Zeitschrift: Mémoires de la Société Fribourgeoise des Sciences Naturelles.

Physiologie, hygiène, bactériologie = Mitteilungen der Naturforschenden

Gesellschaft in Freiburg. Physiologie, Hygiene, Bakteriologie

Herausgeber: Société Fribourgeoise des Sciences Naturelles

Band: 1 (1908-1923)

Heft: 1: Ueber die Einwirkung einiger Antipyretica auf die natürliche

Resistenz: experimentelle Untersuchungen über die Baktericidie und

Phagocytose

Artikel: Ueber die Einwirkung einiger Antipyretica auf die natürliche Resistenz:

experimentelle Untersuchungen über die Baktericidie und Phagocytose

Autor: Scheid, Anatole

Kapitel: II: Experimenteller Teil

DOI: https://doi.org/10.5169/seals-306685

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 18.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Experimenteller Teil.

A. Intravenöse Injektion.

Allgemeines über die Versuchsanordnung.

Die folgenden baktericiden Versuche wurden mit Kaninchen als Versuchstieren von annähernd gleichem Gewicht und Alter angestellt.

Gewichts- und Alterangaben sind jeder Tabelle beigefügt, Die Tiere waren gut genährt und sahen munter aus. Es wurden stets Normaltiere zur Kontrolle gebraucht, um die Baktericidie der verschiedenen Sera mit der Baktericidie des Normalserums zu vergleichen. Vor, während und nach der Injektion der Antipyretica wurden die Temperaturen der Versuchstiere gemessen, sowie die weißen Blutkörperchen derselben, mittels dem Thoma-Zeiß'schen Blutkörperchenzählapparat gezählt.

Bei jeder Blutentnahme maßen wir die erhaltene Blutmenge, sowie die daraus gewonnene Serummenge. Für die Blutentnahme bei Kaninchen gebrauchten wir den von Latapie empfohlenen Apparat.

Zur Injektion wurden leicht lösliche Antipyretica, wie Chinin, Antipyrin in steriler Kochsalzlösung gelöst und in die Ohrvene mittels einer Injektionsspritze injiziert.

Schwerlösliche Antipyretica wurden in physiologischer Kochsalzlösung gelöst und wegen der großen Flüssigkeitsmenge mittels einer kleinen Spritzflasche, welche mit Gummiball und hohler Metallspitze versehen war, in die Jugularvene injiziert.

Die Temperatur der Injektionsflüssigkeit wurde durch Einstellen in warmes Wasser von 40° auf die Körpertemperatur des Kaninchens eingestellt. Die Versuchstiere befanden sich im allgemeinen wohl, man konnte leichtes Frösteln starkes Urinieren der Tiere beobachten. Nach der Blutentnahme waren die Tiere sehr geschwächt, mehrere starben, andere lebten und erhohlten sich bald, wieder andere magerten ständig ab und gingen nach mehreren Monaten ein. Die weiblichen Tiere brachten Junge auf die Welt, welche nach und nach eingingen.

Bei Chinin, Antifebrin gingen mehrere Tiere an Vergiftung ein. Der Tod erfolgte fast momentan. Je nach der Wirkungsschnelligkeit des angewandten Antipyreticums nahmen wir die Blutentnahme nach 1—2, 3—4 Stunden vor. Diese Angabe wurde uns gegeben durch das Sinken der Temperatur um 1—2°.

Zur Blutentnahme präparierten wir die Carotis und führten die obere Spitze des umgedrehten Latapieapparates in Längsachsenrichtung der Carotis ein. Diese Spitze muß sehr fein ausgezogen und ziemlich stark sein. Durch leichtes Saugen am unteren Seitenrohr begünstigt man die Schnelligkeit des einströmenden Blutes. Der Apparat wurde dann zur Serumausscheidung 24 Stunden in umgekehrter Stellung kühl im Keller aufbewahrt und vor Lichteinwirkung geschützt. Nach 24 Stunden wurde der Apparat umgedreht, das Serum sammelte sich im unteren Teile an, es war in der Regel die Hälfte der entnommenen Blutmenge. Das Serum wurde 12 bis 18 Stunden wegen der roten suspendierten Blutkörperchen im Kühlen sedimentieren gelassen.

Die Farbe des Serums war gelb, gelbbraun bis rötlich. Das Einfüllen in kleine Röhrchen geschah direkt vom Serumapparat aus, nachdem man die Röhrchen im voraus auf 1^{cc} Gehalt geaicht hatte. Eine Infektion des Serums wurde auf diese Weise so gut wie ausgeschlossen.

Versuchsanordnung in vitro.

Wir verschafften uns eine virulente Kultur. Durch die Plattenisolationsmethode suchten wir charakteristische Kolonien aus und impften sie kurz vor dem Versuch auf Flächenagar über. Nach 24stündigem Bebrüten bei 37° hatten wir frische entwicklungskräftige Bakterien. Von dieser Agarkulturfläche entnahmen wir mittels einer 2 mgr.-Oese eine Probe und sähten sie in Bouillon ein, welche wir 24 Stunden zur Vermehrung der Bakterien bei 37° hielten. Alsdann verdünnten wir diese Kulturen mittels steriler Bouillon, nachdem wir durch Vorversuche diejenige Verdünnung ausprobiert hatten, um eine Aussaat in 2 mgr.-Oese von 500—1000 Bakterien zu haben. Die Verdünnung war sehr verschieden.

Nachdem wir in kalibrierte Röhrchen 1^{cc} des zu prüfenden Serums eingefüllt hatten, sähten wir in jedes Röhrchen eine Oese à 2 mgr. ein, machten zur Feststellung der Aaussaat direkt mittels einer 2 mgr.-Oese eine Aussaat dieser Serumröhrchen in Gelatineröhrchen und gossen sie in Petrischalen ein.

Alsdann brachten wir die Röhrchen in den Brutschrank bei 37° und entnahmen nach je 3, 6, 24 Stunden mittels einer 2 mgr.-Oese immer gleiche Mengen des infizierten Serums und sähten sie in Gelatine-Platten ein. Wir tauchten den Platindraht immer bis auf den Boden des Röhrchens ein, wir rührten heftig um, erzielten so eine gute Durchmischung der Flüssigkeit und immer gleiche Serummengen. Man muß darauf achten, daß sich in der Platinöse keine Luftblase befindet.

Durch die eingesähten Platten, welche wir bei Zimmertemperatur in 2-4 Tagen auswachsen ließen, konnten wir durch Zählen der Kolonien feststellen, ob die Bakterien sich im Serum vermehrten, verminderten oder gänzlich abstarben. Durch Vergleich dieser Resultate mit denen mit Normalserum erhaltenen konnte man sehen, ob ein sichtbarer Unterschied zwischen Normalserum und Serum von Tieren, die mit Antipyretica behandelt waren, zu konstatieren war.

1. Versuch.

Normalserum, Antipyrinserum, Chininserum, Bouillon.

Tier	Gewicht	Alter	Dosen intravenös	Temperatur nach Stunden				
		-		0	1	2	3	
Normaltier Antipyrintier Chinintier	2 400 gr. 2 750 ", 2 930 ",	ca. 8 Monate 8 " 8 "	1 gr. 0,5 "	38°95 39°45 39°40	39°74 38 90	40°05 37°90	- 36°40	

Baktericider Versuch.

Bakterienart	Flüssigkeit		Nach	Stunden	
		0	3	6	24
Choleravibrionen	Bouillon	642			1 -
27	Normalserum	787	0	0	0
27	Antipyrinserum	315	0	0	0
••	Chininserum	595	0	0	0
Гурhusbazillen	Bouillon	1 800	_	_	_
"	Normalserum	1 618	0	0	0
•	Antipyrinserum	1 470	0	0	0
	Chininserum	1 263	0	0	0
Streptokokken	Bouillon	509	_	_	_
27	Normalserum	570	1 464	7 000	150 000
"	Antipyrinserum	510	9 300	30 000	170 000
**	Chininserum	567	1 450	37 800	160 000
Staphylokokken	Bouillon	600		_	
"	Normalserum	580	460	1 260	113 000
"	Antipyrinserum	600	3 000	28 350	140 000
**	Chininserum	580	3 500	28 850	85 000
Coli commune	Bouillon	650			_
"	Normalserum	550	17 000	84 150	350 000
77 77	Antipyrinserum	590	22 580	72 000	355 000
77 77	Chininserum	600	39 220	25 000	340 000

Bemerkungen.

Choleravibrionen und Typhusbazillen wurden innerhalb drei Stunden abgetötet.

Streptokokken, Staphylococcus aureus und Coli zeigten keine Entwickelungshemmung, ausgenommen Staphylococcus aureus nach drei Stunden bei Normalserum.

Bei dem Antipyrintier stieg die Temperatur um 0°55 innerhalb zwei Stunden.

Bei dem Chinintier beobachteten wir ein stetes Fallen der Temperatur.

Es war keine Differenz mit Normalserum konstatierbar.

2. Versuch.

Phenazetin, Antifebrin, Salicylsäure.

Tier	Gewicht	Alter	Dosen intravenös	Temp	eratur n	ach Stu	nden
9				0	1	2	3
Phenazetintier	3 050 gr.	7 ¹ / ₂ Monate	0,1 gr.	38°55	37°70	37°75	38°10
Antifebrintier	2 600 ,	6 ,	0,25 ,,	$39^{\circ}50$	36°30	_	_
Salicylsäuretier	2 630 "	7 "	0,4 "	$38^{\circ}55$	39°80	-	_

Baktericider Versuch.

Bakterienart	Flüssigkeit	8		Nach Stu	nden	
	. 12	0	11/2	3	6	24
Choleravibrionen	Bouillon	500		_		_
"	Phenazetinserum	400	0	0	0	0
"	Antifebrinserum	300	0	0	0	0
**	Salicylsäureserum	450	0	0	0	0
Гурhusbazillen	Bouillon	710				
"	Phenazetinserum	258	30	0	0	0
"	Antifebrinserum	502	35	0	0	0
**	Salicylsäureserum	428	33	0 .	0	0
Streptococcus	Bouillon	250			-	
***	Phenazetinserum	140	500	2 080	15 000	170 00
77	Antifebrinserum	255	90	720	6 800	140 00
**	Salicylsäureserum	170	180	3 400	18 900	142 00
Staphylococcus	Bouillon	660				_
,,	Phenazetinserum	740	320	1 720	27 350	170 00
7)	Antifebrinserum	340	676	1 840	34 000	260 00
27	Salicylsäureserum	200	95	4 410	22 680	28350
Coli commune	Bouillon	420	_			
27 27	Phenazetinserum	1 160	1 280	4725	170 000	28350
" "	Antifebrinserum	1 420	760	9 450	147 750	340 22
77 77	Salicylsäureserum	1 050	1 400	34 020	170 000	170 10

Bemerkungen.

Bei Salicylsäure stieg die Temperatur um 1°45 während drei Stunden.

Bei Antifebrin fiel sie um 3°2 innerhalb vier Stunden.

Bei Phenazetin fiel die Temperatur des Versuchstiers in der ersten Stunde, stieg jedoch wieder nach zwei Stunden, ohne jedoch die Normaltemperatur 39°5 zu erreichen.

Ein Unterschied mit Normalserum war nicht konstatierbar.

Choleravibrionen und Typhusbazillen wurden innerhalb 3 Stunden abgetötet. Typhusbazillen zeigten nach $1^1/_2$ Stunden bedeutende Verminderung. Die Choleraplatten waren nach $1^1/_2$ Stunden schon steril. Streptococcus zeigte Entwickelungshemmung nach $1^1/_2$ Stunden, bei Antifebrin Salicylsäure.

Bei Phenazetin trat Vermehrung der Streptokokken ein.

Staphylococcus aureus zeigte bei Salicylsäure nach $1^1/_2$ Stunden Verminderung der Keime, ebenso bei Phenazetin.

Bei Antifebrin trat Vermehrung ein.

Nach drei Stunden trat bei Staphylococcus, Streptococcus und Coli Vermehrung ein.

3. Versuch.

Antipyrin, Chinin.

Tier	Gewicht	Alter	Alter Dosen intravenös Nach Stunden				Temperatur nach Stunden				
			0	1	2	0	1	2	3		
Antipyrintier Chinintier	2 240 gr. 2 730 "	6 Mon. 7 "	0,5 gr. 0,2 ,,	0,5 gr. 0,2 "	0,5 gr. 0,2 ,,	39° 10 39° 42	39° 21 38° 70	39° 05 38° 40	38° 95		
			Nach St	unden			Blut- menge	Serum- menge			
		0	Nach St	unden	3						

Baktericyder Versuch.

Bakterienart	Flüssigkeit				Nach	Stunden		
	110 8 7	0	1/2	$1^{4}/_{2}$	21/2	6	8	24
Choleravibrionen	Bouillon	750						_
••	Antipyrinserum	1 200	0	0	0	0	0	0
Typhusbazillen	Bouillon	300						
,,	Antipyrinserum	540	360	120.	33	0	0	0
Streptococcus	Bouillon	366					_	
,,,	Antipyrinserum	160	20	130	100	3 969	6 800	85000
**	"	210	130	160	150	7 370	25 000	120 000
Staphylococcus	Bouillon	509						
,,	Antipyrinserum	430	400	640	169	6 800	70 000	113000
Coli commune	Bouillon	568				_		S
" "	Antipyrinserum	640	640	820	960	75000	120 000	170 000
Choleravibrionen	Chininserum	1 250	475	56	14	0	0	
Typhusbazillen	77	380	232	110	41	0	0	

Bemerkungen.

Choleravibrionen wurden nach einer halben Stunde abgetötet. Die Zahl der Typhusbazillen nahm ab, war jedoch erst nach 6 Stunden Null.

Streptococcus nahm ab während den ersten drei Stunden, später trat jedoch Vermehrung ein.

Staphylococcus entwickelte sich während den ersten Stunden, während der dritten Stunde nahm er ab. Später trat jedoch Vermehrung ein. Coli zeigte stets Vermehrung.

Beim Chininserum wurden Choleravibrionen erst nach 6 Stunden vernichtet, ebenso Typhusbazillen.

Beim Antipyrintier war die Temperatur nahezu konstant; beim Chinintier fiel sie um 1° .

Eine Differenz mit Normalserum war nicht konstatierbar.

4. Versuch.

Antipyrin.

Tier	Gewicht	Alter	Alter Dosen intravenös Nach Stunden								
1			0	1	2	0	1	2	3		
Antipyrint	tier 2 900 gr.	8 Mon.	0,5 gr.	0,5 gr.	0,5 gr.	90°36	10 59	1 11 798	8 7 695		
	8	Te	mperatur	nach St	unden						
		0	1	2	3		4	5	6		
20cc Blut	11cc Serum	39°4	39°01	38°95	380	86 39	3022	38°00	38°25		

Baktericider Versuch.

Bakterienart	Flüssigkeit				N	ach Stu	ınden		
		0	1/2	$1^{1}/_{2}$	$2^{1}/_{2}$	5	6	8	24
Choleravibrionen	Bouillon	600			_		_		
77	Antipyrinserum	540	0	0	0	0	0	0	0
***	**	700	0	0	0	0	0	0	0
Typhusbazillen	Bouillon	320			_				
"	Antipyrinserum	376	370	110	62	0	0	0	0
**	»	940	640	126	89	0	0	0	0
Streptococcus	Bouillon	480	_		_			_	
**	Antipyrinserum	820	734	920	2 160	55 000	126 000	250 000	275 000
Staphylococcus	Bouillon	520	_	_		_			
"	Antipyrinserum	600	530	460	210	18 000	200 000	220 000	260 000
Coli	Bouillon	810							
77	Antipyrinserum	750	1 240	1 350	690	15 000	180 000	280 000	275 000

Bemerkungen.

Choleravibrionen waren nach einer halben Stunde vernichtet.

Typhusbazillen nahmen während den ersten drei Stunden langsam ab, wurden jedoch erst nach der fünften Stunde vernichtet.

Die Streptokokken vermehrten sich ständig.

Staphylococcus aureus zeigte Entwickelungshemmung und während der dritten Stunde Verminderung.

Die Temperatur der Versuchstiere fiel um 1°2 während drei Stunden.

Die Zahl der weißen Blutkörperchen stieg zuerst, sank alsdann.

5. Versuch.

Chinin, Antifebrin.

Tier	Gewicht	Alter	Dos N	Ten	nperatu	r nach	Stund	en		
			0	1	2	0	1	2	3	4
Antifebrintier Chinintier	4 500 gr. 2 120 "	7 Mon. 8 "	0,025 gr. 0,02 ,,	0,025 gr. 0,02 "	0,025 gr. —	38°60 39°40	38°00 38°30	38°70 37°40	37°80 37°10	37°60 —

Weiße Blutkörperchen.

			Nach Stund	en	
8	TO STATE OF THE PERSON OF THE	0	1	2	
* * ₂	Chinintier Antifebrintier	9 166 6 000	7 809 5 785	8 400 6 875	

Baktericider Versuch.

Bakterienart	Flüssigkeit		Nach S	Stunden	
		0	3	6	24
Choleravibrionen	Bouillon	320			_
	Chininserum	740	0	0	0
77	,,	780	0	0	0
Typhusbazillen	Bouillon	1 020	_	_	
"	Chininserum	1 200	0	0	0
27	22	1 400	0	0	0
Streptococcus	Bouillon	1 200	_	_	
77	Chininserum	1 120	1 960	14 000	127 00
Staphylococcus	Bouillon	450	_	_	
"	Chininserum	480	30	18 000	120 00
Coli commune	Bouillon	1 500	_		
22 22	Chininserum	1 800	8 000	25 000	350 00
Zholeravibrionen	Antifebrinserum	380	0	0	0
77	27	1 000	0	0	0
'yphusbazillen	27	1 320	0	0	0
**	27	920	0	0	0
treptococcus	22	1 280	1 040	6 800	75 00
***	22	1 230	1 800	2 200	110 00
taphylococcus	,,	240	80	7 500	110 00
, ,,	22	520	290	6500	127 00
loli commune	27	1 600	1 630	8 500	300 00
" "	22	1 520	1 760	20 000	280 00

Bemerkungen.

Choleravibrionen und Typhusbazillen waren nach drei Stunden vernichtet; Streptococcus und Coli vermehrten sich ständig. Staphylococcus zeigte während den ersten drei Stunden Verminderung; später trat Vermehrung ein. Beim Antifebrintier trat ein Fallen, dann ein Steigen und wieder Fallen der Körpertemperatur ein.

Die Zahl der weißen Blutkörperchen der Versuchstiere nahm zu. Beim Chinintier fiel die Körpertemperatur um 2°3.

6. Versuch.

Salicylsäure.

Tierart	Gewicht	Alter	Dosen nach Stunden			Temperatur nach Stunden			ınden
	İ		0	1	2	0	1	2	3
Salicylsäuretier	$3050 \mathrm{\ gr}.$	9 Mon.	0,08 gr.	0,08 g	r. 0,08 gr.	39°50	38°90	38°85	40°30

Weiße Blutkörperchen

	Nach Stunde	n	Blutmenge	Serummenge
0	1	2		
8 400	10 040	12 500	40cc	18cc

Baktericider Versuch.

Bakterienart	Flüssigkeit	Nach Stunden								
X X	8	. 0	1/2	11/2	21/2	31/2	6	24		
Choleravibrionen	Bouillon	440				_	_	_		
77	Salicylsäureserum		0	0	0	0	0	0		
77	**	1 000	0	0	0	0	0	0		
77	,,	1 320	0	0	0	0	0	0		
Typhusbazillen	Bouillon	1 040			_	-	_			
"	Salicylsäureserum		240	120	33	43	0	0		
,,	,,	862	90	150	13	0	0	0		
,,	**	1 320	0	0	0	0	0	0		
Streptococcus	Bouillon	386			_	_		_		
,,	Salicylsäureserum	520	820	1 200	2 250	11 350	45360	68000		
,,	"	800	735	660	506	640	2940	113 000		
77	"	1 170	875	1 340	1 536	12340	37 500	75000		
Staphylococcus	Bouillon	1 034	-		_	-	-			
,,,	Salicylsäureserum	1 320	390	445	375	840	1 450	78000		
**	"	620	480	200	730	1 296	1 320	60000		
,,	,,	1 260	420	480	210	945	1 120	80 000		
Coli commune	Bouillon	260	_	_		_	-			
"	Salicylsäureserum	550	1 400	376	420	1 740	3 360	113400		
,, ,,	"	575	613	1 080	457	18 702	35 720	120000		
" "	,,	600	573	740	. 485	1 800	85000	170 000		

Bemerkungen.

Choleravibrionen waren nach einer halben Stunde vernichtet; Typhusbazillen zeigten Verminderung, waren jedoch erst nach der sechsten Stunde vernichtet.

Streptococcus zeigte teilweise Hemmung, wuchs jedoch nach der sechsten Stunde.

Coli, Staphylococcus zeigten während den drei ersten Stunden Hemmung, später trat Wachstum ein.

Die Körpertemperatur und die Zahl der weißen Blutkörperchen stiegen.

· 7. Versuch.

Phenacetin.

Tier	Gewicht	Alter	Dosen intravenös nach Stunden					
			0	1	2	3		
Phenacetintier	3 200 gr.	10 Monate	0,04 gr.	0,05 gr.	0.05 gr.	0,05 gr.		

Weiße Blutkörperchen.

	7	emperatur i	nach Stund	en		
0	1	2	0	1	2	
9 900	9 609	7 600	39°6	39°1	39°4	

Baktericider Versuch.

Bakterienart	Flüssigkeit	Nach Stunden								
	- 0	0	1/2	11/2	3	6	24			
Choleravibrionen	Bouillon	630		_	_					
**	Phenacetinserum	480	0	0	0	0	0			
**	**	. 572	0	0	0	0	0			
Typhusbazillen	Bouillon	420			_					
* 1	Phenacetinserum	515	110	0	0	0	0			
••	**	380	61	0	0	0	0			
Streptococcus	Bouillon	750	_		_	_				
,,	Phenacetinserum	810	864	1 540	1760	12 000	135 000			
**	**	640	930	1 320	1 940	11 340	115 000			
Staphylococcus	Bouillon	654	· —		_					
,,	Phenacetinserum	583	491	523	1 379	17 000	140 000			
22	,,	620	820	844	1 215	23 000	137 000			
Coli commune	Bouillon	830	_	_	_	_				
"	Phenacetinserum	1 020	1 120	1 475	12250	37 000	180 000			
" "	,,	940	1 240	1 789	15 450	41 200	160 000			

Bemerkungen.

Choleravibrionen waren nach einer halben Stunde vernichtet; Typhusbazillen wurden nach $\mathbf{1}^{1}/_{2}$ Stunden vernichtet.

Streptococcus und Coli wuchsen gut.

Staphylococcus aureus zeigte teilweise Hemmung.

Die Körpertemperatur der Versuchstiere blieb nahezu konstant.

Die Zahl der weißen Blutkörperchen fiel.

Resultate bei intravenösen Injektionsversuchen mit Antipyretica.

Choleravibrionen wurden schneller abgetötet als Typhusbazillen. Während in den meisten Versuchen Choleravibrionen schon nach einer halben Stunde vernichtet waren, wurden Typhusbazillen im allgemeinen erst nach drei Stunden abgetötet.

Staphylokokken zeigten nur in den ersten drei Stunden Entwickelungshemmung oder Abnahme, später wuchsen sie jedoch gut. Streptokokken zeigten in einigen Fällen Entwickelungshemmung bis zur dritten Stunde, wuchsen aber von der 6. bis 24. Stunde gut. Bacterium coli zeigte selten Entwickelungshemmung, es wuchs im allgemeinen sehr gut.

Bei Antipyrin und Salicylsäure sah man ein Steigen der Temperatur des Versuchstiers nach der Injektion. Bei Phenazetin blieb sie ziemlich konstant. Bei Chinin und Antifebrin fiel die Körpertemperatur des Versuchstieres.

Bei Antipyrin und Salicylsäure stieg die Leukocytenzahl des Blutes der Versuchstiere, bei Chinin und Phenazetin fiel sie, bei Antifebrin blieb sie ziemlich konstant.

B. Antipyreticagaben wurden in den Magen eingeführt.

Wir wandten uns alsdann denjenigen Versuchen zu, bei welchen die Antipyretica in den Magen eingeführt wurden. Hier war die Wirkung der Antipyretica langsamer als bei intravenöser Injektion. Von den leicht löslichen Antipyretica machten wir Lösungen, von den schwer löslichen Aufschwemmungen und führten sie mit einem weiten Gummischlauche in den Magen ein. Um das Durchbeißen des Schlauches zu vermeiden, legten wir eine kleine Metallröhre in den Mund des Kaninchens, in welchen wir den Schlauch einführten. Es

war auf diese Art leicht, die Flüssigkeiten einzuführen. Durch leichtes Kitzeln am Halse begünstigten wir die Schluckbewegungen.

Nach 2—4 Stunden wurde das Blut entnommen. Cholera und Typhusbazillen wurden nach dreistündiger Einwirkung des Serums bei 37° leicht abgetötet. Einen deutlichen Unterschied dieses Serums und des Normalserums in Bezug auf Baktericidie war hier nicht festzustellen.

8. Versuch.

Antipyrin. (Mehrmalige Gaben.)

Tier	Tier Gewicht Alter Dosen nach Stunden					Temperatur
			0	1	2	0 Std.
Antipyrintier	3 260 gr.	7 Monate	1 gr.	1 gr.	1 gr.	39°61

Weiße Blutkörperchen.

Nach Stunden								
	0	1	2					
	10 344	12 031	7 812					

Baktericider Versuch.

Bakterienart	Flüssigkeit	Nach Stunden								
		0	1/2	1	2	3	6	24		
Choleravibrionen	Bouillon	920-890	<u> </u>	1_	<u> </u>		<u> </u>			
27	Antipyrinserum	680	0	0	0	0	0	0		
"	,,	520	0	~ŏ	0	0	0	0		
"	**	1 200	0	0	0	0	0	0		
Typhusbazillen	Bouillon	880		_			-			
,,	Antipyrinserum	560	20	13	0	0	0	0		
27	,,	1 290	66	0	0	0	0	0		
,,	**	540	360	120	33	0	0	0		
Streptococcus	Bouillon	840	-							
**	Antipyrinserum	1 080	880	820	1 530	6 200	10 800	18 000		
77	"	1 000	720	620	2 405	8 500	21 600	8 000		
"	"	160	120	160	100	3 969	6 800	85 000		
**	**	210	130	166	150	7 370	28 000			
Staphylococcus	Bouillon "	800	_	_	-	_	_	_		
27	Antipyrinserum	750	640	720	2 300	6 300	15 000	80 000		
77	"	280	420	840	1 800	12 500		115 000		
27	"	430	440	649	1 690	6 800	70 000			
Coli commune	Bouillon	680		_		_				
77 77	Antipyrinserum	930	1 420	640	2 100	3 200	15 250	180 000		
		640	670	830	960	75 000	120 000			
" "	"	880	1 200	760	1 500	2 950	20 500			

Bemerkungen.

Wir führten nach je einer Stunde je 1 gr. Antipyrin in 10cc Wasser gelöst in den Magen des Kaninchens ein. Nach weiteren zwei Stunden entnahmen wir das Blut. Nach 36 Stunden hatten wir ein klares Serum. Choleravibrionen wurden nach einer halben Stunde gänzlich abgetötet; Typhusbazillen erst nach 2-3 Stunden.

Streptococcus zeigte teilwese Hemmung bis zur dritten Stunde, dann trat jedoch starke Vermehrung ein. Coli und Staphylococcus aureus zeigten ständige Vermehrung. Die Leukocytenzahl des Blutes des Versuchstieres stieg im Anfang bis zur zweiten Stunde, dann trat bis zur dritten Stunde Fallen der Leukocytenzahl ein.

9. Versuch.

Chinin.

Tier	Gewich	t A	Iter	Dosen nach Stunden					
			-	0	1	2	3	4	
Chinintier	2 780 g	r. 9 M	Ionate	0,2 gr.	0,2 gr.	0,2 gr.	0,2 gr.	0,2 gr.	
		Temp	eratur nac	ch Stunde	n				
2 2 0	0	1	2	3		4	00 I		
**************************************	20004	20050	20000	2007	- 1 20	045		-	

Baktericider Versuch.

Bakterienart	Flüssigkeit				Nach S	Stunden		
		0	1/2	1	2	3	6	24
Choleravibrionen	Bouillon	1 000						_
"	Chininserum	1 040	0	0	0	0	0	0
- "	29	460	0	0	0	0	0	Ò
,,	,,	800	0	0	0	0	0	0
Typhusbazillen	Bouillon	640						
,,	Chininserum	1 080	14	12	0	0	0	0
,,	••	1 100	27	34	0	0	0	0
Streptococcus	Bouillon	318		_			_	
••	Chininserum	450	600	684	960	8 405	56700	150 000
		510	356	399	1 134	7 320	34 020	135 000
Staphylococcus	Bouillon	60	_	_	_			
77	Chininserum	270	99	450	680	5 200	12600	120 000
Coli commune	Bouillon	784		-			_	v
" "	Chininserum	864	189	243	530	856	42525	125 000

Bemerkungen.

Wir gaben dem Versuchstiere je 0,2 gr. gelöstes Chinin in den Magen nach 0, 1, 2, 3, 4 Stunden. Nach weiteren zwei Stunden entnahmen wir das Blut. Nach 36 Stunden hatten wir klares Serum. In diesem Serum wurden Choleravibrionen nach einer halben Stunde gänzlich abgetötet; Typhusbazillen wurden nach zwei Stunden vernichtet.

Staphylococcus aureus zeigte Hemmung des Wachstums bis zur zweiten Stunde. Bacterium coli zeigte Hemmung des Wachstums bis zur sechsten Stunde. Streptococcus zeigte stetiges Wachstum. Die Temperatur des Versuchstieres fiel allmählig um 1°15.

10. Versuch.

Salicylsäure.

Tier	Gewicht	Alter		Tempera	atur nach		
			0	1	2	3	4
Salicylsäuretier	3 200 gr.	9 Monate	39°40	39°25	38084	38°74	39°02

Weiße Blutkörperchen.

Injektionsdosen.

	Nach Stunden 0 1 2 3 4				Nach Stunden			
0	1	2	3	4	0	1	2	
10 700	8 900	11 720	10 350	11 200	0,5 gr.	0,5 gr.	0,5 gr.	

Baktericider Versuch.

Bakterienart	Flüssigkeit			Nach	Stunder	n	
	¥	0	1/2	1	2	3	24
Choleravibrionen	Bouillon	480	_	_		_	_
**	Salicylsäureserum	450	20	0	0	0	0
"	"	620	150	234	0	0	. 0
**	**	550	52	11	0	0	0
Typhusbazillen	Bouillon	720			_	_	
,,	Salicylsäureserum	782	320	44	9	0	0
,,	,,,	945	595	240	105	45	0
27	29	625	430	129	20	0	0
Streptococcus	Bouillon"	450	_	_			_
• ,,	Salicylsäureserum	675	1 029	1 680	2320	4 200	125 000
Staphylococcus	Bouillon	960	_		_		
"	Salicylsäureserum	813	947	762	348	559	78 000
Coli commune	Bouillon	510				_	
"	Salicylsäureserum	545	730	974	1 189	5 340	150 000

Bemerkungen.

Wir führten nach je einer Stunde 0,5 gr. Salicylsäure (drei Mal) in den Magen des Versuchstieres ein. Zwei Stunden nach der letzten Gabe entnahmen wir Blut. Nach 36stündiger kühler Aufbewahrung hatten wir klares Serum.

In diesem Serum wurden Choleravibrionen nach 1—2 Stunden abgetötet, Typhusbazillen nach 3 Stunden, Staphylococcus aureus zeigte während 2 Stunden Wachstumshemmung, Streptococcus und Bacterium coli wuchsen gut. Die Körpertemperatur des Versuchstieres fiel langsam. Die Zahl der weißen Blutkörperchen des Versuchstieres blieb nahezu konstant.

11. Versuch.

Phenacetin.

Tier	Gewicht	Alter		Tempera	tur nach	Stunden	
			0	1	2	3	4
Phenacetintier	2 900 gr.	10 Monate	39°70	39°42	39°20	38°50	38°10

Weiße Blutkörperchen.

		Nach Stunde	en		Dose	n nach Stu	nden
0	1	2	3	4	0	1	2
9 700	8 400	9 100	7 200	10 400	0,5 gr.	0,5 gr.	0,5 gr.

Baktericider Versuch.

Bakterienart	Flüssigkeit	Nach Stunden								
		0	1/2	1	2	3	6	24		
Choleravibrionen	Bouillon	480						_		
77	Phenacetinserum	1 500	83	0	0	0	0	0		
Typhusbazillen	Bouillon	720				-				
"	Phenacetinserum	580	243	95	15	0	0	0		
Streptococcus	Bouillon	450				_				
,,	Phenacetinserum	635	1 200	1722	1 960	7 345	28 200	75 000		
Staphylococcus	Bouillon	960		_						
**	Phenacetinserum	850	1 030	910	833	640	2 250	54 000		
Coli commune	Bouillon	510		_	_		_			
"	Phenacetinserum	623	785	970	1 255	3 150	12 300	150 000		

Bemerkungen.

Wir führten nach je einer Stunde drei Mal je 0,5 gr. Phenacetin in den Magen des Versuchstieres ein. Nach zwei Stunden entnahmen wir das Blut. Nach 36stündigem kühlen Stehenlassen hatten wir klares Serum. In diesem Serum wurden Choleravibrionen nach einer Stunde abgetötet, Typhusbazillen innerhalb drei Stunden; bei Staphylococcus aureus bemerkten wir Wachstumshemmung bis zur dritten Stunde. Die Körpertemperatur des Versuchstieres fiel nach den Phenacetingaben um 1°6. Die Leukocytenzahl des Versuchstieres blieb nahezu konstant.

12. Versuch.

Antifebrin.

Tier	Gewicht	Alter	Temperatur nach Stunden		Dosen	nach S	tunden		
		İ	0	1	2	3	0	1	2
Antifebrintier	$3\ 125$	7 Mon.	39°48	39°40	39°00	38°20	0,3 gr.	0,3 gr.	0,4 gr.

Weiße Blutkörperchen.

	Nach	Stunden		
0	1	2	3	
10 200	8 100	9 700	12 800	283

Baktericider Versuch.

Bakterienart	Flüssigkeit	Nach Stunden								
		0	1/2	1	2	3	4	6	24	
Choleravibrionen	Bouillon	960		_						
	Serum	800	74	0	0	0	0	0	0	
"	1 Teil Serum u.									
77	1 " Bouillon	960	167	48	20	0	0	0	0	
	"	720		25	0	0	0	0	0	
Typhusbazillen	Bouillon	720	_		_	_	_			
, • 1	Serum	1 200	180	44	16	0	0	0	0	
**	1 Teil Serum u.	825	175	320	135		Õ	0	0	
"	1 "Bouillon									
20	**	964	75	27	21	0	0	0	0	
Streptococcus	Bouillon	640				_		_		
otroptococcus	Serum	760	875	920	1 020	2760	5 320	7 500	120 000	
Staphylococcus	Bouillon	840		_	_			_	_	
1 0	Serum	820	960	715	630	93	1 340	2 320	37 000	
Coli commune	Bouillon	729			_	_			<u>-</u>	
" "	Serum	640		1 170	1 530	3 140	10 310	15 240	105 000	

Bemerkungen.

Wir gaben dem Versuchstiere nach je 0 Stunde, 1 Stunde, 3 Stunden 0,3 gr., 0,3 gr., 0,4 gr. Antifebrin in den Magen. Zwei Stunden nach der letzten Gabe entnahmen wir das Blut, nach 36stündigem kühlen Aufbewahren erhielten wir klares Serum. In diesem Serum wurden Choleravibrionen nach drei Stunden abgetötet, Typhusbazillen innerhalb vier Stunden, Streptococcus und Bacterium coli zeigten Wachstum. Die Körpertemperatur des Versuchstieres fiel langsam. Die weiße Blutkörperchenzahl des Versuchstieres fiel zuerst, später stieg sie.

Die Versuche verliefen ganz gleichmäßig. Typhusbazillen und Choleravibrionen wurden leicht abgetötet. Nach dreistündiger Einwirkung des Serums auf Choleravibrionen und Typhusbazillen waren alle Keime abgetötet. Staphylokokken, Streptokokken, Bacterium Coli wurden in der Regel wenig beeinflußt, in mehreren Fällen konstatierte man Entwickelungshemmung bis zur dritten Stunde der Bebrütung, nach dieser trat jedoch starkes Wachsen ein.

Eine deutliche Differenz zwischen Normalserum und Serum von Tieren, die Antipyretica in den Magen eingeführt bekamen, war bei der Prüfung der Baktericidie dieser Sera nicht nachweisbar. Die Unterschiede, die man mittels der bakteriolytischen Eigenschaft des Serums nachweisen konnte, waren sehr klein und man kann nach ihnen keine sicheren Unterschiede feststellen. Obwohl man mit diesen Versuchen keine sicheren Unterschiede nachweisen konnte, kann man daraus nicht schließen, daß die Antipyretica keine störende Wirkung auf die natürlichen, schützenden Eigenschaften des tierischen Serums haben.

$\alpha\operatorname{-Verd\"{u}nnungen}$ des Serum.

- 1º mit Bouillon.
- 2° mit physiologischer Kochsalzlösung.

13. Versuch.

Chinin und Antipyrin.

Tier	Gewicht	Alter	Gaben	nach S	tunden	Tem	oeratur	ındun	
			0	1	2	0	1	2	3
Antipyrintier Chinintier	$3720 \mathrm{\ gr.} \ 3220 \mathrm{\ }$	10 Mon. 8 "	1 gr. 0,3 "	1 gr. 0,4 "	1 gr. 0,3 "	39°65 39°70	38°82 39°40	38°35 39°02	38°20 38°20

Weiße Blutkörperchen.

Tier		Nach	Stunden		Tier		Nach Stunden		
	0	1	2	3		0	1	3	3
Antipyrintier	9 480	6 125	11 550	10 920	Chinintier	9 300	8 450	7 230	8 350

Baktericider Versuch.

Bakterienart	Flüssigkeit		Nach S	tunden	
		0	3	6	24
Choleravibrionen	Antipyrinserum	640	0	0-	0
**	³ / ₄ Antipyrinserum, ¹ / ₄ Bouillon	680	0	0	0
***	$\frac{1}{2}$ Antipyrinserum, $\frac{1}{2}$ Bouillon	1 256	0	0	0
?? ??	Antipyrinserum	126	0	0	0
77	³ / ₄ Antipyrinserum, ¹ / ₄ Bouillon	195	0	0	0
	$\frac{1}{2}$ Antipyrinserum, $\frac{1}{2}$ Bouillon	432	0	0	0
**	Chininserum	2 320	0	0	0
"	³ / ₄ Chininserum, ¹ / ₄ Bouillon	2 400	0	0	0
"	$\frac{1}{2}$ Chininserum, $\frac{1}{2}$ Bouillon	2 520	Ŏ	Ö	0
***	Chininserum	726	ŏ	Ö	0
27	³ / ₄ Chininserum, ¹ / ₄ Bouillon	340	ŏ	Ö	ő
) 7	1/2 Chininserum, 1/2 Bouillon	344	Õ	0	0
Typhusbazillen	Antipyrinserum	1 080	ŏ	ő	l ŏ
	³ / ₄ Antipyrinserum, ¹ / ₄ Bouillon	740	ŏ	0	0
"	¹ / ₃ Antipyrinserum	1 820	ŏ	ő	ő
**	Chininserum	546	ŏ	ő	ő
,,,	³ / ₄ Chininserum, ¹ / ₄ Bouillon	220	ŏ	0	0
77	¹ / ₂ Chininserum, ¹ / ₂ Bouillon	640	ŏ	ő	0

14. Versuch.

Antipyrin.

Tier	Gewicht	Alter	Dosen	nach St	unden	Blutmenge
Antipyrintier	3 050 gr.	9 Monate	$\frac{0}{1 \text{ gr.}}$	1 1 gr.	2 1 gr.	47ce
Tier		Temperatur n	ach Stunde	n		Serummenge
	0	1	2	1 :	3	
Antipyrintier	39°58	38°65	36°92	36	·70	23cc
Tier	Weisse Blutki	örperchen nac	h Stunden			
the day was a second of the se	0	1	2			
Antipyrintier	9 800	9 200	10 520			

Baktericider Versuch.

Bakterienart	Flüssigkeit		Nach	Stunden	
		0	3	6	24
Typhusbazillen	Antipyrinserum	195	0	0	0
"	³ / ₄ Antipyrinserum, ¹ / ₄ Bouillon	282	1	1	296
"	1/2 Antipyrinserum, 1/2 Bouillon	103	1	1	5783
77	Antipyrinserum	188	0	0	0
. ""	³ / ₄ Antipyrinserum, ¹ / ₄ Bouillon	87	0	0	0
"	$\frac{1}{2}$ Antipyrinserum, $\frac{1}{2}$ Bouillon	126	0	0	0
"	Antipyrinserum	17	0	0	0
"	³ / ₄ Antipyrinserum, ¹ / ₄ Bouillon	11	0	0	0
**	¹ / ₂ Antipyrinserum, ¹ / ₂ Bouillon	23	0	0	0
Staphylococcus	72 10 72				
aureus	Antipyrinserum	340	495	15590	280 000
"	³ / ₄ Antipyrinserum, ¹ / ₄ Bouillon	180	1 000	7030	170000
27	$\frac{1}{2}$ Antipyrinserum, $\frac{1}{2}$ Bouillon	315	1 380	21 375	162000

Bemerkungen.

Wir gaben dem Versuchstiere nach je einer Stunde 1 gr. Antipyrin in den Magen. Die Baktericidie gegen Typhusbazillen wird bei Zusatz von ¹/₄ Bouillon geschwächt in einem Falle, Zusatz von ³/₄ Bouillon schädigte die Wirkung in zwei andern Fällen nicht. Staphylococcus aureus wächst gut.

Man sieht hieraus, daß Bouillon kein geeignetes Verdünnungsmittel ist. Die Temperatur des Versuchstieres fiel auf 36°7, also um 2°9. Die Zahl der weißen Blutkörperchen des Versuchstieres nahm zu, blieb jedoch nahe der Mittelzahl.

15. Versuch.

Antifebrin.

Tier	Gewicht	Alter	Dosen	nach S	tunden	Blutmenge	Serummenge
=			0	11	2		
Antifebrintier	2 840	7 Monate	0,3 gr.	$0.3~\mathrm{gr}$. 0,4 gr.	45 cc	20cc

Tier	Temperatur nach Stunden					Weiss	en nach Stunden			
	0	1	2	3	4	0	1	2	3	4
Antifebrintier	38°85	38°61	38°40	38°09	38°30	9 700	8 500	7 800	10 200	11 700

Baktericider Versuch.

Bakterienart	Flüssigkeit				Nac	h Stun	den		
		0	1/2	1	2	3	4	6	24
Choleravibrionea	Bouillon	960		_					8 ₂₀
,,	Serum	800	74	0	0	. 0	0	0	0
77	$^{1}/_{2}$ Serum $^{1}/_{2}$ Bouillon $^{1}/_{2}$ Serum	960	167	48	20	0	Ô	0	0
••	$\frac{1}{2}$ Bouillon	740	124	25	0	0	0	0	0
Typhusbazillen	Bouillon	720	_	_	_				
, ,,	Serum	825	175	320	135	79	0	0	0
***	$\frac{1}{2}$ Serum Bouillon Serum	964	75	27	21	0	0	0	.0
77	1/2 Bouillon	1 760	180	47	22	14	0	0	0
Streptococcus	Bouillon	640	-						
Staphylococcus "	Serum	760	875	930	1 020	2 760	5 320	7 500	120 000
aurens	Bouillon	840		_	_				(1000 1829).
27-	Serum	820	960	715	630	93	1 360	2320	37000
Coli	Bouillon	729		_		-			-
27	Serum	640	834	1 170	1 530	3 140	10 310	15 240	105 000

Bemerkungen.

Verdünnen mit 1 Teil Bouillon schwächte zwar die Wirkung des Serums, es war jedoch stark baktericid bei Typhus und Cholera. Staphylococcus aureus zeigte Entwickelungshemmung und Abnahme bis zur vierten Stunde, später trat jedoch Vermehrung ein.

Die Temperatur des Versuchstieres nahm um 0°55 ab. Die Leukocytenzahl des Versuchstieres stieg wenig über die Mittelzahl.

16. Versuch.

Salicylsäure.

Tier	Gewicht	Alter	Dosen	nach S	tunden	Tem	oeratur i	nach Stur	h Stunden	
***************************************			0	1	2	0	1	2	3	
Salicylsäuretier	3100 gr.	7 Mon.	0,5 gr.	0,5 gr.	0, 5gr.	39°75	39°20	38°70	38°20	

	Weisse Blu	tkörperchen	nach Stund	len	
 0	1	2	3	4	2
7 690	6 200	7 240	8 430	7 260	

Baktericider Versuch.

Bakterienart	Flüssigkeit		Nach Stu	ınden	len	
		0	3	6	24	
Choleravibrionen	Serum	1 500	0	0	0	
• ••	³ / ₄ Serum, ¹ / ₄ NaCl-Lösung	2700	0	0	0	
**	1/2 Serum, 1/2 NaCl-Lösung	2 800	0	0	0	
**	Serum	85	0	0	0	
**	³ / ₄ Serum, ¹ / ₄ NaCl-Lösung	180	0	0	0	
**	1/2 Serum, 1/2 NaCl-Lösung	800	0	0	0	
22	Serum	93	0	0	0	
**	³ / ₄ Serum, ¹ / ₄ NaCl-Lösung	85	65	22	0	
**	1/2 Serum, 1/2 NaCl-Lösung	48	8	1	0	
yphusbazillen	Serum	400	0	0	0	
· 1	³ / ₄ Serum, ¹ / ₄ NaCl-Lösung	434	0	0	0	
77	1/2 Serum, 1/2 NaCl-Lösung	225	0	0	0	
77	Serum	140	0	0	0	
***	³ / ₄ Serum, ¹ / ₄ NaCl-Lösung	234	0	0	0	
22	1/2 Serum, 1/2 NaCl-Lösung	115	0	0	0	
**	Serum .	400	0	0	0	
"	³ / ₄ Serum, ¹ / ₄ NaCl-Lösung	340	0	0	0	
77	1/2 Serum, 1/2 NaCl-Lösung	365	0	0	ŏ	

Bakterienart	Flüssigkeit	Nach Stunden					
		0	2	4	24		
Staphylococcus				***			
aureus	Serum	180	102	663	142 000		
"	³ / ₄ Serum, ¹ / ₄ NaCl-Lösung	193	153	520	160 000		
>9	¹ / ₃ Serum, ¹ / ₃ NaCl-Lösung	84	240	660	130 000		
"	Serum	123	139	720	158 000		
22	³ / ₄ Serum, ¹ / ₄ NaCl-Lösung	190	246	805	300 000		
**	¹ / ₂ Serum, ¹ / ₃ NaCl-Lösung	104	93	446	170 000		

Bemerkungen.

Wir gaben dem Versuchstiere nach je einer Stunde 0,5 gr. Salicylsäure, nach weiteren zwei Stunden entnahmen wir das Blut. Nach 36 Stunden hatten wir klares Serum.

Die Verdünnung mit physiologischer Kochsalzlösung gab gute Resultate. Choleravibrionen und Typhusbazillen wurden nach drei Stunden abgetötet. Mit Bouillon wurde die Wirkung geschwächt. Staphylococcus gab keine guten Resultate.

Die Temperatur des Versuchstieres fiel um 1°55. Die Leukocytenzahl blieb ziemlich konstant.

17. Versuch.

Phenacetin.

Tier	Gewicht	Alter	Dosen	nach S	tunden	Tem	nach Stu	Stunden	
			0	1	2	0	1	2	3
Phenacetintier	3 120 gr.	10 M.	0,5 gr.	0,5 gr.	0, 5gr.	39°50	38°81	37°40	37°70

Baktericider Versuch.

Choleravibrionen " " " " " " " " " " Typhusbazillen	Serum 3/4 Serum, 1/4 NaCl-Lösung 1/2 Serum, 1/2 NaCl-Lösung Serum 3/4 Serum, 1/4 NaCl-Lösung 1/2 Serum, 1/2 NaCl-Lösung Serum 3/4 Serum, 1/4 NaCl-Lösung Serum 1/2 Serum, 1/2 NaCl-Lösung Serum 1/2 Serum, 1/4 NaCl-Lösung Serum 3/4 Serum, 1/4 NaCl-Lösung Serum 1/2 Serum, 1/4 NaCl-Lösung 1/2 Serum, 1/4 NaCl-Lösung	1 500 2 700 2 800 85 180 800 62 85 48	0 0 0 0 0 0 0 0 0 65 8	6 0 0 0 0 0 0 1 22	0 0 0 0 0 0 0
27 27 27 27 27 27 27 27 27 27	3/4 Serum, 1/4 NaCl-Lösung 1/2 Serum, 1/2 NaCl-Lösung Serum 3/4 Serum, 1/4 NaCl-Lösung 1/2 Serum, 1/2 NaCl-Lösung Serum 3/4 Serum, 1/4 NaCl-Lösung Serum 1/2 Serum, 1/4 NaCl-Lösung Serum 1/3 Serum, 1/4 NaCl-Lösung Serum 1/4 NaCl-Lösung	2 700 2 800 85 180 800 62 85 48	0 0 0 0 0 0 65 8	0 0 0 0 0 1	0 0 0 0 0
77 77 77 77 77 77 77 77	Serum 3/4 Serum, 1/4 NaCl-Lösung 1/2 Serum, 1/2 NaCl-Lösung Serum 3/4 Serum, 1/4 NaCl-Lösung 1/2 Serum, 1/4 NaCl-Lösung 1/2 Serum, 1/2 NaCl-Lösung Serum 3/4 Serum, 1/4 NaCl-Lösung	2 800 85 180 - 800 62 85 48	0 0 0 0 0 65 8	0 0 0 0 1	0 0 0
77 77 77 77 77 77 77 77	Serum 3/4 Serum, 1/4 NaCl-Lösung 1/2 Serum, 1/2 NaCl-Lösung Serum 3/4 Serum, 1/4 NaCl-Lösung 1/2 Serum, 1/4 NaCl-Lösung 1/2 Serum, 1/2 NaCl-Lösung Serum 3/4 Serum, 1/4 NaCl-Lösung	85 180 - 800 62 85 48	0 0 0 0 65 8	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$	0 0
77 77 77 77 77 77 77	Serum 3/4 Serum, 1/4 NaCl-Lösung 1/2 Serum, 1/2 NaCl-Lösung Serum 3/4 Serum, 1/4 NaCl-Lösung 1/2 Serum, 1/4 NaCl-Lösung 1/2 Serum, 1/2 NaCl-Lösung Serum 3/4 Serum, 1/4 NaCl-Lösung	180 - 800 - 62 - 85 - 48 - 9	0 0 0 65 8	0 0 1	0
77 72 77 77 77 77	Serum, ¹ / ₂ NaCl-Lösung Serum ³ / ₄ Serum, ¹ / ₄ NaCl-Lösung ¹ / ₂ Serum, ¹ / ₂ NaCl-Lösung Serum ³ / ₄ Serum, ¹ / ₄ NaCl-Lösung	800 62 85 48 9	0 0 65 8	0	0
77 77 77 77 77 77	Serum, ¹ / ₂ NaCl-Lösung Serum ³ / ₄ Serum, ¹ / ₄ NaCl-Lösung ¹ / ₂ Serum, ¹ / ₂ NaCl-Lösung Serum ³ / ₄ Serum, ¹ / ₄ NaCl-Lösung	62 85 48 9	$\begin{bmatrix} 0 \\ 65 \\ 8 \end{bmatrix}$	1	
77 77 77 77 77	Serum 3/4 Serum, 1/4 NaCl-Lösung 1/2 Serum, 1/2 NaCl-Lösung Serum 3/4 Serum, 1/4 NaCl-Lösung	$\begin{array}{c} 85 \\ 48 \\ 9 \end{array}$	65 8	_	0
77 77 77 77	Serum 3/4 Serum, 1/4 NaCl-Lösung	$\begin{array}{c} 48 \\ 9 \end{array}$	8	22	
77 77 77	Serum 3/4 Serum, 1/4 NaCl-Lösung	9	8		0
?? ?? ??	Serum 3/4 Serum, 1/4 NaCl-Lösung			1	0
"	$^3/_4$ Serum, $^1/_4$ NaCl-Lösung $^1/_2$ Serum, $^1/_2$ NaCl-Lösung	10	0	0	0
22	$\frac{1}{2}$ Serum, $\frac{1}{2}$ NaCl-Lösung	43	0	0	0
Typhusbazillen	12 , 12	42	0	0	0
"	Serum	320	0	0	0
77	³ / ₄ Serum, ¹ / ₄ NaCl-Lösung	434	0	0	0
**	$\frac{1}{2}$ Serum, $\frac{1}{2}$ NaCl-Lösung	225	0	0	0
"	Serum	140	0	0	0
"		234	Ö	0	0
"	$^3/_4$ Serum, $^1/_4$ NaCl-Lösung $^1/_2$ Serum, $^1/_2$ NaCl-Lösung	115	0	Õ	ŏ
;7	Serum	251	o o	Ŏ.	0
29	³ / ₄ Serum, ¹ / ₄ NaCl-Lösung	340	ő	ŏ	ŏ
	$\frac{1}{2}$ Serum, $\frac{1}{2}$ NaCl-Lösung	267	ő	ŏ	ŏ
77	Serum	360	ŏ	ŏ	ŏ
"		400	49	ŏ	ŏ
,,,	$^3/_4$ Serum, $^1/_4$ NaCl-Lösung $^1/_2$ Serum, $^1/_2$ NaCl-Lösung	267	0	328	ŏ
Staphylococcus	/2 Sorum, /2 1.001 2000 10	201			
aureus	Serum	180	102	663	142 000
	3/ Serum. 1/ NaCl-Lösung	193	153		160 000
"	$^3/_4$ Serum, $^1/_4$ NaCl-Lösung $^1/_2$ Serum, $^1/_2$ NaCl-Lösung	84	240		130 000
"	Serum	123	139		158 000
77	³ / ₄ Serum, ¹ / ₄ NaCl-Lösung	190	246		300 000
"	$\frac{1}{2}$ Serum, $\frac{1}{4}$ NaCl-Lösung	184	93		170 000
Streptococcus	Serum	240	334	1 800	
	³ / ₄ Serum, ¹ / ₄ NaCl-Lösung	260	320	4 200	51 000
"	$\frac{1}{2}$ Serum, $\frac{1}{2}$ NaCl-Lösung	155	255	10 000	
"	Serum	380	1 520	2 300	43 000
"	³ / ₄ Serum, ¹ / ₄ NaCl-Lösung	167	521	12 800	
"	$\frac{1}{2}$ Serum, $\frac{1}{2}$ NaCl-Lösung	120	760		

Bemerkungen.

Wir gaben dem Versuchstiere nach je einer Stunde drei Mal 0,5 gr. Phenazetin in den Magen. Nach zwei Stunden entnahmen wir das Blut. Nach 36stündigem kühlem Aufbewahren hatten wir klares Serum. Bei zweifacher Verdünnung des Serums mit NaCl-Lösung wurden Choleravibrionen und Typhusbazillen noch leich abgetötet. Temperatur und Leukocytenzahl des Versuchstieres fielen.

Chinin.

18. Versuch.

Tier	Gewicht	Alter		Dosen nac	h Stunden	
			0	1	2	3
Chimintier	3 089 gr.	7 Monate	0,24 gr.	0,24 gr.	0.24 gr.	0,24 gr.

	Temperatur nach Stunden					isse Blutk	örpercher	nach St	unden
0	1	2	3	4	0	1	2	3	4 .
39.00	38°65	38∘€0	39°05	38°82	9 005	8 900	11 500	16 005	13 400

Baktericider Versuch.

Bakterienart	F	lüssigkeit		Nach	Stunden	
	Serum	NaCl-Lösung	0	3	6	24
Typhusbazillen	4	0	600	0	0	0
77	3/4	1 / / 4	560	1	0	190
**	1/3	1	169	180	53	17 000
77	4 4	0^2	240	0	0	0
77	3 1	1/4	100	0	0	0
Staphylococcus	1/2	1/2	42	16	11	0
aureus	4	0	640	35 000	125 000	250 000
, ,	3	1 / 4	520	17 000	140 000	300 000
**	1 2	1	560	4 700	28 400	200 000
77	4	0^2	260	1 520	12 000	160 000
**	3 1	1/1	460	2500	18 000	140 000
**	1/2	1	500	520	90 000	250 000
Coli	4	0^2	840	9 000	20 000	700 000
**	8 1	1/,	830	55 000	280 000	600 000
"	1	1/,4	560	18 000	400 000	500 000
Streptococcus	4 -	0^2	920	7 800	56 000	200 000
•	3 1	1 4	740	12 000	140 000	250 000
**	1 ,	1	580	20 000	250 000	170 000
??	4	O	295	7 800	28 400	6 000
75	3	1,4	210	40 000	120 000	175 000
71	1 2	1/2	560	26 200	700 000	1 500 000

Bemerkungen.

Wir gaben dem Versuchstiere nach je einer Stunde drei Mal 0,24 gr. Chinin in den Magen. Nach weiteren drei Stunden entnahmen wir das Blut. Nach 36stündigem kühlem Aufbewahren erhielten wir klares Serum. In zweifacher Verdünnung wurden Typhusbazillen noch gut abgetötet. Die Leukocytenzahl des Versuchstieres stieg, die Körpertemperatur des Versuchstieres blieb nahezu konstant.

19. Versuch.

Antipyrin.

Tierart	Gewicht Alter Dosen nach Stunden Temperatur nach S						Stunden			
			0	1	2	0	1	2	3	4
Antipyrintier	4 200 gr.	10 M.	1 gr.	1 gr.	1 gr.	39°98	39°40	39°40	38°88	38°75

	Weisse Blutkörperchen nach Stunden									
in the second se	0	1	2	3						
	10 750	12 800	11 715	13 955						

Baktericider Versuch.

Bakterienart	Flüssigkeit		Nach	Stunden	
		0	3	6	24
Choleravibrionen	Bouillon	342			_
	Serum NaCl-Lösung				8 gs
77	4/, 0	393	0	0	0
,,	3/1 1/1	320	0 .	0	0
77	1/2	310	0	0	0
77	4/4 0	520	0	0	0
27	3/1 1/4	_ 370	0	0	0
277	$\frac{1}{2}$ $\frac{1}{2}$	460	0	0	0
77	4/4 0	5 123	0	0	0
**	3/4 1/4	492	0	0	0
22	1/2 1/2	370	0	0	0
Typhusbazillen	4/4 0	195	0	0	0
77	3/4	188	0	0	0
77	$\frac{1}{2}$ $\frac{1}{2}$	282	0	0	0
77	$\frac{4}{4}$ 0	1 013	0	0	0
77	3/4 1/4	126	0	. 0	0
27	1/2 1/2	75	0	0	0
27	4/4 0	17	0	0	0
77	3/4 1/4	11	0	0	0
**	1/2	23	0	0	0
Staphylococcus aureus	$\frac{4}{4}$ 0	340	495	15590	20 00
,, ,,	3/4	180	1 000	7030	16 20
77 77	$\frac{1}{2}$ $\frac{1}{2}$	315	1 380	28000	20 17

Bemerkungen.

In diesem Versuche wurden die Choleravibrionen und Typhusbazillen abgetötet. Die Leukocytenzahl des Versuchstieres stieg. Die Körpertemperatur des Versuchstieres fiel um 1°15. Die Staphylokokkenkulturen boten nichts Interessantes.

20. Versuch.

Salicylsäure.

Tier	Gewicht	Alter	Dosen nach Stunden			Temperatur nach Stundun			
			0	1	2	0	1	2	3
Salicylsäure- tier	2 840 gr.	7 Mon.	0,5 gr.	0,5 gr.	0,5 gr.	39°95	38°92	37°65	38° 50

	Weisse	Weisse Blutkörperchen nach Stunden								
	0	1	2	3						
H	8 750	9 900	10 550	7 620						

Baktericider Versuch.

Bakterienart		Flüssigkeit		Nach	Stunder	l
	Serum	NaCl-Lösung	0	3	6	24
Choleravibrionen	4/4	0	750	0	0	0
"	3/4	1/.	700	0	0	0
"	1/3	1/4	570	0	0	0
	$4/\frac{2}{1}$	$\overset{/2}{0}$	960	0	0	0
"	3/1	1 /	640	0	0	0
"	1/4	1/-1	970	Õ	Õ	Õ
29	4/2	$\stackrel{/2}{0}$	424	ő	Ŏ	ŏ
,,,	3/4	1 /	370	ő	ő	ő
59	1/4	1/4	250	ŏ	ő	ŏ
Гурhusbazillen	4/2	0^{2}	534	0	0	ŏ
	3/4	1 /	622	20	0	ő
"	1,1	.1/4	480	0	ŏ	6
77	4/2	$\frac{1}{2}$	814	0	0	0
77	3/4	1/	710	70	0	. 0
11	1/4	1/4				0
"	/2	$\frac{1}{2}$	563	56	0	9
77	3/4	0	40	0	0	9
77	3/4	. 1/4	10	0	0	0
27	$\frac{1}{2}$	$\frac{1}{2}$	14	0	0	0
Staphylococcus aureus	4/1	0	112	141	2950	115000
" "	3/4	1/4	245	310	5 240	68000
" "	$\frac{1}{2}$	1/2	487	270	7 400	45000
Choleravibrionen	0	4/4	630	1 720	5300	125000

Bemerkungen.

Die Choleravibrionen und Typhusbazillen wurden in diesem Versuche leicht abgetötet. Die Staphylococcuskulturen zeigten Entwickelungshemmung bis zur dritten Stunde. Die Körpertemperatur des Versuchstieres fiel anfangs, später stieg sie. Die Leukocytenzahl des Versuchstieres stieg anfangs, später fiel sie.

21. Versuch.

Phenacetin.

Tier	Gewicht	Alter	Dosen nach Stunden					
			0	1	2			
Phenacetintier	3 700 gr.	10 Monate	0,5 gr.	0,5 gr.	0,5 gr.			

T	Temperatur nach Stunden				Weisse Blutkörperchen nach Stunden					
0	1	2	3	0	1	2	3			
39°05	38°45	38°30	38°35	6 750	8 000	7 100	7 325			

Baktericider Versuch.

Bakterienart	F	lüssigkeit		Nach Stu	ınden	
	Serum	NaCl-Lösung	0	3	6	24
Choleravibrionen	4/,	0	820	0	0	0
27	3/4	1/,	530	0	0	0
?? ??	1/4	1/4	920	0	0	0
"	4/2	0^2	780	0	0	0
77 , 99	3/4	1/.	670	0	0	0
,,	1/4	1/4	775	0	0	0
77 99	4/2	0^2	204	0	0	0
	3/4	1/,	190	0	0	0
77	1/1	1/1	253	0	0	0
Гурhusbazillen	4/2	0^2	320	0	0	0
"	3/4	1/	410	0	0	0
	1/4	1/4	214	11	0	0
"	4/2	0^2	260	0	0	0
77	3/4	1/.	$\overline{372}$	0	0	0
27	1/4	1/4	325	7	ő	0
27	4/2	0^2	115	Ó	ŏ	ő
77	3/4	1/.	205	ő	ő	ő
77	1/4	1/4	170	0	0	0

Bemerkungen.

Choleravibrionen und Typhusbazillen starben leicht ab. Die Temperatur des Versuchstieres fiel um 0°65. Die Leukocytenzahl des Versuchstieres blieb ziemlich konstant.

22. Versuch.

Antifebrin.

Tier	Gewicht	Alter	Dosen nach Stunden				
			0	1	2		
Antifebrintier	3 089 gr.	9 Monate	0,5 gr.	0,5 gr.	0,5 gr.		

Temperatur nach Stunden				Weisse Blutkörperchen nach Stunden				
0	1	2	3	4	0	1	2	3
39° 18	39° 15	39°01	37002	37°99	9 300	7 500	6 500	-5 400

Baktericider Versuch.

Bakterienart	F	üssigkeit		Nacl	n Stunden	
	Serum	NaCl-Lösung	0	3	6	24
Choleravibrionen	4/.	0	53	0	0	0
	3/*	1/.	49	0	0 .	0
"	1/1	1/,*	43	0	0	0
"	$\frac{4}{2}$	0^2	41.	Ŏ	ŏ	ŏ
"	3/4	1 /	53	ő	ŏ	ŏ
,,,	1/1	1/1	47	ŏ	0	ŏ
77	4/2	$\frac{1}{2}$	39	0	0 .	Ä
"	, 1	1/		0	0	0
77	1/4	1/4	32	0	0	. 0
"	1/2	$\frac{1}{2}$	34	0	0	9
Гурhusbazillen	4/4	0	181	0	0	0
77	3/4	1/4	91	0	0	()
27	1/2	1/2	210	0	0	0
"	4/	0	145	0	0	0
	3/4	1/	133	0	0	0
77	1/1	1/,4	177	0	0	Ô
59	4/2	0^2	47	0	ő	ó
77	3/4	1 /	56	0	0	ŏ
**	1/1	1/4		0	0	0
	1/2	1/2	45	1 700	26,000	70.00
Coli	1/4	U	588	1 760	26 000	70 000
77	3/4	1/1	412	908	4 300	133 000
27	1/2	1/2	350	1 720	2700	106000

Bemerkungen.

Choleravibrionen und Typhusbazillen starben leicht ab. Die Körpertemperatur des Kaninchens fiel langsam um 1°19.

23. Versuch.

Chinin.

Tier	Gewicht	Alter	Dosen nach Stunden					
en en en en en en en en en en en en en e			0	1	3			
Chinintier	2 950 gr.	8 Monate	0,3 gr.	0,3 gr.	0,4 gr.			

	Temperatur nach Stunden				Weisse Blutkörperchen nach Stunden			
0	1	2	3	0	2	4		
39°00	38°50	37°89	38°60	13 750	10 625	8 425		

Baktericider Versuch.

Bakterienart	FI	üssigkeit		Nac	h Stunde	n
7.50	Serum	NaCl-Lösung	0	3	6	24
Choleravibrionen	4/,	0	46	0	0	0
**	3/4	1 / .	43	0	0	0
77	1/2	1/4	300	0	0	0
"	4/2	0^2	19	0	0	0
22	3/4	1 /	39	0	0	0
77	1/4	1/*	29	0	0	0
"	4/2	0^2	9	0	0	0
	3/4	1 /	15	0	0	Õ
)). ••	1/4	1/4	30	0	Ö	Ŏ
'yphusbazillen	4/2	0^2	180	0	0	0
• 1	3/1	1 /	560	Õ	0	0 -
"	1/4	1/4	172	ŏ	ő	ŏ
"	4/2	0^2	194	ő	Õ	ŏ
"	3/4	1 /	112	ő	0	ő
"	1/4	1/4	85	ő	ő	ŏ
treptococcus	4/2	0^2	220	300	1 800	300 000
	4/4	ŏ	231	128	448	96 000
**	4/4	Õ	266	580	2 200	150 000

Bemerkungen.

Choleravibrionen und Typhusbazillen starben leicht ab. Die Körpertemperatur des Versuchstieres fiel wenig. Die Leukocytenzahl des Kaninchens sank. Die Leukocytenzahl fiel um 4 300.

Versuche mittels verdünnten Serums.

Um feinere Abstufungen in der baktericiden Wirkung der verschiedenen Sera zu finden, verdünnten wir das Serum sowohl mit Bouillon als mit physiologischer Kochsalzlösung. Wir gingen im allgemeinen bis zu halber Verdünnung des Serums. Die Versuche mit Choleravibrionen und Typhusbazillen verliefen gut, nach dreistündigem Einwirken trat in vielen Fällen gänzliche Abtötung aller Keime ein.

Mittels dieser Methode sichtbare Unterschiede festzustellen, welche eine Differenz zwischen den verschiedenen Sera feststellen sollte, ist uns nicht gelungen.

C. Fiebernde Kaninchen.

Intrastomachale Gaben der Antipyretica.

Ueber die Fieberversuche.

Die verschiedenen Methoden Fieber zu erregen finden wir bei Krehl. Z. f. Pharmakologie und Pathologie.

Wir wählten für die Erregung von Fieber die Injektion von abgetöteter filtrierter Bakterienbouillonkultur von Bacterium coli und erhielten gute Resultate. Durch Vorversuche überzeugten wir uns über die Wirkung, welche die Injektion hervorbringt.

Bei subkutaner Injektion stieg die Temperatur am ersten Tage, beim Kaninchen des ersten Versuches um 2°. Am nächsten Morgen betrug sie noch 40°10, also 0°6 über der Mitteltemperatur.

Wirkung der Antipyretica.

Die Antipyretica sind im Stande fieberhaft erhöhte Körpertemperatur zu erniedrigen. Normale Körpertemperatur wird aber erst durch enorm große Gaben erniedrigt. Allmählige Wirkung haben die von uns angewandten Mittel wie Chinin, Salicylsäure, Phenacetin, Antifebrin, Antipyrin. Bei Salicyl-

säure, Antipyrin, Antifebrin, Phenacetin findet bei intrastomachalen Gaben in zwei Stunden ein Fallen der Temperatur auf ein Minimum ein, welches zwei Stunden dauert und in zwei Stunden tritt wieder die Normaltemperatur auf.

Fieber ist gewöhnlich von folgenden Symptomen begleitet: Verminderung des Appetites, der Sekretionen, der Verdauung, der Assimilation und des Schlafes.

Fieber wird erzeugt durch Eindringen eines Krankheitsstoffes in den Organismus, welcher den Stoffwechsel fermentartig beeinflußt. Man kann auf folgende Weisen künstlich Fieber erzeugen: Durch Injektion von Wasserauszügen aus tierischen Organen, durch Injektion tierischer Sekrete, sowie durch viele Eiweißstoffe, wie aschefreies Eiweiß, Serumalbumin, Globulin, Vitellin, Glutenkasein, Nuclein aus Hefe, Kasein, Kaseinnatrum; man erzeugte hiermit mittleres bis hohes Fieber. Enzyme, Pepsin, Lab, Invertin, Emulsin, Diastase, Chymosin, Myrosin, Papayotin, Trypsin, Fibrinferment erzeugten leicht Fieber. Hydrierte Eiweißkörper, Wittes Pepton, Somatose, Protalbumose, Deuteroalbumose erzeugen hohes Fieber.

Auch die Injektion niedrig organisierter Stoffe z. B. Leucin, Harnstoff, Asparaginsäure, Glycocoll, Hyppursäure, salzsaurer Tyrosinäther, Alkaloide, Cadaverin, Neurin, Olivenöl, Crotonöl, Mineralsalze, Nitrate, Chlorate, Jodide, Bromide der Alkalien erzeugten hohes Fieber. Durch Injektion von Mikroorganismen z. B. Bacterium coli, pyocyneus, typhi, diphteriae, Choleravibrionen, Milzbrandbazillen, prodigiosus, subtilis, Kapselbacillus, proteus, Vibrio Metschnikoff, Pneumobacillus, Pneumokokken, Tuberkelbazillen, Tetanusbazillen, Fäulnisbakterien, Eiterkokken, Schweinerotlaufbazillen erzeugte man hohes Fieber.

Fieber.

Versuch vom 9. Juli 1906.

Antipyrin.

Vorversuch.

Zeit	Normal	Impfung
4 Uhr N. M.	39°03 direkt n. J. 38°06 39°89	1 ^{cc} drei Tage alte filtrierte Bouillonkultur von Bacterium coli.
$egin{array}{cccccccccccccccccccccccccccccccccccc$	41.08	Fieber

Versuch vom 10. Juli 1906.

Zeit	Temperatur	Weisse Blut- körperchen	Injektion	Bemerkungen
9 Uhr Mor.	40°10			Hyperleuko-
9^{05}_{30}	06030.036 (06060.030)	29600		cytose.
9^{20}	d. n. J.		3/4cc filtrierte	, and the second
9^{25}	39°56		Bact. colicul-	- C
10^{30}	907 300 900 500	13340	tur 3 Tage alt.	
10^{40}	39°71			
10^{50}	$39^{\circ}50$		٠.	
11			1ee F. C. K.	
11^{50}	39°48		3 T.	
12	v. J.	20100		Hyperleuko-
2 Uhr N.M.	40°7			cytose.
91/	n. J. 40° 19			
$rac{2^{1}/_{4}}{2^{05}}$	40 13		1cc F. C. K.	
210			3 T.	1 gr. Antipyrii
$\overline{3}$		22000	5 1.	in den Magen
310	39011			Hyperleuko-
3^{40}	$39 \circ 00$			cytose.
3^{30}	=			1 gr. Äntipyrii
4^{15}	38° 08			
4^{50}				1 gr. Antipyrii
5	38019		1	
5^{55}	$37^{\circ}80$	4		Ziemlich viel
6		Operation		Blut.
			7. 06.	
5 U.	Umdrel	nen des Ap	parates, wer	nig Serum.
$6^{1/4}$	Kulture	einsaat in E	Bouillon.	8

12. 7. 06.

Antipyrin.

Chole	holeravibrionen	Choleravib	vibrionen	rionen Typhus	Typhusbazillen	Typhus	zillen Typhusbazillen	Staphylococcus	0cocens
Std. 850 " 0	1100	850 0 0		440 0 0	380	136 0 0	198 249 385	200 286 3 600	180 440 4536
0	0	0	2 400	0	0	0	3 920	000 09	WHEEL STATES

Zeit	2cc Ser. 2cc Phys. NaCl Lös. Staphylococcus	Phys.	1cc Ser. Staphylo	2cc Ser.	1cc Ser. 2cc Scholeravibrior	2cc Ser.	1ce Ser. Typhusbazillen		
0 Std. 3 " 6 " 24 ". 24 ".	192 920 3 939 4 150 000 72	174 300 000 000	3 150 28 300 60 000	315 4 933 32 000 134 000	1 920 0 0	1 760 0 0 0	375 0 0 0	•	

Fieber.

Versuch vom 11. Juli 1906.

Chinin.

Kaninchen, Gewicht 2 kg 220 gr. Alter 7 Monate.

			5		
Zeit	Temperatur	Weisse Blut- körperchen	Injektion	Gaben	Bemerk.
9 Uhr V. M.	39°52 (Nerma [†])			li .	
905	00 02 (11)	12500			Hyper-
920		12 000	1cc 3 T.		leukocy-
9^{25}	39°31		F.C.B.K.		tose.
10^{25}	39°75		r.G.D.K.		1050.
11	40.80				
11 85	41°59				
1130	40.78				
$\frac{11}{11^{15}}$	70 70	26500	(1130 Zeit)	0,5 gr.	
$\frac{11}{12}$	40°51	20 900	(11 og ren)	Chinin	
2^{15} N. M.	39.99			in den	
$\frac{2^{30}}{2^{30}}$	33 33				
$\frac{2}{2}$ 10	38091			Magen.	
3^{50}	50,31	17.000		0.5 gr.	
	99045	17000		Chinin.	
5^{30}	38°45	24 200			
9	=	$21\ 200$			
5^{50}	Or	eration	n	näßig Blu	ıt
12. Juli	T. 1 1	7			TS - 211
6 Uhr	Umdreher	ı des Appa	rates. Ei	nsaat in	Bouillon.
13. Juli					

Platten

Chinin.

Zeit		1cc Ser. vibrionen	2cc Ser. Cholera	2ce NaCl Lösung avibrionen		2cc Ser. Sbazillen	15	2ce Phys. NaCl-Lösung usbazillen
0 Std. 3 " 6 " 24 " 0 " 3 " 6 " 24 "	1 020 0 0 0 216 0 0	735 0 0 0 184 0 0	410 0 0 0 97 0 0 0 0	320 649 1 560 50 000 81 123 412 11 200	632 12 0 0 304 0 0 0	780 0 0 0 243 0 0 0	325 0 0 0 115 0 0	$\begin{array}{c} 475 \\ 1280 \\ 3500 \\ 80000 \\ 127 \\ 210 \\ 720 \\ 15000 \end{array}$

Fieber.

Versuch vom 25. Juli 1906.

Salicylsäure.

Kaninchen, 9 Monate alt, Gewicht 2850 gr.

Zeit	Temperatur	Weisse Blut- körperchen	Injektion	Bemerkungen
9^{25}	39059	2		
9^{45}		7 740		
9^{50}			1.25 ^{cc} F.	4 (4)
10	39°77		5 T. C. K.	= = [8
10			3 11 31 11	
11 15	39031			
215	39061			
2^{35}	39071		2	
$\frac{2}{2}$ 30	90 71		1cc F. C. K.	
$\overline{3}^{40}$	39090		5 T.	B 5
3^{45}	00 00	9 230	9 1.	
4	40°10	3 230		8
4^{25}	40°15			0,5 gr. Sali-
4^{30}	40°19		2	cylsäure
4^{35}	39076			cyrsaure
$oldsymbol{5}^{35}$				
5^{40}	39°70	10.025		0.5
		10 935		0,5 gr.
6^{10}	20040	0.420		778
6^{15}	39°49	9 438		

Zei	eus		2ccNaCl-L. husbaz.		. 1ccS. isbaz.	100000	2ccNaCl-L. eravibr.			1 cc S. Choler
0	405	250	100	225	370	415	254	340	423	640
1 :	$ \begin{array}{r} 165 \\ 520 \end{array} $	440 11 000	$egin{array}{c c} 1 & 040 \\ 7 & 071 \\ \hline \end{array}$	0	0	0	702 28520	$\frac{0}{0}$	0	0
24	60 000	78 000	50 000	ŏ	0	0	60000	0	0	0

Fieber.

Versuch vom 25 Juli 1906.

Antifebrin.

Kaninchen, 8 Monate alt, Gewicht 2730 gr.

Zeit	Tempe- ratur	Weisse Blut- körperchen	Injektion	Zeit	Tempe- ratur	Dosen	Injektion
$\begin{array}{c} 9^{35} \\ 10^{20} \\ 10^{30} \\ 10^{35} \\ 11^{25} \\ 2^{20} \\ 2^{45} \end{array}$	39° 48 39° 50 39° 70 39° 62 39° 80	9 380	1.2cc 5 T. alt C. K.	$ \begin{array}{c} 10 \\ 10^{15} \\ 11 \\ 12 \\ 12 \\ 2^{30} \\ 2^{35} \end{array} $	38°82 37°55 37°50	1 gr. 1 gr. 1 gr.	13 125 12 500 11 875
$\begin{array}{c} 2^{50} \\ -3 \\ 4^{40} \\ 4^{50} \\ 5 \\ 5^{10} \end{array}$	39°65 40°08 39°59	10 300	0,5 gr. Antifebrin	2^{40} 3^{20} 3^{40} 5^{50}	36° 30 Opera	tion gr. Alter	13 850 8 Monate
$ 6 $ $ 5^{50} $ $ 6^{30} $	39°32 38°95	11 000	0,5 gr. Antifebrin				

Chole	ra-	Che	S 2cc NaCl·L. olera- rionen	Тур	. 1ceS. hus- zillen	Ту	S. 2ccS. phus- azillen	Ser	rum oli		rum Coli	Zeit Std.
1 100	995	432	510	210	423	140	175	180	300	823	380	0
0	0	0	1520	0	0	0	204	1 080	1 370	26 789	1 240	3
0	0	0	3 200	0	0	0	277	40 000	73 000	35 000	30 000	6
0	0	0	70 000	0	0	0	8 000	250 000	400 000	38 000	170 000	24

Fieber.

Versuch vom 17. Juli 1906.

Phenacetin.

Zeit	Temperatur	Weisse Blutkörperchen	Injektion	Gaben
940	39° 27			
10^{05}	39° 20			
950	00 .00	11 500		
10^{10}		11 000	1.5cc F. 3 T.	111 4
10^{15}	38°68		C.C.	a 2 11 2
11	39°00			
11^{50}	39° 22			
12	39°32			a e
11^{50}	10 10 10 10 10 10 10 10 10 10 10 10 10 1	12 500	1/2 cc F. 3 T. C.C.	
2^{30}	39°98			
2^{50}	£1		2cc F. 3T. C. C.	
2^{50} 2^{45} 4	39°58	om -		3
4	39°92			0,5 gr.
4^{50}	39°70			8
5^{15}		7)		0,3 gr.
6	38°6	11 000		E1
6^{40}		La Company		
6^{45}	38°41			
6^{50}				

Phenacetin.

Zeit	1cc Ser. 1cc Ser. Choleravibrionen		Ser. 2cc Ser. 2cc NaCl-L. Choleravibrionen			1 ^{ce} S. 1 ^{ce} S. 2 ^{ce} S. Typhusbazillen		
0 Std. 3 " 6 " 24 " 0 " 3 " 6 " 24 "	1 200 0 0 0 110 0 0	480 0 0 0 364 0 0 0	670 0 0 0 210 0 0	530 710 1 230 45 000	270 0 0 0	543 0 0 0	112 0 0 0	

Versuch mit einem Kaninchen, welches nach hervorgebrachter Fiebertemperatur die Körpertemperatur durch Antipyringaben herabgesetzt bekam.

Wir injizierten zu verschiedenen Malen (drei Mal) je ³/₄ 1^{cc} 1^{cc} der abgetöteten, filtrierten Bakterienkultur; wir erhielten so Temperaturen von 39°7, 40°7, 40°19. Nachdem wir auf diese Art Fieber erregt hatten, gaben wir drei Mal je 1 gr. Antipyrin in den Magen und setzten auf diese Art die Temperatur bis auf 37°8 herab. Die Leukocytenzahl stieg stark, bis 20,100, 22,000, 29,600, war also bedeutend über die Mittelzahl gestiegen.

Typhusbazillen und Choleravibrionen wurden im Serum schnell abgetötet. In einem Falle waren die Choleravibrionen schon nach zehn Minuten vernichtet. Staphylococcus aureus vermehrte sich stark.

Chiningaben.

Durch die Injektion der filtrierten Colibouillonkultur stieg die Temperatur des Versuchstieres auf 41°59. Alsdann selzten wir durch Chiningaben die Körpertemperatur des Kaninchens auf 38°45 herab.

Nach der Injektion der Colibouillonkultur trat eine starke Hyperleukocytose ein, die Leukocytenzahl stieg bis 26 500, also hoch über das Mittel hinaus. Zur Temperaturerniedrigung gaben wir intrastomacal zwei Mal 0,5 gr. Chinin. Choleravibrionen und Typhusbazillen, welche in physiologischer Kochsalzlösung gut wuchsen, wurden durch das Serum gnt abgetötet.

Salicylsäuregaben.

Die Temperaturmessung ergab eine Steigerung auf 40°05 bis 40°10, wir setzten alsdann die Temperatur mittels Salicylsäure auf 39°49 herab.

Die Leukocytenzahl stieg nicht viel über das Mittel hinaus. Typhusbazillen und Choleravibrionen starben leicht im Serum ab.

Staphylococcus aureus zeigte in einem Falle bis zur dritten Stunde Verminderung dann von 6 bis 24 Stunden trat kräftige Vermehrung ein.

Versuch mit Antifebrin.

Die Temperatur stieg bis auf 40°08, wir setzten sie mittels Antifebrin, zwei Gaben à 0,5 gr., auf 38°95 herab. Die Leukocytenzahl stieg wenig über das Mittel. Choleravibrionen und Typhusbazillen wurden leicht abgetötet. Coli vermehrte sich gut.

Versuch mit Phenacetin.

Die Temperatur des Kaninchens stieg bis auf 39°98, wir setzten sie mittels Phenacetin, zwei Gaben, 0,5, 0,3 gr., auf 38°41 herab.

Während des Fieberstadiums stieg die Leukocytenzahl, fiel aber nachher während der Abkühlung mittels Phenacetin. Choleravibrionen und Typhusbazillen wurden innerhalb drei Stunden abgetötet.

Schlußfolgerungen.

Wir sehen also, daß man durch Injektion von filtrierter, bei 60° abgetöteter Colibouillonkultur ziemlich hohes Fieber erzeugen kann. Während der Fieberperiode stieg im allgemeinen die Leukocytenzahl, zuweilen hoch über das Mittel. Diese Erscheinung wurde von den meisten Autoren bei ihren Experimenten konstatiert, sie ist also eine bekannte Erscheinung. Die Abkühlung der erhöhten Körpertemperatur der Versuchstiere konnte man mit den angegebenen Antipyreticagaben gut erzielen, man konnte sogar die Körpertemperatur bis tief unter die Normaltemperatur herabsetzen. Die Versuche mit Choleravibrionen und Typhusbazillen verliefen gut, indem nach drei Stunden alle Keime abgetötet waren. Wenn man die erhaltenen Resultate mit denen bei fiebernden und normalen Tieren, welche keine Antipyreticagaben erhalten hatten, vergleicht, so kann man eine deutlich sichtbare Differenz nicht feststellen.

D. Immunisierung gegen Typhusbazillen.

Immunisierung sversuche.

Prüfung der Baktericidie des Serums.

Vergleich der Baktericidie vor und nach den Antipyreticagaben bei immunisierten Kaninchen.

Die Immunisierung wurde mittels steigenden Mengen abgetöteter Bakterienleiber erzielt.

Die Pausen zwischen den verschiedenen Injektionen betrugen 5 bis 7 Tage. Die Abtötung der Bakterien geschah bei 56 bis 60° eine Stunde lang. Hiervon wurde mittels Platinöse eine Probe in Bouillon ausgesäht. Blieb diese nach 24stündiger Bebrütung steril, so wurden die Bakterienleiber injiziert.

Das Gewicht der Kaninchen sank nach vorübergehender kurzer Steigerung stetig und fiel beim ersten Kaninchen vom 31. Oktober bis zum 7. Februar um 450 gr., beim zweiten Kaninchen um 660 gr., beim dritten um 740 gr., beim vierten um 70 gr. Die Temperatur des Kaninchens stieg nach jeder Injektion und kam langsam auf die Mitteltemperatur zurück. Beim ersten Kaninchen stieg die Temperatur nach der ersten Injektion um 0°39, kam nach 7 Tagen jedoch der Normalkörpertemperatur nahe. Die zweite subkutane Injektion brachte eine kurz dauernde Steigerung hervor, jedoch näherte sie sich bald wieder der Normaltemperatur. Die dritte Injektion brachte eine kräftige Temperatursteigerung hervor, welche nach drei Tagen verschwand. Die vierte Injektion war von kräftiger Temperatursteigerung gefolgt, welche länger dauerte als die vorhergehenden.

Die anderen Kaninchen zeigten ähnliche Schwankungen der Temperatur. Die Baktericidie stieg mit der Länge der Behandlung. Wir verdünnten das Immunserum sehr stark und konstatierten hohe Baktericidie gegenüber Typhusbazillen. Die Verdünnungen waren folgende: 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000.

Nach der ersten subkutanen Injektion hatte das Serum in zehnfacher Verdünnung keine Wirkung mehr. Nach den andern Injektionen wuchs jedoch die Baktericidie, was man durch Entwickelungshemmung in 2000 bis 5000facher Verdünnung konstatieren konnte.

Der Vergleich des Immunserums vor und nachdem das Tier Antipyretica bekommen, ergab keine deutliche Differenz.

31. X 06. — 7. II. 07.

I. Immunisierung gegen Typhusbazillen bei Kaninchen.

Beschreibung des Kaninchens:

Rücken gelbrot, Ohren rot, Bauchseite weiß, Schwanz rot und weiß, Kopf rot, Füße: unten weiß, oben rot. Geschlecht weiblich.

Datum	Gewicht gr.	Temp	eratur	Injektion subcutan	Bemerkungen
		Morgens	Abends		Aufschwemmung
Okt. 31.	3 370	39°40	39°50	Injektion	von 2 Oesen Agar
Nov. 1.	3 450	39°89		von 2 Oesen	kultur 24 Stunder
2.	3360	39°81	39°86		alt in physiolog.
2. 3.	3 290	39°80	39°78		Kochsalzlös. 1 Std bei 58°-60° abgetöt
4.	3 270	39°58	39°60		Probe in Bouillon
5.	3 370	39°65	39.92		37° steril.
6.	3 360	39°91	39°75		9. 500111
7.	3 320	39.69	40°05		
8.	3 350	39°57	40°00	Injektion	Probe steril.
9.	3 390	39°80	39.60	von 4 Oesen	
10.	3 410	39°60	39°90	Ton I desen	Kaninchen mit Kar
11.	3 400	39.60	39°57		toffeln gefüttert.
12.	3 260	39°58	39°70		802000010
13.	3 360	39°80	39°73		
14.	3 260	39°58	40°05		
15.	3 350	39°72	39°60	0	
16.	3 290	39°68	39°60		
17.	3 290	39°60	39°44		
18.	3 320	39°50	39°80	R)	
19.	3 350	39°90	40°45	Injektion	Probe steril.
20.	3 370	40°01	40°20	von 6 Oesen	Tabelle I.
21.	3 300	39°84	40°05		
22.	3 320	39°80	39°75		
23.	3 280	39°62	39°78		
24.	3 300				
25.	3 290				
26.	$3\ 250$	_			
29.	3 310	39°72	39°80		
Dez. 5.	3 270	39°50	39°70		
12.	3 260	37°70	39°40	Injektion	Probe steril.
13.	3 310	40°30	40°25	1/2 Kultur	
14.	3295	40°02	39.62	1.2	
15.	3 320	40°62	39°96		
16.	3 315	39°60	39°90		Blutentnahme.
17.	3 280	39°54	39°70		G I
18.	3 290	39°58	39°60		Tabelle II.
22.	3 240	39°80	39°45		
Ruhe					

Datum	Gewicht gr.	Temperatur		Injektion subcutan	Bemerkungen	
Januar 1907	= - x	Morgens	Abends			
10.	3 220	39 62	39.70			
14.	3 170	39°90	40 20	Injektion	Probe steril.	
15.	3 180	39°95	40 05	1 ¹ / ₂ Kultur		
16.	3 150	40°02	39 90	12	Blutentnahme	
17.	3 120	39°80	39°90	1 2 1		
18.	3 140	39°72	39 65	3		
19.	3 110	39°70	39.80	Tabelle III		
25.	3040	39°00	39°40	Tabelle IV	Blutentnahme	
26.	3 030	39°96	39.78			
27.	3 100	39°60	39°40			
29.	2980	39°30	$39^{\circ}52$		Immunserum ohne	
30.	2985	38 85	39.47		Antipyrin.	
31.	$3\ 020$	39°25	39 60	1 gr. Antipyr.	A III	
Febr. 7.	2820	39°50	39.58		Tabelle V.	

Verdünnung	3 348 X		Tabelle	x 1	
	II	III ·	IV	V	Va
10	0	0	50 000	0	180
20	60	0	10 000	150	28
50	45	29	3 000	4	260
100	280	81	3 000	6	45
200	620	40	3 000	60	18
500	345	27	18 000	0	14
1 000	11 700	13	10 000	380	89
2 000	16 000	31	7 000	3 400	5 200
5 000	17 000	28	12 000	25 000	40 000
10 000	20 000	25	15 000	75000	100 000
N. Serum	_		_	The second secon	_
Aussaat	3 150	1 800	12 200	8 450	_
NaCl 3 Std.	75 000	35 000	75 000	56 000	
N. S. 3 Std.	9 000	320	70 000	120 000	

31. X 06. — 7. II 07.

II. Immunisierung gegen Typhusbazillen bei Kaninchen.

Beschreibung des Kaninchens:

Kopf grau, Pfoten weiß, Rücken grau. Geschlecht männlich.

Datum	Gewicht gr.	Tempe	eratur	Injektion subcutan	Bemerkungen
	1	Morgens	Abends		Aufschwemmung
Oktob. 31.	2 680	39.61	40020	Injektion	von 2 Oesen 24 stün
Nov. 1.	$\overline{2}500$	$39 \circ 72$	40040	2 Oesen	diger Agarkultur i
2.	2 510	39.70	40020		physiolog. Kochsalz
				n 12	lösung 1 Stunde be
					58°—60° abgetötet
3.	$2\ 220$	39.89	40000		Probe in Bouillon
4.	2560	39.80	39089		bei 37° 24 Stunde
5.	2580	$39 {\circ} 71$	40025	*	steril.
6.	2630	39.82	39098		
7.	2580	39 \circ 72	40018		
8.	2650	$40 \circ 02$	40°85	Injektion	Probe steril.
9.	2 720	40018	40000	von 4 Oesen	
10.	2 700	$39 {\circ} 80$	40030		
11.	2 720	$39 \circ 75$	39080		
12.	2 710	$39 \circ 70$	39060		
13.	2 700	39.80	40018		
14.	2670	39.50	39080		
15.	2 770	$40 \circ 20$	39070		
16.	2630	$39 \circ 92$	$39 \circ 75$		
17.	2 670	39.60			
18.	2 680	$40 \circ 05$	$40 \circ 15$		
19.	2 670	40040	40060	Injektion	Probe steril.
20.	2 750	$39 \circ 98$	39080	von 6 Oesen	Tabelle I.
21.	2 700	$40 \circ 20$	$40 \circ 15$	n	
22.	2 700	39.80	39072		
23.	2 690	3964	39045		
29.	2 310				
Dez. 5.	2 270				
12.	2520	39.65	39030	Injektion	Probe steril.
13.	2 670	40 078	39079	$^{-1}/_{2}$ Kultur	
14.	2 525	39.22	40010		
15.	2 490	40057	40005		DI () I
16.	2 350	39.80	39.72		Blutentnahme.
17.	2 380	39.54	39058		m 1 11 TT
18.	2 340	39.60	39050		Tabelle II.
22.	2 350	39.75	39025		
Ruhe	2280	$39 \circ 35$	$39 \circ 70$		

Datum	Gewicht gr.	Tempe	ratur	Injektion subcutan	Bemerkungen	
		Morgens	Abends		^ .	
Januar 1907	$2\ 275$	39045	39052			
10.	2 250	39060	33060			
14.	2 230	39090	39058	Injektion	Probe steril.	
15.	2 190	39070	39050	11/2 Kultur		
16.	2310	39098	39:67	/2	Blutentnahme.	
17.	$2\ 200$	39080	39053			
18.	2 150	39035	39025			
19.	2 160	39080	39050			
25.	2030	39000	39070		Tabelle III.	
26.	2090	39080	40003		Blutentnahme.	
27.	2 060	39080	40020		Tabelle IV.	
29.	2 040	$39 \circ 20$	39040	Phenac. 1 gr.		
30.	2050	39050	39060	, 1,		
31.	2 010	39050		,, 1 ,,		
Febr. 7.	2 020	39045	39060		Tabelle V.	

Verdünnung		Tabelle							
1	1	II	III	IV	V	Va			
10	180	10	0	102	7	10 000			
20	220	950	1	180	0	40 000			
50	8 000	620	5	40	20	20 000			
100	16 000	4 800	120	460	6300	50 000			
200	5 600	180	26	1 200	36 0	10 000			
500	12300	10395	26	1 900	0	120 000			
1 000	22 000	6 200	25	2 000	1 320	25 000			
2000	50 000	11500	66	800	18 000	30 000			
5000	25 000	5500	35	72 000	28 000	150 000			
$10\ 000$	63000	18 000	30 000	110 000	110 000	125 000			
Aussaat	28350	3 700	1 690	9 370	8 540	10 050			
NaCl 3 Std.	70 000	75 000	35 000	75 000	100 000				
N. S. 3 Std.	200 000	9000	20 000	80 000	120 000				

III. Immunisierung gegen Typhusbazillen bei Kaninchen.

Datum	Gewicht gr.	Tempo	eratur	Injektion	Bemerkungen
				subcutan	
		Morgens	Abends	<u></u>	2 Oesen 24stüudiger
Oktob. 31.	2 750	39034	39°60	2 Oesen	Agarkult. in physiol.
Nov. 1.	2 210	40015			Kochsalzlös. aufge-
2. 3.	2 480	39062	39°89		schwemmt 1 Stunde
3.	2 270	40008	39°74		auf 60° erhitzt.
4. 5.	2 560	39080	39°75		Probe in Bouillon
5.	2 600	39070	39°84		steril.
6.	2 700	39096	40°10		
7.	2580	39075	40°20		
8.	2 710	39060	40°55	4 Oesen	Probe in Bouillon
9.	2 790	39079	39°78		steril.
10.	2 690	40000	39°92		
11.	2 675	39080	 .		
12.	2 680	39057	39°60		
13.	2 620	39075	39°50		
14.	2 620	39058	39°80		
15.	2 750	39070	39°50		
16.	2 620	39090	39°56		
17.	2 690	39058	39°75		
18.	2 700	39070			
19.	2 720	40000	41°00	6 Oesen	Probe in Bouillon
20.	2740	39082	40°20	ATTENNA OF THE PROPERTY OF THE	steril.
21.	2 670	99078	40°22		Tabelle I.
22.	2710	39074	39°80		
23.	2 720	39056	39°90		
24.	2695				
29.	2 750	39060	39°72		
Dez. 5.	2 800	39075	39°30		
12.	2 620	39070	39°56	Injektion	Probe steril.
13.	2 600	39050	39071	1/2 Kultur	
14.	2 500	39052	39°80	12	
15.	2 400	39070	39°20		-
16.	2 580	39045	39075		Blutentnahme.
17.	2 670	39020	39°63		
18.	2 580	39070	39055		Tabelle II.
22.	2 545	39.25	39070		
Ruhe	2 520	39.33	39085		
Januar 1907	2570	39.45	39°20		
10.	2515	39.57	39°15		
14.	2510	39°50	39°33	Injektion	Probe steril.
15.	$\frac{2490}{2490}$	39°42	39°55	$1^{1}/_{2}$ Kultur	I TODO DUCTITO
16.	2 380	39.60	39°70	1 /2	Blutentnahme.
17.	2 270	39.50	39%60		Diamentaline.
18.	2 180	39.60	39°25		
10.	~ 100	0000	00 20		

Datum	Gewicht gr.	Tempe	eratur	Injektion subcutan	Bemerkungen
		Morgens	Abends	7	
Januar 19.	2 140	39073	39030		Tabelle III.
25.	2 100	39°32	$39^{\circ}25$		Blutentnahme
26.	2 115	39°80	$39^{\circ}50$		Tabelle IV.
27.	2 200	$36^{\circ}65$	$39^{0}37$		
29.	2 190	39°85	$39^{\circ}50$	Salicyls. 0,5 g	
30.	2 120	39°40	$39^{\circ}55$	" 0,5 g	
31.	2 090	39°52	39°60	" 0,5 g	
Febr. 7.	2 050	$39^{\circ}45$	$39^{\circ}35$		
	2 010	39°80	39°70		Tabelle V.

Verdünnung			Tabelle		
	II	III	IV	v	Va
10	0	0	12 000	2 268	12 348
20	21	1	9 000	8 568	13 356
50	25	5	2 331	5 544	4851
100	280	47	55 000	32 468	30 303
200	95	130	170 000	22 090	5 292
500	3 270	0	80 000	50 000	6 700
1 000	12 500	160	24 000	37 000	40 000
3 000	9 000	320	8 500	57 000	75 000
5000	12 000	170	72 000	16 000	25 600
10 000	15 780	287	110 000	90 000	125 000
Aussaat	3 700	1 800	9 370	3 200	4 800
NaCl 3 Std.	54 000	20 400	75 000	40 000	72 000
N. S. 3 Std.	9 000	350	24 000	80 000	110 000

IV. Immunisierung gegen Typhusbazillen bei Kaninchen.

Beschreibung des Kaninchens:

Kopf rotgrau, Bauch weiß. Geschlecht weiblich.

Datum	Gewicht gr.	Temp	eratur	Injektion subcutan	Bemerkungen
		Morgens	Abends	1	
Oktob. 31.	2 240	39°20	40°15	Injektion	2 Oesen 24stündiger
Nov. 1.	2 210	40°21	_	2 Oesen	Agarkultur in phys.
2.	2 220	39070	39°84		Kochsalzlösung auf
3.	2 190	39°60	39°50		geschwemmt 1 Std
4.	2 210	39060			bei 60°.
5.	2 240	39°58	39070		
6.	2 310	39°60	39°80		
7.	2 390	39°72	39°80		
8.	2 395	$39^{0}72$	$39^{\circ}52$	4 Ocsen	Probe in Bouillon
9.	2 350	39070	39091		steril.
10.	2 340	39°60	39°90		
11.	2 320	39°80			
12.	2 260	$39^{\circ}75$	$39^{\circ}69$		
13.	2 280	$39^{\circ}58$	$39^{\circ}75$		
14.	2 390	$39^{\circ}73$	39°80		
15.	2 390	$39^{\circ}65$	$39^{\circ}50$		
16.	2 310	$39^{\circ}48$	39080		
17.	2 280	$39^{\circ}52$	$39^{\circ}70$	_	
18.	2 290	39%0			
19.	2 300	39°70	$39^{0}85$	6 Oesen	Probe in Bouillon
20.	2 400	39°80	$40^{\circ}30$		steril.
21.	2 380	39°78	$40^{\circ}12$		
22.	2 350	39°85	39°80		
23.	2 310	39072	39°68		
24.	2 320	39°80	$39^{\circ}52$		
29.	2 520	39°40	39°38		
Dez. 12.	2 410	39°70	39070	Injektion	Probe steril.
13.	2 245	39°98	$40^{\circ}00$	1/2 Kultur	
14.	2 330	39°80	$39^{\circ}90$	1.2	
15.	2 380	39°80	$39^{\circ}45$		
16.	2 295	39°72	39°35		Blutentnahme.
17.	2 280	39°57	39°20		
18.	2250	38090	39070		Tabelle II.
22.	2 210	39°40	39°50		
Ruhe	2 215	38°75	39°75		

Datum	Gewicht gr.	Tempe	eratur	jnjektion subcutan	Bemerkungen
Januar 1907		Morgens	Abends		7 7
9.	2 240	39°30	39078		, *
10.	2 270	39°25	39°82		2
14.	2 290	39%2	$39^{\circ}55$	Injektion	Probe steril.
1 5.	2 250	39°34	$39^{\circ}25$	1 ¹ / ₂ Kultur	
16.	2 270	$39^{\circ}90$	$38^{\circ}75$	/2	Blutentnahme.
17.	2210	$39^{0}47$	39°20		
18.	2250	$39^{\circ}50$	$39^{\circ}52$		
19.	2275	39°62	$39^{\circ}45$		Tabelle III.
25.	2 220	$39^{\circ}50$	39°32		Blutentnahme.
26.	2 240	39°90	$39^{\circ}52$		Tabelle IV.
27.	2 285	$39^{\circ}60$	$39^{\circ}90$		
29.	2 190	39°20	$39^{\circ}83$	Chinin 0,3 g	
30.	2 180	39°40	$39^{\circ}60$	= 0.3 g	
31.	2195	39°40	$39^{\circ}32$, 0,4 g	
Februar		39°70	$39^{\circ}40$		
7.	2 170	39°80	39000		Tabelle V.

		F-2			
Verdünnung			Tabelle	19	
	II	III	IV	V	Va
10	540	0	0	740	76
20	240	1	82	2 000	95
50	120	25	320	0	105
100	9 500	38	600	67	54
200	2 400	81	1 640	460	43
500	1 800	35	1 040	329	1 500
1 000	1 200	18	1 800	315	2 000
2000	20 000	111	65 000	2 300	3 100
5 000	180 000	10	75 000	7 000	9 000
10 000	27 000	1 240	85 000	15 000	12 000
Aussaat	3 400	2 100	15 000	1 250	
NaCl 3 Std.	75 000	20 000	90 000	125000	
N. S. 3 Std.	9 000	3 500	75 000	9 000	

Einmalige Injektion

von Typhusbazillenaufschwemmung, in physiologischer Kochsalzlösung, abgetötet bei 60° eine Stunde lang.

Nach der Fiebertemperatur mit Antipyretica behandelt.

20. Februar 1907.

					Company of Section Company of Com		
Nummer des Kaninchens	Geschlecht	Gewicht	Temperatur	Temperatur	Zeit der Injektion	Temperatur	Zeit
No 1	doilnasm	9.040	V000G	06086	9	06086	G 25
T	паппи	010 %	00.00	02.00	•	00.00	0
O.	weihlich	0.770	06008	30000	5.00	0000	R^{15}
୧ଟ		020 6	070G 30070	06,06	730	09086	G 20
- C	T		7.: C55	90010	00000	3	
7	rarbe: wells-gelb	injekt. 1/2 Uese Kuit.	0 119 7	01.69	lemp. 53.22		
⊘	schwarz-weiße Pfoten	.	6^{40}	$40^{\circ}40$	39°70	> 21. Februar	.uar
ಣ	schwarz-weiß		6^{45}	$40^{0}15$	39°52		
21. Febr.	Gewicht	Temperatur		Zeit		Zeit	
No 1	9.040	30035	or.	ילי	38075	510	
10	098.6	39010	955	345	39050	420	
? ૦	2000	00000	1 C	15	20000	950	
9	2 010	53,50	÷	4.5	38.20	55.0	
Н	Dosen. 0,5 gr. Salicyls.	38º78	5^{30}	e^{30}	38°20	1	
CS.	1 gr. Antipyrin	39%05	3^{50}	6^{20}	38032	1	
ಣ	0.3 gr. Chinin	38%5	430	6^{25}	38°83	1	
22. Febr.	Zeit	OCCUPANT TO CONTROL	Gabe			Gewic	η
N_{\circ} 1	1145	39°05	0.5 gr. Salicyls.	11^{50}	38°85	1 93((
ω	11^{15}	59°39	:	11^{50}	39°05	2 386	0
ಣ	11^{20}	39°20		11^{40}	39001	202	0
1	12^{15}	38°90	Zeit 430	Temp. 39°10	Blutentn. 435	1 93(0
⊘	1155	38°35	945	38°32	က်	2 350	
က	12^{10}	38°78	3^{20}	38092	330	3000	0
-	440	38%5					
8	315	38°12	104				
ಣ	440	38°40					

Durch einmalige Injektion von abgetöteter Typhuskultur bei Kaninchen und Behandlung mit Antipyretica am folgenden Tage erziehlte man keine höhere Baktericidie als mit der des Normalserums; eine Differenz des Serums vor und des Serums nach den Antipyreticagaben war nicht konstatierbar.

Der Mehrzahl der Forscher ist es nicht gelungen, einen deutlichen Unterschied in der Baktericidie von Normalserum und von Serum von durch Schädlichkeiten geschwächten Tieren zu konstatieren.

Schlußfolgerungen aus unseren Versuchen.

Fassen wir die Resultate der verschiedenen Versuche zusammen, so sehen wir:

- 1. Bei intravenöser Injektion war die Wirkung der Antipyretica stark. Jedoch war in der Baktericidie dieses Serums kein deutlicher Unterschied mit Normalserum zu konstatieren.
- 2. Bei intrastomacaler Gabe war die Wirkung der Temperaturherabsetzung langsamer. Die Baktericidie des Serums des mit Antipyretica behandelten Tieres und des Serums von Normaltieren ergab keine deutliche Differenz.
- 3. Bei intrastomacalen Gaben, wo wir das Serum mittels Bouillon verdünnten, wurde die Wirkung des Serums geschwächt. Differenz in der Baktericidie im Vergleich mit Normalserum war nicht deutlich feststellbar.

Verdünnungen mittels physiologischer Kochsalzlösung ergaben gute Abtötung der Choleravibrionen und Typhusbazillen.

Staphylococcus aureus, Streptokokken und Coli ergaben hier keine brauchbaren Resultate. Es war ein großer Unterschied bei den Verdünnungen des Serums mittels physiologischer Kochsalzlösung und solcher mittels Bouillon. Bouillon hob die Wirkung des Serums durch Zufuhr von Nahrungsmitteln größtenteils auf, physiologische Kochsalzlösung nicht.

Der Unterschied zwischen verdünntem Serum von Tieren, die Antipyretica erhalten und von Normalserum war nicht deutlich ersichtbar.

- 4. Bei fiebernden Kaninchen sahen wir, wie bekannt, deutliche Hyperleukocytose. Das Serum der Tiere war stark baktericid. Unterschiede zwischen Serum normal fiebernder und mittels Antipyretica entfieberter Kaninchen waren nicht deutlich ersichtbar. Es trat Leukocytenzahlverminderung bei den fiebernden Versuchstieren, welche mit Antipyretica behandelt waren, ein.
- 5. Bei immunisierten Kaninchen sahen wir Temperatursteigerung nach jeder Injektion, sowie Gewichtsabnahme nach mehrmonatlicher Behandlung. Die Baktericidie gegenüber Typhusbazillen stieg fortwährend mit der Länge der Immunisierung. Eine Differenz des Serums von immunisierten Kaninchen und des Serums von immunisierten Kaninchen, welche mit Antipyretica behandelt waren, war nicht deutlich ersichtbar.

Unsere Versuche zeigen, daß die Antipyretica keine sichtbare Wirkung auf die Baktericidie des Serums der Versuchstiere haben. Es ist möglich, daß beim Menschen ähnliche Resultate erhalten würden. In diesem Falle würden diese Resultate zum Teil im Widerspruch mit der so verbreiteten Ansicht der schädlichen Wirkung der Antipyretica bei Fiebernden stehen. Wir wissen, daß die Phagocytose neben der humoralen Wirkung der Sera eine große Rolle spielt. Von diesem Standpunkte aus scheint die Leukocytenzahlherabsetzung, welche wir mit Antipyretica konstatiert haben, dafür zu sprechen, daß die Antipyretica eine schädliche Wirkung auf die allgemeine Resistenz haben. Die Tierart, mit welcher wir unsere Versuche anstellten, die Antipyreticamenge, welche wir in den Tierkörper einführten im Verhältnis zum Gewicht des Tieres, die erhaltenen Resultate, erlauben uns nicht, eine Schlußfolgerung von Wert über die Frage, ob die Antipyreticagaben bei Fiebernden und besonders bei Infektionskranken eine indifferente, nützliche oder schädigende Wirkung haben, zu ziehen.