m m/sec m/sec m m/sec 0.62 3.0 0.42 1.98 29.4 0.54 3.1 0.26 1.97 30.4 0.59 3.2 0.40 1.86 25.8	Symbol SHü VHÜ VHÜA SHA VHA SHÜ Einheit m m/sec m m/sec m 0.62 3.0 0.42 1.98 29.4 0.54 0.54 3.1 0.26 1.97 30.4 0.53 0.59 3.2 0.40 1.86 25.8 0.55	Symbol SHü VHÜ VHÜA SHA VHA SHÜ VHÜ Einheit m m/sec m m/sec m m/sec 0.62 3.0 0.42 1.98 29.4 0.54 3.1 0.54 3.1 0.26 1.97 30.4 0.53 3.1 0.59 3.2 0.40 1.86 25.8 0.55 3.3	Symbol SHü VHÜ VHÜA SHA VHA SHÜ VHÜ VHÜA Einheit m m/sec m m/sec m m/sec m/sec 0.62 3.0 0.42 1.98 29.4 0.54 3.1 0.50 0.54 3.1 0.26 1.97 30.4 0.53 3.1 0.32 0.59 3.2 0.40 1.86 25.8 0.55 3.3 0.42	Symbol S _{Hü} V _{Hü} V _{HüA} S _{Ha} V _{Ha} S _{Hü} V _{Hü} V _{HüA} S _{Ha} Einheit m m/sec m m/sec m m/sec m 0.62 3.0 0.42 1.98 29.4 0.54 3.1 0.50 1.96 0.54 3.1 0.26 1.97 30.4 0.53 3.1 0.32 1.87 0.59 3.2 0.40 1.86 25.8 0.55 3.3 0.42 1.81		

Testgruppe 2: Mittelwert der Speer-Bestleistungen: 45.70 m

0	0.65	2.7	0.86	1.95	25.9	0.60	2.9	1.02	1.98	26.7
80 g	0.66	3.0	0.96	2.20	28.6	0.57	2.8	0.68	2.00	27.8
400 g	0.62	2.8	0.90	2.00	23.3	0.57	2.7	1.12	1.82	23.1
800 g	0.65	2.8	1.10	1.94	20.2	0.57	2.8	1.10	1.73	20.2

De l'influence de masses des balles et de types de mouvements différents sur la vitesse de départ du jet lors de lancers de balle (résumé)

L'étude du lancer de balle sans élan donne les résultats importants suivants:

- Il existe une bonne corrélation entre la meilleure performance personnelle au lancer du javelot et la vitesse de la main lors du lancer (= 0.84).
- La vitesse du lancer et la longueur de la trajectoire de la main diminuent en fonction de l'augmentation de la masse de la balle.
- Les bons lanceurs arrivent à des résultats de 10 pour cent supérieurs avec un mouvement de préparation qu'à partir d'une position de repos, bras tendu.

Conclusions

- Les enseignements tirés de l'étude du lancer de la balle peuvent être utilisés dans le lancer du javelot.
- Avec un mouvement de préparation, on devrait pouvoir obtenir de meilleurs résultats au lancer du javelot. Il pourrait pourtant y avoir au début des difficultés dans le contrôle directionnel du javelot.

Literaturverzeichnis

- G. Bergmaier, P. Neukomm: Zur Korrelation zwischen statischer Muskelkraft und Bewegungsgeschwindigkeit. 4. Seminar on Biomechanics, Rom 1971.
- ² J. Brozek, E. Simmonson, A. Keys: A test of speed of leg and arm movements. University of Minnesota, Minneapolis, 1952.
- ³ G. Hochmuth: Biomechanik sportlicher Bewegungen. Sportverlag Berlin, 1967.
- 4 Ch. Larson, R. Nelson: An Analysis of strength, speed and acceleration of ellbow flexion. Archives of Physical Medicine and Rehabilitation. May 1969.
- G. Marhold: Biomechanische Untersuchungen sportlicher Hochsprünge. Inauguraldissertation Sporthochschule Leipzig, 1963.
- ⁶ R. Nelson, R, Fahrney: Relationship between strength and speed of ellbow flexion. Research Quarterly, Dez. 1965.
- ⁷ L. Smith: Spezificity of individual differences of relationship between forearm strength and speed of forearm flexion. Research Quarterly, March 1969.
- 8 S. Toyoshima, M. Miyashita: Force-velocity relation in throwing Research Quarterly, Vol. 44 No. 1.
- ⁹ H. Kunz: Der Einfluss verschiedener Belastungen und Bewegungsarten auf die Bewegungsgeschwindigkeit beim Unterarmbeugen. Biomechanik Symposium Budapest, April 1973.
- 10 P.A. Neukomm: Goniometry. Biomechanik Symposium Budapest, April 1973.