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IX. Korrektur der Einzelfiache

§ 1. Veränderliche Dicke

In Abschnitt VIII § 3 und § 4 wurde dargelegt, wie sich die Scheiben

bei verschiedener Dicke verhalten : Dünne Scheiben (Silikatglas von
0,18 und 0,17 mm) geben Linsen mit sphärischer Aberration, während

dickere (0,7 mm) bereits Überkorrektur ergeben (antisphärisch). Bei

mittleren Dicken (0,4 mm) gehen die Linsen von der antisphärischen
Aberration bei schwachem Druck zur sphärischen über, wenn der Druck

steigt (also die Brennweite sich verkürzt). (Siehe auch Abb. 22.)
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Abb. 25. Korrektur der Aberration, überzogenes Silikatglas.
d 0,3 mm ; 0,4 mm ; 0,7 mm, 0 100 mm, 0s 92 mm.
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Für jede Linse mit Scheiben mittlerer Dicke gibt es also einen
bestimmten Druck, bei dem sich die Kurven der Brennweitenänderungen
für die mittleren Zonen (0,5 und 1,0 cm von der Linsenachse) schneiden.

Trägt man in einem räumlichen Koordinatensystem auf : Brennweite z,

Druck x und Scheibendicke y, so erhält man in Ebenen parallel zu
(x, z) solche sich schneidende Kurven der Brennweitenänderung
(Abb. 25).

Die Raumkurve, welche alle diese Schnittpunkte miteinander
verbindet, ist die Linie, längs der man sich zu bewegen hat, wenn die

Aberration in einem größeren Intervall der Brennweite korrigiert sein

soll.

Das Durchlaufen der soeben konstruierten Raumkurve bedeutet,
daß bei steigendem Druck die Dicke des Glases zunehmen muß. Diese

Möglichkeit der Korrektur der
dynamischen Linse wäre vielleicht die
idealste. Um sie zu realisieren, könnte
man zum Beispiel folgenden Weg
einschlagen : In gewissen, zu berechnenden

Abständen werden außerhalb der

eigentlichen Linsenschalen weitere
Schalen eingespannt, deren Dicke sich

gleichfalls berechnen ließe. Die
innerste Schale (welche die Flüssigkeit
abgrenzt), würde dann bei der
Durchbiegung auf die zweite stoßen und
diese dann so weit durchbiegen, bis
die dritte berührt wird. Alle drei
biegen sich weiter und nehmen dann
die vierte Scheibe mit usw. (Abb. 26).
Auf diese Art würde die wirksame
Dicke der Scheibe mit der
Durchbiegung zunehmen. Allerdings wird
dieses Vorgehen bei Silikatglas
erschwert wegen der geringen bei diesem

Material zulässigen Durchbiegung. Mit Plexiglas ist die Realisierung
eher möglich, denn bei diesem zeigt sich derselbe Zusammenhang
zwischen Dicke und Aberration (Abb. 23 und 24) und der größere

Betrag der erreichbaren Durchbiegung würde ein Anbringen der
äußeren Scheiben wirksam erlauben.

1 2 345
Abb. 26. Korrektur durch

veränderliche Dicke.
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§ 2. Veränderlicher Radius

Die Überlegung ist hier der vorhergehenden analog. In Kap. VIII
§ 5 (siehe auch § 4) sahen wir, daß in Bezug auf die Aberration eine
Zunahme der Dicke der Linsenschalen einer Abnahme des Radius bei
konstanter Dicke gleichkommt. Also wäre es denkbar, statt der bei

Druckanstieg zunehmenden Dicke einen abnehmenden Radius
einzuführen. Dazu kann am Linsenrand eine Fläche angebracht werden,
an die sich der Scheibenrand beim

Durchbiegen anschmiegt (Abb. 27). Aus
einer systematischen Untersuchungsreihe

über Linsen mit verschiedenem
Radius wäre es leicht, die Form dieser

Anschmiegfläche so zu konstruieren,
daß der effektive Radius immer
derjenige wäre, für den die Linse beim

entsprechenden Druck keine Aberration

aufweist. Auch dieses Verfahren
eignet sich nur bei größerer
Durchbiegung (also bei Plexiglas).

Die Figur 28 zeigt wieder die

räumliche Disposition der Meßergebnisse

mit Scheiben gleicher Dicke, aber

in verschiedenen Durchmessern
eingespannt. Durch Verbinden der
korrigierten Punkte ergibt sich wieder eine

Raumkurve, die im beschriebenen
Verfahren mit veränderlichem Radius
durchlaufen werden muß. — In jeder der drei Kurvenscharen ist
ein Gebiet vorhanden, in dem die drei inneren Zonen (Linsenöffnung
von 3 cm) nahe beieinanderliegende Brennweiten besitzen. In den

Abb. 25 und 28 wurden übersichtshalber nur die Kurven der beiden
inneren Zonen eingezeichnet.

Abb. 27. Korrektur durch
veränderlichen Radius.

§ 3. Geformte Scheiben

Eine Annäherung der einzelnen Linsenschale an eine Cartesianische
Fläche (zur Korrektur) ist dadurch möglich, daß man das Glas

entsprechend schleift. Die Dicke der Scheibe wird dann eine solche Funk-
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tion des Radius, daß unter dem Flüssigkeitsdruck die elastische Linie
eines Meridians eine vorgegebene Kurve bildet. Diese Kurve braucht
nicht notwendigerweise cartesianisch zu sein ; bei geeigneter Abhängigkeit

der Dicke vom Radius steht die Möglichkeit offen z. B. Kreise oder
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Abb. 28. Korrektur der Aberration.
Plexiglas d 0,5 mm, 08 65, 73, 85 mm.

Parabeln verschiedener Ordnung als Meridian der durchbogenen Scheibe

zu erhalten. Die gewünschte elastische Linie bei entsprechend vermittelter

Dickenfunktion wird nur bei einem bestimmten Druck erwartet.
Diese Frage wird im folgenden theoretisch untersucht und es wird

sich ergeben, daß im Falle geringer Durchbiegung sich eine solche

Randbedingung finden läßt, daß für jeden Druck eine Parabel zweiter Ordnung
entsteht. Weiter wird sich ergeben, daß das mathematische Problem
des Aufsuchens der Dickenfunktion bei großer Durchbiegung zu einem
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physikalisch unrealisierbaren Resultat führt. Diese Unmöglichkeit
besteht sogar im Idealfall der frei aufliegenden Platte. Wird die Platte
eingespannt, entsteht in der Nähe des Randes ein Wendepunkt, ein

Umstand, der in der Wahl der elastischen Linie eine starke Einschränkung

bedeutet und den Kreis oder die Parabel als elastische Linie
ausschließt. Aus diesem Grunde wurde nur mit einer im Auflagekreis
frei drehbaren Platte (Schwingringe) gerechnet.

Zur Diskussion dieser Korrekturmöglichkeit wurde die Differentialgleichung

der Scheiben-Dicke als Funktion des Radius für eine offen

gelassene Durchbiegungsform abgeleitet und integriert. Aus der so

erhaltenen Formel wurden dann die Lösungen für den Kreis und die
Parabel als Meridian gesucht. Diese Berechnung mußte für kleine und
große Durchbiegungen getrennt durchgeführt werden. Der Ansatz mit
der neutralen Schicht, welche Gebiete mit Zug- und solche mit
Druckbeanspruchung trennt, ist nur für Durchbiegungen richtig, die kleiner
sind als die Scheibendicke. Bei größerer Durchbiegung hat es keinen
Sinn mehr von neutraler Schicht zu sprechen, das Material ist dann
in seinem ganzen Querschnitt auf Zug beansprucht.

Da sich für den Kreis und die Parabel bei großer Durchbiegung
unrealisierbare Lösungen ergeben, wird man für diese

Korrekturmöglichkeit mit so dickem Plexiglas arbeiten müssen, daß die
Durchbiegungen selbst bei den kleineren Brennweiten in der Größenordnung
der Scheibendicke bleiben. Es besitzt dann die erste Rechnung Gültigkeit.

Außerdem ist es leichter dem Plexiglas die gewünschte Form zu

geben als dem härteren, brüchigeren und viel dünneren Silikatglas.

a) Differentialgleichung der elastischen Linie einer Scheibe nicht
konstanter Dicke, bei kleiner Durchbiegung.

Ist x die von der Mitte aus gezählte Koordinate des Meridians
einer Kreisscheibe (d. h. der Radiusvektor), so möchte man eine Funktion
h(x) für die Dicke finden, so daß bei Belastung die Meridianlinie eine

gegebene Form annimmt.
Die gewöhnliche Differentialgleichung für die Durchbiegung einer

Kreisscheibe kann man in dem vorliegenden Fall nicht brauchen, denn

jene ist für konstantes h abgeleitet. Die Herleitung der Differentialgleichung

etwa nach Föppl 4 diene als Weg zur Aufstellung der gesuchten

Gleichung mit h h(x).

1 Föppl : Technische Mechanik, Band III : Festigkeitslehre.
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O (x, z) sei ein Punkt der neutralen Faser. Durch diesen Punkt
legen wir einen Querschnitt durch den Träger. Dieser ursprünglich
senkrechte Schnitt neigt sich bei der Belastung um den Winkel co.

P sei ein Punkt des Querschnittes, X ist sein Abstand von O. Als
z-Achse wählen wir die Symmetrieachse, d. h. die Achse durch den

Scheibenmittelpunkt (Abb. 29).

W»M..1

du,. x-U
ic

?Z

Abb. 29

?X

Der Kreis durch P mit Mittelpunkt auf der z-Achse dehnt sich
bei der Durchbiegung. Sein Radius wächst um

S X sin cu (1)

also dehnt sich der Umfang um 2 ji S. Die spezifische tangentielle
Dehnung ist somit :

X sin <o ._.
st —z— W

Die Faser durch P ist in ihrem durch die Querschnitte co und co + d co

begrenzten Abschnitt um X d co länger geworden. Infolgedessen ist die

spezifische radiale Dehnung

e' 77 (3)

Bei reinem Zug gilt das Hook'sehe Gesetz
Cx 1 Cx

sx -=r und eTx E y m E

Für die Tangential- und Radialspannung ergibt sich (unter
Berücksichtigung von (2) und (3)

m E / sin io d w__X m__+_
m EWsin (o d

x d x

(4)

(5)
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Jetzt schneiden wir aus der Kreisscheibe einen Sektor mit dem

beliebig kleinen Winkel (mit Scheitel in der z-Achse) d 9 heraus und

untersuchen die Spannungen an seinen Seitenflächen. Im Sektor selber

grenzen wir ein Element durch die Kreise mit Radius x und x + dx
ab (Abb. 30).
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Abb. 31.

I. Die Tangentialspannungen ert. Zu jedem crt d F der einen Fläche

gehört ein gleich großes entgegengesetzt gerichtetes crt d F der anderen

Fläche. Alle Richtungen schneiden sich in der vertikalen Symmetrieebene

des Plattenelementes. Ihre Resultierende fällt in diese Symmetrieebene

(Abb. 31).
R crt d F d cp

Die Kraft R wirkt im Abstand X von der neutralen Faserschicht. Ihr
Moment in Bezug auf diese Schicht beträgt deswegen : crt • d F • d 9 • X.

Das gesamte Moment der Tangentialspannungen ist folglich

r m E
d9 /otXdF d9 m3 1

sin w d
m— [- dx X2dF

Das Integral erstreckt sich über die Meridianschnittfläche der Länge dx

(Abb. 32). Dabei soll jetzt angenommen werden, die Dicke h sei

5
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Funktion von x. Einschränkend soll verlangt sein, daß die neutrale
Schicht auch Symmetrieebene ist (was aus der Definition der neutralen
Schicht folgen muß). Unter Vernachlässigung von Differentialen höherer

Ordnung berechnet sich das Integral zu

/WF=^>dx
¦Mt j d <p m E
Moment der crt -nf —s r* 12 m2 — 1

m

12

sin w

^h»(x)dx (6)

Legen wir die Uhrzeigerrichtung für die Momente als positiv fest,
so ist das Moment der <rt-Kräfte negativ und folglich mit negativem
Vorzeichen in die Momentengleichung einzusetzen.

II. Radialspannungen crr. In der zum Radius x gehörenden Schnittfläche

bilden die er, das Moment :

CvXdF m E
m2— 1

m &)ßX2dF

yx2 • d F ist das Trägheitsmoment des Rechteckes mit der Breite x d 9
und der Höhe h(x), also

h3 (x)

n xd(P/X2dF

und das Moment der cyKräfte ist im Schnitt x :

d <p m E / dco\,„
TFT —; ä sin co + m x -5— hs
12 m2 — 1 \ dx/ (7)

An der Schnittfläche mit dem Radius x + dx haben die aT ein

entgegengesetzt gerichtetes Moment. Auf das Trägerelement wirkt der
Unterschied der beiden Momente, welcher gleich dem Differential des

Ausdruckes (7) ist. Das Differential entspricht einem Anwachsen des

Abstandes x um dx.

hCx+dxD

hCxD

hCxD
hCx+dxj

A

^PrQ

Z>0

Z

z*<o

^o

Abb. 32. Abb. 33.
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tit ii d cd m E (/ d co d co d2 co\ „Moment aller ct. -r^-— T {[ cos co -= r m -3 r m x t—; lrdx+r 12 m2 — 1 l\ dx dx d x2/

+ (sin co + m x j^j 3 h2 h' d x J (8)

Dieser Ausdruck ist ohne Vorzeichenwechsel in die Momentengleichung
einzuführen, denn das Moment der ar-Kräfte ist positiv.

III. Schubspannungen t. p sei der Druck auf das Flächenelement
der Platte. Auf den Kreis mit Radius x drückt die Last iz x2 p. Die
Schubkräfte an der Peripherie des Kreises halten dieser Last das

Gleichgewicht. Auf den Teil im Sektor mit Winkel d 9 kommt davon der
Bruchteil dcp/2TC also

d œ „ x2 p

Für den Schnitt mit Radius x -f- dx des Sektors ist

Tx + d* Tx + d^dX

Moment der t auf das Plattenelement.
X2 T>

Mom. d. t -jri- d x d 9 (9)

Das Moment ist positiv, also kein Vorzeichenwechsel.

IV. Momentengleichung. Für das Gleichgewicht muß die Summe
aller Momente verschwinden. Daraus ergibt sich mit der Substitution

6 (m2 — 1)

m E p N (10)

die Differentialgleichung der elastischen Linie :

m x h3 -;—- — h2 — h -f h cos co -f m h + 3 -.— m x j -, 1-

dx! \ dx /dx
+ h2 (— - h + 3 ^] sin co + N x2 o (11)

Für kleine Durchbiegungen ist cos co 1, sin co co. Mit h
konst. wird die Gleichung (11) :

„ d2 co d co N o „.X2 -7— + X -= CO H rr x3 o (12)d x2 d x m h3 v '

die von Föppl angegebene Differentialgleichung.
Der Zweck unserer Rechnung ist aber nicht der, die Gleichung für

die Durchbiegung zu finden, sondern bei gegebener Durchbiegung und
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Form der elastischen Linie die Funktion h h(x) zu ermitteln. Es
wird also z als bekannte Funktion von x vorausgesetzt. Die Gleichung
(11) kann man zu einer solchen für h umordnen :

3 h' h2 (m x2 co' + x sin co) + h3 (m x2 co" — x co' +
-f- x co' cos co + m x co' — m sin co) + N x3 o (13)

Ist a der Radius des Kreises, auf dem die Platte ruht, und wirkt
die Belastung nur innerhalb des Auflagekreises, so ist für den über
diesen Kreis herausragenden Teil der Scheibe dieselbe Differentialgleichung

gültig, in der dann N o zu setzen ist. Die Randbedingungen
(die wir weiter unten behandeln) sind dann nicht für x a gültig,
sondern für den Rand der Scheibe. Für x a geben die
Stetigkeitsbedingungen den Übergang von der Gleichung mit N zu der mit N o.

b) Randbedingungen und Lösungsmöglichkeiten.

Bei frei aufliegender Scheibe muß am Rand die Radialspannung
verschwinden. Also für x a muß sein :

(5) E5JÏ + m co' o (14)

Es sei nun z f (x) als elastische Linie vorgegeben. Es ist dann :

f"

und sin co

1 + f'2

f
|/l + f'2

Wegen co < ^/2 muß hier die positive Wurzel genommen werden.
Die Randbedingung wird :

f f"' mx[/r+T* ^ 1 + f'2

Beide Ausdrücke yi + f'2, 1 + f'2 sind positiv. Die Randbedingung
kann also nur dann erfüllt sein, wenn f'/x und f" entgegengesetzte
Vorzeichen für x a annehmen. Aus physikalischen Gründen
(Durchbiegung) muß für x a : f negativ sein, also fordert die Randbedingung

für x a : f" > o. Dasselbe gilt wegen der Rotationssymmetrie
auch für x — a. (Dort ist f positiv, f'/x negativ, also muß f" positiv
sein.) Positive zweite Ableitung bedeutet (für unsere z-Richtung), daß
die Krümmung nach unten verläuft. Ein Wendepunkt ist folglich nicht
zu vermeiden (Abb. 33). Wir werden also für f(x) nicht irgend eine

Funktion, wie z. B. einen Kreis oder eine Parabel wählen können.
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Um trotzdem eine beliebige elastische Linie verlangen zu dürfen,
ist die Randbedingung abzuändern. Es muß erreicht werden, daß nicht
mehr für x a gefordert wird <rr o. Das geschieht, indem man am
Rand ein Kraftmoment anbringt. Dies ist auch physikalisch plausibel,
denn ein solches Moment kann den Wendepunkt durchdrücken (Abb. 34).

M

-k

dx

g*+
-<- -*-

5
Abb. 34. Abb. 35.

(Zu Seite 74).

Ist H die Dicke der Scheibe am Rand, so wirke pro Längeneinheit
des Umfanges das Moment

M 2k5
A

welches hervorgebracht wird durch die Kräfte k, die tangential zu den

Scheibenoberflächen wirken. Physikalisch ließen sich diese Kräfte
schwer realisieren, deswegen führen wir andere Kräfte ein, die auf die

ganze seitliche Fläche wirken sollen. Die Verteilung dieser Kräfte über
die Seitenfläche geschehe nach dem Ansatz

k' c • X

Die Momente dieser k'-Kräfte und der k-Kräfte sollen gleich sein

H/2

woraus folgt :

Kf' ,.X-dX= ~
12 k
H2
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Die neue Randbedingung wird jetzt : (crr X c)

sin co d « 12 k m2 — :

x d x H2 m E (15)

Durch dieses neue Moment am Rande bleibt die Differentialgleichung

der elastischen Linie dieselbe, denn für die Beanspruchung
ist es gleichmäßig über die ganze Fläche verteilt und käme als
konstantes Glied in die Differentialgleichung zweiter Ordnung in z, also

tritt es in der Gleichung zweiter Ordnung in co (dritte Ordnung für z)

nicht auf.
Für sin co co und cos co 1 kann man die Differentialgleichung

(13) schreiben :

"' ^(-B + ^) (16)

dabei ist

A x meo' + ï) ; B m x co" + m co' — m
co

x

Die Randbedingung (15) wird

co „ k (m2 — 1)- + m co' 12 -^j- =-i
x H2 m E

(17)

c) Integration für die Parabel zweiter Ordnung.

Ist v der Parameter der Parabel und a die Apertur (der Radius
der Scheibe), so lautet die Gleichung der Parabel :

z 2 v (a2 x2) (18)

Die Randbedingung gibt für diesen Fall :

kjm-l)
H'mE

Durch Einsetzen von co —- z' in die Gleichung (16) (die Integrationskonstante

bestimmt sich aus der Bedingung h H für x a) erhält

man die gesuchte Funktion

h3=^E(a2-x2) + H3 (19)
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Soll die elastische Linie bei jeder Belastung eine Parabel bleiben

(v wird sich mit der Belastung ändern), genügt es den Quotienten p/k
konstant zu halten. D. h. ändert man das Moment am Rand proportional

zur Belastung (Flüssigkeitsdruck), was sich experimentell leicht
durchführen läßt, ist die elastische Linie der nach (19) geformten
Scheibe bei jeder Belastung eine Parabel zweiten Grades.

Für den Fall H 0,1 cm, h0 (Dicke in der Mitte) 0,3 cm ergibt
sich aus (19) :

p 0,416 k

d) Integration für die Parabel vierter Ordnung.

Die Gleichung dieser Parabel ist

z v (a4 — x4) (20)

Die Randbedingung gibt :

3 k (m2 — 1)

H2mEa2(l + 3m)

und die Lösung der Gleichung (16) ist

r 16 m

h3 H2-
a 1 r-^"MM (21)

Auch in diesem Fall genügt das Konstanthalten von p/k, um den

Charakter der Meridianlinie von der Belastung unabhängig zu machen.

Physikalisch ist aber die Lösung (21) unmöglich, denn für die Mitte
(x o) folgt h0 o.

e) Integration für Parabeln höherer Ordnung.

Für die Parabel

z v (an — xn) (22)

mit n 2 ergibt sich wieder eine ähnliche Formel wie (21), die also für
x o den physikalisch unannehmbaren Wert h0 o liefert.

f) Integration für einen Kreis.

Der Meridian sei ein Kreis mit Parameter (Radius) w. Seine

Gleichung ist

z Vw2 — x2 — 1/w2 — a2 (23)
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Da die gemachte Annäherung sin co co und cos co 1 dem Gleichsetzen

von Kreis und Parabel äquivalent ist, ergibt sich hier dieselbe Lösung
wie für die Parabel zweiten Grades, wie auch die Durchrechnung zeigt.

h3=^(a2-x2) + Hs (24)

Die Randbedingung liefert :

H2mE
w 12k(m—1)

also — 4 vw

g) Diskussion.

Die Lösung für den Kreis und die Parabel zweiten Grades enthält
den Faktor p/k. Soll die Formgebung der Membran für jede
Durchbiegung dieselbe sein, ohne daß sich die elastische Linie bei verschiedenen

Drucken in ihrem Charakter ändert, genügt es, diesen Wert
konstant zu halten.

Es seien noch einige Zahlenwerte für die Dicken angegeben, um
sich ein Bild der Gestalt der Scheibe zu machen :

H 0,1 cm p/k 1,0 h0 0,86 cm
0,5 0,68
0,1 0,27

0,05 1,0 0,25

0,5 0,199
0,1 0,119

Diese Maße, namentlich die für H 0,05 cm sind in realisierbaren

Größenordnungen.
Es ist noch der Parameter v in Funktion der Belastung zu finden.

Zu diesem Zweck setzen wir (18) und (19) in (16) ein und erhalten :

m—1 1 1
2v= 6p m E P/k H2

Zusammenfassend ist also für Durchbiegungen der Größenordnung
der Plattendicke bei Scheiben, deren Dicke h der Gleichung

H2 r>
h3 2-E(a2_x2) +H3 (25)
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genügt, die elastische Linie eines Meridians : die Parabel :

m— 11 1

"mrTrpP/u
oder der Kreis :

'-"PTJTTff.T.«»*-*") <26>

-Vkr^iipM^-Vkr^iiiH-* m
denn in der gemachten Annäherung fallen Kreis und Parabel zusammen.

p/k ist wählbar, experimentell ist also das Moment am Rand

(H x k) proportional der Belastung zu nehmen, um die gewünschte
Form der Durchbiegung bei jeder Belastung beizubehalten.

Für Parabeln höherer Ordnung ist die Lösung nicht mehr zulässig.

h) Differentialgleichung der elastischen Linie einer Scheibe bei großer

Durchbiegung.

Bei großer Durchbiegung ist die in den vorhergehenden
Paragraphen durchgeführte Rechnung nicht mehr gültig. Es ist jetzt nicht
mehr zulässig, von neutraler Faser zu sprechen, denn das Material
wird im ganzen Querschnitt nur noch auf Zug beansprucht. Dabei
werden crx und er über den ganzen Querschnitt als konstant
angenommen. Außerdem soll angenommen werden, daß im unbelasteten
Zustand die Platte nicht angespannt ist, so daß alle Spannungen bei
der Durchbiegung nur von den Lasten herrühren. Diese Voraussetzung
ist für die Schalen der dynamischen Linse erfüllt. Aus den geänderten
Voraussetzungen geht hervor, daß der Ansatz für die Ableitung der

Differentialgleichung im Falle großer Durchbiegungen ein anderer sein

muß. Auch hier wird eine Rechnung aus Föppl : Technische Mechanik 1

übernommen und für unseren Fall nicht konstanter Dicke abgeändert.
Die Durchbiegung sei größer als die Dicke der Platte. Aus einem

dx wird in einem analogen ebenen Fall ein ds nach der Gleichung :

d s 1/1 + z'2 d x

Da z' klein gegenüber 1 ist, kann man dies schreiben :

d s d x (l + ì z'2

1 Föppl : Technische Mechanik, Band V : Die wichtigsten Lehren der höheren
Elastizitätstheorie (Leipzig 1907), S. 132 ff.
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Für das uns vorliegende Problem sind partielle Ableitungen zu setzen.

Also sind die Dehnungen in der x- und y-Richtung :

9 Z\2
9 X/

1 (gz\»

Außer dieser Dehnung ist bei großer Durchbiegung noch die Verschiebung

parallel zur Plattenebene zu berücksichtigen. \\ und y) seien die

Komponenten dieser Verschiebungen in der x- und y-Richtung (Abb. 35),
Seite 69. Die entsprechenden Dehnungen sind dann d^/dx und d7)/dy.

Jetzt kann man die totale Dehnung in den Richtungen x und y
anschreiben :

1

2
eT

3Z\2 9\
9 X/ 3X

Sr=2
L /9Z\2 13

9Y

SI
B.-''

dy ^-.
ÛZ

B\0
dy \ \
öz \ \
öx

dx
A

dx\ \

z
Ä

Abb. 36.
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Unter Berücksichtigung der Querkontraktion sind dann die Spannungen
in den beiden Richtungen :

m E f |T/3Z\2 »H 1/3Z\2
Cv iHie-fr+^HtHK-?} <•>

ff7=m»-

m2

m E f il /3z\2i{-Be?;+H]+iç-î),+^} <2»

Bei der Beanspruchung ändert sich der ursprünglich rechte Winkel
zwischen dx und dy um y. dx und dy seien die Linienelemente nach
der Deformation (Abb. 36). Aus dem ursprünglichen

ds2 Ä~B dx2 + dy2

wird das deformierte

ds A'B' ds2

Berücksichtigt man noch

z 9 z \2
— dx dyx 9 y j

sf< 2+(^)2dx2

und dy=y/dy2+^2dy2

kann man den Kosinussatz anwenden, aus dem wegen cos (^ — y)
sin y (=a y durch Einsetzen der soeben berechneten Werte von dx, dy,
ds, bei Vernachlässigung von Gliedern höherer Ordnung, resultiert :

9 2, 9 z
Yi — • —' 9 X 9 y

Ein weiterer Beitrag zur Winkeländerung kommt von den Verschiebungen

\, 7) her (Abb. 37). Verschiebt man dx, dy an den Ursprung
von dx, dy zurück, kann man die Winkeländerung leicht aus der Figur
ablesen. Durch die Verschiebung \, i\ ändert sich der rechte Winkel um

9\ ,371
' 9 y 9 x

Die totale Winkeländerung ist demnach

9 Z 9 Z 9 \

9 x 9y 9y ' 9X
9Z9Z9r\9-f\ .„.y= — • (3)
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y > o bedeutet Verkleinerung des ursprünglich rechten Winkels. Die

Schubspannung ist
T Txy Tyx G ï

wobei G den Schubspannungsmodul bezeichnet :

_
m E

** - 2 (m + 1)

Betrachten wir jetzt ein Plattenelement mit den Kanten dx, dy, h
und stellen wir für dieses die Gleichgewichtsbedingung auf. Im Falle
großer Durchbiegung hat die crx Spannung eine merkliche vertikale
Komponente (Abb. 38). Sie ist

er,. — h d yx 9 X J

dy
ayf£l
lOy

dx

n
ì Cm

Ox

>dx
CT*

Abb. 37. Abb. 38.

Da h jetzt nicht konstant sein soll, müßte man an Stelle von h • d y
schreiben :

y + dy

fhdy dy.h(x,y + edy)
y

was aber bis auf Differentiale höherer Ordnung wieder zu h • dy führt.
Auf der entgegengesetzten Seite des Plattenelementes kommt das

Differential dieser Kraft hinzu. Die Resultierende der beiden Kräfte
ist das Differential selber :

d \ d z
— er — h d x • d y9 X L 9 X J

Analog gilt für die y-Richtung
9

KLyh]dxdy

(4)

(5)
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Die vertikale Komponente der Schubspannung auf der Seitenfläche

h • dy ist
az U At — h d yay

Die Summe mit den Schubkräften auf der gegenüberliegenden Seite

ist wieder das Differential davon :

3

9 X [t — h dx dy
«y J

(6)

Für die anderen Seitenflächen :

9

»y [t — h dx dy9X J
(7)

Die Gleichgewichtsbedingung erhält man, indem man die Summe
aller vertikalen Komponenten der auf das Trägerelement wirkenden
Spannungen der Belastung gleichsetzt. Im Falle des Flüssigkeitsdruckes

ist diese senkrecht zum Trägerelement. Die lotrechte
Komponente der Belastung von p gr*/cm2 ist (Abb. 39)

'v/RRTs/RfiF^
was bei Vernachlässigung höherer

Ordnung sich zu

pdxdy (8)

vereinfacht. Hier wird also von der

Neigung von p abgesehen, denn dazu
werden höhere Potenzen von 9zf9x und

3zlgy vernachlässigt. Weiter unten
(Gleichungen 10 und 11) wird diese

Vernachlässigung nicht mehr zulässig
sein, denn dort käme sie einem
Unterschlagen der ersten Potenz derselben

Ableitung gleich.
Die Gleichgewichtsbedingung, die sich aus den Gleichungen (4), (5),

(6), (7), (8) nach Kürzen mit dx-dy ergibt, liefert die Gleichung der
elastischen Linie :

^ bzw.^
Ox Oy

Abb. 39.
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Es ist aber noch die Gleichgewichtsbedingung für die horizontalen
Verschiebungen aufzustellen.

Auf die Raumeinheit wirke die Kraft (XYZ). Die Elastizitätstheorie

zeigt, daß dann für das Parallelepiped dx.dy.dz die Gleichungen
gelten :

9 <7X

9 x

9 <Sj

Zy
9 (7z

9 Z

9 TTx 9 Tzx vh X o
a y 9 z

3_Txy f_Tzy _ o
9 X 9 Z

Ub. + 9J!n + z o
a x sy

In unserem Fall ist crz o, tzx rzy o und Txy Tyx t.
Die Kraft auf das Parallelepiped ist p dx dy. Da das Volumenelement

dx ¦ dy • h ist, beträgt die auf die Raumeinheit bezogene Kraft p/h. In
die Gleichungen sind davon die beiden horizontalen Komponenten X
und Y (in der x- und y-Richtung) einzusetzen. Es ist (Abb. 39) :

also

x- Px-h'
9 Z

9 X
Y P

h
9 Z

Zy
9 ffx

9 X

9 T

Zy + p 9 Z

h 3 x
0

3°y
*y 3 X + p 3 Z

KZy 0

(10)

(11)

Differentiert man (9) und setzt (10) und (11) ein, erhält man :

{-rnrnm
9 z /a2 F 3 h

x\

+
32 F 32 Z

3 y2 3 X2

32F 3h\

32 F 32 Z

3 X2 3 y2
0

9* F 32 Z

ax ay 9X9J

F3h 32F 3h\
ay'sx 9X9J 9 y)

Darin ist F die Spannungsfunktion, d. h. eine Funktion, die so gewählt
wurde, daß

32 F 32 F 32 F
3 y2

T
9X ay

(13)

Die Gleichung (12) genügt noch nicht, um Aufgaben zu lösen, denn
sie enthält noch die unbekannte Funktion F. Es ist also eine weitere
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Gleichung abzuleiten, die F enthält. Dazu differenzieren wir (3)

nacheinander nach x und nach y. Die Werte der Ableitungen von — und
15' die dabei auftreten werden, entnehmen wir den nach — und ^ay ' ax ay
aufgelösten Gleichungen (1) und (2). Die Rechnung ist etwas lang,
aber ohne Schwierigkeiten durchführbar, so daß wir hier nur das

Resultat notieren :

— + 2
3"F + *JL E T g'Z V — — —1 f 14)

a x4 ax2ay2 a y4
— [\axay/ a x2 a y2J ^ '

Die Gleichungen (12) und (14) sind für die durchbogene Scheibe (oder
Platte) zusammen gültig.

Der hier interessierende Fall der Linsenschale ist rotationssymmetrisch.

Es ist deswegen praktischer, diese Gleichungen in Polarkoordinaten

umzuschreiben.
Mit dem Index r sei die radiale, mit t die tangentiale Richtung

bezeichnet. Es ist dann :

* 7F °* 7^ * — ££<«)<«><«>

Legen wir x in die r-Richtung und y dazu senkrecht. Statt t möchte

man aber das 9 der Polarkoordinaten, also sind die entsprechenden
Ableitungen der Spannungsfunktion F auszurechnen.

Aus x r • cos 9, y r • sin 9 folgen die partiellen Ableitungen
nach x und y als Funktion derjenigen nach r und 9. Die Ableitungen
von F und h nach 9 verschwinden wegen der Kreissymmetrie.

— cos cp — • — sin cp — (18)
ax T a r' ay Tar

a2 32 sin2 o 9 32 32 cos2 o 3 ,.„.—: cos2 9 —- -\ L — • —- sm2 9 —- -\ '- — (19)
ax2 Yar2rrar'ay2 Y a r2 ^ r 3 r v '

a2 a sin es cos 03 a2 32 a2 1 a ,nn.cos cp sin cp — ¦ —- -4 —- -\ (20)
9X9 y T Tar2 r ar'3x23y2 3r2 m
Gleichung (12) wird dadurch, nach wiederholter Berücksichtigung der

Beziehung sin2 9 4- cos2 9 1 :

c'dz\2d F d z\
drVhd7dr)=pr dì/

1 (21)
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Auch Gleichung (14) ist dementsprechend in Polarkoordinaten
umzuschreiben :

d_

dr
d /d2F

d r V d r
1 dF
r d r

E d_ /d_z\2
2 d r Id t

Infolgedessen ist das erste Integral von (14) :

d /d2 F 1 d F\
_

E /d z\2
r d r [ dï2" + ï d7J - ~ 2 ld rj + L

Für r o ist die Tangente horizontal, also dz/dr o, folglich
verschwindet die Integrationskonstante C.

Um die gebräuchlicheren Bezeichnungen wieder einzuführen,
werden wir den Radius x (statt r) nennen.

Es sei die neue Funktion L so definiert, daß

d F _ d F
_

d r d x

Die beiden Gleichungen der elastischen Linie werden jetzt :

(22)

(23)

(24)

Beide Gleichungen gelten gleichzeitig. Für eine Lösung ist zwischen
ihnen L zu eliminieren.

i) Randbedingungen.
1 / 1 \Am Rande ist die tangentielle Dehnung et =¦ crt crr 1 o

dL 1

dx\dx x /

ddx-(hLd1f)=Px

E /d zV
2 \dx)

KH)'-«:

d x m x
L o für x a (25)

Es muß dort die Radialspannung verschwinden, crr o :

ÌL o
x

Die Randbedingungen sind folglich :

dL
dx L o

für x a (26)

für x a (27)
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k) Integration für eine Parabel zweiten Grades.

Für unseren Fall, bei dem eine elastische Linie z z(x)
vorgegeben ist, löst man die Gleichungen (23) (24), indem man z in (23)

einsetzt und aus dieser Gleichung L berechnet. Setzt man dann z und L
in (24) ein, entsteht eine Gleichung für h(x).

Es sei nun als Meridianlinie der durchgebogenen Membran die
Parabel gewünscht :

v(a2 (28)

Aus (23) folgt dafür, unter Berücksichtigung der Randbedingungen (27) :

v2E 1

4 x

Damit folgt aus (24) die Lösung :

(x2 —a2);

px2
h-^E (2x2-i) + a*h0

(x2 — a2)2

(29)

1) Integration für einen Kreis als Meridian.

Ist wieder w der Kreisradius und a die Apertur (Radius des Auflagekreises),

so lautet die Kreisgleichung

Z yw2 _ x2 _ -]/w2 _ a2 (30)

Gleichung (23) gibt dafür in Verbindung mit den Randbedingungen (27) :

L E 1

8x
Das Integral von (24) ist

(x2 —w2)ln w2— a:
— (x2 — a2) (31)

w2, w2 ¦

Tr ln —
h

J^ho
8pw _

w2ln

8 p J/w2 — x2
_

(x2_w2)ln
W2

wz— a2
(x2 — a2)

(32)

m) Integration für die Parabel vierten Grades.

Z v (a4 — x4)

Gleichung (24) wird jetzt

^J^ h x2 (x8 — 4 a6 x2 4- 3 a8) 2 v2 x8 — %¦ + C
bp v ' 2

(33)
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Für x o folgt daraus h oo, wenn C^o sein soll. Durch die
willkürliche Festsetzung C o kommt die Integrationskonstante h0 in
Wegfall. Wir schreiben das Resultat trotzdem auf :

h
2v2 X6 — V,

" 2Ev3
3 P

(x8--4 a6 X2 + 3 a8)
(34)

n) Parabeln höherer Ordnung.

Aus dem Gang der Rechnung für die Parabel zweiter Ordnung
sieht man sofort, daß für Parabeln höherer Ordnung sich ähnliche

Lösungen anschreiben lassen. Im Nenner wird immer ein Polynom
stehen (seine Ordnung wächst mit derjenigen der Parabel), das für
x a eine Nullstelle aufweist.

o) Diskussion.

Die Integration der Differentialgleichungen für große
Durchbiegungen einer Kreisscheibe für eine Parabel zweiter Ordnung, einen

Kreis, eine Parabel vierter Ordnung als Meridianlinie, führte zu den

Lösungen (29), (32) und (34). Die drei Funktionen stellen die Dicke
der frei aufliegenden kreisrunden Membran als Funktion des Radius x
dar, um die drei elastischen Linien des Diagonalschnittes zu erhalten.
Die Lösungen sind noch nicht endgültige Resultate, denn in allen steht
außer dem Flüssigkeitsdruck p noch der Kurvenparameter v (Parabeln)
oder w (Kreis), die ja Funktion von p sind. Es ist aber überflüssig diese

Funktionen noch zu bestimmen, denn die drei Resultate haben für uns
keine Bedeutung. Sie lassen sich nämlich nicht realisieren, denn für
x a folgt aus ihnen h oo. In den beschriebenen Fällen und für
Parabeln höherer Ordnung (siehe unter n) sollte also die Dicke am
Rande unendlich werden.

Muß aber wirklich die Berechnung für große Durchbiegungen
Verwendung finden

Für eine Brennweite von 50 cm und unsere übliche Füllung mit
n 1,479 gibt die Formel (30) eine Durchbiegung von ca. 0,3 cm.
Verwendet man also Glas in den uns gebräuchlichen Qualitäten, so ist
für so große Durchbiegungen nur das allerdünnste von höchstens

0,02 cm zu gebrauchen. Die Durchbiegung ist also viel größer als die
Plattendicke. Es steht somit außer Zweifel, daß die Berechnung für
große Durchbiegungen Anwendung finden muß, die zu physikalisch
unmöglichen Lösungen führte.
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Verwendet man hingegen Plexiglas, so bietet es keine Schwierigkeiten,

Platten von 0,3 cm in der gleichen Größenordnung ihrer Dicke
durchzubiegen. Für diesen Fall gilt aber angenähert die früher
durchgeführte Berechnung für kleine Durchbiegungen, die für die Parabel
zweiter Ordnung und den Kreis zu realisierbaren Lösungen führte.

Also kommt man zum Schluß :

Es ist so dickes Plexiglas zu verwenden, daß die Durchbiegung im
Verhältnis zur Dicke klein (oder derselben Größenordnung) ist, so daß

die entsprechende physikalisch realisierbare Berechnung Gültigkeit hat.
Zur Korrekturmöglichkeit durch Schleifen der Scheiben sei noch

bemerkt, daß sie eher theoretischen Charakter hat, denn es stehen
dem Experimentalphysiker vorderhand noch keine Mittel zur
Verfügung, den Glasscheiben so komplizierte Profile zu erteilen, wie es die
Theorie fordert. Eventuell könnte aber eine solche Möglichkeit
(abgesehen vom theoretischen Interesse) für die Industrie von einer

gewissen Bedeutung sein.
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