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IX. Korrektur der Einzelflache

§ 1. Verinderliche Dicke

In Abschnitt VIII § 3 und § 4 wurde dargelegt, wie sich die Scheiben
bei verschiedener Dicke verhalten : Diinne Scheiben (Silikatglas von
0,18 und 0,17 mm) geben Linsen mit sphérischer Aberration, wihrend
dickere (0,7 mm) bereits Uberkorrektur ergeben (antisphirisch). Bei
mittleren Dicken (0,4 mm) gehen die Linsen von der antisphérischen
Aberration bei schwachem Druck zur sphirischen iiber, wenn der Druck
steigt (also die Brennweite sich verkiirzt). (Siehe auch Abb. 22.)
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Abb. 25. Korrektur der Aberration. Uberzogenes Silikatglas.
d=03mm; 0,4 mm; 0,7 mm, @ =100 mm, @s= 92 mm.
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Fiir jede Linse mit Scheiben mittlerer Dicke gibt es also einen
bestimmten Druck, bei dem sich die Kurven der Brennweiteninderungen
fiir die mittleren Zonen (0,5 und 1,0 cm von der Linsenachse) schneiden.
Tragt man in einem raumlichen Koordinatensystem auf : Brennweite z,
Druck x und Scheibendicke y, so erhilt man in Ebenen parallel zu
(x, z) solche sich schneidende Kurven der Brennweiteninderung
(Abb. 25).

Die Raumkurve, welche alle diese Schnittpunkte miteinander ver-
bindet, ist die Linie, lings der man sich zu bewegen hat, wenn die
Aberration in einem gréBeren Intervall der Brennweite korrigiert sein
soll.

Das Durchlaufen der soeben konstruierten Raumkurve bedeutet,
daB bei steigendem Druck die Dicke des Glases zunehmen muf3. Diese

Moglichkeit der Korrektur der dyna-
l \ mischen Linse wire vielleicht die

idealste. Um sie zu realisieren, konnte
man zum Beispiel folgenden Weg ein-
schlagen : In gewissen, zu berechnen-
den Abstinden werden auBerhalb der
eigentlichen Linsenschalen weitere
Schalen eingespannt, deren Dicke sich
gleichfalls berechnen lieBe. Die in-
nerste Schale (welche die Flissigkeit
abgrenzt), wiirde dann bei der Durch-
biegung auf die zweite stoBen und
diese dann so weit durchbiegen, bis
die dritte beriihrt wird. Alle drei

/ / biegen sich weiter und nehmen dann

die vierte Scheibe mit usw. (Abb. 26).
Auf diese Art wiirde die wirksame
12 345 Dicke der Scheibe mit der Durch-
Abb. 26. Korrektur durch biegung zunehmen. Allerdings wird
veranderliche Dicke. dieses Vorgehen bei Silikatglas er-
schwert wegen der geringen bei diesem
Material zuldssigen Durchbiegung. Mit Plexiglas ist die Realisierung
eher moglich, denn bei diesem zeigt sich derselbe Zusammenhang
zwischen Dicke und Aberration (Abb. 23 und 24) und der gréBere
Betrag der erreichbaren Durchbiegung wiirde ein Anbringen der
duleren Scheiben wirksam erlauben.




§ 2. Verinderlicher Radius

Die Uberlegung ist hier der vorhergehenden analog. In Kap. VIII
§ 5 (siehe auch § 4) sahen wir, dal} in Bezug auf die Aberration eine
Zunahme der Dicke der Linsenschalen einer Abnahme des Radius bei
konstanter Dicke gleichkommt. Also wire es denkbar, statt der bei
Druckanstieg zunehmenden Dicke einen abnehmenden Radius einzu-
fiihren. Dazu kann am Linsenrand eine Fliche angebracht werden,
an die sich der Scheibenrand beim
Durchbiegen anschmiegt (Abb. 27). Aus
einer systematischen Untersuchungs-
reihe tiber Linsen mit verschiedenem
Radius ware es leicht, die Form dieser
Anschmiegfliche so zu konstruieren,
daB der effektive Radius immer der-
jenige wire, fiir den die Linse beim
entsprechenden Druck keine Aberra-
tion aufweist. Auch dieses Verfahren
eignet sich nur bei gréBerer Durch-
biegung (also bei Plexiglas).

Die Figur 28 zeigt wieder die
raumliche Disposition der MeBergeb- _ —
nisse mit Scheiben gleicher Dicke, aber
in verschiedenen Durchmessern einge-
spannt. Durch Verbinden der korri-
gierten Punkte ergibt sich wieder eine
Raumkurve, die im beschriebenen Ver-
fahren mit verdnderlichem Radius
durchlaufen werden muB. — In jeder der drei Kurvenscharen ist
ein Gebiet vorhanden, in dem die drei inneren Zonen (Linsendffnung
von 3 cm) nahe beieinanderliegende Brennweiten besitzen. In den
Abb. 25 und 28 wurden {iibersichtshalber nur die Kurven der beiden
inneren Zonen eingezeichnet.

Abb. 27. Korrektur durch
veranderlichen Radius.

§ 3. Geformte Scheiben

Eine Anndherung der einzelnen Linsenschale an eine Cartesianische
Flache (zur Korrektur) ist dadurch moglich, daBl man das Glas ent-
sprechend schleift. Die Dicke der Scheibe wird dann eine solche Funk-
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tion des Radius, dal unter dem Fliissigkeitsdruck die elastische Linie
eines Meridians eine vorgegebene Kurve bildet. Diese Kurve braucht
nicht notwendigerweise cartesianisch zu sein ; bei geeigneter Abhidngig-
keit der Dicke vom Radius steht die Méglichkeit offen z. B. Kreise oder

65
5 cmHg g p

Abb. 28. Korrektur der Aberration.
Plexiglas d = 0,5 mm, @s = 65, 73, 85 mm.

Parabeln verschiedener Ordnung als Meridian der durchbogenen Scheibe
zu erhalten. Die gewiinschte elastische Linie bei entsprechend vermit-
telter Dickenfunktion wird nur bei einem bestimmten Druck erwartet.

Diese Frage wird im folgenden theoretisch untersucht und es wird
sich ergeben, dafl im Falle geringer Durchbiegung sich eine solche Rand-
bedingung finden 148t, daB fiir jeden Druck eine Parabel zweiter Ordnung
entsteht. Weiter wird sich ergeben, dal das mathematische Problem
des Aufsuchens der Dickenfunktion bei groBer Durchbiegung zu einem
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physikalisch unrealisierbaren Resultat fithrt. Diese Unméglichkeit
besteht sogar im Idealfall der frei aufliegenden Platte. Wird die Platte
eingespannt, entsteht in der Ndhe des Randes ein Wendepunkt, ein
Umstand, der in der Wahl der elastischen Linie eine starke Einschrian-
kung bedeutet und den Kreis oder die Parabel als elastische Linie
ausschlieft. Aus diesem Grunde wurde nur mit einer im Auflagekreis
frei drehbaren Platte (Schwingringe) gerechnet.

Zur Diskussion dieser Korrekturmdéglichkeit wurde die Differential-
gleichung der Scheiben-Dicke als Funktion des Radius fiir eine offen
gelassene Durchbiegungsform abgeleitet und integriert. Aus der so
erhaltenen Formel wurden dann die Losungen fiir den Kreis und die
Parabel als Meridian gesucht. Diese Berechnung muBte fiir kleine und
groBe Durchbiegungen getrennt durchgefithrt werden. Der Ansatz mit
der neutralen Schicht, welche Gebiete mit Zug- und solche mit Druck-
beanspruchung trennt, ist nur fiir Durchbiegungen richtig, die kleiner
sind als die Scheibendicke. Bei groBerer Durchbiegung hat es keinen
Sinn mehr von neutraler Schicht zu sprechen, das Material ist dann
in seinem ganzen Querschnitt auf Zug beansprucht.

Da sich fiir den Kreis und die Parabel bei groBer Durchbiegung
unrealisierbare Losungen ergeben, wird man fiir diese Korrektur-
moglichkeit mit so dickem Plexiglas arbeiten miissen, da8 die Durch-
biegungen selbst bei den kleineren Brennweiten in der GréBenordnung
der Scheibendicke bleiben. Es besitzt dann die erste Rechnung Giiltig-
keit. AuBerdem ist es leichter dem Plexiglas die gewiinschte Form zu
geben als dem hirteren, briichigeren und viel diinneren Silikatglas.

a) Differentialgleichung der elastischen Linie einer Scheibe micht kon-
stanter Dicke, bei Rleiner Durchbiegung.

Ist x die von der Mitte aus gezdhlte Koordinate des Meridians
einer Kreisscheibe (d. h. der Radiusvektor), so méchte man eine Funktion
h(x) fiir die Dicke finden, so daB3 bei Belastung die Meridianlinie eine
gegebene Form annimmt.

Die gewohnliche Differentialgleichung fiir die Durchbiegung einer
Kreisscheibe kann man in dem vorliegenden Fall nicht brauchen, denn
jene ist fir konstantes h abgeleitet. Die Herleitung der Differential-
gleichung etwa nach Féppl ! diene als Weg zur Aufstellung der gesuch-
ten Gleichung mit h = h(x).

1 FoppL : Technische Mechanik, Band III: Festigkeitslehre.
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O (x, z) sel ein Punkt der neutralen Faser. Durch diesen Punkt
legen wir einen Querschnitt durch den Trdger. Dieser urspriinglich
senkrechte Schnitt neigt sich bei der Belastung um den Winkel .
P sei ein Punkt des Querschnittes, A\ ist sein Abstand von O. Als
z-Achse wihlen wir die Symmetrieachse, d. h. die Achse durch den
Scheibenmittelpunkt (Abb. 29).

e

[
]
.

Abb. 29.

Der Kreis durch P mit Mittelpunkt auf der z-Achse dehnt sich
bei der Durchbiegung. Sein Radius wichst um
3= Asinw (1)

also dehnt sich der Umfang um 2 = 3. Die spezifische tangentielle

Dehnung ist somit :
A sin o
6 = -2 ®)

Die Faser durch P ist in ihrem durch die Querschnitte w und w + d ©
begrenzten Abschnitt um A d « linger geworden. Infolgedessen ist die

spezifische radiale Dehnung
rd o

s dx (3)
Bei reinem Zug gilt das Hook’sche Gesetz
=2 und e L
=T=E " 5T TTLE

Fir die Tangential- und Radialspannung ergibt sich (unter Beriick-
sichtigung von (2) und (3)

mE sin o do
ct:mz_il(m < +dx) (4)

mE sin d o
O‘r:mz—il( X +m€§) ()
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Jetzt schneiden wir aus der Kreisscheibe einen Sektor mit dem
beliebig kleinen Winkel (mit Scheitel in der z-Achse) d ¢ heraus und
untersuchen die Spannungen an seinen Seitenflichen. Im Sektor selber

grenzen wir ein Element durch die Kreise mit Radius x und x +dx
ab (Abb. 30).

Abb. 30. Abb. 31.

I. Die Tangentialspannungen o,. Zu jedem o, d F der einen Fliche
gehort ein gleich groBes entgegengesetzt gerichtetes o, d F der anderen
Fliche. Alle Richtungen schneiden sich in der vertikalen Symmetrie-
ebene des Plattenelementes. Ihre Resultierende fallt in diese Symmetrie-
ebene (Abb. 31).

R=o¢,dF do

Die Kraft R wirkt im Abstand A von der neutralen Faserschicht. Ihr
Moment in Bezug auf diese Schicht betrigt deswegen: ¢,-d F-d oA
Das gesamte Moment der Tangentialspannungen ist folglich

do thdFdepm———Tfi(mSIHw—I—g(;)/)\zdF

X

Das Integral erstreckt sich iiber die Meridianschnittfliche der Lange dx
(Abb. 32). Dabei soll jetzt angenommen werden, die Dicke h sei
5
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Funktion von x. Einschrinkend soll verlangt sein, daB die neutrale
Schicht auch Symmetrieebene ist (was aus der Definition der neutralen
Schicht folgen muB}). Unter Vernachlissigung von Differentialen héherer
Ordnung berechnet sich das Integral zu

h? (x)
2
/ldf_ D dx

d@ mE mSinm
12 m2—1 X

Moment der 6, = - gi) h? (x) d x (6)

Legen wir die Uhrzeigerrichtung fiir die Momente als positiv fest,
so ist das Moment der o.-Krifte negativ und folglich mit negativem
Vorzeichen in die Momentengleichung einzusetzen.

II. Radialspannungen o,. In der zum Radius x gehérenden Schnitt-
fliche bilden die o, das Moment :

mE sin w d w 2
/O'I.)\d.’:—mz_ui(x —l—m(T;()/ldF
f A2.d F ist das Tragheitsmoment des Rechteckes mit der Breite xd ¢
und der Hohe h(x), also

/12df=h31(2")xdcp

und das Moment der ¢-Krifte ist im Schnitt x:

d o m E . dw 3
An der Schnittfliche mit dem Radius x 4 dx haben die o, ein ent-
gegengesetzt gerichtetes Moment. Auf das Trigerelement wirkt der
Unterschied der beiden Momente, welcher gleich dem Differential des

Ausdruckes (7) ist. Das Differential entspricht einem Anwachsen des
Abstandes x um dx.

h(x+dx)
2 y 4 >0_q

s y
ik
ll !
v
x

o
N<--=-----

Abb. 32. Abb. 33.



_dcp mE f do do d? w 3
Momenta]lercr—ﬁmz_1 I(Coswﬁ+mﬁ+ mxdxz)h dx+
. d ,

—|—(smm—|—mxd—§)3h2h dx} (8)

Dieser Ausdruck ist ohne Vorzeichenwechsel in die Momentengleichung
einzufithren, denn das Moment der o-Krifte ist positiv.

III. Schubspannungen 1. p sei der Druck auf das Flichenelement
der Platte. Auf den Kreis mit Radius x driickt die Last = x®p. Die
Schubkrifte an der Peripherie des Kreises halten dieser Last das Gleich-
gewicht. Auf den Teil im Sektor mit Winkel d ¢ kommt davon der
Bruchteil d¢ /9, also

_dg o XP
Tx—znrcxp— 5 do

Fiir den Schnitt mit Radius x 4+ dx des Sektors ist
Te+dx — Tx + a_x dx
Moment der 1 auf das Plattenelement.

Mom. d. © = X;P dx do 9)

Das Moment ist positiv, also kein Vorzeichenwechsel.

IV. Momentengleichung. Fiir das Gleichgewicht muf3 die Summe
aller Momente verschwinden. Daraus ergibt sich mit der Substitution

6 (m2—1)
—mE_ P=N (10)
die Differentialgleichung der elastischen Linie :
d? w dh dw
3 Y
mxh o h( h+hcosm+mh—{—3dxmx)dx-}-
2(_m AL 2 _
—}-h( Xh+3dx)smm+Nx_o (11)

Fir kleine Durchbiegungen ist cos @ =1, sin @ = . Mit h =
konst. wird die Gleichung (11) :

d? » do N
2 3
de2+xdx o + pEX =0 (12)

die von Foppl angegebene Differentialgleichung.
Der Zweck unserer Rechnung ist aber nicht der, die Gleichung fiir
die Durchbiegung zu finden, sondern bei gegebener Durchbiegung und



Form der elastischen Linie die Funktion h = h(x) zu ermitteln. Es
wird also z als bekannte Funktion von x vorausgesetzt. Die Gleichung
(11) kann man zu einer solchen fiir h umordnen :

3hh®(mx*w + xsinw) + P (mx*e0”’ —x o’ +
+x0w'coso+mxew —msinw) + Nx3=o (13)

Ist a der Radius des Kreises, auf dem die Platte ruht, und wirkt
die Belastung nur innerhalb des Auflagekreises, so ist fiir den iiber
diesen Kreis herausragenden Teil der Scheibe dieselbe Differential-
gleichung giiltig, in der dann N = o zu setzen ist. Die Randbedingungen
(die wir weiter unten behandeln) sind dann nicht fiir x = a giiltig,
sondern fiir den Rand der Scheibe. Fiir x = a geben die Stetigkeits-
bedingungen den Ubergang von der Gleichung mit N zu der mit N = o.

b) Randbedingungen und Lisungsmaoglichkeiten.

Bei frei aufliegender Scheibe mufl am Rand die Radialspannung
verschwinden. Also fiir x = a mul} sein:

(5) Sir}‘(‘” +me =o (14)

Es sei nun z = f (x) als elastische Linie vorgegeben. Es ist dann:

; f”
=T
d i £
un 51N 63 = ~1- l/T-i*__f’:z

Wegen o { ®/9 muB hier die positive Wurzel genommen werden.
Die Randbedingung wird :
fl fl!
iz T pE 0

Beide Ausdriicke 1/1 + 12,1 4 {2 sind positiv. Die Randbedingung
kann also nur dann erfiillt sein, wenn f'/x und {” entgegengesetzte
Vorzeichen fiir x = a annehmen. Aus physikalischen Griinden (Durch-
biegung) muB fiir x = a : {' negativ sein, also fordert die Randbe-
dingung fiir x = a : f” ) 0. Dasselbe gilt wegen der Rotationssymmetrie
auch fiir x = —a. (Dort ist {* positiv, {’/x negativ, also mul} f positiv
sein.) Positive zweite Ableitung bedeutet (fiir unsere z-Richtung), daB
die Kriimmung nach unten verliuft. Ein Wendepunkt ist folglich nicht
zu vermeiden (Abb. 33). Wir werden also fiir f(x) nicht irgend eine
Funktion, wie z. B. einen Kreis oder eine Parabel wihlen konnen.
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Um trotzdem eine beliebige elastische Linie verlangen zu diirfen,
ist die Randbedingung abzuindern. Es mul} erreicht werden, daB3 nicht
mehr fiir x = a gefordert wird 6, = 0. Das geschieht, indem man am
Rand ein Kraftmoment anbringt. Dies ist auch physikalisch plausibel,
denn ein solches Moment kann den Wendepunkt durchdriicken (Abb. 34).

Abb. 34. Abb. 35.
(Zu Seite 74).

Ist H die Dicke der Scheibe am Rand, so wirke pro Lingeneinheit
des Umfanges das Moment
H
M=2k 3
welches hervorgebracht wird durch die Kréfte k, die tangential zu den
Scheibenoberflichen wirken. Physikalisch lieBen sich diese Krafte
schwer realisieren, deswegen fithren wir andere Krifte ein, die auf die
ganze seitliche Fliche wirken sollen. Die Verteilung dieser Krifte {iber
die Seitenfliche geschehe nach dem Ansatz

kK=c-A

Die Momente dieser k’-Kriafte und der k-Krifte soHen gleich sein

"y

k%ZJCl'l'dl:

(7]

H3
8

Wl o

woraus folgt :
12k

H2
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Die neue Randbedingung wird jetzt: (s, = A ¢)

Sinw+mdtuq12km2~1
x dx H mE

(15)

Durch dieses neue Moment am Rande bleibt die Differential-
gleichung der elastischen Linie dieselbe, denn fiir die Beanspruchung
i1st es gleichmdBig iiber die ganze Fliche verteilt und kame als kon-
stantes Glied in die Differentialgleichung zweiter Ordnung in z, also
tritt es in der Gleichung zweiter Ordnung in « (dritte Ordnung fiir z)
nicht auf.

Fiir sin ® = © und cos @ = 1 kann man die Differentialgleichung
(13) schreiben :

—1

- N
h _3—(hB+

) (16)

dabei ist

w w
Azx(mw’+§); Bzmxm”+mm’——m—£

Die Randbedingung (15) wird

k (m2 — 1)
H:mE

w r

c) Integration fiir die Parabel zweiter Ordnung.

Ist v der Parameter der Parabel und a die Apertur (der Radius
der Scheibe), so lautet die Gleichung der Parabel :

z=2v (a® —x? (18)
Die Randbedingung gibt fiir diesen Fall:
_ o km—1)
¥=a H:mE
Durch Einsetzen von & = — z’ in die Gleichung (16) (die Integrations-

konstante bestimmt sich aus der Bedingung h = H fiir x = a) erhilt
man die gesuchte Funktion

o

P @ —x) + B (19)

~lo



Soll die elastische Linie bei jeder Belastung eine Parabel bleiben
(v wird sich mit der Belastung dndern), geniigt es den Quotienten p/k
konstant zu halten. D. h. dndert man das Moment am Rand propor-
tional zur Belastung (Fliissigkeitsdruck), was sich experimentell leicht
durchfithren 14Bt, ist die elastische Linie der nach (19) geformten
Scheibe bei jeder Belastung eine Parabel zweiten Grades.

Fir den Fall H = 0,1 cm, h (Dicke in der Mitte) = 0,3 cm ergibt
sich aus (19):

p = 0,416 k

d) Imntegration fiir die Parabel vierter Ordnung.
Die Gleichung dieser Parabel ist
z = v (at — x%) (20)

Die Randbedingung gibt :
. 3k (m2—1)
" H*mEa?(1+ 3m)

A%

und die Losung der Gleichung (16) ist

16 m
o2 ] 1)
h_Ha[k g 1 a T

Auch in diesem Fall geniigt das Konstanthalten von p/k, um den
Charakter der Meridianlinie von der Belastung unabhingig zu machen.
Physikalisch ist aber die Lésung (21) unmoglich, denn fir die Mitte
(x = o) folgt h, = o.

e) Integration fiir Parabeln hoherer Ordnung.

Fiir die Parabel
z=v (a"—x" (22)

mit n ) 2 ergibt sich wieder eine dhnliche Formel wie (21), die also fiir
x = o den physikalisch unannehmbaren Wert h, = o liefert.

f) Integration fiir einen Krets.

Der Meridian sei ein Kreis mit Parameter (Radius) w. Seine
Gleichung ist

z= Yw—x*— |} w?—a? (23)



Da die gemachte Anndherung sin & = o und cos & = 1 dem Gleichsetzen
von Kreis und Parabel dquivalent ist, ergibt sich hier dieselbe Lésung
wie fiir die Parabel zweiten Grades, wie auch die Durchrechnung zeigt.

H2
B = o T (a®—x*) + H® (24)
Die Randbedingung liefert :
~ H'mE
Y= 12k m—1)
also 1 =4v
w

g) Diskussion.

Die Losung fiir den Kreis und die Parabel zweiten Grades enthilt
den Faktor p/k. Soll die Formgebung der Membran fiir jede Durch-
biegung dieselbe sein, ohne daB} sich die elastische Linie bei verschie-
denen Drucken in ihrem Charakter dndert, geniigt es, diesen Wert
konstant zu halten.

Es seien noch einige Zahlenwerte fiir die Dicken angegeben, um
sich ein Bild der Gestalt der Scheibe zu machen :

H=01cm pk =10 h, = 0,8 cm

0,5 0,68
0,1 0,27
0,05 1,0 0,25
0,5 0,499
0,1 0,119

Diese Mafle, namentlich die fiir H = 0,05 cm sind in realisierbaren
GroéBenordnungen.
Es ist noch der Parameter v in Funktion der Belastung zu finden.
Zu diesem Zweck setzen wir (18) und (19) in (16) ein und erhalten :
m—11 1
Zusammenfassend ist also fiir Durchbiegungen der Gré8enordnung
der Plattendicke bei Scheiben, deren Dicke h der Gleichung

B — % P (a2 —x¥) 4 B (25)
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geniigt, die elastische Linie eines Meridians : die Parabel :

m—111 ,

2=0P =5 ms

—x?) (26)

oder der Kreis:

_ 1 P \/ I Poel? e
L= \/m—112pkH = m———1 2pkH] o I

denn in der gemachten Anniherung fallen Kreis und Parabel zusammen.
p/k ist wihlbar, experimentell ist also das Moment am Rand
(H x k) proportional der Belastung zu nehmen, um die gewiinschte
Form der Durchbiegung bei jeder Belastung beizubehalten.
Fiir Parabeln hoherer Ordnung ist die Losung nicht mehr zuldssig.

h) Differentialgleichung der elastischen Linie eimer Scheibe bei grofier
Durchbiegung.

Bei groBer Durchbiegung ist die in den vorhergehenden Para-
graphen durchgefiihrte Rechnung nicht mehr giiltig. Es ist jetzt nicht
mehr zuldssig, von neutraler Faser zu sprechen, denn das Material
wird im ganzen Querschnitt nur noch auf Zug beansprucht. Dabei
werden o, und ¢, iiber den ganzen Querschnitt als konstant ange-
nommen. AuBerdem soll angenommen werden, daB im unbelasteten
Zustand die Platte nicht angespannt ist, so da alle Spannungen bei
der Durchbiegung nur von den Lasten herrithren. Diese Voraussetzung
ist fiir die Schalen der dynamischen Linse erfiillt. Aus den geédnderten
Voraussetzungen geht hervor, dal der Ansatz fiir die Ableitung der
Differentialgleichung im Falle groBer Durchbiegungen ein anderer sein
mub. Auch hier wird eine Rechnung aus Foppl : Technische Mechanik !
iibernommen und fiir unseren Fall nicht konstanter Dicke abgedndert.

Die Durchbiegung sei groBer als die Dicke der Platte. Aus einem
dx wird in einem analogen ebenen Fall ein ds nach der Gleichung :

ds= 114+ 2z2dx
Da z’ klein gegeniiber 1 ist, kann man dies schreiben :

ds:dx(i—i—%z’z)

1 FoppL : Technische Mechanik, Band V : Die wichtigsten Lehren der hoheren
Elastizititstheorie (Leipzig 1907), S. 132 ff.
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Fiir das uns vorliegende Problem sind partielle Ableitungen zu setzen.
Also sind die Dehnungen in der x- und y-Richtung :

1 ZA% 1(92)2
§(9x) 3oy

AuBer dieser Dehnung ist bei groBer Durchbiegung noch die Verschie-
bung parallel zur Plattenebene zu beriicksichtigen. £ und v seien die
Komponenten dieser Verschiebungen in der x- und y-Richtung (Abb. 35),
Seite 69. Die entsprechenden Dehnungen sind dann 45/, und 47/4,.

Jetzt kann man die totale Dehnung in den Richtungen x und y

anschreiben :
. — 1 /2z\2 2%
= 2\ax 2X

-~
-

E\ -

. * -

. \ =

-

H ~ o
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. ™ -

- -
e . -

. . -

-
-
-~
] -

N4__;--______u_-_______

Abb. 36.
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Unter Beriicksichtigung der Querkontraktion sind dann die Spannungen
in den beiden Richtungen :

_ mkE 1 /2z\2 3% 1 /az\2 o
GX_M{m[ﬁ(a_x)+ax]+ﬁ(ﬁ)+ﬁ M)

_ mE 1/0z\2 o2 1 (oz\2 2%
"y——mz_i{m[z(ﬁ) +;§] +§(g—x) txt @
Bei der Beanspruchung dndert sich der urspriinglich rechte Winkel

zwischen dx und dy um y. dx und dy seien die Linienelemente nach
der Deformation (Abb. 36). Aus dem urspriinglichen

e B
ds?=AB =dx®*+4 dy?

wird das deformierte

2 2
vi-Ta 2 2z 27 2
ds = A'B — ds +(—~9de—g—ydy)

Beriicksichtigt man noch

dx = \/dx2 + (g_z)2 d x2
e

kann man den Kosinussatz anwenden, aus dem wegen cos (5 —7y) =
sin y ~ v durch Einsetzen der soeben berechneten Werte von dx, dy,
ds, bei Vernachldssigung von Gliedern hoherer Ordnung, resultiert :

und dy

WV

Z 27Z
=25 "5%

oX 2y
Ein weiterer Beitrag zur Winkelinderung kommt von den Verschie-
bungen £, n her (Abb. 37). Verschiebt man dx, dy an den Ursprung
von dx, dy zuriick, kann man die Winkelinderung leicht aus der Figur
ablesen. Durch die Verschiebung £, n dndert sich der rechte Winkel um

2k
14 ==

2
_9y+9x

Die totale Winkelinderung ist demnach
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v > o bedeutet Verkleinerung des urspriinglich rechten Winkels. Die
Schubspannung ist
T = 1,

y:Tyxz‘GY

wobei G den Schubspannungsmodul bezeichnet :

mE
G=2m+n

Betrachten wir jetzt ein Plattenelement mit den Kanten dx, dy, h
und stellen wir fiir dieses die Gleichgewichtsbedingung auf. Im Falle
groBer Durchbiegung hat die o, Spannung eine merkliche vertikale
Komponente (Abb. 38). Sie ist

27

“§£>w
JX

Abb. 37. Abb. 38.

Da h jetzt nicht konstant sein soll, miiBte man an Stelle von h.dy

schreiben :
y+dy

Jhdy=dy-h(x,y+6dy)

X

was aber bis auf Differentiale hoherer Ordnung wieder zu h . dy fiihrt.
Auf der entgegengesetzten Seite des Plattenelementes kommt das
Differential dieser Kraft hinzu. Die Resultierende der beiden Krifte
ist das Differential selber :

2 22
;}E[cx;{h]dx-dy (4)
Analog gilt fiir die y-Richtung
2 | oz
;—ilcyﬁh]dxdy (5)
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Die vertikale Komponente der Schubspannung auf der Seiten-
fliche h . dy ist
2%
Die Summe mit den Schubkriften auf der gegeniiberliegenden Seite
ist wieder das Differential davon :

2 | 22
Fiir die anderen Seitenflichen :
2 27

Die Gleichgewichtsbedingung erhidlt man, indem man die Summe
aller vertikalen Komponenten der auf das Tragerelement wirkenden
Spannungen der Belastung gleichsetzt. Im Falle des Fliissigkeits-
druckes ist diese senkrecht zum Trigerelement. Die lotrechte Kom-
ponente der Belastung von p gr*/cm? ist (Abb. 39)

27\2 2 72\2
ro=py/1— () V1= () axay

was bei Vernachldssigung héherer Ord- P
nung sich zu

pdxdy (8)
vereinfacht. Hier wird also von der
Neigung von p abgesehen, denn dazu
werden héhere Potenzen von 2%/, und
22,y vernachldssigt. Weiter unten
(Gleichungen 10 und 11) wird diese

9Z w92

Vernachldssigung nicht mehr zuldssig IX Oy
sein, denn dort kdame sie einem Unter-
schlagen der ersten Potenz derselben Abb. 39.

Ableitung gleich.

Die Gleichgewichtsbedingung, die sich aus den Gleichungen (4), (5),
(6), (7), (8) nach Kiirzen mit dx.dy ergibt, liefert die Gleichung der
elastischen Linie :

2 92 7Z 2 2Z .7
I RN EE (G L R



Es ist aber noch die Gleichgewichtsbedingung fiir die horizontalen
Verschiebungen aufzustellen.

Auf die Raumeinheit wirke die Kraft (XYZ). Die Elastizitéts-
theorie zeigt, daB dann fiir das Parallelepiped dx.dy.dz die Gleichungen
gelten :

2 6x a2 Tyx 2 Tzx
+ 8 L ima x o

2 X 2y 2z

90'y g'fxy Qsz Y
= 0
2 + 2X + 27 +

2 Gy 2 Txz 2 Tyz

+

22 I 2y

+Z =0

In unserem Fall ist 6, =0, 7,, =71,, =0 und 7., =7, = 1.

Die Kraft auf das Parallelepiped ist p dx dy. Da das Volumenelement
dx -dy - h ist, betragt die auf die Raumeinheit bezogene Kraft p/h. In
die Gleichungen sind davon die beiden horizontalen Komponenten X

und Y (in der x- und y-Richtung) einzusetzen. Es ist (Abb. 39) :

_p.2z  y_p oz
X—h 2 X X h ay
96x , 2% L P22
also 9x+9y+h9x 0 (10)
20y L 0% P2z _
;§+9x+h9y_0 (1)

Differentiert man (9) und setzt (10) und (11) ein, erhdlt man :
P #Fatrz 92F92z_ AF 9z
{ h ( ( )]+9y 9x2 2x22y? 29x9y9x9y}h+

#2Fa2h 2 F 9h) 9z(92F9h 2 F 9h)
—i——y e

+9x(9y25§_9x9yﬁ 2X2 2y 2X9yoX

—p (12)

Darin ist F die Spannungsfunktion, d. h. eine Funktion, die so gewihlt

wurde, daB |
2 F 2 F 2F

c, = T=—

.. ==
T oy ¥y oax? 29Xy

(13)

Die Gleichung (12) geniigt noch nicht, um Aufgaben zu l6sen, denn
sie enthalt noch die unbekannte Funktion F. Es ist also eine weitere
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Gleichung abzuleiten, die F enthdlt. Dazu differenzieren wir (3) nach-
einander nach x und nach y. Die Werte der Ableitungen von %—E und

%» die dabei auftreten werden, entnehmen wir den nach z—i und 3—3

aufgelosten Gleichungen (1) und (2). Die Rechnung ist etwas lang,
aber ohne Schwierigkeiten durchfithrbar, so daBl wir hier nur das

Resultat notieren :

ol O 9 #F —|—94F—E[( 22 Z )2 azzezz]
2X2Y

¥ o ax2ay?: a2yt

(14)

2x22y?

Die Gleichungen (12) und (14) sind fiir die durchbogene Scheibe (oder
Platte) zusammen giiltig.

Der hier interessierende Fall der Linsenschale ist rotationssymme-
trisch. Es ist deswegen praktischer, diese Gleichungen in Polarkoordi-
naten umzuschreiben.

Mit dem Index r sei die radiale, mit t die tangentiale Richtung
bezeichnet. Es ist dann:

2 F 2 F 2 F
== G, = T ke ey (15) (16) (17)

g. =
oot

Legen wir x in die r-Richtung und y dazu senkrecht. Statt t mdchte
man aber das ¢ der Polarkoordinaten, also sind die entsprechenden
Ableitungen der Spannungsfunktion F auszurechnen.

Aus x =r-cos @, y =r-sin ¢ folgen die partiellen Ableitungen
nach x und y als Funktion derjenigen nach r und ¢. Die Ableitungen
von F und h nach ¢ verschwinden wegen der Kreissymmetrie.

2 2 2 : 2
— =COSQp —: — =SIinQg— (18)
2 X ar’ 2y 2T
73 2? sin?o 2 2° 2° cos®ug 2
2 T * D) i

—— = COS — . —— =sin — 19
2 x2 (P9r2+ r ar’ oay? q)91'2_{_ r or (19)
22 . 2 Ssing Coso 2 22 93 22 1 2

= COS @ Sin — ‘ L — . = 4= — (20
2X2y i ¥or r 9r'9x2+9y2 2 1r? r9r( )

Gleichung (12) wird dadurch, nach wiederholter Beriicksichtigung der
Beziehung sin® ¢ + cos®? ¢ = 1:

ax (o o) = e (@) 2



Auch Gleichung (14) ist dementsprechend in Polarkoordinaten
umzuschreiben :

4 [ 0 il Sd B i
dr[ dr\dr? rdr}_ 2dr\dr
Infolgedessen ist das erste Integral von (14):
d /d&2F 1dF E /d z\2
ra(a_;a‘ ?H?):_Q_(d_r) +C

Fir r = o ist die Tangente horizontal, also dz/dr = o, folglich ver-
schwindet die Integrationskonstante C.

Um die gebriauchlicheren Bezeichnungen wieder -einzufiihren,
werden wir den Radius x (statt r) nennen.

Es sei die neue Funktion L so definiert, daB

dF dF
dr —dx ¢ )

Die beiden Gleichungen der elastischen Linie werden jetzt : |
d (dL 1 E /d z\2
“ax(axtxb) =3 (@) 29

Led)-n(@-|

Beide Gleichungen gelten gleichzeitig. Fiir eine Losung ist zwischen
ihnen L zu eliminieren.

1) Randbedingungen.

Am Rande ist die tangentielle Dehnung ¢, = % (o't — %1_ O'r) =0
dL 1 .
ﬂ,_.;n_gl,:o fir x =a (25)
Es muB dort die Radialspannung verschwinden, 6, = o:
lL=o fire=s [26)
Die Randbedingungen sind folglich :
e T fir x=a (27)
d x




k) Integration fiir eine Parabel zweiten Grades.

Fir unseren Fall, bei dem eine elastische Linie z = z(x) vor-
gegeben ist, 16st man die Gleichungen (23) (24), indem man z in (23)
einsetzt und aus dieser Gleichung L berechnet. Setzt man dann z und L
in (24) ein, entsteht eine Gleichung fiir h(x).

Es sei nun als Meridianlinie der durchgebogenen Membran die

Parabel gewiinscht :
z = v (a?—x? (28)

Aus (23) folgt dafiir, unter Beriicksichtigung der Randbedingungen (27) :

vE 1

- Lre2 o212
¥ == 4 X(x a®)

Damit folgt aus (24) die Losung :

P x* 1
TR (), (29)
- (x* — a?)?

1) Integration fiir einen Kreis als Meridian.

Ist wieder w der Kreisradius und a die Apertur (Radius des Auflage-
kreises), so lautet die Kreisgleichung

2=V w _x®— Vw_—a? (30)

Gleichung (23) gibt dafiir in Verbindung mit den Randbedingungen (27) :

_E1 2 2 W 2 2

Lﬁggli(x _\v)lnm—(x —a)il (31)
Das Integral von (24) ist

Ezlnwzmxz—{—x?—ihg Wiln — 2 g

h— 2 w2 Spw w? — a2 (32)
-~ E 1 2 2 1 w3 2 2

S/ — | WG — & _a)]

m) Integration fiir die Parabel vierten Grades.
Z=v (a*—x% (33)

Gleichung (24) wird jetzt

4 E v3
6p

hxz(xs—éasxz—i—Bas)mZVZXS—E;—g—}— C
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Fiir x = o folgt daraus h = oo, wenn C = o sein soll. Durch die will-
kiirliche Festsetzung C = o kommt die Integrationskonstante h, in
Wegfall. Wir schreiben das Resultat trotzdem auf:

2V2 Xﬁ__l/2

(x8—4a%x? 4 3 ab)

h = E v3

P

(34)

Wl o

n) Parabeln hoherer Ordnung.

Aus dem Gang der Rechnung fiir die Parabel zweiter Ordnung
siecht man sofort, daB fiir Parabeln hoéherer Ordnung sich &hnliche
Losungen anschreiben lassen. Im Nenner wird immer ein Polynom
stehen (seine Ordnung wichst mit derjenigen der Parabel), das fir
x = a eine Nullstelle aufweist.

- 0) Diskussion.

Die Integration der Differentialgleichungen fiir grofe Durch-
biegungen einer Kreisscheibe fiir eine Parabel zweiter Ordnung, einen
Kreis, eine Parabel vierter Ordnung als Meridianlinie, fithrte zu den
Loésungen (29), (32) und (34). Die drei Funktionen stellen die Dicke
der frei aufliegenden kreisrunden Membran als Funktion des Radius x
dar, um die drei elastischen Linien des Diagonalschnittes zu erhalten.
Die Losungen sind noch nicht endgiiltige Resultate, denn in allen steht
auBer dem Fliissigkeitsdruck p noch der Kurvenparameter v (Parabeln)
oder w (Kreis), die ja Funktion von p sind. Es ist aber iiberfliissig diese
Funktionen noch zu bestimmen, denn die drei Resultate haben fiir uns
keine Bedeutung. Sie lassen sich nidmlich nicht realisieren, denn fiir
x = a folgt aus ihnen h = co. In den beschriebenen Fillen und fiir
Parabeln hoherer Ordnung (siehe unter n) sollte also die Dicke am
Rande unendlich werden.

MuB aber wirklich die Berechnung fiir groBe Durchbiegungen Ver-
wendung finden ?

Fiir eine Brennweite von 50 cm und unsere iibliche Fiillung mit
n = 1,479 gibt die Formel (30) eine Durchbiegung von ca. 0,3 cm.
Verwendet man also Glas in den uns gebrduchlichen Qualitdten, so ist
fiir so groBe Durchbiegungen nur das allerdiinnste von hdchstens
0,02 cm zu gebrauchen. Die Durchbiegung ist also viel gréBer als die
Plattendicke. Es steht somit auBer Zweifel, da die Berechnung fiir
groBe Durchbiegungen Anwendung finden muB, die zu physikalisch
unmoéglichen Losungen fiihrte.



. 83 —

Verwendet man hingegen Plexiglas, so bietet es keine Schwierig-
keiten, Platten von 0,3 cm in der gleichen GréBenordnung ihrer Dicke
durchzubiegen. Fiir diesen Fall gilt aber angendhert die frither durch-
gefilhrte Berechnung fiir kleine Durchbiegungen, die fiir die Parabel
zweiter Ordnung und den Kreis zu realisierbaren Losungen fiihrte.

Also kommt man zum SchluB:

Es ist so dickes Plexiglas zu verwenden, dal3 die Durchbiegung im
Verhiltnis zur Dicke klein (oder derselben GréBenordnung) ist, so daB
die entsprechende physikalisch realisierbare Berechnung Giiltigkeit hat.

Zur Korrekturméglichkeit durch Schleifen der Scheiben sei noch
bemerkt, daB sie eher theoretischen Charakter hat, denn es stehen
dem Experimentalphysiker vorderhand noch keine Mittel zur Ver-
fiigung, den Glasscheiben so komplizierte Profile zu erteilen, wie es die
Theorie fordert. Eventuell kénnte aber eine solche Moglichkeit (ab-
gesechen vom theoretischen Interesse) fiir die Industrie von einer
gewissen Bedeutung sein.



	Korrektur der Einzelfläche

