Zeitschrift: Jugend und Sport : Fachzeitschrift für Leibesübungen der

Eidgenössischen Turn- und Sportschule Magglingen

Herausgeber: Eidgenössische Turn- und Sportschule Magglingen

Band: 30 (1973)

Heft: 7

Artikel: Der Einfluss verschiedener Belastungen und Bewegungsarten auf die

Bewegungsgeschwindigkeit beim Unterarmbeugen

Autor: Kunz, Hansruedi

DOI: https://doi.org/10.5169/seals-994846

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

FORSCHUNG

TRAINING

Sporttheoretische Beiträge **WETTKAMPF** Mitteilungen

RECHERCHE

Complément consacré théorie du sport

ENTRAÎNEMENT COMPÉTITION

REDAKTION: FORSCHUNGSINSTITUT DER ETS

RÉDACTION: INSTITUT DE RECHERCHES DE L'EFGS

Nach internationalem wissenschaftlichem Brauch erscheinen Publikationen in dieser 8 Seiten umfassenden Beilage in der Originalsprache und werden durch die Redaktion lediglich mit einer anderssprachigen Zusammenfassung ergänzt.

Selon la coutume internationale dans les sciences, les publications de ce complément de 8 pages se font dans leur langue d'origine. La rédaction ajoute uniquement un bref résumé dans l'autre langue.

Aus dem Laboratorium für Biomechanik der ETH Zürich

Der Einfluss verschiedener Belastungen und Bewegungsarten auf die Bewegungsgeschwindigkeit beim Unterarmbeugen

Von Hansruedi Kunz

1. Problemstellung

Bei vielen sportlichen Bewegungen spielt die Geschwindigkeit, die einer Masse erteilt wird, eine wichtige Rolle. So ist zum Beispiel beim Kugelstossen die Wurfweite (bei gegebenem Abwurfwinkel und gegebener Abwurfhöhe) nur von der Abwurfgeschwindigkeit der Kugel abhängig.

Von verschiedenen Autoren 1, 2, 4, 6, 7 wurde der Zusammenhang zwischen der maximalen statischen Muskelkraft und der Bewegungsgeschwindigkeit untersucht.

Dabei zeigte sich keine eindeutige Abhängigkeit der Bewegungsgeschwindigkeit von der statischen Maximalkraft des Muskels.

Von Hochmuth ³ und Marhold ⁵ wurden grundsätzliche Überlegungen über den Einfluss der Ausholbewegung auf die Geschwindigkeit gemacht.

Die beiden Biomechaniker fanden eine Erklärung dafür, warum beim beidbeinigen Standsprung senkrecht in die Höhe mit einer Ausholbewegung (Arme und Beine) eine grössere Höhe erreicht werden kann.

In der folgenden Arbeit soll der praktische Einfluss verschiedener Bewegungsarten (zum Beispiel Ausholbewegung) auf die Bewegungsgeschwindigkeit untersucht werden.

Gleichzeitig hofft man Hinweise auf einen eventuellen Einfluss des Gewichtstrainings auf die Bewegungsgeschwindigkeit zu erhalten.

2. Methode

2.1 Symbole und Begriffe

Symbol	Begriff	Einheit
α	Winkel	Grad
$\wedge \alpha$	Winkel, der in positiver Bewegungsrichtun	a
	bis zum Erreichen von V _{max} überstrichen wird	
ω.	Winkelgeschwindigkeit	
		1/sec
$^{\omega}$ max	maximale Winkelgeschwindigkeit mit Aus-	
	holen bei gegebener Belastung	1/sec
V	Tangentialgeschwindigkeit der Hand	m/sec
V	maximale Tangentialgeschwindigkeit mit	,
v max		/
	Ausholen bei gegebener Belastung	m/sec
m_a	mittlerer Fehler des Mittelwertes des Win-	
	kels	Grad
m_{ω}	mittlerer Fehler des Mittelwertes der Win-	
$\cdots \omega$	kelgeschwindigkeit	1/sec
		1/360
m _V	mittlerer Fehler des Mittelwertes der Tan-	
	gentialgeschwindigkeit	m/sec
F	Kraft	kp
S, S ₁ , S ₂	Weg	m
o, o ₁ , o ₂	1109	

Tabelle 1: Zusammenstellung der verwendeten Begriffe

2.2 Versuchsaufbau

In Figur 1 ist der Versuchsaufbau dargestellt.

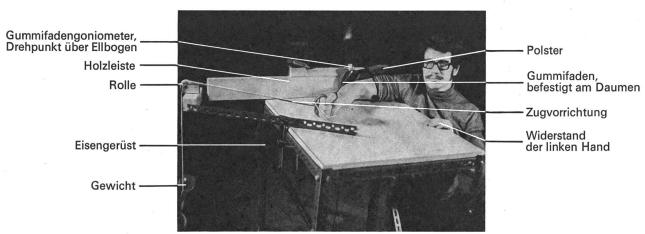


Fig. 1: Versuchsaufbau

Es wurde die maximale Geschwindigkeit beim Unterarmbeugen gemessen. Der Oberarm war dabei fixiert. Durch die Wahl der horizontalen Bewegung konnte der störende Einfluss der Erdanziehung in der Bewegungsrichtung eliminiert werden. Die Position des Gummifadengoniometers ist in Figur 2 dar-

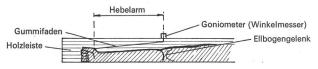


Fig. 2: Position des Gummifadengoniometers (Winkelmesser)

2.3 Testbewegungen

Vor Versuchsbeginn wurde von jeder Versuchsperson die maximale Belastung bestimmt, bei der das Unterarmbeugen noch durchgeführt werden konnte.

Die verschiedenen Testbewegungen sind in Tabelle 2 zusammengestellt.

	ohne Aushole	mit Ausholen		
Belastung in % der max. Belastung	aus ent- spannter Ruhestel- lung	mit Vor- spannung ohne Wi- derstand (Verkramp- fung)	mit Vor- spannung mit Wider- stand (Partner)	mit Ausholen
0 15 30	A ₀ A ₁₅ A ₃₀	B ₀ B ₁₅ B ₃₀	C ₀	D ₀ D ₁₅ D ₃₀

Tabelle 2: Zusammenstellung der Testbewegungen Jede Testbewegung wurde 6mal gemessen.

2.4 Versuchspersonen (VP)

Für die Untersuchungen stellten sich 20 VP zur Verfügung. Von diesen betrieben 10 Personen regelmässig ein leichtathletisches Gewichtstraining (Testgruppe 1, Durchschnittsalter 26,5 Jahre).

Die andern 10 Versuchspersonen betrieben kein Gewichtstraining (Testgruppe 2, Durchschnittsalter 30 Jahre).

2.5 Elektronische Messeinrichtungen

Das Winkelsignal und das durch elektronische Differentiation gewonnene Signal der Winkelgeschwindigkeit wurde mit Hilfe eines UV-Schreibers kalibriert auf UV-Papier abgebildet.

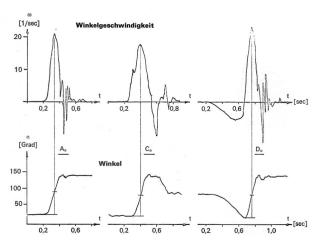


Fig. 3: Winkel- und Winkelgeschwindigkeitskurven bei 3 verschiedenen Bewegungsarten (Bo ist ähnlich Ao).

Die tangentiale Geschwindigkeit konnte aus der Beziehung $V=\omega$, r berechnet werden.

2.6 Relative Fehler der Messgrössen

Die relativen Fehler der Messgrössen sind in Tabelle 3 zusammengestellt.

Messgrössen	relative Fehler
elektronische Geräte	1%
UV Schreiber	2%
Ablesefehler	2%
Fehler in der Ausführung der Bewegung totaler Fehler des Winkels und der Winkel-	5%
geschwindigkeit	10%
Bestimmen der Belastung (%)	2%
Bestimmen der max. Belastung	2%
totaler Fehler der Belastung	4%

Tabelle 3: Zustammenstellung der relativen Fehler der Messgrössen

3. Resultate und Diskussion

Die Resultate sind in der Tabelle 4 im Anhang zusammengestellt.

3.1 Der Einfluss der Belastung auf die Tangentialgeschwindigkeit

In Figur 4 ist der Einfluss der Belastung auf die Tangentialgeschwindigkeit bei den verschiedenen Testbewegungen aufgezeichnet.

Wie aus der praktischen Erfahrung zu erwarten war, nimmt die maximale Geschwindigkeit mit zunehmender Belastung ab.

Dabei ist der Kurvenverlauf nicht linear, da bei grösserer Belastung mehr Muskeleinheiten aktiviert werden.

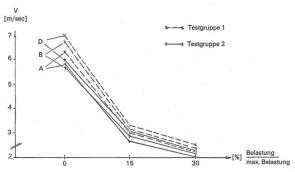


Fig. 4: Einfluss der Belastung auf die Tangentialgeschwindigkeit

Die Versuchspersonen der Testgruppe 1 (mit Gewichtstraining) erreichen bei allen Testbewegungen Geschwindigkeitswerte, die etwa 10 Prozent höher sind als die entsprechenden Werte der Testgruppe 2 (ohne Gewichtstraining). Mögliche Gründe für diesen Unterschied könnten das Gewichtstraining und / oder die Tatsache sein, dass die Testgruppe 1 an solche schnelle Bewegungen gewöhnt ist.

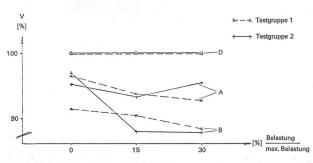


Fig. 5: Einfluss der Belastung und der Bewegungsarten auf die Tangentialgeschwindigkeit

Aus Figur 5 ist ersichtlich, dass bei der Testgruppe 1 der Vorteil der Ausholbewegung D gegenüber den Bewegungen A und B mit zunehmender Belastung grösser wird. (Der Abstand von A und B gegenüber D nimmt mit zunehmender Belastung zu.)

Bei der Testgruppe 2 kann nicht dieselbe Tendenz festgestellt werden. Dies rührt vermutlich daher, dass sich bei dieser Gruppe motorische Schwierigkeiten bemerkbar machen, was seinen Ausdruck in einer grossen Streuung der Einzelwerte findet.

3.2 Einfluss der Bewegungsarten auf die Tangentialgeschwindigkeit

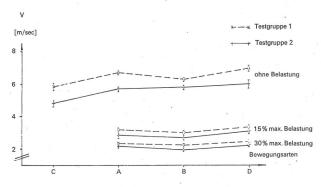


Fig. 6: Einfluss der Bewegungsarten auf die Tangentialgeschwindigkeit

Bei allen Belastungen werden die höchsten Geschwindigkeitswerte mit der Ausholbewegung erreicht. Ein Grund dafür dürfte darin liegen, dass im Umkehrpunkt die Muskulatur durch die Bremsbewegung gespannt ist. Das heisst: Die Bewegung beginnt mit einer grossen Anfangskraft.

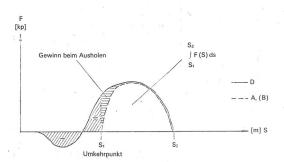


Fig. 7: Kraft-/Weg-Diagramm für Bewegungen mit und ohne Ausholen

Wie bei der Ausholbewegung (D) ist auch bei der Bewegung mit Verkrampfung (B) der Agonist am Anfang der Bewegung angespannt. Die maximalen Geschwindigkeitswerte sind jedoch kleiner als bei den Bewegungen A und D. Ein Grund dafür könnte darin liegen, dass die Entspannung des Antagonisten Zeit braucht, was sich in einer Bremswirkung bemerkbar macht. (Im Unterschied zu den Bewegungen A und D sind bei der Bewegung B in der Ausgangsstellung sowohl der Agonist als auch der Antagonist kontrahiert [Verkrampfung].)

3.3 Zusammenhang zwischen der maximalen Geschwindigkeit und dem Winkel $\triangle \alpha$ bei den verschiedenen Testbewegungen.

Aus Figur 7 folgt, dass der positive Beschleunigungsweg beim Fehlen einer Anfangskraft am grössten sein muss (bei gleicher Endgeschwindigkeit).

Am Anfang der Bewegung (A) nimmt die Geschwindigkeit nur langsam zu (kleine Beschleunigung), das heisst man benötigt mehr Zeit und einen längeren Weg um die gleiche Endgeschwindigkeit wie bei der Bewegung D zu erreichen.

Dieser Zusammenhang ist in Figur 8 und 9 am Beispiel der drei Testbewegungen A, B und D ohne Belastung dargestellt.

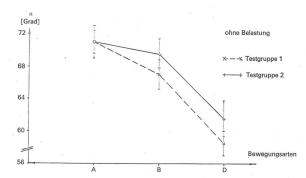


Fig. 8: Länge des positiven Beschleunigungsweges bei den verschiedenen Testbewegungen

Die Anfangskräfte sind bei der Testbewegung A null und bei D am grössten. Die in positiver Bewegungsrichtung bis zum Erreichen der Maximalgeschwindigkeit überstrichenen Winkel sind bei der Testbewegung A am grössten und bei D am kleinsten. Es zeigt sich dabei, dass die trainierte Testgruppe 1 diese Anfangskraft vor allem bei der Ausholbewegung besser ausnützen kann.

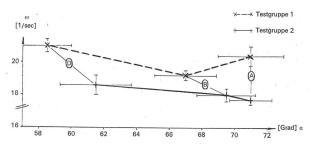


Fig. 9: Zusammenhang zwischen der maximalen Geschwindigkeit und dem Winkel $\triangle a$ bei den verschiedenen Testbewegungen

Dabei zeigt Figur 9 deutlich, dass die maximale Geschwindigkeit bei der Ausholbewegung am grössten ist.

Das heisst: Man erreicht im Rahmen unserer Testbewegungen die höchsten Geschwindigkeiten mit dem kleinsten Beschleunigungsweg. Dies weist wiederum auf den grossen Vorteil der Ausholbewegung hin.

3.4 Der Einfluss des Gewichtstrainings auf die Geschwindigkeit

Bei einem Vergleich der Resultate der beiden Testgruppen fällt auf, dass die trainierte Testgruppe 1 durchwegs höhere Maximalgeschwindigkeiten erreicht. Ein möglicher Grund dafür könnte sein, dass die Versuchspersonen an ähnliche Bewegungen gewöhnt sind, ein anderer, dass sie bedingt durch ihr Training die für das Armbeugen massgebende Muskulatur schneller kontrahieren können.

Die Versuchspersonen der Testgruppe 1 betrieben hauptsächlich ein leichtathletisches Gewichtstraining. In diesem Zusammenhang muss jedoch darauf hingewiesen werden, dass durch spezielles Training andere Resultate erzielt werden können. Vorversuche wiesen darauf hin, dass Gewichtheber, in deren Training keine Ausholbewegungen vorkommen, aus diesen Ausholbewegungen keinen Vorteil ziehen können.

Zusammenfassung

Es wurde anhand einfacher Bewegungen (Armbeugen) der Einfluss verschiedener Bewegungsarten (zum Beispiel Ausholbewegung) auf die Bewegungsgeschwindigkeit untersucht.

Es zeigte sich dabei, dass die höchsten Geschwindigkeitswerte mit der Ausholbewegung erreicht werden, dass die Beschleunigungswerte bei der Ausholbewegung am grössten sind, und dass der Vorteil der Ausholbewegung mit zunehmender Belastung grösser wird.

Die Versuchspersonen, die regelmässig ein leichtathletisches Gewichtstraining betrieben, erreichten durchwegs höhere Geschwindigkeitswerte.

Literaturverzeichnis

- Bergmaier, G., Neukomm P.: Zur Korrelation zwischen statischer Muskelkraft und Bewegungsgeschwindigkeit. 4. Seminar on Biomechanics, Rom 1971.
- ² Brozek J., Simmonson F., Keys A.: A test of speed of leg and arm movements. University of Minnesota, Minneapolis, 1952.
- ³ Hochmuth G.: Biomechanik sportlicher Bewegungen. Sportverlag Berlin, 1967.
- ⁴ Larson Ch., Nelson R.: An Analysis of Strength, Speed and Acceleration of Ellbow Flexion. Archives of Physical Medicine and Rehabilitation, May 1969.
- Marhold G.: Biomechanische Untersuchungen sportlicher Hochsprünge. Inauguraldissertation Sporthochschule Leipzig, 1963.
- ⁶ Nelson R., Fahrney R.: Relationship between Strength and Speed of Ellbow Flexion. Research Quarterly, Dez. 1965.
- 7 Smith L.: Spezificity of individual differences of relationship between forearm strength and speed of forearm flexion. Research Quarterly, March 1969.

Tabelle 4: Zusammenstellung der Mittelwerte

a) Testgruppe 1

				ohne Belastung			15% Max. Belastung			30% Max. Belastung			
Max. Bel. Ø	Hebelarm ∅	Sym.	Einh.	Ao	Во	Co	Do	A15	B15	D ₁₅	Азо	Взо	D30
1		ω	1/sec	20.4	19.2	17.6	21.0	9.46	9.1	10.1	7.09	6.76	7.65
				97.1	91.4	83.8	100	93.7	90.1	100	92.7	88.4	100
		mω	1/sec	0.62	0.23	0.55	0.40	0.33	0.24	0.31	0.25	0.20	0.24
21.2 kp	0.332 m	V	m/sec	6.747	6.376	5.857	6.986	3.138	3.025	3.349	2.353	2.244	2.538
				96.6	91.3	83.8	100	93.7	90.3	100	92.7	88.4	100
		m V	m/sec	0.132	0.098	0.18	0.148	0.097	0.079	0.096	0.071	0.087	0.060
		a	Grad	71	67	59.5	58.5						
		m_{α}	Grad	2	1.9	2.47	1.48	,	r ×	II.			

b) Testgruppe 2

_		ω	1/sec	17.7	18.0	14.9	18.6	8.89	8.38	9.6	6.74	6.19	7.11
	· ·			95.2	96.7	80.1	100	89.9	84.8	100	94.8	87.1	100
1		mω	1/sec	0.3	0.34	0.45	0.62	0.28	0.27	0.61	0.17	0.17	0.36
14.6 kp	0.321 m	V	m/sec	5.698	5.805	4.816	5.996	2.854	2.691	3.062	2.164	1.993	2.274
				95.1	96.9	80.4	100	93.3	87.9	100	95.3	87.8	100
		mγ	m/sec	0.091	0.107	0.171	0.196	0.092	0.096	0.015	0.059	0.074	0.085
	-	α	Grad	71	69.5	57.5	61.5						7 =
		m_{a}	Grad	1.42	1.87	2.26	2.21				,		

L'influence de différentes charges et de différents genres de mouvement sur la vitesse d'exécution d'une flexion de l'avantbras.

Résumé

Nous avons analysé, à l'appui de mouvements simples (flexions du bras), l'influence qu'exercent les différents genres de mouvement (par exemple mouvement de prise d'élan) sur la vitesse d'exécution.

Ce test nous a permis de constater que les valeurs les plus élevées quant à la vitesse et à l'accélération ont été enregistrées avec le mouvement de prise d'élan et que l'avantage de cette prise d'élan s'accroît au fur et à mesure que l'on augmente la charge.

Parmi les personnes qui se sont soumises à ce test, celles qui font régulièrement un entraînement de musculation en athlétisme atteignent toutes une vitesse plus élevée.