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III. TEIL

Experimentelle Prüfung der im zweiten Teil
entwickelten Methode.

53. Die im zweiten Teil erläuterte Methode zur Bestimmung
der Brechungsindizes optisch zweiachsiger Kristalle wurde
an je einem Prisma von

Kupfervitriol, '

Colemanit und
Euklas

geprüft. Die dabei gewonnenen Erfahrungen sollen im
folgenden samt den erzielten Resultaten mitgeteilt werden.

54. Die Beobachtungen wurden mit Hilfe eines Fueßschen
Goniometers Modell II ausgeführt. Als Lichtquelle diente
eine mit Helium gefüllte Geißlerröhre, doch konnte auch im
günstigsten Falle (Euklas) nur auf vier Linien eingestellt
werden: rot (668iiii), gelb (588), grün (502) und indigo (447).
Als Spalt wurde der Webskysche gewählt, weil er die Schärfe
mit großer Helligkeit verbindet. Wegen der geringen Zahl
von Linien konnte keine störende Übereinanderlagerung der
Farben eines und desselben Spektrums entstehen.

55. Bei den verschiedenen Ablesungen wurde im
allgemeinen folgender Gang eingehalten. Nachdem das Prisma
zentriert, justiert und in jene Lage gebracht war, welche für
die Beobachtung des gebrochenen Lichtes geeignet erschien,
wurden der Teilkreis sowie die Achse des Kristallträgers
festgeklemmt und die Fernrohrachse in die Verlängerung der
Kollimatorachse gerückt, um das Azimut des unabgelenkten
Spaltbildes zu ermitteln. Der größeren Genauigkeit wegen
-wurden Einstellung und Ablesung dreimal vorgenommen,
nachdem das Prisma zuvor aus dem Zentrum des Gesichtsfeldes

entfernt worden war. Hierauf wurde die Prismenkante

wieder mit dem Fadenkreuz zur Deckung gebracht,
sodann das Fernrohr herumgedreht, bis das an der Eintrittsebene

reflektierte Spaltbild sich mit dem Fadenkreuz deckte.
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Diese Einstellung wurde zweimal vorgenommen. Nachher
wurde das Fadenkreuz der Reihe nach auf die einzelnen
Farben der beiden Spektra (zuerst des weniger abgelenkten
und dann des stärker abgelenkten) von rot bis indigo und
dann zurück von indigo bis rot eingestellt. Wenn sich die
zwei durch Doppelbrechung erzeugten Spektra überlagerten,
wurden sie durch einen vor das Auge gehaltenen Nikol
unterschieden. Nach diesen Ablesungen wurde wieder eine

zweimalige Einstellung des reflektierten Lichtes gemacht,
hernach in der beschriebenen Weise neuerdings auf die beiden

Spektra eingestellt und das Fernrohr zum Schlüsse, nachdem
das Azimut des reflektierten Spaltbildes vorher noch zweimal
abgelesen war, dreimal auf das unabgelenkte Spaltbild (bei

weggerücktem Prisma) gerichtet.
56. Folgende Tabelle III, die dem Beobachtungsheft aufs

Geratewohl entnommen ist, zeigt, welche Genauigkeit erzielt

Tabelle III.

Reflekt. Direkt. He Abgelenkt. Spaltbild

200°381/2' 299° 30'
rot

(668 uu) 323°021/8' oi7/; 02' Ol1/*'

381/, 293/4
gelb

(588 uu) 087/s 09 387/3 09

381/, 2n grün
(502 uu) in 195/s 195/8 198/8

38V2 30 indigo
(447 uu) 303/8 303/8 301/, 305/s

383/4 297/8
rot

(668 uu) 203/4 205/8 201/, 201/«

38*/2 30 gelb
(588 uii) 275/8 275/8 275/8 275/8

grün
(502 puu) 38V8 381/, 383/8 381/,

indigo
(447 uu) 485/8 49 49l/, 49Vs
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werden kann. Bemerkt sei noch, daß bei der Ablesung die
Achtelsminuten geschätzt wurden. Die Teilung erlaubt
bekanntlich die direkte Ablesung von halben Minuten. Viertelsminuten

können leicht geschätzt werden. Um aber genau
cine solche zu haben, müssen zwei aufeinanderfolgende
Teilstriche des Nonius so zwischen zwei aufeinanderfolgenden
Strichen des Teilkreises liegen, daß das Intervall zwischen
den beiden Strichen links gleich dem Intervall zwischen den
beiden Strichen rechts ist. Besteht ein merklicher Unterschied,
so wird mit Benutzung von Achtelsminuten eine größere
Genauigkeit erzielt.

57. Aus den Azimuten des reflektierten, nicht abgelenkten
und abgelenkten Spaltbildes berechnen sich in einfacher Weise
die beiden Winkel i0 und i1# Zur Berechnung von xp und q
dienen die bekannten Formeln (die Bedeutung der Buchstaben
ist dieselbe wie früher; vergi, auch Fig. 1)

tg (f-r) =tg (r0-f =tgf • tg (L-7^) cotg7^
_sinr0 sin^

sini0 sinij

Die Rechnungen wurden tabellarisch angeordnet. Es genüge
ein beliebig gewähltes Beispiel (Colemanit) mitzuteilen (vergi.
Tab. IV). Dabei soll ausdrücklich bemerkt werden, daß bei
den entsprechenden Messungen, abweichend von den

Festsetzungen des § 34, die Eintrittsfläche zur xz-Ebene
gewählt wurde. Sofern man sich nämlich die Formel

tg(ro--)=tg-tg(.a—y-Jcotg —
bedient, erzielt man bei dieser Stellung den großen Vorteil,
daß die Berechnung von \x dahinfällt und für die einzelnen
Farben der beiden Spektra einer Beobachtungsreihe q; (bei
Colemanit also 6 Werte) stets denselben Nenner hat, was beim
logarithmischen Rechnen eine nicht zu unterschätzende
Vereinfachung ist. Um aber bei den einmal abgeleiteten Formeln
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bleiben zu können, wurde, wenn die Eintrittsfläche als xz-Ebene
diente, der ganze Kristall um eine zur brechenden Kante
senkrechte Achse gedreht gedacht, so daß die positive Richtung

der z-Achse von oben nach unten lief.

Tabelle IV. Rechnungs-Schema.

rot gelb grun rot gelb grun

A

D

/1

T

r+74

logtg

logtg|i0
r+//\

2 /

r+7d
logtg

TT

logtg (r0-~)

l
2

£
2

6'07" 9'51" - 5'38" 6'28" 9'19"

223° 39' 23

203» 59- 5f>

19» 39' 33'

280 21'29"

480 01'02"

240 Off 31"

450 31' 17"

210 30' 46"

223° 45' 30"

2030 59' 50"

I90 45'40"

28° 21'29"

480 07' 09"

240 03' 35"

450 31' 17"

210 27'42"

223° 55' 21"

2030 59 50"

190 55'31"

28° 21' 29"

480 17'00"

240 08' 30"

4503I 17"

210 22' 41"

2230 49'43"l2230 56'll"
203» 59' 50"

190 49' 53"

28° 21' 29"

480 11'22"

240 05' 41"

450 31' 17"

210 25' 36"

203° 59' 50"

I90 56'21"

280 21' 29"

480 17'50"

240 08' 55"

450 31' 17"

210 22'22"

224° 05' 30'

2030 59' 50'

200 05' 40'

28° 21'29'

480 27' 09'

24013' 35'

450 31' 17'

210 IT 42'

3'04" 4'55" 2'49" 3'14" 4'40"'

9,4025183

9,5953975

2840

8,9981998

9,6485831

1756

9,3494411

3290

1121

12» 36'11"

140 10' 45"

260 46' 56"

9,4025183

9,5942851

2598

9,4025183

9,5924263

2916

8,9970632

9,6496023

1980

9,3472629

69494

3135

120 32'31'

I40 10' 45'

260 43' 16'

8,9952362

9,6512974

1693

9,3437695

3578

4117

120 26'41"

14» 10' 45"

260 37' 26"

9,4025183

9,5935423

2229

8,9962835

9,6502809

2317

9,3457709

552

157

12° 30'01'

140 10' 45'

260 40' 46'

9,4025183

9,5924263

1365

8,9950811

9,6512974

3103

9,3434734

3578

1156

120 26' 11"

I40 10'45"

260 36' 56"

9,4025183

9,5905617

2614

8,9933414

9,6529881

1969

9,3401564

397391

4173

120 20' 41"

140 10' 45"

260 31' 26"
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(Fortsetzung der Tabelle IV.)

rot gelb grün rot gelb grün

9,9507138 9,9509685 9,9513492 9,9511590 9,9513492 9,9517282

log cos 26°.. + 42 - 170 -275 -487 + 42 -273
9,9507180 9,9509515 9,9513217 9,9511103 9,9513534 9,9517009

log cos2 26.. 9,9014360
11

9,9019030
8995

9,9026434
392

9,9022206
05

9,9027068
44

9,9034018
3993

49 35 42 01 24 25

sin2 xp 0,796959 0,797817 0,799178 0,798400 0,799294 0,800575

9,6538084 9,6528059 9,6512966 9,6520521 9,6512966 9,6497807

log sin 26° -167 + 669 1092 1928 -168' 1097

9,6537917 9,6528728 9,6514058 9,6522449 9,6512798 9,6498904

log sin2 260.. 9,3075834
16

9,3057456
382

9,3028116
76

9,3044898
690

9,3025596
474

9,2997808
687

18 74 40 208 122 121

COS2 xp 0,203041 0,202183 0,200822 0,201600 0,200706 0,199425

log 2 0,3010300 0,3010300 0,3010300 0,3010300 0,3010300 0,3010300

log sin xp 9,9507180 9,9509515 9,9513217 9,9511103 9,9513534 9,9517009

log COS xp 9,6537917 9,6528728 9,6514058 9,6522449 9,6512798 9,6498904

9,9055397
68

9,9048543
07

9,9037575
2

9,9043852
01

9,9036632
596

9,9026213
174

29 36 3 51 36 39

2 sin xp cos ip 0,804525 0,803267 0,801231 0,802389 0,801057 0,799137

log sin r 9,6537917 9,6528728 9,6514058 9,6522449 9,6512798 9,6498904

log sin i

logq

9,8534013 9,8534013 9,8534013 9,8534013 9,8534013 9,8534013

9,8003904 9,7994715 9,7980045 9,7988436 9,7978785 9,7964891

logq2 9,6007808
769

9,5989430
327

9,5960090
30

9,5976872
42

9,5957570
497

9,5929782
57

39 103 60 30 73 25

q* 0,398824 0,397140 0,394465 0,395993 0,394237 0,391722

58. Bei der Berechnung von sin2^, 2 sin ii/cos ^ und cos2xp ist
zu beachten, daß derjenige Wert von 2shu/» cos*|>, welcher mit Hilfe
der Logarithmen von sinxp und cos xp gefunden wird, für ein gewisses
Intervall des Argumentes xp im allgemeinen verschieden ist von dem-
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jenigen Wert, der sich dadurch ergibt, daß das Produkt der Zahlenwerte

von sin2o und cos2o radiziert wird. Zur Erläuterung mögen
die beiden in der Tabelle V zusammengestellten Beispiele dienen. In
den beiden ersten Kolonnen sind die Logarithmen der in Betracht
kommenden trigonometrischen Funktionen und ihrer Quadrate
hingeschrieben ; die drei folgenden Kolonnen enthalten die auf Grund dieser
Logarithmen gefundenen Werte von sin2»/', cos20 und 2 sino coso,
während in der letzten Kolonne die aus den hingeschriebenen
sechsstelligen Werten von sin1 xp und cos2 o berechnete Größe von 2 sin o cos o
vermerkt ist.

Tabelle V.

V log sino
log sin8 xp

log cos xp

log cos2 0
sin80 C0S2O 2 sin O cos O 2 \/sin2 xp cos2 0

10 8,2418553
6,4837106

9,9999338
9,9998676

0,000305 0,999695 0,034899 0,034923

40 8,8435845
7,6871690

9,9989408
9,9978816

0,004866 0,995134 0,139173 0,139173

Die Ungleichheit der Zahlen der beiden letzten Kolonnen für
xp jo ist ebenso augenfällig wie ihre Übereinstimmung für O 4°.

Der Grund für dieses eigenartige Verhalten liegt darin, daß bei
der logarithmischen Berechnung von 2 sin xp cos O im Falle von o 1°

für sin2o der Wert
0,304586

sin2 1°
1000

in Betracht gezogen wird, während im zweiten Fall sin21° 0,000305

zur Geltung kommt. Demnach ergibt bei der logarithmischen Rechnung
sin2o cos2!/' einen Bruch mit dem Nenner 1000, dessen Zähler ungefähr
um 4 Einheiten der vierten Dezimale kleiner ist wie im Fall, wo

sin2 io 0,000305

gesetzt wird. Inwieweit dieser Unterschied das Endresultat beeinflußt,

kann aus der Formel

abgeschätzt werden.

d(2\/ax) A/^- dx

Wird darin
x 0,304586

0,999695
a und

1000

dx 0,0004

gesetzt, so ergibt sich für die Variation des fraglichen Ausdruckes

d (2 \/ax) 0,000023,

was mit der Differenz der beiden in der Tabelle aufgeführten Werte
bestens übereinstimmt. Der richtigere Wert von 2 sin o cos xp ist selbst-
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verständlich der aus den Tafeln gefundene und nicht der nach der
anderen Methode berechnete.

Für o 4° wird die Übereinstimmung der beiden Werte aus dem
Grunde so vollkommen, weil sin24° 0,00486597 von dem bei der Rechnung

verwendeten (=0,004866) nur um ca. 0,000003 • 10"8 verschieden
ist. Verfährt man wie soeben, so ergibt sich der Fehler im ganzen
zu ca. 0,0000005. Natürlich spielt hier das günstige Zusammenwirken
der Umstände wesentlich mit, da im ungünstigsten Fall der Fehler
ungefähr sieben Einheiten der sechsten Dezimale ausmachen müßte.

59. Am umständlichsten war die Beobachtung jener
Wellen, deren Ebenen im Kristall den Grenzflächen parallel
sind. Solange es sich nur darum handelt, die Ablenkung usw.
(also q und xp) festzustellen, ist es natürlich bei weitem das

Einfachste, wenn man die Grenzebene, zu der die Wellenebene

parallel sein soll, senkrecht zur Kollimatorachse stellt.
Das bietet keine Schwierigkeit. Bestimmt man nämlich bei
festgeschraubtem Teilkreis und Kristallträger die Azimute des
reflektierten und des nicht abgelenkten Spaltbildes, so gibt
die Halbierende des Nebenwinkels der Fernrohrstellungen für
das reflektierte und direkt durchgehende Licht die Flächennormale

an, die man durch Drehung des mit dem Kristallträger

verbundenen Teilkreises um den berechneten Winkel
leicht in die Verlängerung der Kollimatorachse bringen kann.1)
Indessen ist diese Anordnung nicht geeignet, um den
Schwingungszustand der zur Austrittsfläche parallelen Wellenebenen
zu untersuchen.

i Zum Zwecke dieser Bestimmung wurde ursprünglich
die Austrittsebene senkrecht zur Fernrohrachse gestellt (mit
Hilfe von Manipulationen, die den soeben erwähnten
vollständig entsprechen) und dann das Fernrohr samt dem mit
dem Kristallträger festverschraubten Teilkreis soweit gedreht,
bis das abgelenkte Spaltbild in der Mitte des Gesichtsfeldes
erschien. Die erforderlichen Operationen sind aber sehr
umständlich und zeitraubend, da es nur durch vielfaches Probieren
und Ablesen gelingt, das genannte Spaltbild derart mit dem
Fadenkreuz zur Deckung zu bringen, daß Teilkreis und Fernrohr

in der bestimmten gegenseitigen Lage sind. Man kann

*¦) Vergi, v. Groth, Physikalische Krystallographie 4. Aufl. Seite 694.
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aber in etwas anderer Weise verfahren, um die gewünschte
Einstellung mit jeder beliebigen Genauigkeit zu erzielen.
Hierzu dreht man das Fernrohr zuerst so, daß seine neue
Lage zur alten symmetrisch ist bezüglich der verlängerten
Kollimatorachse (Drehung — 2 é). Hierauf dreht man das

Prisma, welches mit der Eintrittsfläche senkrecht
zur Kollimatorachse steht, samt dem Teilkreis, um
180° + ^/ (je nach dem Drehsinn), während das Fernrohr
festgeklemmt bleibt. Durch diese beiden Drehungen sind
Kollimator und Fernrohr sozusagen vertauscht worden, wogegen
infolge der Umkehrbarkeit der Lichtwege die Richtung der
Lichtausbreitung in bezug auf das Prisma (vom Fortpflanzungssinn

abgesehen) unverändert geblieben ist. War also das
Fernrohr anfänglich auf irgendein Spaltbild eingestellt, so
wird es auch in der zweiten Lage richtig eingestellt sein.

An Hand der Fig. 7 kann man sich
hiervon leicht vergewissern. Sei AOB die
Anfangsstellung des Prismas, OC und OF
die Richtungen der Kollimator- bzw.
Fernrohrachse. Bringt man letztere mit der
Richtung OF' zur Deckung (FOF' 2z/) und
dreht dann das Prisma bei festgeklemmtem
Fernrohr in der Pfeilrichtung um 180° — ^/, F' F

so wird OC mit OF', AOB mit A'OB' und Fi«- 7

OF mit OC zusammenfallen, d. h. es ist als ob in der Tat
Fernrohr und Kollimator ihre Rollen vertauscht hätten.1)

60. Zur Bestimmung der Schwingungsrichtungen dieser
zur Austrittsfläche parallelen Wellenebenen wurde auf den
Kollimator (zwischen Lichtquelle und Spaltöffnung) und das

Fernrohr (zwischen Auge und Okular) je ein Nikol aufgeklemmt,
dessen Drehung an einem größeren Teilkreis mit Hilfe eines
Nonius auf Zehntelsgrade genau abgelesen werden konnte.
Der Nikol vor dem Kollimator diente dazu, das einfallende
Licht so zu polarisieren, daß das eine der beiden Spektren

l) Daß diese Einstellungen wesentlich erleichtert würden, falls
auch der Kollimator beweglich wäre, ist unmittelbar verständlich.
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(zur Vermeidung störender Lichteindrücke oder Überlagerung
der beiden Spektra) verschwand.

61. Die wichtigste Arbeit vor Gebrauch des Analysators
war die Orientierung seines Teilkreises in bezug auf die
Drehachse des Instrumentes (z-Achse). Dazu dienten zwei
natürliche Kristallprismen von Apatit und Euklas. Bei dem

Apatitprisma war die brechende Kante parallel der optischen
Achse, die Schwingungsrichtungen des austretenden Lichtes
also horizontal und vertikal. Die Austrittsebene des Euklas-
prismas war eine Fläche aus der Zone der Orthohemidomen,
während die brechende Kante im Klinopinakoid lag. Da der
Kristall überdies so aufgestellt war, daß die Normalen der
austretenden Wellenebenen auf der Austrittsfläche senkrecht
standen, waren ihre Schwingungsrichtungen ebenso wie beim
Apatitprisma horizontal und vertikal.

Die Einstellung auf maximale Dunkelheit gab keine
günstigen Resultate ; es erschien vielmehr angezeigt, den Nikol
einmal rechtsherum und nachher linksherum so weit zu drehen,
bis die Sichtbarkeit des Spaltbildes praktisch verschwand.1) Die
Beobachtungsdaten mögen hier folgen. Es verschwindet die

schnellere langsamere
Welle bei

Apatit I 137,90° 138,60° 228,05° 228,50°
138,50 138,60 228,40 228,60
138,60 138,00 228,00 228,20

Apatit II 138,65 138,90 228,30 228,65
138,15 138,80 228,55 228,35
138,40 138,75 228,25 228,15

Euklas I 228,45 228,75 137,95 138,65
228,60 228,55 138,25 138,50
228,20 228,65 138,15 138,15

Euklas II 228,00 228,60 138,70 138,10
228,35 228,55 138,00 138,35
228,35 228,45 137,95 138,65

J) Es war die Vorsorge getroffen, daß möglichst wenig Nebenlicht

in das Fernrohr eindrang. Die Spaltbilder erschienen darum auf
einem dunklen Hintergrund, so daß das Verschwinden mit verhältnismäßig

großer Genauigkeit festgestellt werden konnte.
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Die zweiten Beobachtungsreihen wurden einige Tage später als
die anderen gemacht, nachdem inzwischen die Schwingungsazimute

der drei Kristalle, an denen die Methode erprobt
werden sollte, bestimmt waren.

Die Mittel obiger Versuche sind:

Apatit I 138,33° + 0,219 228,15°+ 0,126
138,40 +0,200 228,43 +0,120

Apatit II 138,40 ±0,144 228,37 +0,093
138,82 +0,044 228,38 +0,145

Euklas I 138,12 +0,088 228,42 ±0,117
138,43 ±0,148 228,65 ±0,058

Euklas II 138,22 ±0,242 228,23 ±0,117
138,37 ±0,159 228,53 ±0,045

Diese Zahlen zeigen zunächst, daß der Analysator während
der Versuche seine Stellung nicht änderte. Ferner zeigen sie
die fast unerwartet genaue Bestimmungsfähigkeit dieser
Schwingungsazimute. Die den einzelnen Mittelwerten
beigefügten Fehler sind nämlich die sogen, mittleren quadratischen

Fehler des Mittelwertes. Zu ihrer Berechnung
bestimmt man zuerst den Mittelwert, sucht hierauf den Fehler
jeder Beobachtung, dividiert die Summe ihrer Quadrate
durch n(n—T), falls n die Anzahl der Beobachtungen
bedeutet, und zieht die Wurzel. Symbolisch schreibt man

M-V M ¦

n(n-l)
Ähnlich wie die Beobachtungsgrößen zu Teilmitteln

vereinigt wurden, können sie auch zu einem Gesamtmittel
zusammengefaßt werden. Man findet

138,3854° ± 0,0635 228,3958° ± 0,0442.

Die geringe Abweichung von der theoretisch geforderten
Differenz der beiden letzten Zahlen ist beachtenswert 1

Bedenkt man, daß jede Beobachtung der einen Reihe füglich
auch als Beobachtung der anderen Reihe gedeutet werden kann,
falls man 90° addiert oder subtrahiert, so kommt endgültig

138,3906°i
228,3906° j±°>0383>
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so daß die Ungenauigkeit kleiner wie 2lj3 Bogenminuten
wird.

Diesem Ergebnis zufolge verschwindet beim Apatitprisma
die schnellere Welle bei der Nikolstellung 138,39°, die
langsamere bei 228,39°. Die Doppelbrechung des Apatit ist
negativ, d. h. ro > e, die schnellere Welle ist daher die
außerordentliche, ihre Schwingungsrichtung im vorliegenden Fall
also parallel derbrechenden Kante, d.h. vertikal. Vertikal
schwingendes Licht wird demnach vom Analysator

nicht durchgelassen, wenn er auf 138,39°
eingestellt ist. Der Nullpunkt für die Zählung der
Schwingungsazimute ist darum 228,39°.

62. Es erübrigt noch ein Wort über r, d. h. den brechenden Winkel
des Prismas, der in dreifacher Hinsicht bedeutungsvoll ist. Zunächst
kommt er bei der Ermittlung der Rik und R'ik in Betracht, weil die der
Eintrittsebene parallelen Wellenebenen an der Austrittsfläche total
reflektiert werden, sobald

sin r> q

(wo q wie früher die Wellennormalengeschwindigkeit bezeichnet). In
der folgenden Tabelle VI sind unter rm die den darüber geschriebenen
Werten von q entsprechenden oberen Grenzen von r eingetragen, unter
der Voraussetzung, daß es sich um isotrope Prismen handle — eine
Annahme, die keine Beschränkung bedeutet, da es ja nur darauf
ankommt, einen Einblick in die Größenordnung der auftretenden
Winkel usw. zu geben.

Tabelle VI

q 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75

rm 23034'41" 26044'37" 30000' 00" 33022'01" 36052' 12" 40032' 30" 44° 25' 37" 48035' 25"

Wie sich später zeigen wird, spielt zweitens der Prismenwinkel
eine nicht zu unterschätzende Rolle bei der Bestimmung von Pu
und P12, von denen insbesondere die letztere Größe genauer wird,
wenn es möglich ist, die Beobachtungen bei solchen Einfallswinkeln
vorzunehmen, daß einem nicht zu kleinen Koeffizienten von P]2 ein
ungefähr gleich großer mit dem umgekehrten Vorzeichen entspricht.
Nach Gleichung X ist dieser Koeffizient gegeben durch 2 q2 sin o cos xp.

Die genannte Forderung ist also im wesentlichen erfüllt, wenn es

gelingt, für xp solche Werte zu wählen, daß 2 sin o cos O möglichst
groß wird, sowohl nach der negativen wie nach der positiven Seite.
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Hat der Prismenwinkel den vorhin genannten Wert rm, so variiert, wenn
vom Bewegungssinn des Lichtes abgesehen wird, xp zwischen n\2— rm
und n\2, falls man stetig von streifender zu senkrechter Inzidenz übergeht.

Wird aber der Prismenwinkel T verkleinert, so erfolgt der
streifende Austritt erst für o rm— r+n\2. Es gilt daher die
Doppelungleichung

n
2

Solange rm — r < 45° ist, wächst der maximale Wert von
2 sin xp cos xp, absolut genommen, mit dieser Differenz und ist gleich
— sin 2 (I'm — r). Die extremen Werte dieser Funktion sind in Tabelle VII
eingetragen unter der Voraussetzung, daß der Prismenwinkel r der
Reihe nach 5°, 10°, 15° und 20° kleiner ist wie sein größter Wert rm.

Tabelle VII.

*m< xji< rm-
n

¦ r+—
2

rm-r 5» 100 15° 200

Extr. 2sino coso -0,173648 - 0,342020 -0,500000 -0,642788

Einen gleich großen positiven Wert von 2 sin o cos xp zu finden,
wird im allgemeinen keine Schwierigkeit machen.

Es ist jedoch zu beachten, daß für Werte von o, welche kleiner
sind als der dem Minimum der Ablenkung zugeordnete, die Breite
des Spektrums sich schnell verringert und bald so klein wird, daß ein
unscheinbarer Einstellungs- oder Ablesungsfehler den Wert von q
wesentlich zu beeinflussen vermag. Anderseits nimmt mit wachsendem xp

•die Breite der Signalbilder rasch zu, so daß wegen der Verzerrung
und Verschwommenheit derselben eine genaue Einstellung abermals
•erschwert wird. Diese beiden Umstände haben zur Folge, daß man
sich den Grenzen

--rra<o<rm-r+-
2 2

tiie allzusehr nähern kann.
In dritter Linie beeinflußt T die Genauigkeit von a23, wofür sich

der Ausdruck
(q',2 — q'2) sin f cos s + a13 cos r

a23
sinT

•ergab. Angenommen, der mittlere Fehler n von (q'j — q2) sin e cos f
und a)S sei ungefähr derselbe (hierüber später mehr), so gibt die
Ausgleichungsrechnung für den mittleren quadratischen Fehler von a2s

den Ausdruck
r, V\ + cos2 r+ -

sinr
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Nun ist

_d_(Vì +
dr

/Vi + cos2/A

\ sin T I
2cosr

sin2rV'l +COS2/"

notwendig negativ, d. h. der mittlere Fehler von a23 nimmt mit
wachsendem Prismenwinkel ab. Der Anschaulichkeit wegen sind die
Werte von

Vi + cos2r
sinr

in Tabelle VIII für einige Prismenwinkel aufgeführt.

Tabelle VIII.

r 45 40 35 30 25 20 15

1,73205 2,64575 3,19340 4,01214 5,37182Vi + cos2r:sinr 1,95973 2,25371

Man erkennt aus den drei Tabellen VI, VII und VIII ohne weiteres,
daß namentlich für den zweiten Fall ein kleinerer Prismenwinkel
vorteilhafter ist wie ein größerer, während für den dritten Fall gerade das
Gegenteil zutrifft. Es hält deshalb äußerst schwer, eine allgemein
gültige Regel aufzustellen, um so mehr, als, wie bekannt, auch die
Genauigkeit der q-Werte durch den Prismenwinkel beeinflußt wird.
So viel scheint aber nach den gemachten Erfahrungen festzustehen,
daß neben anderen Messungen auch solche vorzunehmen sind, für
welche cos'O nicht allzu klein wird und die Koeffizienten von PX2

entgegengesetztes Vorzeichen haben.

Nun sollen die Untersuchungsergebnisse der drei Kristalle
einzeln besprochen werden.

A. Kupfervitriol SOjCu -5H20.
a:b:c 0,5721 : 1:0,5554

« 82°5' /3=107°8' ^=102°41' (Barker1)

63. Für die Messungen diente ein Kristall, der unter
vielen selbstgezogenen als der geeignetste erschien. Die
Flächen der vertikalen Prismenzone waren daran meistens
glänzend, aber stark gerillt, Über ihre nähere Lage und
Beschaffenheit orientiert die nachstehende Übersicht.

m (110) 220° 593/; Reflex gut
l (120) 321° 25' Schimmer

i) Vergi. Groth, Chem. Kristallographie II. 419.



LI (110) 343° 421/,
a (100) 16° 91/,'

m (ÏÏO) 41° 10'

b (010) 94° 29'

l (120) 141° 56'

ii (110) 164° 17'

a (100) 195° 35'
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doppelt
gut, infolge der Politur (siehe unten)

etwas aus der Zone gerückt,
sehr breit
Schimmer
Schimmer
breit
sehr breit.

Die Richtigkeit der Aufstellung folgt aus der Gegenüberstellung

der gemessenen und der aus den Parametern berechneten1)

Winkeln.
gemessen berechnet

(100):(0T0) 101° 06' 100° 54'

(100): (110) 25° 243/; 26" 07'

(110):(lT0) 56° 423/; 57» 16'

(110): (HO) 122° 423/4' 122° 44'

(100): (120) 53° 39' 53° 50'.

Das obere Ende des Kristalls ist ganz unentwickelt; am
unteren konnten die Flächen q und w durch folgende
Messungen sichergestellt werden.

m (HO) 185°59*q 72°2'(berechnet)
w (111) 258°131/2'J ò/4 ' l (Derecnnet)

m (110) 191»25V8'Ì
q (011) 309° 45' / h

Aus der letzten Messung berechnet sich
(110):(011) 61°4012'

während Barker 61°47' gemessen hat.

64. Als optisches Prisma dienten die Flächen 110) und 100),

von denen die letztere von der Firma Dr. Steeg & Reuter
poliert und dadurch, wie bereits in der Winkeltabelle bemerkt,
in ihrer Lage etwas verändert wurde. Die Beschaffenheit
des Kristalls gestattet leider nicht, ihre genauere Lage zu
bestimmen. Für die Berechnung der Hauptlichtgeschwindigkeiten

ist dieser Mangel absolut belanglos, ergibt aber für
die Orientierung der Hauptschwingungsrichtungen eine gewisse

i) Vergi. Groth. Chem. Krist. 1. c.

6*
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Unsicherheit. Beim vorliegenden Prismenwinkel, der
sich aus zwölf Messungen zu 2 4°521/4' fand, kann
sie in besonderen Fällen einen Betrag erreichen, der etwas
mehr wie doppelt so groß ist als die immerhin kleine
Abweichung der Fläche aus ihrer Soll-Lage.

65. Von den weiter oben genannten vier Linien des

Heliumspektrums konnten nur zwei erkannt werden, die

gelbe (588) und grüne (502). Die Einstellung auf die erstere
bot im allgemeinen keine Schwierigkeit. Ebenso war die

grüne meistens recht scharf und deutlich wahrnehmbar. Doch
ist zu bemerken, daß im Gegensatz zu jenen Wellenebenen,
welche ungebrochen aus der natürlichen Prismenfläche
austreten, die aus der künstlichen Grenzfläche ungebrochen
austretenden Wellenebenen außerordentlich schwache und
verschwommene Spaltbilder erzeugten.1) Infolgedessen konnten
die q'i und e' und damit die R'ik also auch a23 nicht mit großer
Zuverlässigkeit bestimmt werden. Allein mit Rücksicht auf
die bei der Bearbeitung des Zahlenmaterials verwendete Zeit,2)
wie auch im Hinblick auf die Zeitlage, welche die Beschaffung
eines neuen Prismas verunmöglichte, erschien es statthaft,
sich mit der erreichten Genauigkeit zu begnügen, um so mehr
als die erzielten Resultate an der praktischen Verwertbarkeit
der angegebenen Methode keinen Zweifel zulassen.

66. Beim Kupfervitriol wurden für He- gelb (588) zu 17

verschiedenen Einfallswinkeln die zusammengehörigen Wertpaare

(im ganzen 34) von q und xp bestimmt. Für He- grün
war die Bestimmung nur bei 14 Einfallswinkeln, möglich und
lieferte somit 28 Wertpaare von q und xp. In der Tabelle IX

1) Schuld hieran waren zwei Umstände : einerseits mußte, um
ein einheitliches Signalbild zu erhalten, (110) größtenteils mit Tusche
zugedeckt werden, und anderseits war auf der Kunstfläche (100) die
Politur einer Randstelle etwas angegriffen und darum weniger
durchsichtig. Nun traf es sich, daß die Wellen, welche durch (110) eintraten,
beim genannten Austritt durch (100) (und nur in diesem Fall) die
beschädigte Stelle passieren mußten.

2) Wie aus dem II. Teil, § 40, ersichtlich ist, wurden die
Schwingungsazimute der zu (100) parallelen Wellen erst nachträglich
bestimmt.
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Tabelle IX.

*_o'
2 2

q'2 q"2
(interpoliert)

qi"2

1
24« 59,725

240 33,066

0,435134 0,420811

0,420753

2
240 52,250

240 52,250

0,435062 0,420785

0,420785

3
210 48,609

210 26,462

0,434236 0,420412

0,420349

4
190 48,776

190 29,234

0,433603 0,420071

0,420015

5
20 13,776

20 29,458

0,429271 0,419925

0,419924

6
00 33,797

00 50,106

0,428928 0,419958

0,419955

7
00 00,000

00 00,000

0,429096 0,420216

0,420216

8 - 10 04,675

- 0° 47,846

0,428562 0,419983

0,419973

9 - 20 40,036

- 20 22,842

0,428217 0,420026

0,420030

10 - 40 11,917

- 30 54,287

0.427880 0,420045

0,420012

11 - 50 39,277

- 5« 21,662

0,427586 0,420149

0,420176

12 - 70 01,715

- 60 43,557

0,427284 0,420070

0,420051

13 - 80 20,676

- 80 02,655

0,426954 0,420152

0,420133

14
-12° 51,088

-120 45,700

0,425833 0,420004

0,420001

15
-130 54,578

-130 48,959

0,425635 0,420082

0,420034

16
-14° 05,393

-13° 59,762

0,425479 0,419990

0,419942

17
-140 42,169

-140 36,458

0,425364 0,420002

0,419994
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sind die Werte für He- gelb angegeben. Alle q2-Werte sind
auf 6 Dezimalen berechnet. Sie dürften aber kaum auf mehr
als eine oder zwei Einheiten der vierten Dezimale genau
sein. Beweis hierfür sind z. B. die unregelmäßig zu- und
abnehmenden Werte der fünften Kolonne. Auch sei erwähnt,
daß die q2-Werte der siebenten Querreihe merklich aus der

Ordnung herausfallen, obwohl sie die Mittel von fünf
Beobachtungsreihen sind, die zu verschiedenen, mehrere Monate
auseinanderliegenden Zeiten angestellt wurden. Die vierte
Dezimale der q2-Werte ist also kaum mehr zuverlässig. Wenn

gleichwohl noch weitere Stellen berechnet und mitgeteilt
wurden, so geschah es, um einerseits die Ungenauigkeit der
vierten Dezimale durch die Abrundungsfehler nicht zu
vergrößern (z. B. in der fünften Kolonne), andererseits um auf
Grund dieser „zufälligen Fehler" mit Hilfe der Ausgleichungsrechnung

möglichst gute Werte von aik zu berechnen.

67. Die erste große Schwierigkeit, die sich bot, war die

Berechnung der P^ und Qik, die sich, wie früher bemerkt,
als Wurzeln eines Systems von sechs linearen Gleichungen
ergeben. Theoretisch und praktisch kann zwar ein solches

System im allgemeinen mit jeder wünschbaren Genauigkeit
gelöst werden. Im vorliegenden Fall bietet sich sogar eine
nicht unbedeutende Vereinfachung, indem P22 und Q22 gleich
der Summe bzw. gleich dem Produkt der Geschwindigkeiten
jener beiden Wellen sind, die ungebrochen durch die zx-Ebene
aus dem Kristall heraustreten, denn hierbei reduziert sich die

Gleichung X wegen der Bedingung
n

auf die einfache Form
q*-P22q2 + Q22 0,

womit die obige Behauptung bewiesen ist. Sind aber P22

und Q22 bekannt, so bleiben nur mehr vier Gleichungen mit
vier Unbekannten zu lösen, was die Aufgabe selbstverständlich

wesentlich vereinfachte, wenn nur nicht durch die
Substitution von P22 und Q22 die Absolutglieder so
verkleinert würden, daß die Fehlerhaftigkeit der
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Beobachtungswerte allzu schwer ins Gewicht
fiele. Auch ist es möglich, — und die Rechnung hat dies
mehrfach bewiesen — daß sich die gesuchten Unbekannten
in Form von Brüchen ergeben, deren Zähler und Nenner
vier, fünf und vielleicht noch mehr Nullen vor der ersten
geltenden Dezimalstelle aufweisen. Welchen Verlaß man
aber auf die materielle (nicht formelle) Richtigkeit eines solchen
Resultates noch haben kann, ist leicht zu erraten.

Über die allgemeine Gültigkeit dieser in verschiedenen Einzelfällen

gefundenen Resultate kann man sich durch folgende Überlegung
vergewissern. Denkt man sich nämlich die Substitution der Werte
von P22 und Q32 in Gleichung X ausgeführt, so verbleiben vier
Gleichungen von der Form

Qu cos2 Oi~ 2Q12 sin Ojcos xp{ — Pn q^ cos2 0;+2 P12 q^ sin o; cos O; Aj
Ihre Determinante wird, vom Vorzeichen abgesehen,

cos Oj sin o, q\ cos Oj q\ sin o,

/1 (q, xp) 4 cos ot cos o2 cos o8 COS xpi
cos o2 sin Oj q^ cos xpt q^ sin o2
cos o3 sin o3 q] cos xps q] sin o8
cos o4 sin 04 q* cos o4 qj sin o4

Es ist natürlich überaus schwierig, die obere Grenze dieses
Ausdruckes zu finden, zumal die darin auftretenden q^-Größen ebenfalls

von Oj abhängen, und Oj nicht unbeschränkt variabel ist. Man kann
aber durch folgende Überlegung zu einem angenäherten Resultat
gelangen: Das Problem, um welches es sich hier handelt, ist im Grunde

genommen die Bestimmung der Kurve C. Aber genau so, wie man
durch zwei sehr nahe bei einander gelegene Punkte (d. h. Kreise mit
sehr kleinem Radius, Beobachtungsfehler!) gerade Linien von beträchtlicher

Divergenz legen kann, ebenso muß die eindeutige experimentelle
Bestimmung der Kurve unmöglich sein, sobalB die hierzu nötigen
Punkte zu nahe beieinander gelegen sind. Da die Substitution P22

und Q2g geometrisch die Bestimmung der Kurvenabschnitte auf der
y-Achse bedeutet, und da die Kurve durch vier weitere „Punkte"
(Beobachtungsfehler!) bestimmt ist, so wird es wohl das Vorteilhafteste
sein, wenn diese Punkte so gewählt werden, daß sie auf dem inneren
und äußeren Kurvenzweig zu beiden Seiten der y-Achse und in nicht
zu kleinem Abstand davon zu liegen kommen. Für diesen Fall muß
dann aus Analogiegründen, im allgemeinen wenigstens, die
Determinate /i (q, xp) einen ebenfalls möglichst günstigen Wert annehmen.
Wie nun aus der Tabelle IX ersichtlich ist, bleiben die q2-Werte des
inneren Kurventeiles fast konstant, so daß man ohne großen Fehler etwa

q2 q2 q2 0,420000
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setzen kann. Sind ferner q3 und q4 zwei Radienvektoren des äußerer»
Kurvenzweiges, so erhält man für die Determ. t1 (q, o) =4(q«_q|)x:
(i2 — q*) sin (xpx — xp%) ¦ sin (o3 — o4) • cos xpx cos o2 cos os cos o4. Ihr
absoluter Wert wird, wie leicht einzusehen ist, für den inneren Kurvenzweig

am größten, wenn, um beim Beobachtungsmaterial zu verbleiben,
O, n\2 - 24° 59, 725'

02 77/2+14° 42, 169'

gesetzt wird. Im weiteren zeigt sich, daß, um einen möglichst großem
Wert zu erhalten, die nämlichen Azimute auch für den äußeren Kurvenzweig

zu nehmen sind. Man findet so

x*(q, o) 0,00000144.

Jede andere Kombination von zwei äußeren und zwei inneren Kurvenpunkten

muß einen kleineren, also ungünstigeren Wert für ^(q, xp)

ergeben. Wollte man z. B. nach Substitution von P22 und Q22 nur innere
Kurvenpunkte in Betracht ziehen, so würde ^/ (q, O), weil alle q','2 fast
gleich sind, dem Grenzwert null sehr nahe kommen. Denselben Wert
erhielte man, falls man von den vier fraglichen Punkten drei auf dem
inneren Teile wählen würde. Weiter auf diese und andere Kombinationen

einzugehen, ist zwecklos, da der obige Wert, wenn nicht das

überhaupt erreichbare Maximum, so doch die Größenordnung
desselben angibt.

68. Zur Umgehung dieser Schwierigkeit erwies sich das.

folgende Verfahren geeignet. Nennt man q' und q" die beiden
Wellengeschwindigkeiten, die einer gegebenen Richtung tp
entsprechen, so gelten wegen der bekannten Eigenschaft der
Gleichungen zweiten Grades die Beziehungen

Pu cos2xp + P22 s\n2xp — 2 P12 sin?// cosxp — q'2+ q"2

Qn cos2?// + Q22 s'm2xp — 2Q12 s'mxp cosxp q'2 q"2.

Da Pt2 und Q22 bekannt sind, so genügen zwei ?//-Werte im
Verein mit den vier zugehörigen q-Werten, um Pu und P12

bzw. Qn und Q12 wenigstens angenähert zu bestimmen. Diese
Berechnung wird genauer, wenn, worauf früher § 62 schon
verwiesen wurde, die beiden i//-Werte so gewählt werden,
daß sin xpx cos xpx und sini//2 cosi//2 nicht zu klein sind und
entgegengesetztes Vorzeichen haben, da sich dann bei der
Elimination von P12 (resp. Q12) die Absolutglieder, deren
Vorzeichen in allen praktisch vorkommenden Fällen gleich sind,
addieren, ebenso wie der Nenner, der cos2î//j + cos2?//2 wird.
Angenommen, es wäre
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cosxpx — cosxp2 0,lb d.h. xpx =ca81° und tp2 ca99°,
so würde

cos2xpx +cos2xp2> 0,05,

und da im Falle des Kupfervitriols Pn von der Größenordnung
0,8 ist, so würde der Zähler von der Größenordnung 0,04
sein, und Pu könnte auf ungefähr drei Dezimalen genau1)
ermittelt werden.

Leider stellen sich der praktischen Verwertung dieses
Gedankens experimentelle Schwierigkeiten entgegen, da es

nicht möglich ist, die einem beliebigen ?//-Wert entsprechenden
zwei q-Werte am Goniometer zu bestimmen. Prüft man aber
im Falle des Kupfervitriols die q'^-Werte näher, so findet
man, daß sie sich nur unbedeutend mit xp ändern. Eine
einfache Interpolation muß es darum ermöglichen, die
verlangten q"2-Werte zu berechnen. Das ist nun in diesem Fall
geschehen und die gefundenen Werte sind in der vierten
Kolonne der Tabelle IX eingetragen.

Sollten sich in einem anderen Falle beide q-Werte stark
mit xp ändern, so hätte man xp derart um dxp zu ändern,
daß die Welle sich ungefähr in der verlangten Richtung
fortpflanzt, worauf man dann die Interpolation noch anzuwenden
hätte. Unter Umständen würde auch eine Interpolation zum
Ziele führen, die mehr wie zwei q-Werte berücksichtigt.

69. Die in der angegebenen Art und Weise berechneten Pik- und

Qik-Werte hängen von allen Zufälligkeiten der Beobachtungsfehler ab

und sind darum nur von mäßiger Genauigkeit2). Mit Hilfe der
Ausgleichungsrechnung wird es aber möglich sein, bedeutend genauere
Resultate zu erhalten. Zu ihrer vorteilhaften Anwendung ist aber
erfordert, daß ziemlich viele und möglichst genaue Beobachtungen
angestellt werden, die sich über ein umfangreiches Intervall der o-Werte
erstrecken sollten und an den beiden Grenzen gegen die Totalreflexion
hin vielleicht etwas zu häufen wären. Auch sind den Rechnungen
die linearen Gleichungen

x) Man könnte übrigens die Rechnung für mehrere xpx- und 02-
Werte durchfuhren und als Näherungswerte für Pu und P12 (resp. Qu
und Q12) die Durchschnittswerte der verschiedenen Ergebnisse einführen.

2) Die Fehler von Pu und P12 (resp. Qn und Q12) können, wie
die obigen Auseinandersetzungen zeigen, zehn- und mehrmal größer
sein wie diejenigen von P22 resp. Q22.
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cos « Oj P,i + sin 2o; P22 - 2 sin y« cos Oj P12 qj'2 + q^'2

cos20; Qn +sin20; Q22 - 2 sinOj cos Oj Q12 q.'2 q/'2
zugrunde zu legen, und qj'2 + q;"2 bzw. qi'2qj"2 als Beobachtungsgrößen

anzusehen. Nennt man pik und qik die Verbesserungen, welche
an den Näherungswerten anzubringen sind, um die wahrscheinlichsten
Werte von Pik und Qik zu erhalten, so ergeben sich die
Fehlergleichungen (v ist nachfolgend überall als v zu lesen)

cos a ov pu + sin 2 ov p22 - 2 sin xpv cos xpv p12 ev

cos2Ov qu + sin2'/>v q22 - 2sinov cosOv q12 <?v,

wo ev und yv die Fehler sind. Man kann diesen Gleichungen eine für
die Rechnung bequemere Form geben, wenn man

Pll=Pll p22 Pll+P22 Pl2 Pl2

qu in ^22 cru + a»2 qt2 du
setzt, nämlich

pu + sin2xpv p22 - 2sinxpv cos xpv p12 fv

Q,i + sin2 xpv q2t - 2sinov cos xpv q12 r,v

Ist n die Anzahl der Beobachtungen, so berechnen sich die pik aus
den drei folgenden Gleichungen.

n n n
npn+ Z sin2Ovp22 + 2 Z sin Ov cos xpv (- p12) Z cvv=l v=l v l

n n
Z sin2ovpu+ Z ainirpvp22 +

v=l v=l
n n

2 Z sinSovcosov(-p12) Z «vsin2ov
v=l v=l

n n
2 Z sinovcosi//vpn + 2 Z sinSovcosOvp23 +

v l

4 Z sin2ovcos2ov(-p12) 2 Z «vsinovcosov
v=l v=l

Die Gleichungen für die qik sind diesen ganz analog.

70. Auf die Frage, ob die Determinante dieses Systems nicht
auch unendlich klein werde, kann man unter gewissen vereinfachenden
Voraussetzungen eine allgemeine Antwort geben. Angenommen, man
hätte n Beobachtungen gemacht, von deren zugehörigen o-Werten je
zwei benachbarte sich um die konstante Größe q> unterscheiden, —
eine Annahme, die nur angenähert verwirklicht sein kann, aber den
tatsächlich in Betracht kommenden Verhältnissen angepaßt ist —
so kommt

'/V O - (V - 1) (f;
wo xp etwa den größten der i^v-Werte bezeichnen mag. Nun beachte
man, daß die auftretenden Koeffizienten folgenderweise transformiert
werden können.
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n ni — C08 2 O n 1 n
Zsirfxp =Z Z cos2ov
1 l 2 2 2 1 v

n n
2 Z sin xp cos 0„ Z sin 2 o„

i v v i
n n 1 — 2 cos 2 o„ + COS2 2 o„ n 3 — 4 cos 2 o„ + COS 4 o„
Zsin*Ov=2- - Z - -i i 4 1 8

3n 1 n In
—-~-Zcoa2xpv +-Z cos4ov

O £. 1 öl
„ n „ n „ 1 — COS 2 O 1 n In2 2Sinso cos O =.rsin2o — -.xsin 2 ov 2 sin 4 Ov

i i 2 2 14 1

n n ni— COS 4 Ov n 1 n
4zsin2ovcos2i/'v=zsin22ov x — — 2COS4 xp

i 1 12 2 2 1

Unter den gemachten Voraussetzungen sind diese Summen
bekanntlich ausführbar, und wenn man, um Z cos 2 Ov und Z cos 4 ov
bzw. Z sin 2 Ov und Z sin 4 ov gleichzeitig behandeln zu können,
allgemeiner schreibt

Z cos 2 m Ov und 2 sin 2 m ov
so kommt

Z cos 2 m ov cos 2 m o + cos 2 m (o — <p) + cos 2 m [o — (n — 1) ip]

Z sin 2 m ov sin 2 m o + sin 2 m (o — <j>) + sin 2 m [xp — (n — I) (f ].

Nach Multiplikation der zweiten Summe mit

folgen auf Grund der bekannten Eulerschen Formeln die nachstehenden
Gleichheiten.

Z cos 2 m xpv + i Z sin 2 m ov
2 m i • xp 2mi-(xp —if) 2 m i • [O — (n — 1) q]

e + e + + e

2 mi'Of —2 mi-ai — 2 m i ¦ 2 » — 2 m i • (n— 1) «il
e [1+e +e + e

— 2 m n i • «i — 2 m n i ¦ «i 2 m i • o>

2 m i ¦ O 1 — e 2 m i • O 1 — e 1—e
e =e •

— 2 m i • w — 2 m i • w 2 m i • o>

1-e H 1-e i-e
2mi-ifi 2 m i • [o — (n — 1) «.] 2 mi-[o —noi] 2 m i • [xp + y,]

e + e —e —e

2 — 2 cos 2 m «i

Drückt man in dieser letzten Formel die Exponentialfunktionen
wiederum durch trigonometrische Funktionen aus, so erhält man, da
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2cos2mov

der reelle (bzw. imaginäre) Teil links gleich dem reellen (bzw. imaginären)

Teil rechts sein muß, folgende zwei Ausdrücke.

cos m [2o—(n — !)«>] cos m (n— \)ip — cos m [2 Q — (n— 1) <p] cos m (n + l)«i
1 — cos2m«i

Z sin2m Ov

r. ,n i sin m n «i
cos m [2 o — (n — 1) «il — — cm

sin m «i

sin m [2 Q — (n — 1) «¦] cos m (n — 1) tp — sin m [2 Q — (n — 1) ip] cos m (n + 1) «¦

1 — cos 2 m «i

sin m n «i _sinm [2o — (n— l)u>]——'¦ — s„
sin m ip

Nun kann man die Determinante des Gleichungssystems folgenderweise

entwickeln.

t1

n

2

£l
2

3n
8

Sì
2

Ct^Cg
2 8

ül.
2

1

16

lt.
2

n
2

n

4

Cg

2

2(n-c,)

2

n

2

n

8

Sl

Cl

2

c_2

8

l2
4

8l
2

n
2

4

Ça

2

2 s,
n + ct n — c2 2s1 + s2

Si 2S! — s2 n-c2
Die zweite Determinante findet man aus der ersten, indem man die
erste Querreihe von der zweiten subtrahiert. Multipliziert man in
dieser zweiten Determinante die zweite und dritte Vertikalreihe mit
dem Faktor 2, die zweite Horizontalreihe aber mit 4, so kommt die
dritte Determinante. Durch Ausführung der Operationen und Substitution

der entsprechenden Werte folgt die weitere Formel

^=16[n3-n(s2 + cl)-2n(s2 + c2) + 2c2(c2-sf) + 4c1s1s2]

sin22n«i sin2n«i sin2n«. sin2n«ii
— — -2n - + 2 -I«
sin2 2«i 8in2«i sin2(/ sin2«> 1

Die Variation dieses Ausdruckes für variierende n und «i ist aus
der nachfolgenden Tabelle X ersichtlich.!)

Mr
16 l

n»
16 f

l) Bei der Auflösung des fraglichen Gleichungssystemes kommt
die Determinantenrechnung allerdings kaum in Betracht, da es aus
verschiedenen Gründen vorteilhafter ist, sich der üblichen Methode zu
bedienen. Die Resultate ergeben sich hiernach in Form von Brüchen,
deren Nenner kleiner ist wie der Wert der Determinante und je nach
der Größe von n usw. zwischen 0,005 und 2,9 schwanken kann.
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Tabelle X.

n '/' Ti

5 8 0,017920

10 4 0,17154

20 2 1,4309

40 1 11,565

71. Sind damit jene Werte von P,k und Qik bekannt,
welche sich aus den Beobachtungen als die wahrscheinlichsten
finden lassen, so wird es sich darum handeln, die a,k zu
bestimmen. In welcher Art und Weise dies zu geschehen
hat, wurde bereits früher gesagt. Es genüge hier, die
gefundenen Zahlen, soweit wie nötig, anzugeben.

Für die Schwingungsrichtungen der parallel zu den
Grenzflächen austretenden Wellen wurden folgende Azimute
gefunden:

Wellenebenen parallel xz: e=12°,77
Wellenebenen parallel der anderen Grenzfläche: e' — 8°ca.

Es wurde früher schon (§ 65) darauf hingewiesen, daß die
letztere Bestimmung sehr schwierig war, indem in dieser
Stellung das Spaltbild überaus schwach und unbestimmt
erschien. Dementsprechend werden auch die Endresultate
nicht allzu sicher sein können.

72. Ein Punkt verdient hier aber spezielle Erwähnung.
Wie bekannt ist die Schwingungsrichtung der parallel zu den
Grenzflächen austretenden Wellenebenen für verschiedene
Farben im allgemeinen verschieden. Allerdings ist diese

Dispersion für gewöhnlich gering und wurde hier vernachlässigt.

Der Fehler ist wegen des kleinen Spektralbereiches
kaum bedeutungsvoll. Unter günstigen Umständen, wo man
über große, tadellose Prismen verfügt, welche helle Signalbilder

entwerfen, dürfte es bei sorgfältigster Messung möglich
sein, diese Dispersion der Schwingungsrichtungen experimentell
zu konstatieren, insbesondere wenn man sich statt des
gewöhnlichen Nikolschen Prismas einer genaueren Vorrichtung
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zur Bestimmung der Schwingungsrichtungen bedienen würde.
Werden dann aber die verschiedenen zusammengedrängten
Linien des Spektrums diese Bestimmung nicht erschweren oder

gar verunmöglichen? Wahrscheinlich wohl. Es dürfte darum
geraten sein, das Licht schon außerhalb des Kollimators durch
ein Prisma zu zerlegen und nur absolut homogenes Licht auf
das Kristallprisma durch den Kollimator auffallen zu lassen.

73. Da gerade von der Dispersion der Schwingungsrichtungen
die Rede ist, so mag hier der geeignete Ort sein, um den Einfluß zu
studieren, den ein Fehler in der Bestimmung von * auf die Berechnung
von aik ausüben muß. Es ist

au q2 sin2s + q,cos2«
ai3 (q,-q2) sin* cos*
a33 q* cos2£ + q2 sin2e

Werden qj und q2 als richtig vorausgesetzt, so wird

dau= (qj-qp sin2f df
dais (q? — q") cos2« de
daS3 -(q2-q|)sin26df.

an und a33 ändern sich also um die gleiche Größe, aber im entgegengesetzten

Sinn. — Wie man sieht, ändern sich a33 und alx um den
größten Betrag, wenn e=nji oder 3n/4, um den kleinsten aber, wenn
f =0 oder n/2. Bei aI3 sind die Verhältnisse gerade umgekehrt. In
der folgenden Tabelle XI sind die Änderungen für einige Werte von
€ zusammengestellt unter der Voraussetzung, daß

d * 30'= 0,008727 und
q2 _ q2 0,1000.

Im vorliegenden Fall, wo q2 —q| 0,009 ist und s I2lj2 (angenähert),
wird nach der Tabelle durch Interpolation

9 2985 + 4363 ,9d ai; ± — x 0,000 ± 0,0003674 ± 0,000033 und
11 100 2 100

9 8200 + 7558 9
— x 0,000 —
100 2 100

Ohne Interpolation bekommt man die genaueren Werte
daü =±0,00003485
daik ± 0,00007155.

Man erkennt hieraus, daß es bei sorgfältiger Beobachtung möglich
sein muß, au, a13 und aS3 mit großer Genauigkeit zu ermitteln, falls die
Beschaffenheit und Größe des Prismas eine präzise Arbeit gestatten.

Bei dieser Untersuchung wurde die Richtigkeit von qj und q|
(dq2 =dq| 0) ausdrücklich vorausgesetzt. Es braucht allerdings eine
vielmal wiederholte Einstellung und Messung, um hierfür ganz
befriedigende Mittelwerte zu erhalten.

d aik= - T^.x O.000 ~ * 7^ x 0,0007879 0,000071.
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Tabelle XI.
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74. Für die drei Polarisationskonstanten an, a13 und
a33, sowie die drei Größen R'n, R'18 und R'33 ergaben sich

folgende Werte.

He-gelb (588)

an= 0,428512
a13 -0,001919
a33 0,420527

R'n 0,434804
R'13= 0,001972
R'3a= 0,421048

Der Bedeutung nach sollte
a

He- grün (502)

au= 0,425213
a13 -0,001904
a33 0,417291

R'n 0,430981
R'13 - 0,001960
R'„ 0,417312.

R'„33 iv 33

sein. Die Übereinstimmung der gefundenen Zahlen ist
ziemlich befriedigend (namentlich für He-grün) und läßt
erkennen, welche Genauigkeit etwa erzielt werden könnte.
Als zuverlässigere Zahl empfiehlt es sich, den Mittelwert
beider einzuführen.

Weiterhin berechnet sich nach der Formel (Gl. XI c)

a2gsinr—a31 cosr= —R'1S

der Wert von a23, so daß sich folgende Näherungswerte ergeben.
He- gelb (588) He- grün (502)

an= 0,428512 an= 0,425213

"33-

ai3
a2S

0,420788
0,001919
0,000549

a33= 0,417302
a13 -0,001904
a^ 0,000553.
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Anderseits erhält man auf Grund der Ausgleichsrechnung
nach dem oben erläuterten Verfahren bzw.

Pu- 0,852014 0,843610
P1 22 0,848938 0,842502

Pl,—-0,007371 -0,007250.
und findet hieraus, wenn man vom oben ermittelten Nähe

rungswert
a33 0,420788 0,417302

ausgeht,
an 0,428150 0,425200
a22 0,431226 0,426308
a38 0,420788 0,417302
a23== 0,000549 0,000553

a31=- -0,001919 -0,001904
ai2='-0,007371 — 0,007250.

Zu diesen Werten wurden Verbesserungen berechnet auf Grund
der Ausdrücke
cos2i//i (a22 + a83) + sin2î//i (a33 + an) — 2 sim//i cost//; a12 qi'2+ q-"2
und
cos2Vi (a22 a33 - a223) + sm2xpi (aA3 an

2sim//i cosxp-,
*13l

qi'2 qi"2.
Für a23 und a31 findet man keine plausiblen Verbesserungen,
weil die zugehörigen Koeffizienten äußerst klein sind. Sie
wurden darum ohne weiteres als richtig angenommen. Unter
dieser Voraussetzung bekommt man als endgültige Werte der
Polarisationskonstanten

He- gelb (588)

an= 0,428291
a22 0,431099
a33 0,420677

a28= 0,000549
a31 =-0,001919
a,, — 0,007411

He-grün (502)

an — 0,425205
a22 0,426320

a33= 0,417299
a23 0,000553

a31=- 0,001904
a12 -0,007254.

Man hätte bei der Anwendung der Ausgleichungsrechnung
noch in anderer Weise verfahren können. Es wurden auch
mehrere Methoden versucht; sie befriedigen aber ebenso
wenig, wie die soeben mitgeteilte. Der tiefere Grund ist der,
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daß bei der Linearmachung der quadratischen Gleichungen
Glieder vernachlässigt werden müssen, deren Summe mit dem
Fehler e vergleichbar wird.

Weitere Versuche und Rechnungen werden hierüber
völlige Klarheit bringen.

75. Nach Auffindung der aik bestimmen sich die Haupt-
ïichtgeschwindigkeiten als Wurzeln einer Gleichung dritten
Grades (Gleichung XIV), welche die merkwürdige Eigenschaft
hat, daß der Koeffizient von x2 sechs, derjenige von x zwölf
und das Absolutglied 18 Dezimalstellen haben. Und einzig
diese Gleichung hat notwendigerweise drei reelle Wurzeln,
während die Abkürzung sämtlicher Koeffizienten auf die nämliche

Stellenzahl zu komplexen Wurzeln führen kann. Es ist
interessant, diesen Sachverhalt wenigstens in einem Fall
numerisch zu verfolgen. Für Kupfervitriol He- gelb ist

x3-1,280067 x2+0,546102'521956 x - 0,077647'237781 '243428 0

die fragliche Gleichung. Ihre Wurzeln sind
a2 0,437401 b2 0,422722 c2 0,419944.

Daraus findet sich
a 1,512029 ß — 1,538058 y 1,543136.

Hätte man die Koeffizienten der obenstehenden Gleichung
auf sechs Dezimalen gekürzt, die Gleichung also in der Form

x3 - 1,280067 x2 + 0,546103 x - 0,077647 0

geschrieben, so hätten sich als Lösungen folgende Zahlen
ergeben.

a2 0,434984 b2 0,428534 c2 0,416549
«=1,51622 /3=1,52759 y 1,54941.

Kürzt man endlich die Koeffizienten obiger Gleichung dritten
Grades noch mehr, d. h. schreibt man die Gleichung in
der Form

x3— 1,2801 x2 + 0,5461 x - 0,0776 - 0,

so erhält man als Wurzeln

xx 0,39138 T293255

x2 0,444359'353373 + 0,02858 T257576 i
'

x3 0,444359'353373 - 0,02858 T257576 i.

Selbstverständlich setzt das Rechnen mit solchen Zahlen
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geeignete Hilfsmittel voraus. Im vorliegenden Fall diente
eine Multiplikationsmaschine, System „Millionär" aus der Fabrik
von Dämen-Schmid & Cie., Zürich, die den gewöhnlichen
Additions-Rechenmaschinen weit überlegen ist.

76. Über die Berechnung der Richtungskosinus der
optischen Symmetrieachsen ist nicht viel zu sagen. Beachtenswert

ist, daß an — l von der Größenordnung der aik wird.
Die beiden ersten Dezimalstellen werden also null. Die Folge
davon ist, daß die prozentuelle Sicherheit der Koeffizienten
bedeutend abgenommen hat. Inwieweit dadurch für die

Orientierung weniger genaue Werte herauskommen wie für
die Lichtgeschwindigkeiten, ist sehr schwierig zu sagen, da
die Ausdrücke kompliziert, unübersichtlich und der analytischen
Behandlung nicht leicht zugänglich sind. Jedenfalls bietet
die Berechnung der o;, ßi und y, keine rechnerischen
Schwierigkeiten. Um auch hiefür ein Beispiel zu geben und
die auftretenden Verhältnisse der Anschauung näher zu rücken,,
sei hier das Gleichungssystem für die a-x mitgeteilt, worin
alle Zahlen mit 106 multipliziert sind.

9110a1-r-7411«2-r- 1919o3 0

7411«!+ 6302 Og- 549o3 0

1919ox- 549 a2 + 16724 o3 0.

Da diese Gleichungen nur zur Bestimmung des Verhältnisses
ax : a2 : a.A

hinreichen, kann man a3=l setzen, so daß aus der ersten
und zweiten Gleichung folgt

ax : o2 : o3 - 6,49527 : 7,72540: 1,00000
oder

ax=- 6,49527 o

o2= 7,72540 o

o3 1,00000 (f,
wo ty einen Proportionalitätsfaktor bezeichnet, der sich aus
der Identität

a\ + a\ + a\ 1 ee (6,495272 + 7,725402 + 1 o2

berechnet. Man findet so

ax — 0,64040 o2 0,76167 o8 0,09860.
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Natürlich genügen diese Werte den Gleichungen nicht absolut
genau. So werden die rechten Seiten derselben bzw. gleich
den Größen

0,09423 -0,09146 1,90197.

Die Abweichung ist bei der dritten Gleichung am empfindlichsten,

weil dieselbe bei der Berechnung nicht herangezogen
wurde. Zwar sollte der Theorie zufolge auch die dritte Gleichung
streng erfüllt sein, wenn es die beiden ersten sind. Trifft
das hier nicht zu, so ist es deswegen, weil die
Voraussetzungen der Theorie praktisch nie erfüllt werden können,
da die theoretisch geforderten Irrationalzahlen nie genau,
sondern immer nur angenähert durch Rationalzahlen
dargestellt werden können.

77. Die beim Kupfervitriol erhaltenen Endresultate sind
in der Tabelle XII zusammengestellt.

Tabelle XII.

He-gelb (588,uu) He- grün (502 (ili)

a ß Y a ß Y

n 1,5120 1,5381 1,5431 1,5193 1,5448 1,5494

X y z X y z

§ 129° 49' 40° 23' 84° 20' 132° 55' 43° 34' 83° 53'

71 130° 50' 127° 27' 63° 14' 127° 33' 129° 54' 62° 13'

l 66° 14' 77° 03' 27° 27' 66° 02' 75° 22' 28° 35'

Die optischen Konstanten des Kupfervitriols wurden
früher von Pape, Kohlrausch, Lavenir und G. Wulf ganz bzw.
teilweise bestimmt.1) Ersterer ermittelte zunächst, wie oben
§ 30 mitgeteilt wurde, die Orientierung der Hauptschwingungsrichtungen

und schnitt dann drei Prismen, welche die
Bestimmung von je zwei Hauptbrechungsindizes für die D-Linie
gestatteten. Eines dieser Prismen erlaubte sogar die Ein-

i) Vergi. Groth, Chem. Krist. II Seite 420 f.
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Stellung auf verschiedene Fraunhofersche Linien und lieferte
Werte für o und y. Kohlrausch und Lavenir bedienten sich

der Totalreflexion, gaben aber keine Werte für die Orientierung
an. Mit dieser befaßte sich dagegen G. Wulf.

Die vorliegenden Hauptbrechungsindizes sind in der
Tabelle XIII übersichtlich zusammengestellt.

Tabelle XIII.

1 O \à aß ß Aßy y \d «y

589 D

1,51541 2513 1,54054 657 1,54711 3170

Mittel der
vorangebenden

Werte

Pape

1,51587 2238 1,53825 741 1,54566 2979

1,51564 2376 1,53940 699 1,54639 3075

589 D 1,51615 1,54604 2989

527 E 1,51983 1,54996 3013

486 F 1,52307 1,55351 3044

431 G 1,52872 1,55978 3106

589 D 1,5140 228 1,5368 65 1,5433 293 Kohlrausch

589 D 1,51408 2276 1,53684 661 1,54345 2937 Lavenir

Die Angaben Papes sind wohl weniger zuverlässig wie
die anderen, weil das Schneiden der Prismen, das mit freier
Hand vorgenommen wurde, trotz größter Sorgfalt nicht
allzugenau ausfallen konnte. Immerhin sind sie
achtunggebietend und stimmen bezüglich der Doppelbrechung mit
den anderen ordentlich überein.

78. Was nun die neugewonnenen Resultate anbelangt,
so stehen sie mit den anderen in ziemlich befriedigender
Übereinstimmung. Für einen Vergleich eignen sich allerdings
zunächst nur die Werte von He-gelb, dessen Wellenlänge
nahezu gleich derjenigen von D ist. Von den entsprechenden
drei Werten stimmt y fast genau mit den Angaben von
Kohlrausch und Lavenir überein. Dagegen ist diesen gegenüber

o um 20 Einheiten der vierten Dezimalstelle zu klein
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und ß um 13 Einheiten derselben Dezimale zu groß. Doch
paßt ß wieder vorzüglich zu dem einen von Pape gefundenen

Wert.

Um ein Urteil über die Zuverlässigkeit der für He- grün
(502) gefundenen Brechungsexponenten zu gewinnen, kann
man zunächst auf Grund der Cauchyschen Dispersionsformel
und der Papeschen Angabtn die Werte von o und y berechnen.
Bei Benutzung der beiden zunächstliegenden Werte für die E-
und F-Linien bekommt man

0502=1,52171 und /502== 1,55202.

Gegenüber den zugehörigen Papeschen Werten für die D-
Linie, nämlich

0589=1,51615 und ym 1,54604,

hat man somit eine Zunahme von 0,00556 bzw. 0,00598.
Nun ist bekannt, daß man an einem ganz mittelmäßigen
Prisma, das für die Brechungsindizes nur schlechte Werte
liefern würde, die Dispersion immer noch ziemlich genau
bestimmen kann. Werden demnach die berechneten Zahlen
als wirkliches Maß der Dispersion angenommen, so hat man
mit Hilfe der zuverlässigeren Grundwerte von Kohlrausch

O502 1,5140 + 0,00556 1,51956

yi02 1,5433 + 0,00598 1,54928.

Hiermit stimmen die neuen Werte vorzüglich überein.
Daß übrigens o und y von He-grün dem tatsächlichen

Verhalt ziemlich nahe kommen, ist auch darum recht
wahrscheinlich, weil die Doppelbrechung gleich 0,0301 ist und
der von Kohlrausch gefundenen Doppelbrechung gut
entspricht, zumal nach den Zahlen Papes mit wachsender
Lichtbrechung auch die Doppelbrechung zuzunehmen scheint.

Das Verhalten von ß dürfte dem oben genannten für
He- gelb ähnlich sein, soweit wenigstens die Doppelbrechung
gegenüber / in Betracht kommt.

79. Bezüglich der Orientierung der Hauptschwingungsrichtungen

liegen folgende Angaben vor. Nach Pape1) liegt
die erste Mittellinie im vordem rechten oberen Oktanten und

*) Pogg. Ann. d. Phys. Erg. Band 6 (1874). Seite 45.
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u/VO)

bildet für mittlere Farben — nach Papes Äußerung selber
„mit größter Annäherung für Licht von der Brechbarkeit der
Fraunhoferschen Linie E" — mit den Normalen von m (110),
fi(llO) und m (ìli) die Winkel 438/4°, 984l2° und 73°.

Die Lage der anderen optischen Symmetrieachsen gibt
Pape nicht an. Dagegen hat er (loc. cit. Seite 48) eine Tabelle
mitgeteilt, aus der die Orientierung der Flächen eines optischen
Prismas hervorgeht, dessen brechender Winkel 45° beträgt und
innen und außen von je einer optischen Symmetrieachse
halbiert wird. Unter der Annahme, daß die brechende Kante
z. B. parallel rj sei und der innere Prismenwinkel von Z, halbiert
werde, findet er folgende Werte, falls I und II die Normalen
der beiden Prismenflächen bedeuten.

I: 110 57° 50',5 II: 110= 143° 29',0
Tll=52°48',0 111= 86°32',1
110 77° 26',5 110= 93° 9',8.

Hierdurch sind die optischen Symmetrieachsen natürlich
eindeutig bedingt. In stereographischer Projektion erhält man

die drei Punkte, die in der
Fig. 81) durch ausgezogene
Kreisbogen verbunden sind.

.u/551 Nach einer neueren Be¬

stimmung von G.Wulf2) schließt
die Normale der Achsenebene
mit den Normalen zu m (110),

ii{flO) und <o (111) bzw. die
Winkel 531//, 12x/2° und 113°

ein. Ob es sich hierbei um eine
wirklich neue Ermittlung dieser
Werte handle oder ob nur eine

Umrechnung der Werte von
Pape vorliege, ist nicht ersicht-

a 11001

(grun)

011)

ae!b)

grun)

(grun.

fgeitfi

a/100

mfllO)

Fig. 8

lieh. Das letztere ist wegen der vollkommenen
Übereinstimmung der beiden Angaben nicht ausgeschlossen.

*) Die Figur ist nach dem „optischen Prisma" orientiert. Durch
ein Versehen wurden aber (ITO) und (TlO) auf dem Klische mit u statt u

bezeichnet. 2) Groth, Chem. KristaIlogr.il, 420.
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Die optische Orientierung, die sich aus den in dieser
Arbeit gefundenen Werten der Polarisationskonstanten ergibt,
ist ebenfalls in der Fig. 8 eingetragen, und zwar sowohl für
die gelbe wie die grüne Heliumlinie. Die beiden neuen |-Achsen
nähern sich in befriedigender Weise der von Pape gefundenen
Lage. Um so größer ist dafür die Unstimmigkeit bezüglich
der beiden anderen Achsen. Mag die Unzuverlässigkeit der
Papeschen Werte auch ihren Teil hierzu beitragen, so findet
sie doch ihre volle Erklärung nur auf Grund der Bemerkungen
des §76 und der Diskussionen des vorangehenden Paragraphen,
aus denen hervorgeht, daß die Differenzen a22 — qr2 und
a33 — qi2 für i=l,2 sehr unsicher werden.

Der tiefste Grund dieser Ungenauigkeit ist die in § 65

erwähnte Unzulänglichkeit des Prismas, was im folgenden
klar zutage treten wird.

B. Colemanit B6O,,Ca2-5H20.
a :b:c 0,7769: 1:0,5416 /5= 110° 17'

80. Der Kristall stammt von San Bernardino Co. in Kali-
lornien und zeigt, von einigen schmalen Kantenabstumpfungen
abgesehen, folgende Formen: {ilo}, {00l}, {Ì01}, {T2l} und
untergeordnet {100}, {010}, {l20}. Zum Zwecke der optischen
Untersuchung wurde auf der hinteren Seite des Prismas eine
Fläche angeschliffen, welche zur Orthodiagonale nur wenig
geneigt und zur Vertikalachse fast parallel gelegen ist.

Die Durchmessung der Prismenzone; wobei die Kante
(110):(TÌ0) parallel zur Drehachse gestellt wurde, lieferte
lolgende Werte. «

(HO) 47°543/4' heller Reflex mit schmalem Nebenschein.
(120) 67°23' äußerst schmale Fläche; breiter Reflex,

der vorzüglich in der Zone liegt.
(010) 101° 56' etwas verbreiteter, nicht ganz in der

Zone gelegener Reflex.
{120) 136° 26' äußerst schwacher, unbestimmter, aber

gut in der Zone gelegener Reflex.

(110) 155°543/8' scharfer Reflex, zwar nicht hell, aber

gut einstellbar.
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K künstliche Fläche und
(110) liegen ziemlich stark außerhalb der Zone.
(100) liegt genau in der Zone, Reflex schlecht,

darunter ein zweiter.
{010) schmale Spaltungsfläche, Reflex unscharf,

aber gut in der Zone.
Diese Messungen zeigen, daß der Kristall nicht besonders

vollkommen ausgebildet ist. Immerhin wird man den
wirklichen Verhältnissen recht nahe kommen, falls man die
genannte Kantenrichtung zur Vertikalachse und die innere
Winkelhalbierende der beiden Flächen (110) und (HO) zur
Orthodiagonale wählt. Die Klinodiagonale ist für das Folgende
belanglos. Wichtigkeit hat nur die Annahme, daß die zur
Orthodiagonale senkrechte Ebene eine Symmetrieebene sei.

81. Die wichtigste Aufgabe, die sich zunächst bietet, ist
die Lagebestimmung der Kunstfläche. Zu dem Zweck wurden
folgende Messungen vorgenommen.

K:(lT0)=151°38^' (ff0):(001)= 73° 48'

K:(110)= 43041-|' (Ïf0):(001)= 106°084'

K:(001)=108°454' (001):(121)= 57°5l4'
K: (121)= 80°31-§' (U0):(12I)= 77°254'

(H0):(121) 51°44^'
Ist X, Y, Z ein rechtwinkliges, rechtshändiges Achsensystem,

dessen Y- und Z-Achse mit der oben definierten
b- bzw. c-Achse zusammenfallen, so erhält man für die
Kunstfläche K die Gleichung

lX + mY + nZ 0.
1 und m lassen sich aus den Winkeln

(lT0):K=151°38|i und (110): K 43°4l4
bestimmen, und da die Identität

l2 + m2 + n2 l
besteht, so erhält man gleichzeitig den absoluten Wert von n,
dessen Vorzeichen aus dem gemessenen Winkel

(001):K=108°45|'
ermitteltwerden kann. Weildie Messungen nichtfehlerfrei sind und
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der Kristall überhaupt nicht ideal ausgebildet ist, stimmt der Wert
von n, der aus dem zuletzt angegebenen Winkel berechnet wird,
mit dem zuvor ermittelten nur auf einige Minuten genau überein.

Geht man von anderen Kombinationen aus, so bekommt
man wiederum andere Werte. Dabei bemerkt man, daß n innerhalb

weiterer Grenzen schwankt, als m.und 1, die bedeutend

genauer sind. Das rührt davon her, daß der n zugeordnete
Winkel fast 90°, die Variation von n also ein Maximum ist.

Aus vier verschiedenen Kombinationen ergaben sich
die Mittelwerte

1 -0,990809 m 0,133526 n 0,021168,
welche aber, wie ohne weiteres verständlich ist, der Bedingung

l2 + m2 + n2=l
nicht genau genügen. Da n jedenfalls am unzuverlässigsten
ist, so wurde hierfür mit Hilfe der eben genannten Identität
ein neuer Wert bestimmt. Die Gleichung der angeschliffenen
Fläche wird dadurch

- 0,990809 X -f- 0,133526 Y + 0,021641 Z 0.

82. Wird (110) als zx-Ebene gewählt, so ist es ein

leichtes, die Beziehungen zwischen dem XYZ-System und dem
xyz-System aufzustellen. Man erhält das folgende Schema.

X y z

X

Y

0,587219 0,808985 -0,026776

0,808145 -0,587829 -0,036849

Z -0,045550 0,000000
' - 0,998962

83. Infolge der Zugehörigkeit des Colemanit zum monoklinen

System ergeben sich aus den kristallographischen
Symmetrieeigenschaften zwei optische Bedingungsgleichungen,
die nach Gleichung XV auf die Form

auA4-al2B + a13C a13A + a28B + a33C

a12A + a22B + a23C a13 A + a23 B + a33 C

B
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gebracht werden können. A, B, C sind die Richtungskosinus
von Y in bezug auf x, y, z. Es empfiehlt sich, hieraus a12 und
a22 als Funktionen der vier anderen Polarisationskonstanten
zu berechnen. Man erhält so die Ausdrücke

a12= 1,374795 an - 1,374795 a83 + 30,087797 a13-21,931019a23
a22= 1,890061 au -0,890061 a33+ 19,433534 a13— 14,261136a28.
Die Koeffizienten dieser Gleichungen sind von der Wellenlänge

unabhängig.

84. Zur Bestimmung von an, a13 und a33 dienen die
Geschwindigkeiten und Schwingungsrichtungen jener Wellen,
die sich parallel der y-Achse im Kristall fortpflanzen. Die
Messung ergab

£ -4-24°.
2

Über die Polarisationskonstanten orientiert folgende Zusammenstellung.

rot (668) gelb (588) grün (502)

an 0,394774 0,392920 0,390333

ai3 0,000800 0,000775 0,000778

a33 0,396216 0,394317 0,391734

Die Schwingungsrichtungen jener Wellen, deren
Normalen senkrecht zur künstlichen Fläche sind, wurden nicht
bestimmt. Da aber diese Fläche der Z-Achse fast parallel
ist und auch mit dem Orthopinakoid nur einen kleinen Winkel
bildet, so darf man in erster Annäherung voraussetzen, daß

jene Richtungen parallel und senkrecht zur Prismenkante
seien, oder noch genauer, daß

i n
~

2

Unter dieser Voraussetzung findet man für alle drei Farben
den Näherungswert

a23 0,0014.

Indessen läßt sich dieser Wert noch in anderer Art ermitteln.
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Wie oben (§ 68) gezeigt wurde, ist es möglich, lineare
Gleichungen von der Form

(a22 + a33) cos2xpi + (a33 + au) s\n2xpi—2 a12 smxpi cosxp-, q/3 + q{'2

aufzustellen. Ersetzt man hierin auf Grund der Bedingungsgleichungen

a12 und a22 durch ihre Werte, so erhält man eine

gewisse Anzahl Gleichungen, die als einzige Unbekannte a23

enthalten. Während nun die einzelnen Gleichungen den
Beobachtungsfehlern unterworfen sind und darum für a23 etwas
verschiedene Werte liefern, ist die Summe aller Gleichungen
von den zufälligen Fehlern ziemlich frei und erlaubt deshalb,
für a2S einen recht guten Wert zu finden.

Dieses Verfahren wurde bei allen Farben angewandt
und ergab:

rot (668) gelb (588) grün (502)

a23 0,001260 0,001253 0,001261

Zur Verbesserung der Näherungswerte für an, a3g, a13

und a32 dient die Methode der kleinsten Quadrate. Es
kommen so die endgültigen Werte der Tabelle XIV.

Tabelle XIV.

rot gelb grün

an 0,394745 0,392912 0,390306

a32 0,390945 0,388824 0,386097

a33 0,396187 0,394309 0,391707

a28 0,001267 0,001256 0,001268

a31 0,000800 0,000775 0,000800

a12 -0,005689 0,006138 -0,006324

Die weiteren Rechnungen bieten keine prinzipiellen Schwierigkeiten.

Nur zeigt es sich von neuem, daß man die Koeffizienten
der Gleichung dritten Grades nicht beliebig kürzen darf.
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85. Die ermittelten Hauptbrechungsindizes sind aus der
folgenden Tabelle XV ersichtlich.

Tabelle XV.

a ß Y

rot 1,5834,
-

1,58827 1,60828

gelb 1,5864, l,5920a 1,61333

grün 1,59138 1,59735 1,61940

Für die Orientierung der Hauptschwingungsrichtungen im

x y z- bzw. X Y Z-System (vergi, die Festsetzungen von §81) gelten
die in den Tabellen XVI und XVII zusammengestellten Größen.

Tabelle XVI.

1

rot (668) gelb (588) grün (502)

X y z X y z X y z

0,80818 -0,58778 -0,03692 0,80774 -0,58757 -0,03693 0,80866 -0,58746 -0,03099

0,12037 0,10346 0,98732 0,11426 0,09494 0,98890 0,10866 0,09742 0,98929

0,57651 0,80233 -0,15464 0,57782 0,80338 -0,14390 0,57810 0,80341 -0,14260

Tabelle XVII.

rot (668) gelb (588) grün (502)

X Y Z X Y Z X Y Z

5 90« 0« 90° 90« 0 90» 90« 0« 90°

1 82« 40' 90» 172» 40' 83« 14' 90» 173« 14' 83« 18' 90» 173« 18'

C 7« 20' 90» 82« 40' 6« 46' 90« 83» 14' 6» 42' 90» 83° 18'

Die gefundenen Hauptbrechungsindizes stehen in recht
befriedigender Übereinstimmung mit den Angaben
Mülheims1), wie aus Tabelle XVIII ersichtlich ist.

') Mülheims, Groth's Zeitschrift 14, Seite 230.
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Tabelle XVIII.

I a Jaß ß Aßy Y

B 687 1,58230 577 1,58807 2171 1,60978

He- rot 668 1,68342 485 1,58827 200l 1,6082s

C 656 1,58345 577 1,58922 2178 1,61100

D 589 1,58626 576 1,59202 2196 1,61398

He- gelb 588 1,58642 56e 1,5920s 212? 1,6133s

E 527 1,58952 579 1,59531 2231 1,61762

b4 518 1,59017 584 1,59601 2235 1,61836

He- grün 502 1,5913s 597 1,5973s 2205 l,6194o

F 486 1,59214 596 1,59810 2234 1,62044

Am ungenauesten scheint rot, am genauesten grün geraten
zu sein. Der Grund mag darin liegen, daß es zuweilen recht
schwierig ist, das Fadenkreuz auf die rote Linie einzustellen,
weil sie im strahlenden Glanz der gelben Linie stark
verblaßt. Überhaupt war es bei den verschiedenen Ablesungen
eine auffallende Erscheinung, daß die grüne Linie
außerordentlich scharf begrenzt war und Einstellungen erlaubte,
die bei den verschiedenen Wiederholungen meistens identisch
waren und selten um mehr als eine Viertelsminute variierten,
während bei der gelben Linie Variationen von 1ji- bis 3/4-Minuten,
bei der roten sogar von mehr wie einer Minute die Regel waren.

Bezüglich der Orientierung teilt v. Groth1) folgende
Zahlen mit: Die Ebene der optischen Achsen ist senkrecht
zu {010}; die erste Mittellinie bildet in {010} einen Winkel
von 83°2) mit der c-Achse im stumpfen Winkel ß.

Diese Angaben stimmen prachtvoll mit den
neugewonnenen Resultaten überein, welche für rot, gelb
und grün bzw. die Werte 82° 40', 83° 14' und 83° 18 lieferten3).

i) Chemische Kristallogr. II, 283. *) Nach Mülheims I. c. 82«43'.

3) Aus diesen schönen Ergebnissen ist der Rückschluß gestattet,
daß der geringere Erfolg beim Kupfervitriol tatsächlich auf die mangelhafte

Beschaffenheit des Prismas zurückzuführen ist.



— 110 —

C. Euklas Si 04 Be [Al OH].
a : b : c 0,3237: 1: 0,3332 ß 100° 16' (Schabus)

86. Zur Verwendung gelangte ein ziemlich großes (12 mm
langes) Bruchstück, das ringsum von drei Flächen begrenzt,
an den beiden Enden aber abgebrochen ist. Die eine Fläche
ist als Spaltfläche {010} deutlich erkennbar. Hierzu senkrecht
steht eine andere Fläche, die ca. 5 mm breit, aber in ihrer
Ausbildung durch eine vielfache Fiederung usw. teilweise

gestört ist. Wegen des rechten Winkels, den sie mit {010}
bildet, ist sie der Orthodiagonale parallel. Die dritte Fläche
bildet mit der zweiten einen ziemlich spitzen Winkel
(T= 32°27'20") und spiegelt wunderbar. Überhaupt ist der
Kristall von herrlicher Klarheit und erzeugt dementsprechend
Spektrallinien von strahlender Helligkeit. Leider läßt ihre
Schärfe noch zu wünschen übrig.

Die zuletzt genannte Fläche gehört der Form {l20| an,
entsprechend dem im Handbuch v. Hintze angegebenen
Werte 120: Ol0 57° 30'. Ob sie aber rechts oder links von
der Symmetrieebene gelegen sei, bleibt unentschieden.
Glücklicherweise ist jedoch diese Unbestimmtheit für die Aufstellung
der dem monoklinen System eigentümlichen Bedingungsgleichungen

völlig belanglos. Denn da die ebengenannte
Fläche {120} zur xz-Ebene gewählt wurde, folgt ohne weiteres,
daß die Richtungskosinus der Orthodiagonale gleich sind
den Ausdrücken

A cosT B -sinT - C 0.

Nach Gleichung XV hat man also die beiden Bedingungsgleichungen

(k=—r)
(au — a22) sin2r+2a12 cos 2F=0 und

a13 cos r~- a23 sin F= 0.
Beachtenswert ist noch, daß jene Welle, deren Normale senkrecht

zur zweitgenannten Fläche {lOO} ist und parallel der
z-Achse schwingt, direkt den Wert a33 gibt, während die
andere Welle dieser Fortpflanzungsrichtung eine
Hauptlichtgeschwindigkeit liefert. Eine Zusammenstellung (Tabelle XIX)
der durch direkte Beobachtung (erste Kolonne) bzw. mit Hilfe
von s, qx und q2 (zweite Kolonne) ermittelten Werte von a33
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dürfte interessieren und erlaubt zudem ein Urteil über die
erzielte Genauigkeit.

Tabelle XIX.

Beobachtung Rechnung

rot 0,36269 0,362791

gelb 0,36130 0,361509

grün 0,35904 0,359292

indigo 0,35696 0,356857

87. Die Polarisationskonstanten wurden in verschiedener
Weise bestimmt. Das erstemal wurde ungefähr so
verfahren, wie im zweiten Teil bei der Anwendung der
allgemeinen Methode auf monokline Kristalle angegeben wurde ;

später wurden zuerst die Pik und Qik (aber ohne Interpolation
der qi"-Werte) bestimmt und die Polarisationskonstanten in
der Weise berechnet, daß aus den Gleichungen

a22 -r a33 r jj a22 a33 a23 KJxx

a33-r-aji P22 aa3au —a2x — Q22

vermöge der Bedingungsgleichung
a23 ma13 (m cotgr)

zunächst a23 eliminiert und dann durch Substitution der Werte
von a22 bzw. alx aus den Gleichungen links in den Gleichungen
rechts das einfache System

(Pu
a33 1*22 a3

m2a?3 Qn
— a

13

abgeleitet wurde, aus dem sich schließlich durch Elimination
von ai3 die Gleichung

(m8-l)a|3-(mS!P22rP11)a88 + (maQM-Q11)r0
ergibt. Diese Gleichung ist unabhängig von s, liefert aber
zwei Werte für a33, unter denen wegen des bekannten
Näherungswertes der wahre leicht zu erkennen ist.

88. Die nach den verschiedenen Methoden erhaltenen
Resultate stimmen recht gut untereinander überein. Die Mittelwerte

sind in der Tabelle XX aufgeführt.
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Tabelle XX.

o AKß ß Aßy Y

rot (668) 1,6474, 464 1,65206 1566 1,66766

gelb (588) 1,6507, 458 1,65532 1612 1,67144

grün (502) 1,65598 460 1,66058 161j 1,67669

indigo (447) 1,66062 466 1,66528 1615 1,68143

Zur Kontrolle dienen die direkt gewonnenen Werte für
die mittleren Hauptbrechungsindizes, nämlich

As68= 1,6521G

ßis»= 1,65533

/?5M-l,6605j
ßiil= 1,66532.

Die einzigen über Euklas vorliegenden optischen Konr
stanten wurden von Descloizeaux1) ermittelt, der für mittlere
Farben folgende Angaben macht.

o l,6520 /3=1,6553 ^—1,6710
Die Übereinstimmung dieser ß- und /-Werte mit den

obigen für He- gelb ist fast überraschend ; dagegen stimmt a
etwas weniger gut.

Als Ebene der optischen Achsen wurde übereinstimmend
mit den bekannten Angaben {Oio} gefunden. Ebenso ergibt
sich Z als spitze Bissektrix. Sie bildet mit der z-Achse einen

Winkel, für den sich die Werte der Tabelle XXI ergeben haben.

Tabelle XXI.

rot gelb grün indigo

39° 39' 39° 49' 39° 14' 35° 31'

Nach Descloizeaux2) ist er gleich 40°32'. Die Übereinstimmung
ist also, vom letzten Wert abgesehen, verhältnismäßig gut
und beweist neuerdings die Zuverlässigkeit der Methode, wenn

i) Descloizeaux, Man. I, 482.

2) Bull. Soc. Min. 5 317.



— 113 — \

die Lichtverhältnisse und die Beschaffenheit des Materials
ein genaues Arbeiten gestatten.

Die erzielten Resultate des dritten Teiles dürften die

praktische Verwertbarkeit der im zweiten Teil erläuterten
Methode zur Genüge gezeigt haben. Wenn ein Punkt nicht
ganz befriedigt, so ist es der, daß anscheinend die Größe
der Doppelbrechung nicht immer mit großer Genauigkeit
ermittelt werden kann. Berücksichtigte man aber den Wert
von (q'2 — q"2)2, welcher einerseits wegen der Beobachtungen
bekannt ist und sich anderseits überraschend einfach durch
Pik und Qik rational darstellt, so wird es möglich, selbst diese

Mängel vollständig zu beheben. Es wird mir deshalb ein
besonderes Vergnügen sein, dies in einer weiteren Arbeit
experimentell und theoretisch darzutun.1)

Belfaux, den 29. September 1916.

t) Trotz eifrigen Bemühens war es bis zur Drucklegung noch
nicht möglich, die erforderlichen Präparate zu beschaffen.
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