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Inhaltsübersicht und Vorbemerkung.

Die vorliegende Arbeit umfaßt drei Teile.
Im ersten Teil (S. 1—40) werden die Ergebnisse der

bisherigen Forschung über das Prismenproblem systematisch
zusammengestellt und mehrfach ergänzt.

Im zweiten Teil (S. 41—69) wird eine neue Methode
abgeleitet, welche gestattet, die optischen Konstanten
zweiachsiger Kristalle in allen Fällen (also auch im triklinen System)
mit Hilfe eines einzigen Prismas beliebiger, selbst unbekannter
Orientierung eindeutig zu bestimmen.

Im dritten Teil (S.70—113) wird die neue Methode an

je einem Prisma von Kupfervitriol (S. 82 ff.) (triklin), Cole-
manit (S. 103 ff.) und Euklas (S. 110ff.) (monoklin) geprüft.

Um das umständliche Aufsuchen der zitierten Formeln
zu erleichtern, wurde am Schluß der Arbeit (S. 114—116) ein
übersichtliches Formelverzeichnis zusammengestellt.

Die einschlägige Literatur wurde ausgiebig verwertet,
jedoch nur sparsam zitiert, weil sie bereits von F. Po ekel s

in seinem „Lehrbuch der Kristalloptik" sorgfältig gesammelt ist.
Die zahlreichen Messungen, welche für den dritten Teil

nötig waren, wurden im mineralogischen Institut der Universität

Freiburg i. d. Schweiz ausgeführt. Der Vorstand
desselben, Herr Prof. Dr. H. Baumhauer, zeigte für den Gang
der Arbeit fortwährend eine warme und aufmunternde
Teilnahme und gab mir zu verschiedenen Abschnitten derselben,
insbesondere zum ganzen dritten Teil, mannigfache Anregung.

Für dieses sein liebenswürdiges Entgegenkommen,
namentlich aber für die vielseitige Förderung während meiner
Studienjahre überhaupt wie auch besonders während der Zeit,
wo ich sein Assistent zu sein die Ehre hatte, drängt es mich,
ihm an dieser Stelle meinen aufrichtigsten und herzlichsten
Dank auszusprechen.





I. TEIL

Systematische Zusammenstellung, Ergänzung
itnd Verallgemeinerung der bisherigen

Untersuchungen.

1. Dem allgemeinen Brauch entsprechend, wird den
folgenden Betrachtungen ein rechtwinkliges, rechtshändiges
Achsensystem x, y, z zugrunde gelegt, dessen x- und y-
Achse in der Querschnittsebene (Hauptschnitt) des Prismas
liegen und durch die Halbierungsebene des inneren bzw.
äußeren Prismenwinkels bestimmt sind. Die z-Achse steht
auf beiden senkrecht und fällt mit der brechenden Kante des
Prismas zusammen. Über dem Hauptschnitt wird sie positiv
gerechnet, während die positive Seite der x-Achse ins Innere
des Prismenwinkels gerichtet ist.

Neben diesem xyz-System ist noch ein zweites, ebenfalls

rechtwinkliges, rechtshändiges Koordinatensystem £, t], Z

von Bedeutung, dessen Achsen durch den Ursprung 0 des
ersten Systems gehen und den Schwingungsrichtungen jener
Wellen parallel sind, die sich mit den Geschwindigkeiten
a bzw. b und c (a>b>c) (Hauptlichtgeschwindigkeiten) im
Prisma ausbreiten. '§, n, Z sind demnach die sog.
Hauptschwingungsrichtungen oder optischen Symmetrieachsen. Für
die im allgemeinen unbekannten Richtungskosinus, welche
die positiven Richtungen der Achsen des einen Systems in

bezug auf die positiven Richtungen der Achsen des anderen
Systems festlegen, gelte das Schema I.

X y z

«3§ «1 ce2

n A ßt ß.

£ Yx 72 73
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2. Die Ausbreitung ebener Wellen erfolgt in optisch

zweiachsigen Kristallen nach einem ziemlich verwickelten
Gesetz, dessen analytischer Ausdruck gewöhnlich auf die Form1)

q2 - a2 q2 - b2 q2 - c2

gebracht wird. Darin bedeuten: v^v^vs die Richtungskosinus

der Wellennormalen in bezug auf \\,r\,Z; q die mit
der Richtung im allgemeinen veränderliche Wellennormalen-
geschwindigkeit und a, b, c die bereits oben genannten
Hauptlichtgeschwindigkeiten.

3. Die Messung jener Winkel, welche die Fortpflanzungsrichtung

und Geschwindigkeit einer ebenen Welle eindeutig
bestimmen, ist sehr umständlich, wenn die Welle schief zur
Prismenkante einfällt. Mit einem gewöhnlichen einkreisigen
Goniometer ist sie überhaupt nicht ausführbar; es braucht
zum mindesten ein dreikreisiges Instrument. Aus diesem
Grund hat man sich von jeher auf Wellen beschränkt, die
parallel der brechenden Kante des Prismas einfallen und
darum sowohl beim Gang durch das Prisma als auch nach
dem Austritt aus demselben dieser Richtung parallel bleiben.
Ausnahmsweise machte Viola2) mit Hilfe des zweikreisigen
Goldschmidtschen Theodolitgoniometers Beobachtungen bei
„schiefer Inzidenz", ist aber genötigt, jene Stellungen des
Prismas und Fernrohrs aufzusuchen, für welche die mit
geeignetem Mikrometer meßbare Vertikalablenkung
ungeändert bleibt, wenn Fernrohr und Kollimator vertauscht
werden, und muß zudem in der Umgebung dieser Stelle für

Für Wellen, die parallel einer optischen Symmetrieachse
schwingen, versagt die Gleichung II, weil sich ein Term derselben
auf die Unbestimmtheitsform 0:0 reduziert.

8) Viola, Zeitschrift f. Krist. 32, 66 und 545; do. 43, 210 und 588.

Viola, Zeitschr. f. Instrumentenk. 19 (1899), 276. Po ekel 8, Lehrbuch
der Kristalloptik. 148 ff. und Zeitschrift f: Krist. 43, 587.

Den Fall „schiefer Inzidenz" studierte übrigens teilweise schon
A. Cornu in seiner Arbeit: Refraction à travers un prisme suivant une
loi quelconque. Ann. Ecole normale 1. 231 und 3. 1. In Betracht
kommt hauptsächlich 1. 255 ff.
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mehrere, etwa um je einen Grad verschiedene, am Vertikalkreis

direkt ablesbare Werte von co „Winkel, den die auf
die Eintritts- und Austrittswellen senkrechte Ebene mit der
Basis des Prismas einschließt") die zugehörigen Brechungsindizes

bestimmen. Das Maximum oder Minimum derselben
liefert einen Hauptbrechungsindex.

4. Die Gesamtheit aller zur z-Achse parallelen Wellen,
welche gleichzeitig im Punkte 0 einfallen, umhüllt im Prisma
nach der Zeiteinheit eine Kurve C, welche das Schnittgebilde
der Wellennormalenfläche (Gl. II) mit der Querschnittsebene
des Prismas ist. Bezeichnet etwa xp den Winkel, welchen
die Normale einer solchen Welle mit der positiven Richtung
der x-Achse einschließt, so hat man für die Richtungskosinus
dieser Wellennormalen im xyz-System die Werte

yjl cosip xp2=^s\mp ips 0,
falls xp von +x über +y positiv gerechnet wird.

Zwischen v\ und xp bestehen wegen des Schemas I die
Beziehungen

vl a1 cos xp + a2 sin xp

v2 ßl cos xp-\- ß2 sin xp

vi yx cos tp + y2 sin xp,

die in Gleichung II eingesetzt, nach einigen Umformungen,
die Gleichung1) der Kurve C ergeben, nämlich :

q4 —q2(Ln cos2i// + L22sin2t// + 2L12 sin tp cos xp) +
+ (Mn cos2 ip + M22 sin2 tp + 2 M12 sin xp cos ip) 0.

Darin ist
Lik (b2 + c2) «i ak + (c2 + a2) /9, ßk + (a2 + b2) y, yk
Mik b2 c2 «, ok + c2 a2 ßi ßk + a2 b2 y, yk.

Die Konstanten Llk und Mjk lassen sich 'theoretisch
mit Hilfe von sechs Wertpaaren (q„, tpy), die sich auf Grund
der Messungen am Spektrometer ohne Schwierigkeit ergeben,
eindeutig als Wurzeln eines Systems von sechs linearen
Gleichungen bestimmen. Wie die Rechnung praktisch
auszuführen ist, wird sich später zeigen, hier soll nur ein
einfaches Verfahren angegeben werden, um mittels des be-

l) Vergi, hierfür und für das Folgende die Arbeit von Th. v. Liebisch
im Neuen Jahrbuch für Mineralogie und Geologie. 1886 I pag. 14 ff.

1*
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IV.

Fig. 1

obachteten Einfalls- und Ablenkungswinkels (i0 und A) q und xp

graphisch zu bestimmen. EOA (Fig. 1) sei ein Haupt¬
schnitt des Prismas mit dem
brechenden Winkel ÎH, J0E eine
einfallende, AJr eine austretende

Wellennormale. EWc und
AWj die zugehörigen
Wellenspuren. Macht man EJ0=-
EW0 AWt AJj q0, so sind
die Projektionen von EW0 und
AW auf die entsprechenden
Einfallslote EP und AQ bzw.
gleich q0sini0 und q0sin ia und
die gebrochene Wellenebene

ist der Richtung OO, parallel (also wegen ihrer zum Hauptschnitt

senkrechten Lage vollkommen bestimmt), falls 0,
den Schnittpunkt der projizierenden Geraden W0P und W,Q
bedeutet.

Der Beweis ergibt sich unmittelbar, da 00x den Winkel T
derart in zwei Winkel') r0 und rt teilt, daß

sin r0 : sin rx sin i0 : sin i,.
Der fettgezeichnete Linienzug STUV (TU-LOOJ gibt

die drei aufeinanderfolgenden Lagen einer bestimmten
Wellennormale an.

Zur Bestimmung der Geschwindigkeit q, (—UW) kann
man sich der bekannten Huygensschen Konstruktion bedienen,
wie sie in der Figur angedeutet ist (UV q0).

5. Die Hauptlichtgeschwindigkeiten a, b, c sowie die
Richtungskosinus a» ß^ (i l, 2, 3) berechnen sich aus
den Gleichungen IVa und sechs weiteren, die wegen der
Orthogonalität der Achsen zwischen den Richtungskosinus
bestehen, nämlich:

*) Man achte auf die Pfeile, denn nur für solche gerichtete
Winkelgrößen gelten die bekannten Relationen

ro + r, Tundli0-)-i1= r-\-/l
allgemein.



a-2 + ßi2 + y-2=l aiak + ßißk + yiyiL 0. IVb

Man kann nun mit Th. v. Liebisch in den Gleichungssystemen
IVa und IVb die drei Gleichungen in a\, ß2, y\ für sich

betrachten, ebenso jene in a\, ß\, y\ sowie endlich diejenigen
in al a2, ß1 ß2, yt y2 und findet durch einfache Rechnung
folgende Ausdrücke:

a4-L92a2 + M„0 -L12a2 + M,
a% — a.a0a2-_ a4-Lna2-f-Mn

ß2

(a2-b2) (a2-c2)

b4-Lub2 + Mn

IV2-

(b2-c2) (b2-a2)

_c4-Lnc2 + Mn

(a2--b2; l (a2-c2)

b4--L22b2 + M22
1

(b2'-c2 (b2-a2)

c4-" ^22 c2 + M22

ßlßl

y2 tir tl± y y
(c2-a2) (c2-b2) '2 (c2-a2) (c2-b2)

(a2 -b2) (a—c2)
— L12b2 + M12

(b2 - c2) (bä - a2)

-L12c2-r-M12

Beachtet man, daß

a\a\^[alaiY, >

so folgt aus den drei Gleichungen der ersten Zeile von V,
wenn a2 u gesetzt wird:
u4 - (LM + L22) u3 + (Mn + M22 + Lu L22 - L,|) u2-

(L11M22-r-L22M11-2L12M12)u + (MuM22-M122) 0. V1

Das gleiche Verfahren mit den Gleichungstripeln der zweiten
und dritten Zeile von V liefert für b2 und c2 eine mit VI
identische Gleichung, so daß sich also a2, b2, c2 als Wurzeln
dieser Gleichung vierten Grades ergeben, die aber im
allgemeinen noch eine vierte, von diesen verschiedene Wurzel
d2 hat, -deren Wert Th. v. Liebisch durch Koeffizientenzerlegung

zu
d2 a2«^+b2/3^+c273

bestimmte. Es läßt sich unschwer zeigen, daß a2 die größte
und c2 die kleinste Wurzel von VI ist, während die beiden
mittleren (b2 und d2) in keiner festen, zum vorneherein
gegebenen Größenbeziehung zu einander stehen, indem b2

ebensogut größer wie kleiner als d2 sein kann. Die Lösung
des Problems ist darum im allgemeinen zweideutig.

6. Da in den eben gefundenen Wurzeln der Gleichung VI
von den neun Richtungskosinus des Schemas I nur aA, ß3
und ys auftreten, so müssen wegen der bekannten Beziehung



zwischen den Koeffizienten und Wurzeln einer algebraischen
Gleichung auch die Koeffizienten der Gleichung VI neben
a2, b2 und c2 nur noch von as, ßs und y3, nicht aber von den
sechs anderen Richtungskosinus abhängen. Der direkte Nachweis

mit Hilfe der Werte für L,k und Mik auf Grund der
Orthogonalitätsgleichungen bietet keine Schwierigkeit. Es

genüge, ihn etwa für Ma M22 —M,22 durchzuführen. Durch
Substitution der Gl. IVa, Ausführung der Operationen und
einfache Kürzung kommt:

MuM22-M22ee
a.ib*c*[a.*(ßlyt-ß2yiy + b*(y1a2-y.ial)2 + c2(alßi-atßin

Nun bestehen zwischen den neun Richtungskosinus
bekanntlich die Beziehungen

ßiY*~ßtYi=a» Yia2 — Y2ai=ß3 "ißi — a-ißi^Yv
die, oben eingesetzt, das gewünschte Resultat ergeben und
zugleich den eben erwähnten Satz von Th. v. Liebisch
bestätigen :

Mu MS2 - M 22 a3 b2 c2 (a2 a\ + b2 ß\ + c2 y\).

Gleichung VI ist demnach durch die Orientierung der
brechenden Kante des Prismas in bezug auf die optischen
Symmetrieachsen des Kristalls bei gegebenen a2, b2 und c2

völlig bestimmt und deshalb von der weiteren Lage des
Prismas ganz unabhängig. Darin zeigt sich ein wesentlicher
Unterschied zwischen der Gleichung III und der Gleichung VI.
Gleichung III ist der analytische Ausdruck für die Schnittkurve

C der Wellennormalenfläche mit der durch a3,ß3,yA
bestimmten Diametralebene und in ihrer Form durch das

Bezugssystem bedingt. Für die verschiedenen Prismen mit
gleichorientierter brechender Kante müssen sich ihre
Koeffizienten ändern, trotzdem sie immer die gleiche Kurve
darstellt, eben weil sich das Bezugssystem ändert. Dagegen
bleibt Gl. VI für alle diese Prismen stets dieselbe. Sie wird
deshalb nur durch solche Eigenschaften der Kurve C bestimmt,
welche von ihrer speziellen Orientierung unabhängig sind.
Diese Eigenschaften sind die Längen der extremen
Radienvektoren.



7. Um dies zu zeigen, möge in Gl. III der doppelte
Winkel eingeführt werden. Dadurch kommt nach einigen
Umstellungen :

f (q, xp) [(Mu - M22) - (Lu - L22) q2] cos 2 xp

+ 2(M12-L12q2)sin2i^ + [2q4-(Ln+L22)q2 + (Mn + MS2)] 0 M*
oder abkürzend:

f(q,t//) Pcos2i// + 2Qsin2i/> + R 0. a)
Die Bedingung, daß q ein Extremum werde, ist bekanntlich

das Verschwinden von
dq=_jVf_ ,òi_
dxp dxp (5q

also im allgemeinen das Verschwinden von8 dtp
Man hat somit

-Psin2^ + 2Qcos2i// 0. b)
Wegen

sin2 2tp + cos2 2xp l c)
kann man xp eliminieren, indem man etwa a) und b) nach
sin 2xp und cos 2xp auflöst und die gefundenen Werte in c)

einsetzt. Man erhält auf diese Weise

R2-P2-4Q2— 0.
P2 + 4Q2

Das Nullwerden des Nenners in diesem Ausdruck ist bei
reellen Werten an die Bedingungen

P 0 und Q 0
und wegen a) auch

R 0

geknüpft, kann also, wenn überhaupt möglich, nur bei ganz
spezieller Orientierung des Prismas eintreten. Im allgemeinen
ist darum

R2-P2-4Q2 0
die gesuchte Maximums- resp. Minimumsbedingung und gibt
nach Einsetzung der Werte aus lila, wenn noch

q2 u
gesetzt wird,
R2-P2-4Q2EE4[u4-(L11+L22)u3-f-(Mll + M22+LllL22-L12)u2

-(LnM224-L22M11-2L12M12)u + (M11M2!-M12)] 0
d. h. genau die Gleichung VI w. z. b. w.
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8. Es ist für das folgende bedeutungsvoll, auch die
Gleichung

ps + 4Q2 0

näher zu untersuchen. Ersetzt man dieselbe durch das oben
gefundene, ihr äquivalente Gleichungssystem

p 0, Q 0, R 0,

so folgt durch Elimination von q2 aus den beiden ersten
Gleichungen

i-ll ^22 k|2

Mn-M22 M12

und hieraus nach Substitution der Werte aus IV a

atb2{ßly2-ß2y1){ßly1 + ß2y2)-a2bi(yla2-y2al)(alyl + a2y2)
+b*c2{y1a2—y2al){y1al+y2a2)—b2ci{alß2—a2ß1){alßi-r-ß2a2)
+c*ai(a1ß2-a2ßi){aißl-\-a2ß2)~c2SLi(ß1y2-ß2yi)(ßiy1+ß2y2)^0,

wofür man wegen der bekannten Beziehungen

ßi Yi^"ßi Y* ~ßi Yi (uncI zwe* ähnlichen)
ßi Yi ~ ßi Yi — aa (un(^ zwe' ähnlichen)

die Gleichung

- a3 ßa yz [a2 b2 (a2- b2) + b2 c2 (b2- c2) + c2 a2 (c2 - a2)]

«3/33r3(a2-b2)(b2-c2)(c2-a2) 0

erhält. Dieselbe kann jedoch nur bestehen, wenn

ist, d. h. wenn die Prismenkante mindestens auf einer optischen
Symmetrieachse senkrecht steht.

Zur Untersuchung der dritten Gleichung
R 0

empfiehlt es sich, das soeben gefundene Ergebnis zu
verwerten und zur Vereinfachung der Formeln die in der
xy-Ebene gelegene Symmetrieachse etwa mit der x-Achse
zusammenfallen zu lassen. Natürlich kann jede der drei
Achsen H,n,Z in Betracht kommen. Es genüge jedoch, die
Rechnung für

x||I
durchzuführen. Dann spezialisiert sich das Schema I zu



- x y z

1 1 0 0

V 0 cos# sint9-

Ç 0 -sin# C0S.9-

wo 6r den Winkel yr/ z£ bedeutet, der von + x aus gesehen
im Gegenzeigersinn positiv gerechnet ist. Durch diese
Koordinatentransformation wird

Q 0,
weil

L12 0 und M12 0,
und an Stelle von

P 0 und R 0
erhält man nach einfacher Rechnung die Gleichungen

[2 q2 - (a2 + b2)] (q2 - c2) - (c2- b2) (q2 - a2) sin26r

b2)(q2 (cs —b*)(qa-as)sin»0-,
deren gleichzeitiges Bestehen nur möglich ist, wenn entweder

q2 c2 und sin2# 0
oder aber

q2 b2 und sin2#=l
was in beiden Fällen besagt, daß die z-Achse nicht bloß
auf einer optischen Symmetrieachse senkrecht
steht sondern selber eine solche ist. Die Kurve C

zerfällt deshalb in einen Kreis und ein Oval und hat im
angenommenen Fall die Gleichung

(q2 - c2) [q2 - (b2 cos2xp + a2 sin»] 0

bzw. (q2 —b2) [q2 — (c2 cos2t/> + a2 sin2U>)] 0.

Dem Kreis eignet kein extremer Radiusvektor — eine

geometrische Eigenschaft, die ihren analytischen Ausdruck
darin findet, daß dq : dxp in der Unbestimmtheitsform 0:0
auftritt, sobald die Kurve C in ein Oval und einen Kreis
zerfällt und q gleich dem Radius des Kreises gesetzt wird.
Denn da unter der Voraussetzung

P 0, Q=0, R 0
auch die Gleichung

R2-P2-4Q2 0
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identisch erfüllt ist, so gilt
dq R2-P2-4Q2 Jo
dxp~ P2 + 4Q2 ~0

Abschließend kann man sagen, daß die Gleichung
p-2 + 4Q2 0

dann und nur dann besteht, wenn die Prismenkante

eine optische Symmetrieachse ist, und q
die Geschwindigkeit jener Welle bedeutet, welche
parallel zur Prismenkante schwingt. — Im Folgenden
möge diese spezielle Orientierung, welche vorläufig kein
weiteres Interesse bietet, ausgeschlossen sein.

9. In Gl. Illa möge jetzt q ein bestimmter Wert
beigelegt werden: welches sind die zugehörigen Werte von tp?
Um dieselben zu finden, kann man das Glied mit cos2i//
auf die eine Seite, die beiden anderen Glieder auf die andere
Seite bringen, sodann quadrieren und hernach cos2 2xp durch
1 — sin2 2 xp ersetzen. Man erhält so

„ 2QR + PV/P2-R2 + 4Q2
sin 2 xp —= — •

P2 + 4Q2
In ähnlicher Weise bekommt man1)

PR + 2QN/P2-R2 + 4Q2
cos 2tp -C—i< :<_.

P2 + 4Q2
Setzt man diese Werte in lila ein, so ergibt sich, daß

in %\x\2xp und cos2xp die Radikale mit entgegengesetztem
Vorzeichen zu nehmen sind, so wie es in den beiden Formeln
geschehen ist, wo die beiden obern und die beiden untern
Zeichen jedesmal zusammengehören.

Um reelle Lösungen für xp zu erhalten, muß 1. der
Radikand positiv und 2. der Zähler in beiden Brüchen,
absolut genommen, kleiner wie der Nenner sein. Was die erste
Bedingung anbelangt, so beachte man, daß nach dem Schluß
von § 7 die Beziehung besteht

P2 - R2 + 4 Q2 - 4 (q2 - a2) (q2 - b2) (q2 - b2) (q2 - c2),

i) Ist P Q R 0, so werden sin2>.'' und cos2t^ unbestimmt,
in Übereinstimmung mit dem obigen Ergebnis.
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worin b2 und b2 die beiden mittleren Wurzeln bedeuten, so

zwar, daß
a2>b2>b2>c2.

Demgemäß kann q2 niemals zwischen b2 und b| liegen,
sondern muß ausschließlich dem ersten oder dem dritten
Intervall angehören, da einzig bei dieser Annahme stets eine
ungerade Anzahl jener vier Faktoren negativ, der ganze
Ausdruck also positiv ist.

Sind demnach die Radikale und damit die Zähler von
sin 2xp und cos 2xp immer reell, so bietet die zweite Bedingung
keine Schwierigkeit mehr, wenn man beachtet, daß die
Beziehung

sin2 2 xp ¦+ còs2 2 xp 1

identisch erfüllt wird.
Weil die Kurve C wegen Gl. III zentrosymmetrisch ist,

kann man sich auf das Intervall

0<xp<n
beschränken und erhält somit eindeutig bestimmte Werte
von tp und zwar für jeden q-Wert zwei verschiedene Werte

von tp [0 <tp <n), ausgenommen wenn
P2-R2 + 4Q2 0

d. h. wenn q2 eine der vier Wurzeln der Gleichung VI ist,
wodurch die beiden i//-Werte gleich werden. Daraus folgt,
daß die Kurve C im allgemeinen vier gleiche Radienvektoren
hat, die zu je zweien auf einem Durchmesser liegen. Dagegen
kommen die Radienvektoren mit den Längen a, b, c und d,
welche an das Verschwinden des Radikanden P2 — R2 + 4 Q2

gebunden sind, nur je zweimal vor und bestimmen zusammen
vier ausgezeichnete Durchmesser der Kurve C. Drei dieser
Durchmesser (nämlich a, b und c) müssen, wie eine einfache
Überlegung an Hand einer Skizze der Wellennormalenfläche
zeigt, die Schnittlinien der optischen Symmetrieebenen mit
dem Hauptschnitt des Prismas sein, während sich die
Bedeutung der vierten Richtung mit Hilfe des Indexellipsoides
(Elastizitätsellipsoides) ergibt. Nach Fresnel sind nämlich für
jede Fortpflanzungsrichtung die zugehörigen Schwingungsrichtungen

und Wellennormalengeschwindigkeiten bestimmt
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durch die Richtung und reziproke Länge der Halbachsen
jener Ellipse, in welcher das Indexellipsoid von der zur
Fortpflanzungsrichtung senkrechten Diametralebene geschnitten
wird. Da sich nun die Gleichung dieses Ellipsoïdes,
bezogen auf die Hauptschwingungsrichtungen als Achsen, in
der Form schreibt

a2 v2 + b2 v2 + c2 v\ —,1 2 3 Q2>

so ergibt sich aus dem Schema I unmittelbar, daß

d2 a.2al + b2ß2 + c2y2
das Quadrat der reziproken Länge jenes Radiusvektors des

"Indexellipsoides ist, der auf dem Prismenhauptschnitt senkrecht

steht, oder anders ausgedrückt, daß d2 das Quadrat
der Fortpflanzungsgeschwindigkeit jener Welle ist, die parallel
zur brechenden Kante des Prismas schwingt. Jener vierte
Durchmesser gibt darum die Richtung an, in der sich diese durch
ihre Schwingungsrichtung ausgezeichnete Welle fortpflanzt.

10. An Hand einer Skizze der Wellennormalenfläche1)
erkennt man leicht, daß a dem äußeren, c aber dem inneren
Zweige der Kurve angehört, während b bald auf dem inneren,
bald auf dem äußeren Zweige liegen kann, und zwar ist b

Minimum des äußeren und d Maximum des inneren Zweiges,
wenn der Prismenquerschnitt durch jenen Winkel der optischen
Achsen geht, der von der £-Achse halbiert wird, dagegen
ist b Maximum des inneren und d Minimum des äußeren
Zweiges, wenn der Prismenquerschnitt durch jenen Winkel
der optischen Achsen geht, der von der £-Achse halbiert
wird. Im ersten Fall ist b>d, im zweiten b<d und es
gibt für den betreffenden Schnitt keinen Kurvenradius,

dessen Länge dem Intervall (b, d) angehört
(vergi, die Diskussion in § 9).

11. Ohne auf Einzelheiten einzugehen, sei bei dieser
Gelegenheit doch darauf hingewiesen, daß die Entscheidung

*) Man vergi, für das folgende: Chr. Soret, Über die
Anwendung der Totalreflexion zur Messung der Brechungsexponenten
zweiachsiger Kristalle. Zeitsch. für Krist. und Mineral. 15. 45. In
Betracht kommt namentlich S. 47 f.
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zwischen b und d getroffen werden könnte, wenn die Lage
der optischen Achsen wenigstens insoweit bekannt wäre, daß

man wüßte, durch welchen Winkel derselben der Prisme'n-
querschnitt verläuft. Da aber die Lagebestimmung der
optischen Achsen den Wert von b meistens voraussetzt oder
selber liefert, so wird diese Methode in der Mehrzahl der
Fälle praktisch wertlos. — Die Entscheidung zwischen b und
d könnte natürlich auch dann getroffen werden, wenn, um
andere, dem Mineralogen weniger naheliegende Beziehungen
zu übergehen, etwa der scheinbare Winkel der optischen
Achsen bekannt wäre oder wenn die Kurve C an einem
zweiten, anders orientierten Prisma1) bestimmt würde, wodurch
sich im allgemeinen eine von d verschiedene Wurzel d' ergäbe.

12. Damit a, b, c und d wirklich extreme Radienvektoren
der Kurve C seien, müssen neben der Gleichung (vergi. § 7)

dxp
noch die beiden Bedingungen

— +0,o= und——0 -: — #0
oq dxp2 dxp2 <5q

erfüllt sein. Die partielle Differentiation von î {q,xp) (Gl. lila)
nach q ergibt den Ausdruck

— 2q j 4q2 - [(Ln + L22) +(lis- L22) cps 2xp + 2 L12 sin 2^]},
der nach Ersetzung von cos 2tp und sin 2xp durch die § 9
gefundenen Werte und mit Rücksicht auf den Umstand, daß wegen

q2 a2, b2, c2, d2

auch (§ 7)
P2 + 4Q2eeR2

gesetzt werden kann, schließlich die Form annimmt:

^ |{8q^-6(Lu-f-L22)q5 + 4(LnL22 + Mn+M22-L12)q3
oq Kl

- 2 (Lu M22 + L22 Mn - 2 L12 M12) q J.

*) Das analoge Problem im Fall der Totalreflexion an einer
beliebig orientierten Kristallfläche wurde von C h. S o r e t und L. P e r r o t
behandelt. Vergi. Pockels Lehrbuch p. 130.'
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Der Klammerausdruck ist die erste Ableitung der
Gleichung VI (falls darin u wieder durch q2 ersetzt wird) und
darum sicher von Null verschieden, wofern die Gleichung VI
keine Doppelwurzel hat. Eine solche wäre aber einzig dadurch
möglich, daß d mit einer Hauptlichtgeschwindigkeit zusammenfallen

— also, um von einem anderen gleich zu behandelnden
Fall vorläufig abzusehen, die Prismenkante eine optische
Symmetrieachse würde, was hier ausgeschlossen ist.

Wegen der Annahme, daß die Prismenkante nicht optische
Symmetrieachse sei, ist auch R von Null verschieden, und
da zudem der Klammerausdruck selber für keinen der in
Betracht kommenden Werte unendlich groß werden kann,
so bleibt df:òq notwendigerweise endlich.

Damit endlich noch
d2q : dxp2 * 0,

ist wegen des letzten Ergebnisses, wornach of:òq weder
unendlich klein noch unendlich groß werden kann, notwendig
und hinreichend, daß

— - 4 (P cos 2 xp + 2 Q sin 2 tp) 4= 0
dxp2

oder daß
P cos 2 xp + 2 Q sin 2 xp 4= 0

oder, wenn die trigonometrischen Funktionen wiederum durch
ihre Ausdrücke in P, Q und R ersetzt werden, daß

R

eine Bedingung, die immer erfüllt ist, wenn
P2 + 4Q2-R2 0,

ohne daß gleichzeitig
P 0, Q 0, R 0,

was hier ja vorausgesetzt ist.

13. Nun möge noch der soeben ausgeschlossene Fall

erledigt werden, wo d gleich einer Hauptlichtgeschwindigkeit
wird.
Neben dem bereits in § 8 erwähnten Fall, wo die Prismenkante

optische Symmetrieachse ist, kann sich das Zusammenfallen

von zwei Wurzeln der Gl. VI bei zweiachsigen Kristallen
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auch dann noch ereignen, wenn, wie in anderem Zusammenhang

bewiesen werden soll, eine der beiden optischen Achsen
in die Querschnittsebene des Prismas zu liegen kommt. Eine
einfache Überlegung zeigt, daß dann die Kurve C zwei Doppelpunkte

hat, für welche die Ableitung von q nach xp die
unbestimmte Form

dq : dxp 0 : 0

annehmen muß. Merkwürdigerweise wird aber der Radiusvektor

dieses Doppelpunktes ein Extremum in vollkommener
Übereinstimmung mit den obigen Erwägungen, wornach b

und c die maximalen und minimalen Radienvektoren des
äußeren und inneren Zweiges der Kurve C sind. Nähern sich
nämlich die beiden Zweige, so vermindert sich die Differenz
von b und d, bis schließlich im Falle der Berührung b und d

gleich werden, so daß an der Berührungsstelle (oder besser

Durchdringungsstelle) b maximaler Radiusvektor des inneren
und minimaler des äußeren Kurvenzweiges wird.

Um dieses der Anschauung entnommene Resultat auch
analytisch herzuleiten, sollen zuerst die speziellen Werte der
Richtungskosinus au ß\, y\ ermittelt werden. Hierbei empfiehlt
es sich, das \\nZ-System, dessen Achsen zunächst mit x, y
und z zusammenfallen mögen, so um die rj y-Achse zu
drehen, daß etwa die zwischen +1 und + Z gelegene optische
Achse Aj mit + x zusammenfalle. Hernach wird man, um
eine möglichst allgemeine Lage zu erhalten, das bereits
gedrehte CwZ-System noch so weit um die x-Achse drehen,
bis + n zwischen + y und + z zu liegen kommt und mit + y
einen Winkel ip bildet. Bezeichnet il den in der ursprünglichen

Lage von + z und Aj eingeschlossenen Winkel, so
nimmt das Schema I die nachstehende spezielle Form an.

X y z

§ sinii sin cp cos il — cosy cos il
n 0 cos<p sin y

cosi2 — sin q> sin il cos (p sin il



lb

Mit Rücksicht auf die bekannten Beziehungen

sin i2 — y cos il V —V „2 ~2 V „2 _

wird
Lu=2b2
L22 - a2 -r c2

L12 -siny \/(a*-b*) (b2-c2)
M„=b*
M22 a2 c« + (a2 - b2) (b2 - c2) sin2 y
M12 =— b2 sin (p V{&2 - b2) (b2 - c2).

Die Substitution dieser Werte in Gleichung III1) gibt für
xp 0 ohne weiteres

q4-2b2q2 + b4 (q2-b2)2 0,

dagegen für jeden anderen Wert von xp zwei Werte q'2 und
q"a derart, daß

q'2<b2<q"2.
Der Beweis ist äußerst einfach. Ist nämlich

f (x2) (x2 - q'2) (x2 - q"2) 0

eine biquadratische Gleichung, so wird, wie bekannt, die
Funktion i(x2) für jeden reellen x2-Wert, der zwischen den
beiden reellen und positiven Wurzeln x'2=q'2 und x"2=q"2
liegt, negativ, und umgekehrt muß jeder positive x2-Wert,
für den f(x2) negativ wird, zwischen den beiden reellen
Wurzeln q'2 und q"2 liegen. Um also zu zeigen, daß die

Doppelungleichung
q'2<b2<q"2

für jeden xp-Wert in der Umgebung von xp 0,n erfüllt ist,

genügt es, etwa in Gl. lila q2 durch b2 zu ersetzen und den

vereinfachten Ausdruck auf sein Vorzeichen zu prüfen. Eine
einfache Rechnung gibt

î (q2 b2, tp) - (a2 - b2) (b2 - c2) cos2y 1 ~ cosh/>).

Da die rechte Seite im allgemeinen negativ ist und bei

festgegebenem cp (<jp4=—i—) nur für xp nn verschwindet, so

Die Substitution dieser nämlichen Werte in Gleichung lila usw.
zeigt, daß für \]> 0 tatsächlich dq : di/> 0: 0 wird.
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besagt sie also, daß in der Umgebung von xp 0,7i der
Radiusvektor des innern Kurvenzweiges kleiner, der des
äußern größer ist wie b.

Erwähnenswert ist noch, daß unter diesen
Voraussetzungen a2, b2, b2 und c2 die vier Wurzeln der Gleichung VI
sind, so daß ihre Lösungen ganz allgemein und ausnahmslos
die Quadrate der maximalen und minimalen Radienvektoren
der Kurve C ergeben. Sind zwei Wurzeln einander gleich,
so entsprechen sie entweder dem Radius eines Kreises, zu
dem sich der eine Kurvenzweig vereinfacht (uneigentliches
Extremum ; die brechende Kante ist eine optische Symmetrieachse)

oder aber den Doppelpunkten, in welchen sich die
beiden Kurvenzweige kreuzen (die brechende Kante steht
auf einer optischen Achse [= Binormalen] senkrecht).

14. Es war ausdrückliche Voraussetzung der bisherigen
Entwicklungen, daß die optische Orientierung des Prismas,
d. h. die Lage des £77 £-Systems in bezug auf das xyz-System
unbekannt sei. Die zu lösende Doppelaufgabe bestand demnach

einerseits in der Ermittlung der drei
Hauptlichtgeschwindigkeiten und anderseits in der Lagebestimmung
der optischen Symmetrieachsen. Diese letztere, wenn
überhaupt möglich, hat aber nur dann einen Sinn, wenn es gelingt,
die Orientierung der Hauptschwingungsrichtungen auch

kristallographisch festzulegen. Dazu ist vor allem die Kenntnis
der kristallographischen Orientierung des Prismas erforderlich.
Diese vorausgesetzt, wird sich nun ein wesentlicher Unterschied

zwischen den drei Systemen der zweiachsigen Kristalle
herausstellen.

/. Rhombische Kristalle.
15. Die kristallographischen Achsenebenen sind optische

Symmetrieebenen. Bei bekannter kristallographischer
Orientierung des Prismas ist es möglich, ihre Schnittgeraden mit
dem Prismenhauptschnitt zu berechnen und damit die
Richtungen festzulegen, längs derer eine Lichtgeschwindigkeit a

bzw. b oder c ist. Da die Fortpflanzungsrichtung der d-Welle
hiervon im allgemeinen verschieden ist — der Beweis soll
später (§ 27) geliefert werden —, so ist es möglich, b und d

2
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zu unterscheiden und damit die Hauptlichtgeschwindigkeiten
mit Hilfe eines beliebigen Prismas eindeutig zu bestimmen.
Wegen der unvermeidlichen Messungsfehler wird die
Übereinstimmung zwischen Rechnung und Beobachtung nicht
vollkommen sein. Man erhält darum drei Bedingungsgleichungen

als Äquivalent der drei überzähligen
Beobachtungsreihen.

16. M. Born1) kam vor vielen Jahren zu einem ähnlichen
Resultat, indem er, die Kenntnis der Richtungskosinus

des Schemas I voraussetzend, die Gleichung III
nach b2c2, c2a2, a2b2, a2, b2 und c2 ordnet und mit sechs

Wertpaaren [qi,xp\)\
b2c2 Ax c2a2 B1 a2b2 Cj

a2 A2 b2 B2 c2 C2

berechnet. Wegen der überschüssigen Beobachtungen ergeben
sich die Bedingungsgleichungen

j\2 ^1^' B2 ^1^' C2 A'fy
2

A,
2

B,
2

Cx

Nicht unerwähnt bleibe, daß die Lage der optischen
Symmetrieachsen nicht als völlig bekannt vorausgesetzt zu
werden braucht, sondern daß es genügt, zu wissen, daß die
betreffenden Richtungen überhaupt Symmetrieachsen sind.
Welche derselben die {•- bzw. n- und £-Achse sei, ergibt
sich dann hinterher durch einfache Überlegungen.

17. Die einzige Ausnahme dieser Regel tritt ein, wenn
der Prismenhauptschnitt durch eine und nur eine optische
Symmetrieachse geht, so daß zwei jener Ebenenspuren
zusammenfällen. Ist diese Symmetrieachse die g- oder £-Achse,
so ist freilich die eindeutige Bestimmung der
Hauptlichtgeschwindigkeiten (und, wie sich später § 23 Anm. zeigen
wird, auch der optischen Orientierung) noch möglich, denn
mit der Richtung dieser Symmetrieachse fallen die
Radienvektoren b und c bzw. a und b zusammen, während der
Radiusvektor d in anderer Richtung (vergi. § 27) liegt (wegen
der Voraussetzung, daß der Prismenhauptschnitt nur eine

i) M. Born, N. Jahrb. für Miner. B.-Bd.5 (1877), 40 ff.
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optische Symmetrieachse enthalte), b ist folglich durch die
bekannte Richtung des zugeordneten Radiusvektors der
Kurve C ausgezeichnet und d gegenüber kenntlich gemacht.
Wird dagegen die im Prismenhauptschnitt gelegene optische
Symmetrieachse zur ??-Achse, so fallen mit dieser bekannten
Richtung"die a und c zugeordneten Radienvektoren zusammen,
während die zu b und d gehörigen Radienvektoren der Kurve C
hiermit einen rechten Winkel bilden, also die gleiche Richtung
haben und folglich nicht mehr unterschieden werden können.

18. Eine eindeutige Lösung kann indessen in anderer
Weise erzielt werden. Denn wegen der bekannten
kristallographischen Orientierung des

Prismas sind nur die in Fig. 2 a

und Fig. 2 b veranschaulichten
Anordnungen möglich. Das
Schema I geht dabei in das

folgende über. Fig. 2 a Fig. 2b

Fig. 2 a X y z

§ sin q> sin 3- — cosy sin>9- cos#

V cosy sin y 0

— sin y cos & cosy cos «9- sin .9-

Fig. 2b X y z

f — sin y cosi9- cos y cos ß- sin ,9

V cosy sin y 0

5 — sin y sin & + cos y sin .9- — COS.'?'

Auf Grund dieses Schemas, worin y und S- bekannt sind,
läßt sich, da bezüglich der Werte von a2 und c2 jeder Zweifel
ausgeschlossen ist, nicht nur b2 von d2 unterscheiden, sondern
auch ermitteln, ob der eine oder der andere der beiden Fälle

vorliege. Es ist nämlich im Falle der Fig. 2a
d2 a2cos2#-r c2sin2#

2*



— 20 —

und im Falle der Fig. 2 b
d2 a2sin2# + c2cos2#.

Einer dieser Werte von d2, die sich zum vorneherein berechnen
lassen, muß mit einer der mittleren Wurzeln von Gleichung VI
übereinstimmen. Dadurch fällt die Zweideutigkeit bezüglich
b2 sowohl als auch der Orientierung dahin. Einzig für & 45°

oder 135° stellt sich eine Zweideutigkeit ein, indem es unmöglich

wird zu entscheiden, ob es sich um den in Fig. 2 a oder
in Fig. 2 b dargestellten Fall handelt, ohne daß aber dabei die

Entscheidung zwischen b2 und d"2 selber unmöglich würde.
19. Es ist übrigens interessant, daß wenn r\ in den

Prismenquerschnitt fällt, die von M. Born angegebene Methode
versagt, denn nach Fig. 2 a1) und mit Rücksicht auf die
zugehörige Form des Schemas I geht Gleichung III über in:

sin2 (y — xpi) sin2 d- • b2 c2 + cos2 (y — xp-,) ¦ c2 a2

+ sin2 (y—xpi) cos2 & • a2 b2 — qi2 [cos2 (y — xpi)

+ sin2 (y—xpi) cos219] a2 — qi2 sin2 (y — xpi) • b2

- qi2 [sin2 (y - xpi) sin2,9 + cos2 (y - xpi)] c2 + qi4 — 0
Man beachtet nun leicht, daß das Gleichungssystem, welches sich
aus sechs zusammengehörigen Wertpaaren qi, xp-, (i=l,2..6)
ergibt, eine identisch verschwindende Determinante hat (weil
nach Abspaltung von sin2*9 resp. cos2 & die erste Kolonne
gleich der dritten wird usw.), also nicht lösbar2) ist.

//. Monokline Kristalle.
20. Dem Gesagten zufolge ist jede Zweideutigkeit

behoben, falls die Orthodiagonale der rç-Achse parallel ist, ohne
im Prismenhauptschnitt zu liegen.3)

///. Trikline Kristalle.
21. Die Entscheidung zwischen b und d kann nicht

getroffen werden.

') Entsprechendes gilt für Fig. 2 b.
2) Würde eine andere Hauptschwingungsrichtung in die

Querschnittsebene des Prismas fallen, so erhielte man die entsprechenden
Formeln durch zyklische Vertauschung von a2, b2 und c2. Daraus
folgt, daß auch in diesen Fällen die Methode Borns versagen muß.

8) Die vorhergehenden Überlegungen können wegen Unkenntnis
des Winkels * nicht auf das monokline System übertragen werden.
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22. Es ist bekannt, daß die Bestimmung der Brechungsindizes

eines .Kristalls mit Hilfe der Totalreflexion an einer
einzigen Fläche zu Ergebnissen führt, die den bisher
gefundenen1) ähnlich sind, nur handelt es sich dabei um eine
Kurve S, welche man als Grenzlinie der totalen Reflexion
bezeichnen kann. Sie besteht im allgemeinen aus zwei
getrennten Teilen, deren Maxima und Minima durch die
Radienvektoren von der Länge a, b, c und dt bestimmt sind.
Wiederum ist die Lösung zweideutig. Da aber d2 das Quadrat
der reziproken Länge jenes Radiusvektors des Fresnelschen
Ellipsoïdes ist, der auf der Grenzebene senkrecht steht, so
muß die dj-Welle parallel der Einfallsebene schwingen und
kann mit Hilfe eines Nikolschen Prismas von jeder anderen
Welle unterschieden — das Problem also eindeutig gelöst
werden.

Es läge nun der Gedanke nahe, auch beim Prisma die
ausgezeichnete Schwingungsrichtung der d-Welle heranzuziehen,

um zwischen b und d zu entscheiden. Allein die
Tatsache, daß der Schwingungszustand des ausgetretenen
Lichtes von demjenigen im Kristall im allgemeinen verschieden
ist, vor allem aber der Umstand, daß die Orientierung des
Prismas die Beobachtung der d-Welle ohne besondere
Hilfsmittel in den seltensten Fällen gestatten wird, machen die

angedeutete Methode, so naturgemäß sie auch erscheinen

mag, vollständig illusorisch.
23. Wäre nun in einem gegebenen Falle die eindeutige

Bestimmung der Hauptlichtgeschwindigkeiten aus irgendeinem
Grunde möglich, so gestatten die beiden ersten Gruppen
(Kolonnen) der Gleichung V die eindeutige Ermittlung der
absoluten Werte von ai,ßi,y-x (i—1,2). Damit sind natürlich
auch die absoluten Werte von a3,ßs,yA eindeutig bestimmt.
Die Vorzeichen von alt ßu yl kann man beliebig wählen,
weil dadurch nur der positive Richtungssinn der Achsen

1 Auf die soeben erläuterte Ausnahmestellung der rhombischen
und z. T. monoklinen Kristalle, die natürlich auch im Falle der
Totalreflexion bestehen bleibt, scheint bislang niemand aufmerksam
gemacht zu haben.
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und die Rechts- oder Linkshändigkeit des Systems festgelegt
wird. Wegen der dritten Gruppe der Gleichung V findet
man hierdurch ganz bestimmte Vorzeichen für a2, ß2, y2,
wogegen aus

«2 «8 + ßi ßs+Y2Y-6
«1 «8 + ßi ß3 + Yi Y6 0

nur die Verhältnisse as : ßB : ys, d. h. die relativen Vorzeichen
von a3, ßit y3 erhalten werden, so daß sowohl (aita2, aA)

als auch (aita2, — aa) Lösungen der Gl. IVb und V sind.
Die Rechnung ergibt daher für die Hauptschwingungsrichtungen

zwei, den beobachteten Erscheinungen genügende
Orientierungen, die zur brechenden Kante des Prismas
symmetrisch liegen. Das beweist — und die Diskussion der
Gl. IVb und V bestätigt es —, daß zur eindeutigen Bestimmung

der Orientierung die Lage einer Hauptschwingungsrichtung

bekannt sein muß, die aber nicht im Hauptschnitt
des Prismas gelegen sein darf,1) weil sonst die Wahl zwischen
den beiden symmetrischen Systemen nicht möglich ist, da
die gegebene Richtung wegen ihrer symmetrischen Lage zur
brechenden Kante beiden Systemen angehört. Ebenfalls
unbestimmt wird die Orientierung, wenn eine Hauptschwingungsrichtung

mit z einen Winkel von 45° bildet und eine andere
im Prismenhauptschnitt liegt (vergi, den Schluß von § 18 und
die vorstehende Anmerkung).

24. Zum gleichen Resultat führt das von Cornu2) und
Viola3) für das Reflexionsproblem abgeleitete, aber auch im
vorliegenden Fall gültige Gleichungssystem:

*) Wenn oben, § 17, gleichwohl gesagt wurde, die Orientierung

lasse sich eindeutig bestimmen, trotzdem die bekannte
Hauptschwingungsrichtung in die Querschnittsebene des Prismas fällt, so

liegt der Grund darin, daß von den beiden möglichen Systemen, die

zur z-Achse symmetrisch sind, nur das eine mit dem krystallo-
graphischen Achsenkreuz zusammenfallen kann, falls nicht zufällig
die beiden, nicht im Hauptschnitt des Prismas gelegenen optischen
Symmetrieachsen zur z-Achse selber symmetrisch liegen.

2) Cornu, Bulletin de la soc. fr. de minéral. 25. 17.

3) Zusammenstellung seiner zahlreichen diesbez. Publikationen
im Bull. min. 25. 88. Vergi, auch ib. 147.
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AB + BC + CA ¦ 2n

cos2 a.A cotg AB • cotg C A

cos2#, cotg BC • cotg AB

cos2 y3 cotg CA • cotg BC

Die Winkel AB, BC und CA sind aus Fig. 3 verständlich,
in der OA, OB, OC die Richtungen angeben, längs derer
die Radienvektoren der Kurve C gleich
a, b und c werden. Dabei wird
zunächst vorausgesetzt, daß die z-Achse
in das Innere oder die Umgrenzung
des Trieders O'ÇrjZ falle — eine
Annahme, die natürlich immer zulässig
ist, wofern die drei Richtungen 0£,
Or] und 0£ ein rechts- oder
linkshändiges Achsensystem bilden können.
Will man aber beim einmal
angenommenen Rechtssystem bleiben, so FlS- 3

hat man — falls die über dem Prismenquerschnitt gelegenen
£ r\ ^-Richtungen kein Rechtssystem bilden — bloß ihre
Verlängerungen über 0 hinaus zu betrachten. Da die Winkel
zwischen+z und den positiven Richtungen der ^j/T-Achsen
im einen Fall zu denjenigen im anderen Fall supplementär
sind, so verändern sich die Quadrate ihrer Kosinus nicht
und das Cornu-Violasche Formelsystem bleibt gültig, wofern
nur die positive oder negative z-Achse in das Innere oder die

Umrandung des Trieders Oi-rj Z fällt, was immer realisierbar ist.

Aus der Beziehung zwischen A, B und C einerseits
und £, rj und Z anderseits folgt, daß sie aufeinander senkrecht
stehen. Die Pole von £... müssen daher auf den zu A...
senkrechten Durchmessern liegen. Da aber die Gleichungen
des fraglichen Systems in cos a.ò... quadratisch sind, so
erhält man — Cornu und Viola scheinen dies nicht beachtet
zu haben — für oc8... je vier Werte, (nämlich + ad und

ji + tt,...), welche je zwei durch den Ursprung gehende
Gerade bestimmen. Die der positiven z-Achse zunächstliegenden

Pole sind in der stereographischen Projektion der
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Fig. 3 eingetragen und beweisen augenscheinlich das oben
auf anderem Weg gefundene Resultat.1)

25. Sind die Hauptlichtgeschwindigkeiten a, b und c
gegeben, so ist es bei bekannter Lage der Hauptschwingungsrichtungen

möglich, die Richtung OD zu bestimmen, längs
der sich jene vierte Welle mit der Geschwindigkeit d

fortpflanzt. Cornu2) glaubte nun, hierauf eine Methode gründen
zu können, welche erlaubt, b und d zu unterscheiden. Nach
ihm brauchte man bloß den einen dieser Werte als den

richtigen anzunehmen und hernach d zu berechnen. Fällt
dieser berechnete Wert mit dem experimentell gefundenen
überein, so war die Wahl gut — wenn nicht, so hat man
einfach den anderen Wert als den richtigen zu nehmen.

Viola3) (z. T. auch schon Cornu4)) prüfte diese Ansicht
am Beispiel der Weinsteinsäure, wofür Cornu5) mit Hilfe der
Totalreflexion folgende auf vier Dezimalen abgerundete Werte
gefunden hatte:

l/a= 1,4965 AB 63»25' Ari „„,_,l/b 153636) AD 43° 15'IL BC 50M5'
l/c= 1,6063 DC 70° 25'
l/d-1^526 CA 66020'-180» UL

Mit Hilfe von 1/a, 1/b, 1/c und den zugehörigen Azimuten
ergibt die Rechnung:
l/d= 1,5537 AD 43° 40' BD -19°45' CD -70° 00'.
Der Unterschied zwischen den beobachteten und berechneten
Werten ist daher:

-0,0011 -0°25' -0°25' -0°25'.

!•) Bestimmt man, was im Fall der Totalreflexion an einer Kristallplatte

(nicht aber bei der Lichtbrechung durch das Prisma) möglich
ist, den Polarisationszustand des Lichtes, so kann die Entscheidung
zwischen den beiden Orientierungen des J n f-Systems leicht getroffen
werden. Auf die Weise verfuhr Viola und erhielt darum ohne weiteres
eindeutige Resultate.

-') Bull. min. 25. 19 f.
3) Bull. min. 25. 150 ff.
*) Bull. min. 25. 26«.
5) Bull. min. 25. 25, 26.

«) Hierfür setzt Cornu I. c. pag. 26 fälschlich 1,5637.
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Geht man aber umgekehrt von 1/a, 1/d, 1/c und AD, DC,
CA aus, so berechnen sich die Werte:

l/b= 1,5353 AB 62° 52' DB 19° 40' CB=-50°48',
und die Differenz zwischen den gemessenen und berechneten
Werten ist:

-0,0010 0°33' 0°30' 0°33'.
Die Unterschiede zwischen Beobachtung und Rechnung liegen
demnach in diesem zweiten Fall ebenso wie im ersten innert
den Grenzen der Beobachtungsfehler, so daß der Vorschlag
Cornus praktisch nicht verwertbar1) erscheint. Ja, er ist
nicht einmal theoretisch2) richtig, da sich zeigen läßt, daß
die eine Wertgruppe die notwendige Folge der anderen ist.

Um diesen Satz zu beweisen, kann man von den beiden

Indexellipsoiden3) a2 & _|_ ^2 „2 _|_ c2 £2 j
a2 £'2+ (a2 cos2 a + b2 cos2 ß + c2 cos2 y) rj'2+ c2 Z'2= 1

ausgehen, deren Hauptachsen im allgemeinen verschieden

gerichtet sind, jedoch so, daß die drei Achsenebenen

| 0 £' 0 z 0
durch eine Gerade gehen (Richtung des Radiusvektors von
der Länge a), welche zur x-Achse gewählt werden möge.
Man erhält dadurch die aus dem nachstehenden Schema
ersichtlichen Transformationsgleichungen. Dem Winkel a ist
dabei kein Richtungssinn zuzuschreiben.

X y z X y z

£ 0 sina cosa r 0 sin a' cosa'

V
cos y
since

—cos/9 cotga cos/9 V'
cos y' -cos/9'cotg a' cos/9'sina'

Ç
cos ß
sina

— cosj^cotga cosy t cos/9'
sina' —cos y' cotga' cosy'

*) Ob Pockels, Lehrb. der Krist. pag. 132, diese Tatsache oder
einen anderen Grund im Auge hatte, ist nicht recht ersichtlich.

a) Die § 18 verwertete Methode ist in einem gewissen Sinn mit
dem Vorschlage Cornus identisch, unterscheidet sich aber davon
wesentlich darin, daß die beiden Wellennormalenflächen bzw. Ellipsoïde
zusammenfallende Hauptachsen haben.

8) «, ß, y seien die Winkel, welche {, n, C mit z bilden. Entsprechendes
gelte für «',/»',/.



- 26 —

Nun sollen voraussetzungsgemäß auch die drei Ebenen
£ 0 Z' ° z °

durch eine Gerade gehen (Richtung des Radiusvektors mit
der Länge c). Das ergibt als erste Bedingung

cos ß
sina
cos/9'

— cos y cotg a cosy

— cos y' cotga' cos /
sina

cos /9' cos y cos a cos /9 cos y' cos a'

sina
0 0 1

cos/9

sina
cos ß'

cos y cotg a

cos/cotga'

0,
Sina Sina sin a sin a

oder da
sin a =4=0 und sin a'4=0

auch
cos/9' cos}' cos a cos /3 cos/ cosa'. a,)

Da ferner der Abschnitt des einen Ellipsoïdes auf der
z-Achse gleich der mittleren Halbachse des anderen
Ellipsoïdes sein soll, so erhält man als zweite Bedingungsgleichung

a2 cos2 a! + (a2 cos2 a + b2 cos2 ß + c2 cos2 y) cos2 /9'

+ c2 cos2 y' b2. b)
Nun sind die Richtungen zu berücksichtigen, deren

zugeordnete Wellen parallel der Prismenkante schwingen.
Um sie zu ermitteln, lege man durch die z-Achse zwei
Ebenen, welche die beiden Ellipsoide derart in zwei Ellipsen
schneiden, daß je eine ihrer Hauptachsen mit der z-Achse
zusammenfalle. Diese Ebenen sind, wie die analytische
Geometrie lehrt, dadurch ausgezeichnet, daß sie die Tangentialebenen

im Punkte 0, 0, z je längs einer Geraden schneiden,
die der xy-Ebene parallel ist. Zur Aufstellung der Gleichung
der besagten Tangentialebene oder noch einfacher der zu
ihr parallelen, durch den Ursprung gehenden Ebene empfiehlt
es sich, die Ellipsoide mit Hilfe des Schemas I zuerst auf
das xyz-System zu transformieren, worauf man durch
einfache Rechnung (bei allgemeiner Schreibweise) den Ausdruck
erhält
(a2 a, o, + b2ß.Aßx + c2y.i7l)x + (a2 a2 «„ + b2 ß2 ßt + c2 y2 y.A) y

+ (a2a2 + b2/9| + c272)z 0.



— 27 —

Die Schnittgeraden dieser Ebenen mit der xy-Ebene haben

Richtungskoeffizienten von der Form

m_ a2a3a, + b2/93/9t + c2 y3 y,
^

a2a2a3 + b2/92/93 + c2y2y3'

Wegen der bekannten Eigenschaften des Indexellipsoides muß
diese Gerade (m bzw. m') senkrecht sein zur Schnittgeraden
der Ebene z 0 mit tj' 0 (resp. J? 0), in denen sich die
Wellen mit der Geschwindigkeit q b' (resp. q b)

fortpflanzen. Die Richtungskoeffizienten dieser letzteren sind

cosy cos/
11 und u -

cosa cos/9 cosa' cos/9'
Man hat somit die Beziehungen

1

a •
x

m und m

die sich mit Benutzung der obigen speziellen Formen des
Schemas I schreiben:

(b2 — c2) cos/3 cosy _ cos a'cos a cos/9'
a2sin2a —b2 cos2/3 —c2 cos2y cos/

und
(a2 cos2 a + b2 cos2 ß — c2 sin2 y) cos /9' cos /

a2 sin2 d — (a2 cos2 a + b2 cos2 ß + c2 cos2 y) cos2 /9' — c2 cos2 /
cosq' cosa cos/9tL d)

cosy
Aus der quadrierten Gleichung a) und aus der Gleichung b)
kann man mit Hilfe von

cos2 a' + cos2 /9' -1- cos2 / 1

cos2/9' und cos2/ eliminieren und bekommt nach einfachen
Transformationen die Gleichung
(a2 sin2 a — b2 cos2 ß — c2 cos2 y) cos2 /9 cos4 a' +
[(a2 sin2a cos2a — b2 sin2/9 cos2/9 + c2 (cos2/9—cos2 a) cos2y] cos2a'

— (b2 — c2) cos2 q cos2 y 0,

deren einzige in Betracht fallende Lösung

„ (b2 —c2)cos2y
cos2 q '-

a2 sin2 q — b2 cos2 /9 — c2 cos2 y
ist, da H e andere Lösung
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cos2/9
keine reellen Werte für d liefert.

Bringt man Gleichung a) auf die Form
cosß cosy' cosa'

cos/9'cosy cosq
und multipliziert die beiden Seiten derselben mit den

entsprechenden Seiten der Gleichung c), so kommt unmittelbar

„ (b2 — c2)cos2y
cos2 q ¦ ¦ -

a2 sin2 q — b2 cos2 ß — c2 cos2 y
Weiterhin gibt Gleichung d), wenn ihre rechte Seite wegen
Gleichung a) mit

_ cos /9' cos y cosa
cos/9 cosy' cosq'

multipliziert wird, nach einigen Umstellungen
a2 cos2 q -t- b2 cos2 /9 — c2 sin2 y

a2 sin2 q' — (a2 cos2 a + b2 cos2 /9 + c2 cos2 y) cos2 /3' — c2 cos2 y'
_cos2a

cos2 y
woraus man mit abermaliger Benutzung der Gleichung a) und
Abspaltung eines von null verschiedenen Faktors wiederum

(b2-c2)cos2ycos2 a '-
a2 sin2 a — b2 cos2 ß — c2 cos2 y

erhält. Die Bedingungsgleichungen b), c) und d) sind mithin

äquivalent, denn sie unterscheiden sich nur durch einen
Zahlenfaktor. Demnach sind auch die Eigenschaften der
beiden Ellipsoide, welche zur Aufstellung der dritten und
vierten Bedingungsgleichung führten, bloße Folgen der zuerst
genannten, und damit ist die Unhaltbarkeit des Cornuschen
Gedankens bewiesen.

Diese Ableitungen beweisen zunächst nur, daß der
Gedanke Cornus nicht auf die Prismen übertragbar ist. Sie
sind aber ohne weiteres im Falle Cornus verwendbar, sofern
die Hauptlichtgeschwindigkeiten durch die Hauptbrechungsindizes,

d. h. die Indexellipsoide, durch die zugehörigen
Fresnelschen Ellipsoide ersetzt werden.
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Übrigens ist der Inhalt des bewiesenen Satzes gleichwertig

dem bekannten Satz von Brill.
26. Erweist sich dem Gesagten zufolge die Annahme

Cornus nicht als zutreffend, so gestatten doch die Cornu-
Violaschen Formeln im monoklinen System, wo die Entscheidung

zwischen b und d nach dem Bisherigen noch nicht in
jedem Fall getroffen werden konnte, eine restlose Lösung
des Prismenproblems, falls die kristallographische Orientierung
des Prismas gegeben ist und die brechende Kante desselben
nicht senkrecht zur Orthodiagonale1) steht.

Der Beweis hierfür ist einfach. Im monoklinen System
ist die Orthodiagonale optische Symmetrieachse, so daß bei
bekannter kristallographischer Orientierung des Prismas eine
der Größen

<*3> ßv Ys

einen gegebenen Wert haben muß. Da aber nach den
Formeln von Cornu-Viola diese Werte Funktionen der
bekannten Azimute von A, B, C und D sind, so hat man
nur zu prüfen, für welchen der beiden Werte b und d die
Übereinstimmung befriedigt.2)

Daß bei dieser Überlegung nicht der gleiche Fehler
unterlaufen ist, wie bei Cornu, ergibt sich schon daraus, daß

die Wahl zwischen b und d nicht auf Grund geometrischer
Eigenschaften der Kurve C, sondern auf Grund einer dieser
Kurve fremden gegebenen Größe getroffen wurde, kann aber,

zum Überfluß noch strenge bewiesen werden. Dabei kann
der Fall, wo die Orthodiagonale zur ??-Achse wird, hier
übergangen werden, weil er bereits früher (§ 20) erledigt wurde.

Fällt die im Prismenhauptschnitt liegende Orthodiagonale mit
der J- oder f-Achse zusammen, so ergibt sich nach einer Überlegung,
die derjenigen von § 17 ganz ähnlich ist, auf Grund der in § 23

gefundenen Resultate, daß nur die Orientierung zweideutig ist; fällt
sie aber mit der ^-Achse zusammen, so ist, wie bereits § 20 bemerkt
wurde, neben der Lagebestimmung der Hauptschwingungsrichtungen
auch die Ermittelung der Hauptlichtgeschwindigkeiten zweideutig.

2) Dieses Verfahren führt auch im Falle der Totalreflexion zum
Ziel, scheint aber bislang keine Beachtung gefunden zu haben, was
allerdings um so begreiflicher ist, als die allgemeine Methode von
Viola in der Anwendung einfach und sicher ist.
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Es kommen darum nur noch die beiden Fälle in Betracht,
wo eine der Größen a3 und y3 einen zum voraus gegebenen
Wert hat. Für beide kann der Beweis in übereinstimmender
Weise geführt werden, so daß es genügt, ihn für den Fall
durchzuführen, wo etwa a3 den gegebenen Wert annimmt.
Bezeichnet M die Richtung, längs der sich die b- oder d-Welle
fortpflanzt, so gilt die Beziehung:

cos2 a3 cotg AM-cotg CA,
woraus

cotg AM cos2 a3-tg CA.
Diese Gleichung gibt aber für AM einen einzigen, zwischen
0 und n gelegenen Wert, so daß wegen des einmal
angenommenen Umlaufsinnes die Richtung OM eindeutig festliegt.

Stillschweigende Voraussetzung dieses Beweises ist die
Annahme, daß die Fortpflanzungsrichtungen der b- und
d-Welle nicht zusammenfallen.

Nach getroffener Entscheidung zwischen b und d ist,
wenn die brechende Kante nicht senkrecht zur Orthodiagonale
steht, natürlich auch die Berechnung der Lage der optischen
Symmetrieachsen eindeutig, eben weil die Lage einer solchen
bekannt ist.

27. An dieser Stelle möge der Beweis dafür erbracht
werden, daß die Fortpflanzungsrichtungen derb-und d-Welle im

allgemeinen nicht zusammenfallen1).
Zu diesem Zwecke diene die beistehende

Fig. 4, welche in stereographischer

Projektion auf den
Prismenhauptschnitt die optischen Symmetrieebenen

sowie die sogen, optischen
Achsen At und A2 darstellt. Die
Fortpflanzungsrichtung OD jener Welle,
die parallel Oz schwingt, ist bekanntlich

dadurch bestimmt, daß die Ebenen
ODA, und ODA2 in bezug auf den

Grundkreis gleichgeneigt sind. Nimmt man von A2 das

*) Auf diesen Beweis wurde im vorangehenden schon mehrmals
verwiesen, z. B. § 15.

Fig. 4
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Spiegelbild A2 bezüglich der Grundebene, oder — was wegen
der symmetrischen Eigenschaften der Kugel ohne weiteres

gestattet ist, den Gegenpunkt von A2 also A'2, so ist die

Schnittgerade der Ebene AjOA'2 mit der Grundebene die

gesuchte Richtung. Ein Blick auf die Figur zeigt sofort, daß
diese Richtung nur dann mit der b-Richtung zusammenfällt,
wenn r\ oder eine optische Achse in der Querschnittsebene
liegt. Da aber durch die bloße Annäherung von r\ oder
einer optischen Achse an diese Grenzlage der Winkel BOD
sich immer mehr und mehr verkleinert, so wird infolge der
unvermeidlichen Beobachtungsfehler die Entscheidung zwischen
b und d praktisch ebenfalls unmöglich, doch ist es für die
Bestimmung der Hauptlichtgeschwindigkeiten dann belanglos,
wenn gleichzeitig mit der Abnahme des Winkels BOD auch
der Unterschied von b und d kleiner wird, d. h. wenn die

optische Achse in die Prismenquerschnittsebene fällt.
28 Selbstverständlich wird durch den Umstand, daß es

möglich ist, mit Hilfe eines einzigen Prismas bekannter
kristallographischer Orientierung die optischen Konstanten
rhombischer und monokliner Kristalle eindeutig zu bestimmen,
der Satz von Brill in keiner Weise in Frage gezogen, denn
es sind eben, wie nochmals bemerkt sei, nicht die
geometrischen Eigenschaften der Kurve C, welche diese eindeutige
Lösung gestatten, sondern kristallographische Beziehungen,
durch welche wesentlich neue Elemente einbezogen werden.

29. So interessant nun diese Ergebnisse auch sind, so
haben sie doch bis dahin wegen ihrer Umständlichkeit keine

praktische Verwertung gefunden und sind vom rein theoretischen

Standpunkt aus insofern unelegant, als sie mehr
Beobachtungen erheischen, wie Unbekannte vorkommen, wobei
sich dann allerdings als Gegenwert der überschüssigen
Beobachtungen gleichviele Bedingungsgleichungen ergeben, auf
Grund derer die Ausgleichungssrechnung gestatten würde,
bessere, von den Beobachtungsfehlern unabhängigere Endwerte
zu berechnen. Es ist darum ganz begreiflich, daß die Praxis
des Mineralogen ausschließlich solche Prismen berücksichtige,
welche eine 1. vollkommen eindeutige und 2. möglichst ein-
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fache Bestimmung (Minimum der Ablenkung bei symmetrischem

Durchgang) der optischen Konstanten erlauben. Die
einschlägigen theoretischen Fragen sind von Liebisch, Born,
Viola usw. eingehend1) behandelt worden. Gleichwohl möge
es gestattet sein, hier noch einige Punkte besonders zu
beleuchten.

30. Für welche speziellen Prismenorientierungen
ergeben die Wurzeln der Gleichung VI

eine eindeutige Lösung des Problems?
Es sind drei Fälle denkbar.

a) Man weiß, welcher der beiden Werte b und d der
größere ist. Praktische Bedeutung hat dieser Fall im triklinen
(und z. T. monoklinen) System. Liegt nämlich ein künstlich
hergestelltes Prisma vor, dessen xyz-Achsen mit den
optischen Symmetrieachsen für eine bestimmte Lichtart zusammenfallen,

so möchte man versucht sein, mit demselben auch die

Brechungsindizes für Licht anderer Wellenlänge zu bestimmen.
Das ist offenbar möglich. Denn wiewohl sich die Orientierung
mit der Wellenlänge stetig ändert, so dürfte man doch immer,
zumal wenn man sich wenig auseinanderliegender Spektrallinien

bedient, in der Lage sein, zu entscheiden, durch welchen
der Winkel der optischen Achsen der Prismenquerschnitt
jedesmal verlaufe, und damit die Entscheidnng zwischen b

und d eindeutig zu treffen. Dagegen bleibt die Orientierung
der Hauptschwingungsrichtungen zweideutig, weil die
Ausgangslage der optischen Symmetrieachse zu speziell ist, um
daraus gültige Schlüsse auf ihre neue Lage ziehen zu können,
denn die Änderung kann ja ebensogut im einen wie im
anderen Sinn erfolgen.

Ein künstliches, genau orientiertes Prisma aus einem
triklinen Kristall herzustellen, ist übrigens keine leichte Sache
und scheint bisher einzig von C. Pape ausgeführt worden zu
sein, der folgenden Untersuchungsgang vorgeschlagen und
im wesentlichen auch eingehalten hat: „Um die Richtung der
optischen Achsen sowie die drei Hauptbrechungsexponenten

Über die reiche Literatur vergi, z. B. Pockels, Lehrb. 144.
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zu bestimmen, muß bei Kristallen des 1 + 1-gliedrigen Systems
im allgemeinen zunächst die Ebene der optischen Achsen
ihrer Lage nach ungefähr bekannt sein und darauf mittels
eines aus dem Kristalle geschliffenen Prismas, dessen brechende
Kante senkrecht zu dieser Ebene steht, der mittlere Brechungsexponent

angenähert ermittelt werden. Darauf ist eine Platte
aus dem Kristall zu schleifen, deren parallele Flächen
rechtwinklig zu der ersten Mittellinie stehen, und an derselben der
Winkel der scheinbaren optischen Achsen zu messen, sowie
die Lage beider zu der dem Beobachter zugekehrten, nach
ihrer Lage am Kristall bekannten Fläche und noch zweien
an der Platte vorhandenen natürlichen Kristallflächen. Aus
diesen Beobachtungen und dem zuerst gefundenen mittleren
Brechungsexponenten läßt sich dann die Richtung der wahren
optischen Achsen ableiten. Nach diesen Resultaten sind
darauf Prismen anzufertigen, deren brechende Kanten den
drei Elastizitätsachsen parallel laufen, und an ihnen die drei
Brechungsexponenten zu beobachten. Da jedes richtig
geschliffene Prisma zwei Brechungsexponenten liefert, bei drei
Prismen jeder also doppelt bestimmt ist, so besitzt man im
Vergleiche beider das Mittel, zu prüfen, ob die ursprüngliche
Bestimmung des mittleren Brechungsexponenten hinreichend
zuverlässig ist oder nicht. Im letzteren Falle würde man
mit dem Mittel aus seinen zuletzt erhaltenen Werten die
wahren optischen Achsen von neuem berechnen und nach
dieser Rechnung neue Prismen schleifen müssen."1)

Es wäre entschieden einfacher, an einem triklinen Kristall
zuerst die Ebene der optischen Achsen für eine bestimmte
Lichtart möglichst genau zu bestimmen und hierauf ein
Prisma so herzustellen, daß sein Hauptschnitt mit jener Ebene
einen Winkel von ca. 20—30° oder 60—70° bilden würde und
zu den beiden optischen Achsen ungefähr gleich geneigt
wäre. In diesem Falle wäre die Richtung der b-Welle für
jene Farbe genau bekannt, während diejenige der d-Welle
hierzu fast senkrecht stände. Da sich die optischen
Konstanten mit der Wellenlänge stetig ändern, wäre es möglich,

0 C. Pape, Pogg. Ann. Ergb. 6, 387.
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die Hauptlichtgeschwindigkeiten sowie die Lage der zugehörigen

Schwingungsrichtungen für alle Wellenlängen zu
bestimmen, wofern man sich wenig auseinanderliegender
Spektrallinien bedienen würde.

b) d2 fällt mit einer der drei anderen Wurzeln der
Gleichung VI zusammen. Sei diese Wurzel etwa a2. Man
erhält dann die Beziehung

a2 a2a2 + b2/92 + c2y2,
welche mittels der bekannten Identität

auf die Form
(a2-b2)/92 + (a2-c2)y2 0

gebracht werden kann. Weil voraussetzungsgemäß
a > b > c,

so ist diese Gleichung nur möglich, wenn
/93 0undy3 0

d. h. wenn die Prismenkante gleichzeitig £-Achse ist. Wegen
der damit bekannten Lage einer Hauptschwingungsrichtung
wird dem Früheren zufolge auch die Ermittlung aller
Hauptschwingungsrichtungen eindeutig, und da für die beiden
anderen Fälle eine ähnliche Überlegung gilt, so ergibt sich
der bekannte Satz: Die Bestimmung der
Hauptlichtgeschwindigkeiten sowie der Lage der
Hauptschwingungsrichtungen eines zweiachsigen Kristalls
ist mit Hilfe eines einzigen Prismas in allen jenen
Fällen möglich, wo die brechende Kante mit einer
optischen Symmetrieachse zusammenfällt.

Die Identität
b2 a2a2-r-b2/32-r-c2y2

läßt neben a3 0, /32= 1, yA 0 noch andere reelle Lösungen
zu. In der Tat ergibt sich mit Rücksicht auf die Bedingungsgleichung

<*l + ßl + Yl=i ")
ähnlich wie oben

(a2-b2)a2-(b2-c2)y2 0. b)
Faßt man nun aA, ß.A, y.A als rechtwinklige Koordinaten auf, so
stellen die Gleichungen a) und b) zwei Kreise dar, die beide
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das Zentrum im Ursprung haben und sich auf der rç-Achse
schneiden. Die trigonometrische Tangente ihres Neigungswinkels

zur Ç-Achse ist

Vb2-c2
COtg „Q-

a2-b2
Sie stehen also auf den optischen Achsen senkrecht. Mithin
der weitere Satz: Die eindeutige Bestimmung der
Hauptlichtgeschwindigkeiten eines zweiachsigen
Kristalls ist in allen jenen Fällen m öglich, wo die
brechende Kante auf einer optischen Achse senkrecht

steht.1) Bezüglich der Orientierung gilt das früher
Gesagte. Praktische Bedeutung kommt aber dieser Lösung
keine zu, weil die kristallographische Lage der optischen
Achsen nicht ohne weiteres gegeben ist. Überdies könnte

wegen ihrer Dispersion die Orientierung des Prismas nur
für eine Wellenlänge genau erfüllt sein.

c) b oder d oder beide zugleich sind der direkten
Beobachtung zugänglich. Das ist (praktisch genommen) so

zu verstehen, daß sich diese Werte beim Minimum der
Ablenkung mit symmetrischem Durchgang ergeben. Nach
den bereits genannten Arbeiten v. Liebischs und Violas ist
dazu notwendig und hinreichend, daß die x-Achse mit der
?7-Achse susammenfalle (b und d) oder daß die Halbierungsebene

des inneren Prismenwinkels eine die 77-Achse enthaltende

optische Symmetrieebene • sei (b) oder endlich daß x
zur £- oder t-Achse werde (d). Die anderen Fälle, wo die
Halbierungsebene des äußeren Prismenwinkels den Winkel
der beiden von y und den optischen Achsen gebildeten Ebenen
halbiert — also die Beobachtung von d möglich wäre —
sind praktisch wertlos.

In allen diesen Fällen liefert das Theorem von Brill, falls
die z-Achse nicht selber optische Symmetrieachse ist oder auf
einer optischen Achse senkrecht steht eine doppelte Lösung.
Wird sie hier eindeutig, so liegt der tiefere Grund darin, daß

z. T. kristallographische Elemente, z. T. die Schwingungs-

*) Dieser Satz wurde bereits in § 13 verwertet.
3*
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richtung — in jedem Fall also Größen, welche den
geometrischen Eigenschaften der Kurve C fremd sind, herangezogen
und berücksichtigt werden.

31. Prismen spezieller Orientierung. Es wurde
bereits oben darauf hingewiesen, daß der Mineraloge zur
Bestimmung der optischen Konstanten eines Minerals mit
Vorliebe, ja mit Ausschließlichkeit solche Prismen benutzt,
welche die direkte Ermittlung der Hauptlichtgeschwindigkeiten

gestatten. Hierbei kommen einzig die eben genannten
speziellen Orientierungen in Betracht, wo die Prismenkante
oder die Halbierungslinien des inneren oder äußeren Prismenwinkels

Symmetrieachsen sind. In allen diesen Fällen ist
das Minimum der Ablenkung wenigstens für eine Welle mit
symmetrischem Durchgang verbunden, Messung und Rechnung
folglich überaus einfach. Die entsprechende Welle wird an
ihrer Schwingungsrichtung erkannt. Dabei ist aber nicht zu
vergessen, daß sich die Schwingungsrichtung beim Übergang
vom Kristall zur Luft in manchen Fällen in wahrnehmbarer
Weise ändern muß. Diese Änderung konnte an einem Prisma
von rhombischem Schwefel, das von (111) und (1 Fl) gebildet
war und Prof. Baumhauer1) seinerzeit zur optischen
Untersuchung dieses Minérales diente, deutlich wahrgenommen
werden. Indessen dürfte sie in keinem praktischen Fall so
groß werden, daß man über die Schwingungsrichtung der
Welle im Kristall im Zweifel sein könnte.

Es ist besonderer Erwähnung wert, daß in den soeben

genannten drei Fällen, wo also eine Achse des xyz-Systems
optische Symmetrieachse ist, nicht nur die direkte Bestimmung
einer oder zwei Hauptlichtgeschwindigkeiten ermöglicht ist,
sondern die Bestimmung aller wesentlich vereinfacht wird.
Einige Hinweise auf dieses z. T. vielfach behandelte Problem
sowie die Hervorhebung einiger noch weniger beachteter
Punkte mögen genügen.

a) Die Prismenkante ist optische Symmetrieachse. Die
Kurve C zerfällt in einen Kreis und ein Oval. Das ist die

i) Baumhauer, Zeitschr. f. Krist. 47, 12.
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einzige Orientierung, die bis anhin dazu gedient hat, mit
Hilfe eines einzigen Prismas sämtliche Hauptlichtgeschwindigkeiten

eines Kristalls zu bestimmen.1)
b) Die Halbierungslinie des inneren Prismenwinkels sei

eine optische Symmetrieachse und falle etwa mit £ zusammen.
Bezeichnet & den, von + x aus gesehen, im Gegenzeigersinn

gemessenen Winkel z'Q, so gilt das folgende Schema:

X y z

1 1 0 0

n 0 coso- sind

£ 0 — sind cosd

Die Gleichung III nimmt damit die einfache Form an
q4 — q2 (Ln cos2xp + L22s'm2xp) + Mu cos2"i/> + M22sin2t// 0,

wo
Ln b2-f-c2 L22=a2 + b2sin2d+c2cos2d

Mu b2c2 M22=a2(b2sin2d-r-c2cos2d).
Beim Minimum der Ablenkung, das aus Symmetriegründen

bei gleichem Einfalls- und Austrittswinkel (also tp n\2)
erfolgt, liefert die voranstehende Gleichung, mit Rücksicht auf
die getroffenen Festsetzungen, für jene Welle, die parallel
der Symmetrieachse (also parallel der Querschnittsebene)
schwingt, direkt den Wert von a, für die andere aber

q2=b2sin2d + c2cos2d.
Da hierdurch L22 und M22 bekannt2) sind, so genügen zwei3)
weitere Messungen zur Bestimmung von Ln und Mn. b2 und
c2 berechnen sich dann als Wurzeln der Gleichung

u2—Lnu + Mu—0.
& wird, vom rhombischen System abgesehen, mehrdeutig.

L ang,WienerSitz.76.793. B orn,N. Jahrb.f.Mineral. B.-B.5*42.
2) Eine mehrmalige Wiederholung der Messungen macht von

den Einstellungsfehlern ziemlich unabhängig und liefert, falls das
Prisma tadellos geschliffen und homogen ist, sehr gute Werte von
L22 und M22.

3) Um sich von den Einstellungsfehlern möglichst unabhängig
zu machen, sind natürlich mehr Messungen erfordert.
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Ähnliche Formeln erhält man für die beiden anderen
möglichen Fälle.

c) Die Halbierungslinie des äußeren Prismenwinkels sei
eine Symmetrieachse und falle

q) mit der £-Achse zusammen. Bei analoger Voraussetzung
über den Winkel d wie im vorangehenden Falle b) ergibt
sich das Schema:

X y z

I 0 i 0

n —cosd 0 sind

l sind 0 cosd

An Stelle der Gleichung III kommt

wo
q2 (Ln cos2i//-t- L22 sin2xp) + (Mn cos2xp + M22 sin2%p) — 0,

L22 b2 + c2

M22 b2c2.
Lu a2 + b2sin2d + c2cos2d
Mu a2 (b2 sin2d + c2 cos2d)

Aus Symmetriegründen ist ohne weiteres ersichtlich, daß beim
Minimum der Ablenkung direkt b2 und c2 gefunden werden.
Wie vorher genügen noch zwei weitere Messungen zur
Bestimmung der Konstanten Lu und Mn, und a2 findet sich als

größte Wurzel der Gleichung

u2-Lnu + Mn=0.
d ist im monoklinen System (das trikline kommt praktisch
nicht in Betracht) natürlich zweideutig. Die Zweideutigkeit
besteht darin, daß den Formeln zufolge r\ ebensogut im Winkel
xOz wie xOz liegen kann. Berücksichtigt man aber beim
Minimum der Ablenkung den Schwingungszustand der
entsprechenden Welle, so dürfte die Zweideutigkeit oft behoben
werden können. Im rhombischen System wird sie schon durch
die kristallographische Orientierung des Prismas umgangen.

ß) Fällt die £-Achse mit der y-Achse zusammen, so erhält
man beim Minimum der Ablenkung direkt a und b, während
man aus den Gleichungen
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Ln c2 + a2sin2d + b2cos2d
M„ — c2 (a2 sin2d + b2 cos2d)

ähnlich wie soeben c' als die kleinere Wurzel der quadratischen

Gleichung
u2-L11u-(-M11 0

findet, während die andere, größere wiederum gleich dem
Quadrat der Geschwindigkeit jener Welle ist, die senkrecht
zur Querschnittsebene des Prismas schwingt.

Bezüglich d gilt das soeben Gesagte.
y) Ganz anders, wenn r\ mit y zusammenfällt 1 Das Minimum

der Ablenkung liefert a und c, während man aus zwei
weiteren Messungen die Gleichungen erhält

Lu b2 + c2 sin2 d + a2 cos2 d
Mn b2 (c2 sin2d + a2 cos2 d).

Die Wurzeln der quadratischen Gleichung ^
u2-Lnu + Mu 0

sind b2 und d2 c2 sin2 d + a2 cos2 d, von denen die eine ebensogut

größer oder kleiner wie die andere sein kann. Im
monoklinen System ist die Lösung mithin unbestimmt, wogegen
im rhombischen System die Überlegungen von § 18 Geltung
haben.

In den beiden Fällen b) und c) wurde vorausgesetzt,
daß eine der optischen Symmetrieachsen mit der Halbierungslinie

des inneren oder äußeren Prismenwinkels zusammenfalle,

während die übrige Orientierung als unbekannt
betrachtet wurde. Das Problem ist also gegenüber der
Behandlung bei Pockels1) wesentlich verallgemeinert, indem
daselbst der Fall b) nicht ganz erledigt und c) nur unter der
ausdrücklichen Voraussetzung studiert wird, daß der Winkel d
bekannt2) sei. Im rhombischen System mag diese Annahme
keine wesentliche Einschränkung bedeuten, wohl aber im
monoklinen System, wo wegen der geringeren Symmetrie die
Verhältnisse viel komplizierter liegen.

4) Lehrb. d. Krist. pag. 146 und 147.

2) Wäre # bekannt, so würde sich im Fall cy der Wert von b
eindeutig bestimmen, weil d8—a3cos2»+c2sin9c> eine bekannte Funktion
von a, c und » ist und darum von ba unterschieden werden kann.
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Bei eingehender Betrachtung der unter b) und c)
entwickelten Formeln geht hervor, daß es sogar ohne Bedeutung
ist, zu wissen, welche der drei optischen Symmetrieachsen
den inneren resp. äußeren Prismenwinkel halbiere. Die
beiden Methoden gewinnen dadurch noch mehr an allgemeinem
Wert und können in allen jenen Fällen Verwendung finden,
wo aus der bloßen kristallographischen Orientierung des
Prismas hervorgeht, daß die Halbierungslinie des inneren
oder äußeren Prismenwinkels mit einer optischen Symmetrieachse

zusammenfallen muß.
Daß sich im rhombischen System alle drei

Fälle, wo eine Achse des xyz-Systems optische
Symmetrieachse ist, zur Bestimmung der
Brechungsindizes, mit Hilfe eines einzigen Prismas in
gleicher Weise eignen, ist ein unmittelbares und
praktisch wertvolles Ergebnis dieser
Ausführungen.1)

*) Durch Verallgemeinerung einer Bemerkung v. Groth's,
Physikalische Kristallographie pag. 102 f., können diesen Fällen noch jene
angegliedert werden, wo die eine Prismenfläche Symmetrieebene bzw.
ihre Schnittlinie mit der Querschnittsebene oder endlich ihre Normale
Symmetrieachse ist.



II. TEIL

Ableitung einerneuen Methode zur Bestimmung
der optischen Konstanten zweiachsiger Kristalle

mit Hilfe eines einzigen Prismas
unbekannter Orientierung.

32. In mehreren Fällen des vorangehenden ersten Teiles
(vergi. § 31 Abt. b, c« und Cß) konnte durch Berücksichtigung
des Polarisationszustandes des austretenden Lichtes die Lösung
des Prismenproblems eindeutig gefunden werden. Die Art
und Weise aber, in der dies geschah, hatte einen bloß
qualitativen Charakter und faßte die Beziehung zwischen den
beobachteten Schwingungsrichtungen und den gesuchten
Hauptlichtgeschwindigkeiten nirgends in einer präzisen Formel
zusammen. Eine solche Gleichung ist aber möglich auf
Grund des gegen Ende von § 9 erwähnten Satzes, wornach
für jede Fortpflanzungsrichtung die zugehörigen Schwingungsrichtungen

und Wellennormalengeschwindigkeiten bestimmt
sind durch die Richtung und reziproke Länge der Halbachsen
jener Ellipse, in welcher das Indexellipsoid von der zur
Fortpflanzungsrichtung senkrechten Diametralebene geschnitten
wird. Wie man sich nun geeigneter Schwingungsrichtungen
bedienen kann, um die Hauptlichtgeschwindigkeiten aller
zweiachsiger, also selbst trikliner Kristalle eindeutig zu
bestimmen — das theoretisch darzutun, ist Aufgabe dieses
zweiten Teiles, während die experimentelle Prüfung der
Methode dem dritten Teil zufallen wird.

33. Die erste Aufgabe, welche sich darbietet, ist der
Nachweis, daß das Ausbreitungsgesetz ebener Wellen, so wie
es in Gleichung 'II formuliert wurde,- sich in der soeben

genannten Weise aus dem Indexellipsoid ableitet. Bezogen
auf die optischen Symmetrieachsen\\,r\,Z lautet die Gleichung
des letzteren

a2£2 + b27?2 + c2r2=l.
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Bildet nun eine beliebige Ausbreitungsrichtung mit diesen
Achsen die Winkel vlt vt und vA, so erzeugt die dazu
senkrechte Ebene

£ cos vx+r\ cos v2 + £ cos va 0

mit der Fläche eine Schnittellipse, deren Gleichung sich leicht
mittels einer Koordinatentransformation ergibt, bei der die

Wellennormalenrichtung zur Z-Achse und die Schnittgerade
der Wellenebene mit der Ebene £=0 zur X-Achse genommen
wird. Hierdurch nimmt das Schema I folgende spezielle
Form an.

X Y Z

I
COS1A,

sini'3
cos»/, cosr3

sin?'3
cosv,

n
cosi/, COS1'2COS1'g

COS?'2
siny3 sin ta,

0 — siniA, COSI',

Die daraus fließenden Substitutionen
cosy,

S- x
sinvs
cosr.

sin?/3

X
sinv. sinr.

=— sinv3 Y
führen die Gleichung des Indexellipsoides sofort in die Gleichung
der gesuchten Kurve über, nämlich :

a2 cos2 v2 + b2 cos2vx „2
sin* va
(a2cos2i'i -r-b2cosV2)cos2v3-f-c2sinV3 V2

shvv„

+ 2(a«-b»)cosy'c.osv'c^XY--l.
sin'v.

Die reziproken Quadrate q2 und q2 ihrer Hauptachsen, welche
dem Theorem zufolge den der Richtung vuvt,va zugeordneten
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Geschwindigkeiten entsprechen, ergeben sich als Wurzeln der
biquadrischen Gleichung

a2 (cos2 v. cos2 v, + cos2 v,) + b2 (cos2 j/„ cos2 v. + cos2 v. + c2 sin* v,q4 _ q2 ; J » \ 2 8 U S

sin2 n
a2 b2 (cosV, + cosV2)2 cosV8 + b2 c2 cosVj sinV3 -r c2 a2 cos2v2 sinV3 _

sinV3
Da

cosVgjCosV, + cossV2 cos2r,3cosV1 +(1 — cosVj — cosV8)
(1 — cosV,) (1 — cosV3) (cosV2 + cosV3)sin2v8,
und da ebenso

cosV2 cos2j/3 + cos2?/, (cosVj 4- cosV8) sin2v8,
so kommt für die Abhängigkeit der q-Werte von der Richtung
VpVjjVj der Ausdruck

q* - q2 a2 (cos2v2 + cosV3) + b2 (cosV8 + cosV,) + c2 (cos2^ + cos2v2) \
-f-a2b2cosV3-t-b2c2cosVj + c2a2cosV2 0

oder in Übereinstimmung mit Gleichung II

1-0COS^! COSV2 COS'K,

q2-a2 q2-b2 q2-ca
w. z. b. w.1)

34. Der Einfachheit halber sind die folgenden Formeln
sämtlich auf ein rechtwinkliges, rechtshändiges Achsensystem
x, y, z bezogen, das, vom bisherigen Brauch abweichend, so
mit dem Prisma fest verbunden ist, daß die z-Achse wie
früher mit der Prismenkante zusammenfällt und nach oben

positiv gerechnet wird, die x-Achse aber nicht mehr in der
Halbierungsebene des inneren Prismenwinkels sondern in
der einen Grenzebene des Prismas liegt. Die nach außen

gerichtete Normale dieser Ebene ist die positive y-Achse,
während die positive x-Achse nach der Basis des Prismas
hinzeigt. Durch diese Festsetzung ist jene Grenzebene
eindeutig gekennzeichnet. Bei der gewöhnlichen Aufstellungsart
des Prismas auf dem einkreisigen Goniometer, wo das Licht,
vom Beobachter aus gesehen, nach links abgelenkt wird, ist

i) Über eine andere Ableitung dieser Gleichung aus derjenigen
des Indexellipsoides vergi. Poe k eis, Lehrbuch der Kristall opt ik S. 33 f.
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sie die Austrittsfläche, und +y fällt mit dem Fortpilanzungs-
sinn des Lichtes zusammen.

Neben diesem xyz-System kommt noch das bereits
früher beschriebene f^t-System in Betracht. Für die
Richtungskosinus, welche die positiven Richtungen des einen
Systems in bezug auf die positiven Richtungen des anderen
Systems festlegen, gilt das Schema I der Form nach unverändert.

35. Um jetzt auf den Gegenstand selber einzugehen,
sollen zunächst die Gleichungen des Indexellipsoides und
derWellennormalenfläche auf das neue Achsensystem bezogen
werden. Das geschieht durch die aus dem Schema I folgenden
linearen Beziehungen

£ ax x + a2 y + a3 z
77=/?lx-r-/S2y+/?3z
Z=Y^ + y2-y+Ysz>

deren Substitution in
a2£2 + bV + c2£2=l

die Gleichung ergibt
an x2 + a22 y2 + a33 z2 + 2a12 xy + 2a28yz + 2a31 zx 1. VII

Dabei ist zur Abkürzung
aik a2aiak-)-b2/9i/3k + c2^i/k (aik aki) VIII

gesetzt. Diese sechs Koeffizienten der Gleichung VII wurden
von W.Voigt1) Polarisationskonstanten genannt.

In ebenderselben Weise ergäbe sich die neue Gleichung
der Wellennormalenfläche. Da aber für das Weitere nur ihr
Schnitt mit der Ebene z 0 in Betracht fällt, und für die

vorliegenden Zwecke die Polarkoordinaten bequemer sind
wie die rechtwinkligen, so empfiehlt es sich, die
Transformationsformeln in der bereits oben in § 4 hergeleiteten Form
zu schreiben.

vx ax cosxp + a2 sin xp

v2= ßx cosxp+ß2s'mxp
v3 yx cosxp + y2 s'vaxp.

Die Substitution dieser Ausdrücke in Gleichung II gibt mit
Benutzung der eben definierten Polarisationskonstanten die
Gleichung

i) W. Voigt, Gott. Nachr. 1896 pag. 17.
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P22 — a38 "T" ail Q22 — a33 ail _a31
"l2 ai2 Q12 —ai2a33 ~~ a23 a31
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q4-q2[(a22+a33)cos2v+(a33+an)sin2V;-2ai2sinvcosv]
+ [(a22 a33 ~a|3) C08" V + (a33 ail - all) S'n2V/ IX

-2 (a12 a3S-a23a31) sin^cosxp] 0.

Diese Gleichung stellt die nämliche Kurve dar wie
Gleichung III. Die beiden Gleichungen unterscheiden sich nur
durch das Bezugssystem. Um dies auch in der Schreibweise
anzudeuten, soll für Gleichung IX abkürzend1) gesetzt werden

1 q* — q2(Pu cos2xp + P22s'm2xp — 2P12s'mtp\20Sxp) „+ (Qn cos2?// + Q22 sin2!//— 2 Q12 sini//cosr//) 0.

Darin ist

i=l,2...6
36. Die Konstanten Pik und Qik können durch sechs Wertpaare

(q, xp) eindeutig bestimmt werden. Dagegen ergeben
sich aus den Gleichungen XI a im allgemeinen acht Lösungssysteme

für die Polarisationskonstanten. In der Tat aus

XI a und XI a kommen die Werte
a22 rn a38

an "22 ~~'a33>
(4) (5)

welche in XI a und XI a eingesetzt
a23 a33('ll "~a33)_ Qu
ai3 ~ a33 (*22 _ a33) _ Q22

ergeben, während aus XIa mit Berücksichtigung von XIa folgt:
a2S a31 ==a33 * li V12*

Werden beide Seiten dieser Gleichung quadriert und für
a22 und a23 die soeben gefundenen Werte eingesetzt, so erhält
man zur Bestimmung von a33 die Gleichung vierten Grades

a33 — (°11 ' "22) a33 ' (°11 ' 22 — * 12~^Qll """ Q22)a33 YM- (P,. Q22 + P22 Qn - 2 P12 Q12) a83 + (Qn Q22 - Q22) 0.

Diese Gleichung muß mit Gleichung VI identisch sein, wie
aus der Beziehung zwischen Lik und M;k einerseits sowie

Die Benutzung der früheren Abkürzungen Lik und Mik empfiehlt
sich nicht, weil sie zu (natürlich bloß formalen) Widersprüchen führt
zwischen einigen Sätzen des ersten und zweiten Teiles.
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Pjk und Qik anderseits sofort hervorgeht. Man kann darum
ohne weiteres schließen, daß

a2, b2, c2 und a33 a2 a2.+ b2ß\ + c2 y\
die Wurzeln der Gleichung XII sind (vergi. § 5).

37. Da nach den Gleichungen XIa die P;k und Qik
bekannte Funktionen von aik sind, so kann man sie mit Hilfe
der Gleichungen VIII als Funktionen von a2, b2, c2, a„ ß-t und y-x

ausdrücken und so sechs Beziehungen zwischen diesen zwölf
Größen und den sechs Polarisationskonstanten aufstellen. Die
vier Werte von a33, welche die Gleichung XII liefert, ergeben
dann der Reihe nach für au und a22 je einen zugeordneten
Wert, während sich für a23 und a31 je zwei Werte finden, die
aber nur im Vorzeichen verschieden sind. a12 hat für alle
vier Werte von a33 immer denselben festen Wert

P12 a2 a, a2 + b2 ß1 ßa + c2 yv y2.

Die folgende Tabelle I liefert die Resultate in anschaulicher
Übersicht. Die Werte je einer Kolonne gehören zusammen.
Bei a23 und a31 entsprechen sich die oberen resp. die unteren
Vorzeichen. Der Beweis hierfür ergibt sich aus der Identität

Vl2 ai2 a33 a23 a31*

Wie man sieht, werden für
a33= a > c

a23 und a31 im allgemeinen1) imaginär. Diese beiden Wurzeln
von XII scheiden darum aus und die Gleichung XII wird wie
die Gleichung VI praktisch zweideutig. Ihre Wurzeln
bestimmen mit den zugeordneten Lösungen der Gleichungen XIa
zwei Ellipsoide mit verschieden gerichteten Hauptachsen. Die
größte und kleinste haben in beiden je dieselbe Länge,
dagegen ist die mittlere Achse des einen gleich dem Abschnitt
des anderen auf der z-Achse (entsprechend dem in §25
gefundenen Ergebnis). Jedes dieser Ellipsoide kommt in zwei
Orientierungen vor, die wegen der Zweideutigkeit der
Vorzeichen von a23 und a31 die Eigenschaft haben, daß die eine
Lage aus der anderen durch Drehung von 180° um die

*) Einzig für «j «2 0 resp. yx y2 0 bleiben diese Werte bzw.
reell, werden dann aber mit der vierten Lösung identisch.
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Tabelle I

aS3 a2 b2

a22 b2+c2-{a2a2+b2ß2 + c2y*) c2 + a2-(a2«2+b2/52 + c272)

au b2+c2-(a2ß2 + b2/?2+c272) c2 + a2-(a2a2+b2/?2 + c2/2)

a2i ±«iS/(c2-a2)(a2-b2) ±/3iV/(a2-b2)(b2-c2)

ai3
-,

+ «2V(c2-a2)(a2-b2) + /32V/(a2-b2)(b2-c2)

a12 a2 ax a2 + b2ßx ß2 + c2yx y2 a2ßj a2 + b2ßx ß2 + c2y, y2

a33 c2 a2a2 + b2/92 + c272

a22 a2-r-b2-(a2a2 + b2/32-r-c2/2) a2ß2+b2/92 + c2/2

ail a2+b2-(a2a2-r-b2ß2 + c2r2) a2a2 + b2^2 + c2/2

a23 ± (a2 «2 a3 + b2ßt ß3 + c2 yt y3)±7iV/(b2-ci,)(c2-a2)

ai3 ±{a*aAax + b2ßAßx + c2y3yx):i:72V/(b2-c2)(c2-a2)

' a!2 a2axa2 + b2ßxß2 + c2yxy2 a2axa2 + b2ß1ß2 + c2yxy2

z-Achse abgeleitet werden kann (in genauer Übereinstimmung
mit dem in § 23 Gesagten). Der Beweis ist einfach. Ersetzt
man x und y durch ihre entgegengesetzten Werte, so geht die
Gleichung des einen Ellipsoïdes in diejenige des anderen über.

Die Unbestimmtheit liegt dem Gesagten
zufolge in der Zweideutigkeit der Gleichung XII
(a38 b2,a2«2 -\-b2ßl + c^yfj sowie des Wertes von a13

(die Vorzeichen von a23 und a31 bestimmen sich gegenseitig).
Dieselbe kann nun in einfacher Weise umgangen werden,
wenn die Schwingungsrichtungen jener zwei Wellen in
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Betracht gezogen werden, deren Ebenen parallel zur
Austrittsfläche des Prismas (xz-Ebene) sind.

38. Es ist bekannt, daß die Schwingungsrichtung sich
im allgemeinen ändert, wenn die Welle aus dem Kristall in
die Luft übertritt. Der Grund liegt darin, daß die Schwingungsrichtung

der beiden an der Austrittsebene in den Kristall
hineinreflektierten Wellen im allgemeinen verschieden ist von
der Schwingungsrichtung der im Kristall einfallenden Welle.
Fällt aber die Welle im Kristall parallel zur Grenzebene auf,
so wird sie beim Übergang in die Luft nicht nur nicht
abgelenkt, sondern auch die beiden, durch Reflexion entstandenen
Wellen sind parallel zur Grenzebene und schwingen parallel
und senkrecht zur Schwingungsebene der im Kristall
einfallenden Welle. Dann aber ist die Energie der reflektierten
Welle, die senkrecht zur Schwingungsrichtung der einfallenden
schwingt, null, und wegen der Erhaltung der Energie muß
die ausgetretene Welle parallel zur einfallenden schwingen.

39. Es seien nun qx und q2 (q, < q2) die Geschwindigkeiten

der beiden Wellen, deren Ebenen parallel zur
Austrittsfläche sind und sx und e2 die Azimute der zugehörigen
Schwingungsrichtungen, die im Gegenzeigersinn von +z über

+ x jvon+y aus gesehen) positiv gerechnet werden.
Selbstverständlich unterscheiden sich e, und s2 um tt/2, und man kann

ex e

s2 e + 7ij2
setzen. Nach dem Fresnelschen Satze wird das Indexellipsoid
von der zx-Ebene in einer Ellipse geschnitten, deren
Halbachsen die Länge 1 : q, und 1 : q2 haben und mit der z-Achse
die Winkel e und e + nj2 einschließen. Ihre auf diese
Richtungen als Achsen bezogene Gleichung lautet daher

q2Z2 + q2X2-l=0.
Durch die Substitution

Z z cose + xsine
"X — z sin e + x cos e

erhält man ihre auf das zx-Sxstem bezogene Gleichung
(q2 cos2 e + q2, sin2 e) z2 -t-2(q2 —q2) sine cose zx

-f-(q2sin2e + q2COS2e)x2— 1 =0.
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Anderseits bekommt man für diese nämliche Ellipse aus der
Gleichung des Indexellipsoides

a33 z2 + 2 a31 zx + an x2 — 1 0.
Durch Vergleichung beider Ausdrücke erhält man daher

an q\ sin2 e + q2 cos2 e Rn
a13 (q^ —q2,) sinecose R13 XI b

a33 Q? C0S2 e+<ll SÌn2 S R33>

Hieraus und aus den Gleichungen XIa ergeben sich für die
Polarisationskonstanten die Werte:

ail=°U a22 F>ll— °33 a33 °33

a>3==(°l2^33 Ql2):R13 a31=R13 312=Pl2-
Daneben bestehen noch die drei Bedingungsgleichungen

ail -— ^11 as= 22 33

a23 (Pu-R33)R33-Qu (P12R88-Q22)2:R23
a23 RuR33-Q22 R22.

Da aber die oben ermittelten Werte diesen Gleichungen nicht
streng genügen, indem die aus den Beobachtungen abgeleiteten

Zahlen P,k, Q;k und Rik nicht fehlerfrei sind, so dienen
sie dazu, um an den Polarisationskonstanten Verbesserungen
anzubringen, die sich nach den Regeln der Ausgleichungsrechnung

finden lassen.
40. Die soeben entwickelte Methode hat sich bei der

experimentellen Prüfung leider nicht bewährt. Die Rechnung
hat nämlich in den untersuchten Fällen (Colemanit und Kupfervitriol)

ergeben, daß mindestens die fünf ersten Dezimalstellen
im Zähler von

a23 (* 12 R33 _ Q12) : °13

verschwinden, so daß derselbe, bei der am Goniometer erreichbaren

Genauigkeit gar nicht mehr bestimmbar ist. Selbst das
Vorzeichen von a23 wird zweifelhaft, da es bei dieser
Größenordnung von allerhand Zufälligkeiten abhängt, ob die Differenz

* 12 K33 — V12
positiv oder negativ wird (zumal wenn P12 und Q12 gleiches
Vorzeichen haben).

Diese experimentell gefundene Tatsache kann bezüglich
ihrer allgemeinen Geltung rechnerisch geprüft werden. Um
aber den Gang der hier vor allem wichtigen Ableitung nicht

4
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zu unterbrechen, soll die betreffende Untersuchung als Anhang
dieses zweiten Teiles gegeben werden.

41. Die eben genannten Schwierigkeiten können
umgangen werden, wenn neben dem Polarisationszustand der
zur Austrittsfläche parallelen Wellenebenen auch der
Polarisationszustand jener Wellen in Rechnung gezogen wird, deren
Normalen senkrecht zur anderen Grenzfläche sind. Bei der
Messung wird es am einfachsten sein, das Prisma so um
die z-Achse zu drehen, daß jene Grenzfläche des Prismas,
die vorher Austrittsebene der Wellen war, nun zur Eintrittsebene

wird und umgekehrt. Analytisch wird diese Drehung
durch die Transformationsformeln

x x' cos r + y' sin r
y — x' sin r+ y' cos T

zum Ausdruck gebracht. Natürlich ist im x'y'z'-System y' in
das Kristallinnere hineingerichtet, sofern die positive x'-Achse
von der Kante des Prismas nach der Basis verlaufen soll.
Auf dieses System bezogen, schreibt sich die Gleichung des

Indexellipsoides in der Form :

(an cos2F+ a22 sin2/"— 2 a12 sin /"cos T) x'2 +
(a,, sin2 r+ a22 cos2 T+ 2 a12 sin Tcos T) y'2 + a33 z'2 +
2 (a„ sin Tcos T— a22 sin /"cos T— a12 sin2r+ a12 cos2F) x'y' +
2 (a23 cosr+ a31 sinT) y'z' + 2 (a31 cosT—a23 sinT) z'x' —1=0.

Von der z'x'-Ebene wird diese Fläche in der Kurve
(an cos2r+ a22 sin2F— 2 a12 sin Tcos T) x'2

+ a38 z'2 + 2 (a81 cos T— a23 sin F) z'x'= 1

geschnitten. Anderseits liefert die Beobachtung zunächst die
reziproken Werte ihrer Hauptachsen q\ und q'2 (q\ < q'2) und
wegen der Schwingungsrichtung auch die Orientierung
derselben. Das Azimut der Schwingungsrichtung von q\ werde
mit e' bezeichnet und von +z über-x im Gegenzeigersinn
(von außen gesehen) gemessen. Für die andere Welle kann
es gleich s'-\-nj2 gesetzt werden.

Bezogen auf diese Schwingungsrichtungen als Achsen
hat die Schnittellipse der x'z'-Ebene mit dem Indexellipsoid
die Gleichung

q'2Z'2 + q'2X'2=l,
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und da
Z' — x' sin e' + z' cos e'

X' — x' cose' — z' sine',
so kommt dafür

(q'2 sin2e' + q'2 cos2e') x'2 - 2 (q'f - q'2) sine' cose' x'z' +
(q'2cos2e' + q'2sin2e')z'2=l.

Daraus folgt
an cos2r- 2 a12 sin/"'cosr+ a22 sin2 T q'2 sin2e' + q'2 cos2e' R'u

a31 cos/"1—a23sin.T —(q'2 —q'2) sine' cose' R'i3 XIc
a33 q'f cos2£' H- q'l sin2 e' =R'33

und hieraus
(q'2 — q'2) sine cose + a31 cosT

a,3
sinT

Die Genauigkeit dieser letzten Formel sowie ihr Vorteil der
früheren gegenüber ist bei späterer Gelegenheit noch
eingehend zu untersuchen.

42. Durch die hiermit eindeutig gegebenen Polarisationskonstanten

ist das Indexellipsoid vollständig bestimmt. Zur
Ermittlung der Hauptlichtgeschwindigkeiten und der optischen
Orientierung des Kristalls ist es dem Gesagten zufolge nur
mehr nötig, Größe und Lage der Hauptachsen des Index-
ellipsoides zu finden. Das ist aber ein ganz gewöhnliches
Problem der analytischen Geometrie. Bekanntlich sind die
Koordinaten u, v, w des Endpunktes einer solchen Achse den

Komponenten der zugehörigen Flächennormale, d. h. den

partiellen Differentialquotienten von
an u2 + a22v2-r-a33w2-r-2a1juv + 2a2gvw-r-2au Wu= 1

proportional. Man hat daher

anu + a12v + a13w Jlu

a,,u + a22v + a23w Àv XIII
ai3U + a<3V+a33W==*W>

wo X ein Proportionalitätsfaktor ist. Dieses System von
Gleichungen hat aber dann und nur dann von (0,0,0)
verschiedene Lösungen, falls

au— X a12 a13

al2 a,.,—X a,A =0. XIV
ai3 a23 a33 Ä

4*
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Diese Determinante stellt eine Gleichung dritten Grades in X

dar, deren Wurzeln im allgemeinen verschieden und nach
dem bekannten Weierstraßschen Beweis reell sind. Man
erhält darum drei Werte von X und somit auch drei Systeme
von Lösungen

Uì:vì:wì (i —1,2,3).
Multipliziert man die drei Gleichungen XIII der Reihe nach
mit u, v, w und addiert, so erhält man, falls man X und die
Variablen mit dem Index behaftet,

Xi (Ui2 + v;2 + Wi2) - 1.

Wegen der Voraussetzungen über u, v, w stellt

h
Ui2 + Vi2 + Wj2

das Quadrat der reziproken Länge einer Hauptachse des

Indexellipsoides dar, weshalb die Beziehungen gelten
a VTx, b=Vh, c Vh,

wofern

"\ ^" "2 ^> 3

gewählt wird.
Die Richtungskosinus ergeben sich jetzt unmittelbar.

Man findet beispielshalber

\Ai2 + v2 + w2

und ähnliche Ausdrücke für die anderen acht Richtungskosinus.
Ihre Werte ändern sich also nicht, wenn beliebige Vielfache
von ui, vi, Wj benützt werden, was insofern von Bedeutung
ist, als die Gleichungen XIII nur die Verhältnisse

Ui : Vi : w;
zu finden erlauben.

43. Nachdem es so gelungen ist, das Prismenproblem
allgemein und unabhängig vom Kristallsystem eindeutig zu
lösen, werden jetzt jene Fälle näher zu betrachten sein, bei
denen die entwickelte Methode versagt oder doch zu versagen
scheint. Dies trifft zu, wenn die Ein- oder Austrittsebene
des Prismas oder beide zugleich je auf einer optischen Achse

Binormale) senkrecht stehen — die zu diesen Flächen

parallelen Wellenebenen also keine bestimmte Schwingungs-
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richtung haben. Damit wird natürlich die angegebene Methode
illusorisch und die Formeln XI b bzw. XIc können und
dürfen streng genommen nicht mehr zur Bestimmung der aik

herangezogen werden, da die Voraussetzungen (bestimmte
Schwingungsrichtung), auf Grund derer sie abgeleitet wurden,
nicht mehr erfüllt sind. Indessen ergibt eine kurze
Überlegung analoge Ausdrücke. Es genüge, dies für den Fall
zu zeigen, daß die xz-Ebene auf einer optischen Achse
senkrecht stehe. Das Indexellipsoid wird von derselben in
einem Kreis geschnitten, als dessen Gleichung sich

an x2 + 2 a13 xz + a33 z2 — 1 0

ergibt. Da der Radius desselben gleich 1/b b ist die
Normalengeschwindigkeit längs der optischen Achse), so folgt

an a33 b2> ais 0

Es ist nun interessant zu sehen, daß die Gleichungen XI b
sich genau auf diese Werte reduzieren und somit auch in
diesem Grenzfall gültig bleiben. In der Tat, da

q, q2 b,
so kommt

an a33 b2 (sin2 e + cos2 e) b2

als (q2 —q2)sine cose 0.

Die übrigen Formeln bleiben unverändert, nur zeigt
sich, wie die Bestimmung von a23 nach der Gleichung

a23 l"l2 *^83 V12J ' ^18»

die, wie bereits bemerkt, auch im allgemeinen kein günstiges
Resultat liefert, hier zum vorneherein versagt, weil Nenner
und Zähler verschwinden und a23 sich auf die unbestimmte Form
ai3 0:0 reduziert — ein Grund mehr, die ursprüngliche
Fassung der Methode fallen zu lassen. Die nämliche Schwierigkeit

(Unbestimmtheit von a23) hätte sich übrigens immer
eingestellt, wenna18 0, was offenbar, vom eben behandelten
Fall abgesehen, nur noch eintritt, wenn die zur xz-Ebene
parallelen Wellenebenen parallel und senkrecht zur Prismenkante

schwingen d. h.

1) wenn die Querschnittsebene eine Symmetrieebene ist.
Aus Symmetriegründen verschwindet dann aber neben a13
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auch a23, was zur Folge hat, daß selbst ohne Rücksicht auf
den Polarisationszustand der zu den Grenzflächen parallelen
Wellen die Polarisationskonstanten lediglich auf Grund der

Gleichungen XIa eindeutig bestimmt werden können. Übrigens
handelt es sich hier um den bereits erledigten Fall a) von § 31 ;

2) wenn die yz-Ebene eine Symmetrieebene ist (vergi.
§31 c) und Anm. ganz am Schluß desselben Paragraphen);

3) wenn die Strahlen, die zu den parallel austretenden
Wellen gehören, in der Querschnittsebene bzw. in der
yz-Ebene liegen.

Im folgenden soll nun die Methode für die verschiedenen
Systeme spezialisiert werden.

/. Triklines System.

44. Im triklinen System besteht zwischen kristallo-
graphischer Richtung und optischer Orientierung kein direkt
erkennbarer Zusammenhang. Zudem ist die Lage sämtlicher
Hauptschwingungsrichtungen für die verschiedenen Farben
verschieden. Z,ur Bestimmung der optischen Konstanten
kommt daher die angegebene Methode in ihrer allgemeinen
Fassung zur Anwendung.

//. Monoklines System.

45. Im monoklinen System fällt eine Hauptschwingungsrichtung

mit der Orthodiagonale zusammen, während die
beiden anderen in der Symmetrieebene liegen und mit der
Vertikalachse die unbekannten Winkel d- und n\2 + # bilden,
so daß im ganzen nur vier Größen zu bestimmen sind.
Dementsprechend muß sich auch die Zahl der Beobachtungen
vermindern.

Die Beobachtung der Geschwindigkeiten und
Schwingungsrichtungen der zu den Grenzebenen des Prismas parallelen

Wellenebenen liefert die sechs Gleichungen

an Rn an cos2 F+ a22 sin2 r— 2 a12 sin Tcos / R'n

al3 R13 a31cosr-a23sinr=R'l3
a33 "j3 a33 " " 331

die aber zur Bestimmung der Polarisationskonstanten nicht
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hinreichen, weil a22 und a12 nur in einer und derselben
Gleichung auftreten, a33 dagegen doppelt bestimmt wird.

Sind A,B,C die bekannten Richtungskosinus der
Orthodiagonale in bezug auf das xyz-System, so muß die
Normale des Indexellipsoides in jenem Punkt, dessen
Koordinaten x, y, z den Größen A, B, C proportional sind, dieselben
Richtungskosinus haben. Bezeichnet daher m einen
Proportionalitätsfaktor, so muß nach den Gleichungen XIII

an x + a12 y + a18 z m A
a12x + a22y-l-a23z mB
a18x + a23y + a33z=mC

sein. Hieraus folgt nach einigen Umstellungen und mit
Rücksicht auf die Beziehung

x y z

A~~ÌT "C

das Gleichungssystem
(au-o)A+ a12B+ a18C 0

a12A-f-(a22 — o)B+ a23C 0

a13A+ a28B + (a83-o)C 0,
das durch Elimination des Proportionalitätsfaktors o die
Doppelgleichung

anA + a12B + a13C a12A + a22B+ a23C a13 A + a23B + a33CABCergibt. Im Verein mit XI b und XI c hat man somit zur
Bestimmung der sechs Polarisationskonstanten acht Gleichungen,
so daß dieselben überbestimmt sind und sich die Methode
der kleinsten Quadrate zur Ermittlung genauerer Werte
verwenden läßt.

46. Die Gleichungen XV bieten etwelche Schwierigkeiten,

wenn eine oder zwei der Größen A, B, C verschwinden.
I. Die Orthodiagonale liege in einer Achsenebene des

xyz-Systems und zwar
1) in der Querschnittsebene. Da

A cosa, B sinÀ, C 0,
so bekommt man aus den beiden ersten Gliedern der
Doppelgleichung XV

(a,, — a22) sin 2 X — 2 a12 cos 2 X 0.

XV
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Das dritte Glied muß den beiden ersten, welche endlich sind,
gleich sein. Das ist nur dadurch möglich, daß der Zähler
desselben verschwindet, d. h. daß

al3 cos X + a23 sin X 0.
Statt der beiden Gleichungen XV ergeben sich somit zwei
speziellere, welche für die Rechnung sehr bequem sind.

2) in der yz-Ebene. Die Richtungskosinus der Ortho-
diagonale haben die Werte

A 0, B cos ii, C sin ii,
und eine analoge Überlegung wie soeben führt an Stelle der
Gleichungen XV auf die ebenfalls bequemen Ausdrücke

(a22 — a33) sin 2 pu — 2 a23 cos 2 ii 0

a12 cos u -f- a13 sin /a 0.
3) in der Austrittsebene. Setzt man

A sini/, B 0, C cpsv,
so kommt

a12 sin v + a23 cos v 0

(a33 — au) sin 2 v — 2 a13 cos 2 v 0.

Die letztere Gleichung gibt nichts Neues, sondern stellt
vielmehr eine Beziehung dar, welcher die Rik identisch
genügen. Denn nach den Gleichungen XIb ist

a38_an=(q?-q2)cos2e
2ai3=(q?-qlLsin2e

also auch
(a33 —an) sin2e —2a13 cos2e 0.

Weiter erkennt man aus der Bedeutung von e, daß eine der
beiden Beziehungen

e v bzw. e + n\2=v
erfüllt sein muß. Dadurch kommt in jedem Fall

(a83 —an)sin2i/—2a13cos2i/=(R33 —Rn)sin2v—2R13cos2i/=0.
Zur Berechnung der Polarisationskonstanten kommt demnach
neben den Gleichungen XI b, XI c nur die Gleichung

a12 sinv-|- a23 cosv= 0
in Betracht. Wegen der Bedingung

bleibt aber für die Ausgleichungsrechnung immer noch Raum.
Würde die Orthodiagonale in die andere Begrenzungsebene
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des Prismas fallen, so müßte sich aus der Doppelgleichung XV
eine Beziehung ergeben, der die R'ik identisch genügen.

II. Die Orthodiagonale falle mit einer Achse des xyz-
Systems zusammen, und zwar

1) mit der z-Achse. Die Querschnittsebene ist eine
Symmetrieebene, und die Lösung ergibt sich, wie bereits bemerkt,
in einfachster Weise nach § 31a).

2) mit der y-Achse. Da die Richtungskosinus der Ortho-
diagonale A_Q> B=1> c==0
werden, das erste und letzte Glied der Gleichungen XV aber
endlich bleiben müssen, so kommt

a12 0 und a23 0,
wie sich übrigens direkt aus den Symmetrieeigenschaften des

Indexellipsoides folgern ließe.

3) mit der x-Achse. Es wird einerseits

A=l, B 0, C 0
und anderseits

a12 0 und a13 0,
und für die Anwendung der Ausgleichungsrechnung bleibt,
wie auch im vorangehenden Fall, die einzige Bedingung

K33 " 33"

Es ist beachtenswert, daß in allen Fällen des monoklinen
Systems die Bestimmung der Pik an und-für sich überflüssig ist.

///. Rhombisches System.
47. Infolge der Symmetrie dieses Systems fallen die

Hauptschwingungsrichtungen für alle Farben mit den

kristallographischen Achsen zusammen. Seien, von der soeben
gebrauchten Bezeichnung etwas abweichend, A,,A2,A3; Bj,B2,B3;
Ci,C2,C3 die Richtungskosinus der Brachy- resp.
Makrodiagonale und der Vertikalachse in bezug auf x,y,z. Nach
der Doppelgleichung XV gelten die Beziehungen :

an A,-f-a12 A2 + ai3 Ai _ ai 2 At + a22 A2 + a23 A3 a, 3 A, + a23 A2 + a33 A3

A, A2 A3
a11B1 + a,2B2+a13B3_a12B, + a22B2+a23B3_a13B, + a23B?+a33Ba.

B,
~~

B2 B3 XVI

ailCl~^"ai202 j ai8^3^ai2^1~^a22^2~ra23^'3 ai3^-'l "^" a23^2 ' a38^3

C, C2 C3
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Diese neun Beziehungen sind nicht voneinander unabhängig.
Es gilt vielmehr der Satz: Von den neun Beziehungen
der Gleichungen XVI sind nur drei voneinander
unabhängig, die aber im allgemeinen auf 78
verschiedene Arten kombiniert werden können. Man
kann also in 78-facher Weise aus den neun Gleichungen XVI
so drei wählen, daß die übrigen sechs hierdurch bedingt sind.

Zur Erleichterung des Beweises und im Interesse späterer
Anwendungen seien vier Vorbemerkungen gestattet, a) Eine
einfache Kontrollrechnung zeigt, daß aus zwei Gleichungen
je einer Zeile zwei beliebige Polarisationskonstanten als
Funktionen der vier anderen gefunden werden können. — ß) Man
beweist ferner, daß von den drei Gleichungen, deren Glieder
nur zwei Kolonnen angehören, jede durch die beiden anderen
bedingt ist. In der Tat, schafft man z. B in den zwei
Gleichungen der zwei ersten Zeilen und Kolonnen die- Nenner

weg und addiert, so kommt
(AIA2 + B1B2)an + (A2 + B2-A2-B2)a12+(A2A3 + B2B3)a18

-(A1A2 + B1BJ)a22-(A1A8 + B1Bi)a2,=0.
Mit Rücksicht auf die Orthogonalitätsbedingungen folgt hierfür

CiC2 (a,,— a22) + (C2 — Cj) a12 + C2C3a,3 — CXQ.A a23 0.

Das ist aber genau die den beiden Ausgangsgleichungen
entsprechende dritte Gleichung, falls man darin die Nenner
wegschafft. — y) Weiterhin kann man zeigen, daß zwei in der
genannten Weise aufgestellte Gleichungen nicht unabhängig
sind von den zwei Gleichungen, die sich durch andere
Kombination der Kolonnen ergeben. Man betrachte zu diesem
Zweck die vier Gleichungen :

aA-t-n A -4- a A
0aii A, +a12 A., 4- a13 A3 ai2A, t a22 A2 -f- a28 A3

Ai
anB1-fa12B2 + a13B3 a12B,

A,
+ a22B2 + a23B3

Bt
a12 Aj + a22 A2 + a.,3 A3 ai3 A,

B2

+ a23 A2 + a33 A3

A,
a12B1 + a22B2 + a23B3 ai3Bi

K
+ a23 B2 + a33 B3

B3 Bs
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Subtrahiert man von der ersten Gleichung die zweite, so
kommt der Ausdruck

^_A1_B2 'Ba (A*-BAa +/A3 B3\a _0
\AX A2 B+Bj*" U2 Bjan + \Al~Bj *»~ °'

der mit
A.B,k
AâB3

multipliziert und zur dritten Gleichung addiert nach einigen
Umänderungen die Beziehung ergibt:
rA, (A1B2-A2B1)(A1B1 + A2B2h
te+ A.B..AA J *12 + a22 +

2 *-"2 * »3"8

Al-Al A1B1(A8B2-Ag*Ba)-| B
a23 — d83 — —- a31 — u.rA3A2 A^A^-A^-jL A2A3 A2B2 A3B3 J

Beachtet man, daß

A,B1 + A2B2 + A3B8 0

und formt man den Koeffizienten von a23 in folgende Weise um :

A2B2B3-A2B2B3 + A1B1A3B2-A1B1A2B„_
^2 D« J\$ Djj

A8 B2 (A, B3 + Ax Bx) - A2 B3 (A, B2 + A, Bx) A2A3(B|-B2)
A2B2A3B8

"

A2A3-B2B3
'

so erhält man, falls man die Koeffizienten von a22 und a83 in
selbstverständlicher Weise erweitert,

a12 Bx + a22 B2 + a23 B3 a13 Bx + a23 B2 + a33 B8 ¦

B2 B3

d. h. genau die vierte Gleichung. — d) Hieraus ergibt sich

endlich, daß je eine Gleichung aus jeder Zeile zusammen
ein unabhängiges System bilden, wofern dieselben so gewählt
werden, daß ihre Glieder nicht sämtlich in den zwei
nämlichen Kolonnen figurieren.

Der Beweis des Satzes ist nun leicht zu führen. Da
im ganzen neun Gleichungen vorhanden sind, so kann man
dieselben in

98-7 „.¦84(9\ 9.».
UJ 1.2...3

verschiedene Gruppen von je drei Gleichungen zusammen-
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fassen. Hiervon fallen drei Gruppen weg, weil die Glieder
ihrer Gleichungen nur je einer Zeile angehören. Ebenso
fallen jene drei Gruppen weg, deren Gleichungen aus sechs
Gliedern aufgebaut sind, die nur in je zwei Kolonnen
auftreten. Es verbleiben somit 78 verschiedene Kombinationen
von drei unabhängigen Gleichungen des Systems XVI.

48. Zur Bestimmung der Polarisationskonstanten genügt
die Ermittlung der Geschwindigkeiten und Scbwingungs-
richtungen der zur xz-Ebene parallelen Wellenebenen, da
diese letzteren drei Polarisationskonstanten liefern (an,a13, a33)

und die drei anderen sich aus den Gleichungen XVI ergeben.
Am einfachsten ist die Rechnung, wenn man die Gleichungen
zweier Zeilen nimmt, deren Glieder in der ersten und dritten
Kolonne stehen. Man erhält so a12 und a23 und kann sie in
eine jener beiden Gleichungen eintragen, welche ein Glied der
zweiten Kolonne der noch verbleibenden Zeile enthalten.
Dadurch ergibt sich a22.

Es hat keinen Zweck, die entsprechenden Gleichungen
für a12, a22 und a23 explizit aufzustellen, da man schließlich
alle 78 Systeme betrachten müßte. Sie geben zwar alle das

gleiche Resultat, aber nicht alle brauchen für die Rechnung
gleich günstig zu sein.

Das gleiche Problem (Bestimmung der
Hauptlichtgeschwindigkeiten eines rhombischen Kristalls mit Hilfe eines
einzigen Prismas von beliebiger Orientierung) wurde schon
früher (§ 15 ff.) behandelt. Die Lösung erwies sich möglich,
aber nur auf Grund sehr umständlicher Überlegungen. Auch
die von Born1) angegebene Methode, deren Voraussetzungen
zudem spezieller sind wie die hier gemachten, erfordert die
Bestimmung der Kurve C und demzufolge die Ermittlung
von mindestens sechs Wertpaaren (q, xp). Um wieviel
einfacher ist demgegenüber die soeben entwickelte Methode, die
auf Grund der Ermittlung zweier Lichtgeschwindigkeiten
derselben Fortpflanzungsrichtung und der zugehörigen
Schwingungsrichtungen — im ganzen also drei unabhängige Be-

1) N. Jahrbuch f. Mineral. B.-Bd. 5, 40.
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obachtungen — die Berechnung der Hauptlichtgeschwindigkeiten

a, b, c gestattet und überdies ergibt, in welcher Weise
sich die optischen Symmetrieachsen auf die kristallographischen
Achsen verteilen.1)

49. Ist die Orientierung des Prismas spezieller Art, so
vereinfachen sich die Gleichungen XVI, was eventuell eine

Vermehrung der Beobachtungen nach sich ziehen kann.

I. Eine kristallographische Achse liege in einer Achsenebene

des xyz-Systems, wogegen die beiden anderen eine
willkürliche Lage haben. Von den neun Richtungskosinus
Aj, Bi, Ci wird einer null. Es verbleiben aber immer noch

genug unabhängige Gleichungssysteme, um die allgemeine
Methode anwenden zu können. Übrigens kann es von Vorteil
sein, ähnliche Überlegungen wie etwa im Falle I, l. des monoklinen

Systems (§ 46) anzustellen und damit einfachere
Beziehungen abzuleiten. Wäre z. B. Ax 0, so käme

ai2 A2+a13A3=0.
Die anderen Gleichungen vereinfachen sich nicht.

II. Eine kristallographische Achse falle mit einer Achse
des xyz-Systems zusammen und zwar

1) Die Brachydiagonale mit der x-Achse. Die neun
Richtungskosinus nehmen die speziellen Werte

Ax \ A2 0 A3 0

Bi 0 B2 cos« B3 sinw
Cx 0 C2 — sin« C8= cosi*

an und statt der Gleichungen XVI kommt

ai2 0 ai3 °
(a22 — a33) sin 2 u — 2 a23cos 2ii=0.

Zur Berechnung der a;k ist es notwendig, die R'ik
heranzuziehen, wodurch Uberbestimmung und damit die Möglichkeit
der Anwendung der Ausgleichungsrechnung vorhanden ist.

2) Die Brachydiagonale mit der y-Achse. Da

*) Hier sei erwähnt, daß auf Grund der nämlichen Beobachtungsdaten—

jedoch mit Hilfe einer wesentlich anderen Formel Th. v. Liebisch
die Bestimmung der optischen Konstanten rhombischer Kristalle theoretisch

durchgeführt hat. (Zeitschr. f. Krist. und Min. 7. 433—437).
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A: 0 A2=l A3 0

B, sin it B2=0 B3=cos,u
Ct costt c2=o C3 —sin

erhält man analog wie vorher
a., 0 ¦*23" 0

(an —a33)sin2,it + 2a13cos2,tt 0.

Die letztere Gleichung ist, wie in § 46, I, 3 gezeigt wurde,
eine Identität und scheidet darum aus, so daß abermals die
R'iif heranzuziehen sind.

3) Die Brachydiagonale mit der z-Achse. — Die Lösung
* ergibt sich, wie schon mehrmals bemerkt, am einfachsten
nach der gewöhnlichen Methode.

Würde statt der Brachydiagonale die Makrodiagonale
oder die Vertikalachse mit einer Achse des xyz-Systems
zusammenfallen, so würden die voranstehenden Formeln im
wesentlichen unverändert bleiben.

III. Das xyz-System fällt mit dem kristallographischen
Achsenkreuz zusammen. Man kommt damit auf den aller-
gewöhnlichsten Fall, der keiner weiteren Erörterung bedarf.

50. Es bleibt noch der interessante Fall zu erledigen,
wo die optische Orientierung beliebig, aber gegeben1) ist.
Man hat ohne weiteres

Rn a2a2 + b2/32 + c272

R13= a2aja3+ b2ßxß3+ c2/x y3
RA3=a2a2 + b2ß2 + c2y\.

Die Determinante dieses Systèmes ist

«Î ßi YÌ a\ + ß2 + y2 ß2 yj 1 ßi Yi

ai«s ßißa YiY-6 <*i<*a+ßiß» + YiYt ßiß» YiY-6 0 ßA Yi?

«3 ßl YÎ «l + ßi + Yl ßl YÎ 1 ßl Yi

ßißiYl-ß23YiYi+ßlYiYs-ßißiYi ß*Ys(ßiY-ßiYi) +
+ ßiYt(ßi)'»- ß6Yi) (ßiYs-ß3Yi)(ßsY* + t\Yx) a2ß2y2

i) Th. v. Liebisch, N. Jahrb. f. Mineral. 1886. I Seite 23.

M. Born, N. J. f. Min. B. Bd. 5 (1887) Seite 40.

Dem § 48 gegenüber wird hier vorausgesetzt, daß es bekannt
sei, mit welchen kristallographischen Achsen die einzelnen optischen
Symmetrieachsen zusammenfallen. Dadurch wird aber nur eine
rechnerische, nicht aber eine sachliche Vereinfachung erreicht.
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und darum sicher von null verschieden, wenn die y-Achse
auf keiner optischen Symmetrieachse senkrecht steht. Grund
für das Verschwinden der Determinante ist der, daß in allen
diesen Fällen wenigstens eine optische Symmetrieachse in
die zx-Ebene zu liegen kommt, so daß der Winkel e zum
vorneherein gegeben ist. Es verbleiben demnach nur noch
zwei unabhängige Beobachtungsreihen, die natürlich zur
Bestimmung der drei Unbekannten nicht hinreichen.

51. In Kürze sei noch auf die Verwendungsmöglichkeit
der Methode im Falle optisch einachsiger Kristalle
aufmerksam gemacht.

Setzt man a b o und c e (wobei allerdings die
Annahme a>b>c ganz dahinfällt, indem o ebensogut größer
wie kleiner als e sein kann), so kommt

an (ßj2 + /?i2) o3 + y{- e2

aik {a-xak + ß-,ßk) o2 + yxyk e2.

Wegen der Identitäten
a-2 + ßi2 + yi2=[

und wegen
ctjo:k + ßißk + yiyk — 0

kann die Gleichung VII des Indexellipsoides auf die Form
[o2 + (e2- o2)y2] x2 + [o2 + (e2-o2)y2] y2 + [o2 + (e2-o2) y2] z2

+ 2(e2 - o2)yxy2 xy + 2(e2-o2)y2y3yz + 2 (e2 - o2)y.Ayx zx 1

gebracht werden, aus der die Ausnahmestellung der optischen
Achse allen anderen Richtungen gegenüber deutlich wird
Zugleich ergeben sich für die Polarisationskonstanten die
Werte :

an o2 + (e2-o2)72
:o2 + (e2-o2)/2

/2a33 °2 + (e2-°2)j/3
a12 (e2-o2)^^2
a23 (e2-o2)^273
a3! (e2-o2) 7^.

Es sind nun zwei wesentlich verschiedene Probleme zu
unterscheiden.

1) Die kristallographische Orientierung des
Prismas, welches zur Bestimmung der optischen
Konstanten dienen soll, ist unbekannt und un-
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bestimmbar. Zur Ermittlung von e und o (und der Lage
der optischen Achse) genügen die Gleichungen XIb und XIc.
In der Tat, da die vier den Grenzflächen parallelen Wellenebenen

(q!,q2 und q'„q'8] zweimal den Wert o ergeben, so
kommt mit Rücksicht auf die eben gefundenen Werte der
Polarisationskonstanten :

(e2-o2)r2 Rn-o2 a)
(e2-o2)y3yx^R13 b)

(e2 - o2) y3 yx cos/1- (e2 - o2) y, y.A sinr= R'13. c)

Aus b) und c) bekommt man
Y2 R18cosr—R'13
Yx R18 sinr

und aus a) und b)
Y3 _.;.

^18

Y1 Rn-o2
und damit wegen der Identität

YÌ YÌ YÌ
die beiden Lösungen

YvYpY* und -Yv-Yv — Y»
welche mit Hilfe etwa der Gleichung b) den eindeutigen Wert

e2 —o2
liefern. Da o2 bereits bekannt ist, folgt daraus unmittelbar e2.

Die übrigen drei Gleichungen von XI b und XI c dienen

zur Anwendung der Ausgleichungsrechnung.
2) Die kristallographische Orientierung des

Prismas ist bekannt. Zur Bestimmung von o und e

genügt die Beobachtung von qx und q2. ex e und e2=e + 7r/2
lassen sich aus yx,y2 und y.A berechnen. Man kennt darum
die Schwingungsrichtung von o zum vorneherein und kann
somit leicht entscheiden, welcher der beiden Werte qx und q2

der ordentlichen Wellengeschwindigkeit entspreche. Da ferner

au+a38 2o2 + (e2-o2)(72 + 72) q2 + q2,

so ist
q2 + q2-2o2

e2-o2=———
YÌ + YÌ

Das Problem ist also erledigt.
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Übrigens hat schon Th. v. Liebischl) gezeigt, daß die
Hauptlichtgeschwindigkeiten eines einachsigen Kristalls mit Hilfe
eines Prismas beliebiger Orientierung gefunden werden können.

52. Anhangsweise sei noch die in § 40 erwähnte Tatsache
rechnerisch untersucht. Zu dem Zweck sollen zwei Sätze bewiesen werden.

l.Satz: Die absoluten Werte von aik (a12, a23, a31) liegen
zwischen null und (a2— c2) : 2. Daß aik verschwinden kann, ist
leicht ersichtlich, genügt es doch, daß z. B. das xyz-System mit dem
^>jf-System zusammenfalle. Es erübrigt somit noch der Beweis, daß
(a8—c3):2 die obere Grenze von aik ist.

Mit Rücksicht auf die zweite Gleichung des Systems XI b läßt
sich das Bildungsgesetz der aik (i + k) leicht erkennen. Darnach wird,
ialls der besseren Formulierung wegen

aikEEaj (i*j*k 1,2,3)

gesetzt wird, — wodurch die Beziehung zu einer bestimmten Achse
¦des xyz-Systems besonders hervortritt — a.x bestimmt durch die Differenz
der Geschwindigkeitsquadrate und die Azimute des Schwingungszustandes

jener Wellen, die sich parallel der x-, y- oder z-Achse
fortpflanzen (j=I, 2 oder 3). Bei gegebener Lage der j-Achse kann das
Azimut der dazu senkrechten i- und k-Achse, auf welche die Schwingungs-
richtungen bezogen werden, sich noch beliebig ändern.

3j aik (q.2 - qj'2)-sin eik-cos *ik
setzt sich darum aus den völlig unabhängigen Faktoren q'-2 ~ q'-. und
sin* cose zusammen. Der maximale Wert eines solchen Produktes ist
aber gleich dem Produkt der maximalen Werte seiner Faktoren, d. h.

Max aik= Max (qj2 — q"2) Max sin éik cos fik.
Der erste Faktor hat den selbstverständlichen Wert a2— c2, während
der zweite Faktor sein Maximum für f (4n+l)-n/4 erreicht. Es

kommt somit

Maxaik=a c.
2

Der hiernach bewiesene Satz erlaubt bereits eine Anwendung
auf das in Rede stehende Problem. Es ist nämlich der Zähler von a23

gegeben durch
a23 • a3i Pia R33 — Ql2-

Bedenkt man, daß für den maximalen Wert von a23 der Wert von agl
verschwindet, was mit Rücksicht auf die Werte al—yl=ß2 ß3 0 sofort
begreiflich ist, so folgt, daß der maximale Wert von P12R33—Q12 sicher
kleiner ist als das Produkt der maximalen Werte von a23 und a31, d. h.

(a2— c*)2
P12 R33 — Ql2

In der mehrfach erwähnten Arbeit im N. Jahrb. f. Miner. 1886 1.14.
5
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Es läßt sich aber noch eine schärfere Grenze finden, da ein weiterer
Satz besteht.

2. Satz: Der absoluteWert von a15 • a32 liegt zwischen
null und (a2-c2)2:8.

Mit Berücksichtigung der Bedeutung von a13 und a23 sowie der
sechs unabhängigen Gleichungen zwischen den neun Richtungskosinus,
des Schemas I wird | aI3 ¦ a23 | Maximum, wenn dies der Fall ist für
a* «i«2«l + b* ßißaßl + c* yx y2y% + a2 b2 («2«3 ßtß3 + «3 ax ßaß3) +

+ b2 c2 (ß2 ß3 ys yl + y2 y3 ß3 ßi) + c2 a2 (y2 y3 «g at + a2 «3 y3 Yl) +
+ kl («1 «2 + /»l/»2 +Vi Y») + k2 («2«3 + ßißi + y2 Vi) + ^3 (»3«1 + ßißi + Vi Yi)
+ k4 («f + /ïf + yf - 1) + k5 («I + /s| + yl- I) + k6 («| + /s| + y| - 1).

Hieraus bildet man durch partielle Differentiation nach den neun
Richtungskosinus folgende Gleichungen:
Ai a* «a«2, + a2 b2 «3ß2ß3 + c2 a2 y2y3a3 + k, «2 + ks «s + 2 k4 ax 0

A2 a* «j «2 + a2 b2 «sßx ß3 + c2 a2 y3yx«s + kx «t + k3 «3 + 2 k5 a2 0

A8 2 a4 «! «2«3 + a2 b2 (atß1 ß3 + tt1ß2ß3) + c2 a2 (y2 y3«x + a2y3yx) + k2 «2 +
+k3B1+2 k6 «3 0

Bj b* ß2ß\ + a2 b2 «2 «3/S3 + b2 c2 y2 y3ß3 + kL ß2 + k3 ß3 + 2 k4 /J, 0

Ba b* ß±ß2 + a2 b2 «,,«!,% + b2 c2 ß3y3 Yl + kj fit + k2 ß3 + 2 k5 ß2 0

Bs=2b*/31/S2/Î3 + a2b2(«2a3(S1 + as«1/S2) + b2c2(/S2y3y, + y2y3/sl) + k2/î2 +
-r-k3/*1^-2 k6/î3=0

C, c4y2 y| + b2 c2 ß2ß3Vi + c2 a2 «2«sT'a + kt y2 + k3 y8 + 2 k4 yx 0

C2 c* y, y\ + b2 c2 y3 ß3 /*j + c2 a2 y3 «3 «t + kj yx + k2 y3 + 2 k5 y2 0

C3 2 c4 y^gy.) + b2 c2 (ß2ß3yx + y2/J3£i) + c2 a2 (y2«3«i + K2«syi) + k2y2 +
+ k3y1 + 2k6y3 0

Mit Hilfe der Orthogonalitätsgleichungen beweist man leicht, daß
nachstehende Identitäten gelten.

«i Ai+/S, BI+y1C, alga23 + 2k4 0

a2Ax+ß2B1 + y2Cl=4i + k1=0
«s A, + ß3 B, + y3 Ci a83 a23 4- k3 0

ux A2+ßx B.i + y1C2 a213 + kl=0
k2 A2 + ß2 B2 + ya C2 a18 a23 + 2 ks 0

«3 A2 + ß3B2 + Va C2 a33 at3 4- k2 0

«i A3 + ß1B3 + Vi C3 a12 a13 + au a23 + k3 0

k2 A3 + ß2 B3 + y2 C8 a22 ais + a12 a23 + k2 0

«3 As + ß3 B3 + y3 C3 2 a13 a23 + 2 k6 0

Diese neun Gleichungen gestatten, die k; als Funktionen von a, b, c,
oj, /Sj und y; zu berechnen und liefern überdies drei von k; unabhängige
Beziehungen, die mit den sechs Orthogonalitätsgleichungen jene Werte
von "i,ßi,Yi (i 1,2,3) zu finden erlauben, für welche

]a13a23)| Max.
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Die neun soeben genannten Gleichungen sind folgende:
2 2

a23 — a31 (---k,)
a38 a31 a22 a31 "1" a12 a2S (—-ki)
a23 a33 au a23 + a12 a3t (—-ks)

t+fi+Z-i
Die erste Gleichung zerfällt in die zwei linearen Gleichungen

a28 asi a23 — a31,

mit deren Berücksichtigung aus den übrigen folgt:

Da

a18 la33 "

ai8(a33 ¦

a22) — a12 a13

all) a12 a13

a13 (a83 — a22) — '

a13 (a38 — an) -

' a12 a13

a12 a18.

a23 a31 "
jedenfalls nicht die extremsten Maxima und Minima von a32 a31

ergeben, so kann man an Stelle der obigen drei ersten Gleichungen
folgende zwei Systeme setzen.

A.
a3S — a22 :

a83 — all

; a31

: a12

a12

B.

a88 — a22 :

;—a81
: —aI2
: — a12

Zur Auflösung der Gleichungen dürfte es sich empfehlen, die
geometrische und physikalische Bedeutung der Polarisationskonstanten
heranzuziehen.

Im Falle A wird man ohne weiteres bemerken, daß au a22, a33

und a2g a3i jene Konstanten sind, welche in den Gleichungen der
Schnittellipsen des Indexellipsoides mit den beiden Achsenebenen

y 0 und x 0

auftreten, denn wegen Gleichung VII schreiben sich diese
Ellipsengleichungen ohne weiteres in der Form

aux2 + 2a13xz + a33z2= 1

a22 y2 + 2a28 y z + a33 z2 1.

Diese beiden Ellipsen sind den Beziehungen A zufolge gleich und
können zur Deckung gebracht werden, falls die xz-Ebene soweit um
die z-Achse gedreht wird, bis +x mit +y zusammenfällt. — Sie sind
also symmetrisch nach der Ebene

x-y=0,
die mithin eine optische Symmetrieebene sein muß. In dieser Ebene
liegen zwei optische Symmetrieachsen;

senkrecht dazu ist die
dritte. Es sind folgende drei
durch die Figuren 5 a, 5 b und
5 c erläuterten Fälle denkbar,
für welche das Schema I die Fig-5a Fig-5b Fig5c

umstehende spezielle Form annimmt. Setzt man diese Ausdrücke,
5*



Fall
A. In der xy-Ebene liegt die Zu Fig. 5a, 5b, 5c.

J-Achse >j-Achse f-Achse

X y z X y z X y z

$ V2
2

V2
2

0 vT-1-î.cos*
2

VT—ICOS 9
2

sin .'/ V2Z-=- cos *
2

-*-=-COS#
2

sin *

i Vzv ; cos n
2

Vzv cos »
2

sin* S/2"
2

V2
2

0 -Visin*
2

-V^sin*
2

COS*

f -V^sin*
2

-V^sin*
2

cos * Vz sin* — —-sin*
2

COS *
2

\/2~
2

0
2

Fall
B. In, der xy-Ebene liegt die Zu Fig. 6a, 6b, 6c.

J-Achse ^-Achse f-Achse

x y z X y z X y z

£ Vi
2

V/2
2

0 V2 cos*
N/2
-Ü-Z-COS*

2
sin * S/2"v cos*

2
^lAcos*

2
sin*

2

ï V^cos* VïX_icos*
2

sin * V2
2

V/2"
2

0 Vi sin*
2

v/i".
— —-sin*

2
cos *

2

î N/2"^-=-sin *
2

V/2"__ZljLsin*
>2

cos * —Isin *
2

-Visin*
2

cos* VT
2

V/2"
2

0
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welche den sechs Orthogonalitätsbedingungen sowie der ersten und
der Differenz der beiden andern der Gleichungen A identisch
genügen, in die dritte Gleichung, nämlich

- au a12,

371ein, so erhält man
*

und findet für a28 a8i I bzw.
(b2-c2)2

>

8

Im Falle B bestimmen
au £

4 4

(a8_c2)2 (a2-b2)2
8 8

a31a33> a23

wiederum die beiden Schnittellipsen des Indexellipsoides mit den Ebenen

y 0 und x 0.

Ihre Gleichungen sind wie soeben

aux2 + 2a18xz + a83z2 1

a22ya + 2a28yz + a33z2= 1.

Die hierdurch dargestellten Ellipsen sind wegen der Gleichungen B
ersichtlich gleich und gelangen zur Deckung, wenn die xz-Ebene
soweit um die z-Achse gedreht wird, bis + x mit —y zusammenfällt. Sie
sind also symmetrisch bezüglich

- x + y 0.

Möglich sind demnach nur
folgende drei durch die Figuren 6a,
6 b und 6 c dargestellten
Orientierungen, für welche das Schemal
die auf der vorangehenden Seite zusammengestellten Formen annimmt.
Verfährt man wie bei A, so berechnet sich abermals

* *, ËÏ
4 4

und für [ a23 a311 kommt genau wie vorher
(b2-c2)2 (a2-c2)2 (a2-b2)2

8 8 8

Einige numerische Beispiele mögen diese Formeln erläutern.
Tabelle II

& L
Fig. 6 b Flg. 6 cFig. 6 a

¦ a c
(aa_c2)2

8

Rhomb. Schwefel 0,51270 0,44632 0,000507

Aragonit 0,65354 0,59316 0,000708

Gips 0,65771 0,65376 0,000003

« — Äthylpyruvat-Hydrazon 0,67264 0,53186 0,003594

Diese Zahlen erklären die Erfahrungen, die sich bei der numerischen Prüfung

der auseinandergesetzten Methode unliebsam geltend gemacht haben.



III. TEIL

Experimentelle Prüfung der im zweiten Teil
entwickelten Methode.

53. Die im zweiten Teil erläuterte Methode zur Bestimmung
der Brechungsindizes optisch zweiachsiger Kristalle wurde
an je einem Prisma von

Kupfervitriol, '

Colemanit und
Euklas

geprüft. Die dabei gewonnenen Erfahrungen sollen im
folgenden samt den erzielten Resultaten mitgeteilt werden.

54. Die Beobachtungen wurden mit Hilfe eines Fueßschen
Goniometers Modell II ausgeführt. Als Lichtquelle diente
eine mit Helium gefüllte Geißlerröhre, doch konnte auch im
günstigsten Falle (Euklas) nur auf vier Linien eingestellt
werden: rot (668iiii), gelb (588), grün (502) und indigo (447).
Als Spalt wurde der Webskysche gewählt, weil er die Schärfe
mit großer Helligkeit verbindet. Wegen der geringen Zahl
von Linien konnte keine störende Übereinanderlagerung der
Farben eines und desselben Spektrums entstehen.

55. Bei den verschiedenen Ablesungen wurde im
allgemeinen folgender Gang eingehalten. Nachdem das Prisma
zentriert, justiert und in jene Lage gebracht war, welche für
die Beobachtung des gebrochenen Lichtes geeignet erschien,
wurden der Teilkreis sowie die Achse des Kristallträgers
festgeklemmt und die Fernrohrachse in die Verlängerung der
Kollimatorachse gerückt, um das Azimut des unabgelenkten
Spaltbildes zu ermitteln. Der größeren Genauigkeit wegen
-wurden Einstellung und Ablesung dreimal vorgenommen,
nachdem das Prisma zuvor aus dem Zentrum des Gesichtsfeldes

entfernt worden war. Hierauf wurde die Prismenkante

wieder mit dem Fadenkreuz zur Deckung gebracht,
sodann das Fernrohr herumgedreht, bis das an der Eintrittsebene

reflektierte Spaltbild sich mit dem Fadenkreuz deckte.
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Diese Einstellung wurde zweimal vorgenommen. Nachher
wurde das Fadenkreuz der Reihe nach auf die einzelnen
Farben der beiden Spektra (zuerst des weniger abgelenkten
und dann des stärker abgelenkten) von rot bis indigo und
dann zurück von indigo bis rot eingestellt. Wenn sich die
zwei durch Doppelbrechung erzeugten Spektra überlagerten,
wurden sie durch einen vor das Auge gehaltenen Nikol
unterschieden. Nach diesen Ablesungen wurde wieder eine

zweimalige Einstellung des reflektierten Lichtes gemacht,
hernach in der beschriebenen Weise neuerdings auf die beiden

Spektra eingestellt und das Fernrohr zum Schlüsse, nachdem
das Azimut des reflektierten Spaltbildes vorher noch zweimal
abgelesen war, dreimal auf das unabgelenkte Spaltbild (bei

weggerücktem Prisma) gerichtet.
56. Folgende Tabelle III, die dem Beobachtungsheft aufs

Geratewohl entnommen ist, zeigt, welche Genauigkeit erzielt

Tabelle III.

Reflekt. Direkt. He Abgelenkt. Spaltbild

200°381/2' 299° 30'
rot

(668 uu) 323°021/8' oi7/; 02' Ol1/*'

381/, 293/4
gelb

(588 uu) 087/s 09 387/3 09

381/, 2n grün
(502 uu) in 195/s 195/8 198/8

38V2 30 indigo
(447 uu) 303/8 303/8 301/, 305/s

383/4 297/8
rot

(668 uu) 203/4 205/8 201/, 201/«

38*/2 30 gelb
(588 uii) 275/8 275/8 275/8 275/8

grün
(502 puu) 38V8 381/, 383/8 381/,

indigo
(447 uu) 485/8 49 49l/, 49Vs
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werden kann. Bemerkt sei noch, daß bei der Ablesung die
Achtelsminuten geschätzt wurden. Die Teilung erlaubt
bekanntlich die direkte Ablesung von halben Minuten. Viertelsminuten

können leicht geschätzt werden. Um aber genau
cine solche zu haben, müssen zwei aufeinanderfolgende
Teilstriche des Nonius so zwischen zwei aufeinanderfolgenden
Strichen des Teilkreises liegen, daß das Intervall zwischen
den beiden Strichen links gleich dem Intervall zwischen den
beiden Strichen rechts ist. Besteht ein merklicher Unterschied,
so wird mit Benutzung von Achtelsminuten eine größere
Genauigkeit erzielt.

57. Aus den Azimuten des reflektierten, nicht abgelenkten
und abgelenkten Spaltbildes berechnen sich in einfacher Weise
die beiden Winkel i0 und i1# Zur Berechnung von xp und q
dienen die bekannten Formeln (die Bedeutung der Buchstaben
ist dieselbe wie früher; vergi, auch Fig. 1)

tg (f-r) =tg (r0-f =tgf • tg (L-7^) cotg7^
_sinr0 sin^

sini0 sinij

Die Rechnungen wurden tabellarisch angeordnet. Es genüge
ein beliebig gewähltes Beispiel (Colemanit) mitzuteilen (vergi.
Tab. IV). Dabei soll ausdrücklich bemerkt werden, daß bei
den entsprechenden Messungen, abweichend von den

Festsetzungen des § 34, die Eintrittsfläche zur xz-Ebene
gewählt wurde. Sofern man sich nämlich die Formel

tg(ro--)=tg-tg(.a—y-Jcotg —
bedient, erzielt man bei dieser Stellung den großen Vorteil,
daß die Berechnung von \x dahinfällt und für die einzelnen
Farben der beiden Spektra einer Beobachtungsreihe q; (bei
Colemanit also 6 Werte) stets denselben Nenner hat, was beim
logarithmischen Rechnen eine nicht zu unterschätzende
Vereinfachung ist. Um aber bei den einmal abgeleiteten Formeln
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bleiben zu können, wurde, wenn die Eintrittsfläche als xz-Ebene
diente, der ganze Kristall um eine zur brechenden Kante
senkrechte Achse gedreht gedacht, so daß die positive Richtung

der z-Achse von oben nach unten lief.

Tabelle IV. Rechnungs-Schema.

rot gelb grun rot gelb grun

A

D

/1

T

r+74

logtg

logtg|i0
r+//\

2 /

r+7d
logtg

TT

logtg (r0-~)

l
2

£
2

6'07" 9'51" - 5'38" 6'28" 9'19"

223° 39' 23

203» 59- 5f>

19» 39' 33'

280 21'29"

480 01'02"

240 Off 31"

450 31' 17"

210 30' 46"

223° 45' 30"

2030 59' 50"

I90 45'40"

28° 21'29"

480 07' 09"

240 03' 35"

450 31' 17"

210 27'42"

223° 55' 21"

2030 59 50"

190 55'31"

28° 21' 29"

480 17'00"

240 08' 30"

4503I 17"

210 22' 41"

2230 49'43"l2230 56'll"
203» 59' 50"

190 49' 53"

28° 21' 29"

480 11'22"

240 05' 41"

450 31' 17"

210 25' 36"

203° 59' 50"

I90 56'21"

280 21' 29"

480 17'50"

240 08' 55"

450 31' 17"

210 22'22"

224° 05' 30'

2030 59' 50'

200 05' 40'

28° 21'29'

480 27' 09'

24013' 35'

450 31' 17'

210 IT 42'

3'04" 4'55" 2'49" 3'14" 4'40"'

9,4025183

9,5953975

2840

8,9981998

9,6485831

1756

9,3494411

3290

1121

12» 36'11"

140 10' 45"

260 46' 56"

9,4025183

9,5942851

2598

9,4025183

9,5924263

2916

8,9970632

9,6496023

1980

9,3472629

69494

3135

120 32'31'

I40 10' 45'

260 43' 16'

8,9952362

9,6512974

1693

9,3437695

3578

4117

120 26'41"

14» 10' 45"

260 37' 26"

9,4025183

9,5935423

2229

8,9962835

9,6502809

2317

9,3457709

552

157

12° 30'01'

140 10' 45'

260 40' 46'

9,4025183

9,5924263

1365

8,9950811

9,6512974

3103

9,3434734

3578

1156

120 26' 11"

I40 10'45"

260 36' 56"

9,4025183

9,5905617

2614

8,9933414

9,6529881

1969

9,3401564

397391

4173

120 20' 41"

140 10' 45"

260 31' 26"
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(Fortsetzung der Tabelle IV.)

rot gelb grün rot gelb grün

9,9507138 9,9509685 9,9513492 9,9511590 9,9513492 9,9517282

log cos 26°.. + 42 - 170 -275 -487 + 42 -273
9,9507180 9,9509515 9,9513217 9,9511103 9,9513534 9,9517009

log cos2 26.. 9,9014360
11

9,9019030
8995

9,9026434
392

9,9022206
05

9,9027068
44

9,9034018
3993

49 35 42 01 24 25

sin2 xp 0,796959 0,797817 0,799178 0,798400 0,799294 0,800575

9,6538084 9,6528059 9,6512966 9,6520521 9,6512966 9,6497807

log sin 26° -167 + 669 1092 1928 -168' 1097

9,6537917 9,6528728 9,6514058 9,6522449 9,6512798 9,6498904

log sin2 260.. 9,3075834
16

9,3057456
382

9,3028116
76

9,3044898
690

9,3025596
474

9,2997808
687

18 74 40 208 122 121

COS2 xp 0,203041 0,202183 0,200822 0,201600 0,200706 0,199425

log 2 0,3010300 0,3010300 0,3010300 0,3010300 0,3010300 0,3010300

log sin xp 9,9507180 9,9509515 9,9513217 9,9511103 9,9513534 9,9517009

log COS xp 9,6537917 9,6528728 9,6514058 9,6522449 9,6512798 9,6498904

9,9055397
68

9,9048543
07

9,9037575
2

9,9043852
01

9,9036632
596

9,9026213
174

29 36 3 51 36 39

2 sin xp cos ip 0,804525 0,803267 0,801231 0,802389 0,801057 0,799137

log sin r 9,6537917 9,6528728 9,6514058 9,6522449 9,6512798 9,6498904

log sin i

logq

9,8534013 9,8534013 9,8534013 9,8534013 9,8534013 9,8534013

9,8003904 9,7994715 9,7980045 9,7988436 9,7978785 9,7964891

logq2 9,6007808
769

9,5989430
327

9,5960090
30

9,5976872
42

9,5957570
497

9,5929782
57

39 103 60 30 73 25

q* 0,398824 0,397140 0,394465 0,395993 0,394237 0,391722

58. Bei der Berechnung von sin2^, 2 sin ii/cos ^ und cos2xp ist
zu beachten, daß derjenige Wert von 2shu/» cos*|>, welcher mit Hilfe
der Logarithmen von sinxp und cos xp gefunden wird, für ein gewisses
Intervall des Argumentes xp im allgemeinen verschieden ist von dem-
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jenigen Wert, der sich dadurch ergibt, daß das Produkt der Zahlenwerte

von sin2o und cos2o radiziert wird. Zur Erläuterung mögen
die beiden in der Tabelle V zusammengestellten Beispiele dienen. In
den beiden ersten Kolonnen sind die Logarithmen der in Betracht
kommenden trigonometrischen Funktionen und ihrer Quadrate
hingeschrieben ; die drei folgenden Kolonnen enthalten die auf Grund dieser
Logarithmen gefundenen Werte von sin2»/', cos20 und 2 sino coso,
während in der letzten Kolonne die aus den hingeschriebenen
sechsstelligen Werten von sin1 xp und cos2 o berechnete Größe von 2 sin o cos o
vermerkt ist.

Tabelle V.

V log sino
log sin8 xp

log cos xp

log cos2 0
sin80 C0S2O 2 sin O cos O 2 \/sin2 xp cos2 0

10 8,2418553
6,4837106

9,9999338
9,9998676

0,000305 0,999695 0,034899 0,034923

40 8,8435845
7,6871690

9,9989408
9,9978816

0,004866 0,995134 0,139173 0,139173

Die Ungleichheit der Zahlen der beiden letzten Kolonnen für
xp jo ist ebenso augenfällig wie ihre Übereinstimmung für O 4°.

Der Grund für dieses eigenartige Verhalten liegt darin, daß bei
der logarithmischen Berechnung von 2 sin xp cos O im Falle von o 1°

für sin2o der Wert
0,304586

sin2 1°
1000

in Betracht gezogen wird, während im zweiten Fall sin21° 0,000305

zur Geltung kommt. Demnach ergibt bei der logarithmischen Rechnung
sin2o cos2!/' einen Bruch mit dem Nenner 1000, dessen Zähler ungefähr
um 4 Einheiten der vierten Dezimale kleiner ist wie im Fall, wo

sin2 io 0,000305

gesetzt wird. Inwieweit dieser Unterschied das Endresultat beeinflußt,

kann aus der Formel

abgeschätzt werden.

d(2\/ax) A/^- dx

Wird darin
x 0,304586

0,999695
a und

1000

dx 0,0004

gesetzt, so ergibt sich für die Variation des fraglichen Ausdruckes

d (2 \/ax) 0,000023,

was mit der Differenz der beiden in der Tabelle aufgeführten Werte
bestens übereinstimmt. Der richtigere Wert von 2 sin o cos xp ist selbst-



— 76 —

verständlich der aus den Tafeln gefundene und nicht der nach der
anderen Methode berechnete.

Für o 4° wird die Übereinstimmung der beiden Werte aus dem
Grunde so vollkommen, weil sin24° 0,00486597 von dem bei der Rechnung

verwendeten (=0,004866) nur um ca. 0,000003 • 10"8 verschieden
ist. Verfährt man wie soeben, so ergibt sich der Fehler im ganzen
zu ca. 0,0000005. Natürlich spielt hier das günstige Zusammenwirken
der Umstände wesentlich mit, da im ungünstigsten Fall der Fehler
ungefähr sieben Einheiten der sechsten Dezimale ausmachen müßte.

59. Am umständlichsten war die Beobachtung jener
Wellen, deren Ebenen im Kristall den Grenzflächen parallel
sind. Solange es sich nur darum handelt, die Ablenkung usw.
(also q und xp) festzustellen, ist es natürlich bei weitem das

Einfachste, wenn man die Grenzebene, zu der die Wellenebene

parallel sein soll, senkrecht zur Kollimatorachse stellt.
Das bietet keine Schwierigkeit. Bestimmt man nämlich bei
festgeschraubtem Teilkreis und Kristallträger die Azimute des
reflektierten und des nicht abgelenkten Spaltbildes, so gibt
die Halbierende des Nebenwinkels der Fernrohrstellungen für
das reflektierte und direkt durchgehende Licht die Flächennormale

an, die man durch Drehung des mit dem Kristallträger

verbundenen Teilkreises um den berechneten Winkel
leicht in die Verlängerung der Kollimatorachse bringen kann.1)
Indessen ist diese Anordnung nicht geeignet, um den
Schwingungszustand der zur Austrittsfläche parallelen Wellenebenen
zu untersuchen.

i Zum Zwecke dieser Bestimmung wurde ursprünglich
die Austrittsebene senkrecht zur Fernrohrachse gestellt (mit
Hilfe von Manipulationen, die den soeben erwähnten
vollständig entsprechen) und dann das Fernrohr samt dem mit
dem Kristallträger festverschraubten Teilkreis soweit gedreht,
bis das abgelenkte Spaltbild in der Mitte des Gesichtsfeldes
erschien. Die erforderlichen Operationen sind aber sehr
umständlich und zeitraubend, da es nur durch vielfaches Probieren
und Ablesen gelingt, das genannte Spaltbild derart mit dem
Fadenkreuz zur Deckung zu bringen, daß Teilkreis und Fernrohr

in der bestimmten gegenseitigen Lage sind. Man kann

*¦) Vergi, v. Groth, Physikalische Krystallographie 4. Aufl. Seite 694.
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aber in etwas anderer Weise verfahren, um die gewünschte
Einstellung mit jeder beliebigen Genauigkeit zu erzielen.
Hierzu dreht man das Fernrohr zuerst so, daß seine neue
Lage zur alten symmetrisch ist bezüglich der verlängerten
Kollimatorachse (Drehung — 2 é). Hierauf dreht man das

Prisma, welches mit der Eintrittsfläche senkrecht
zur Kollimatorachse steht, samt dem Teilkreis, um
180° + ^/ (je nach dem Drehsinn), während das Fernrohr
festgeklemmt bleibt. Durch diese beiden Drehungen sind
Kollimator und Fernrohr sozusagen vertauscht worden, wogegen
infolge der Umkehrbarkeit der Lichtwege die Richtung der
Lichtausbreitung in bezug auf das Prisma (vom Fortpflanzungssinn

abgesehen) unverändert geblieben ist. War also das
Fernrohr anfänglich auf irgendein Spaltbild eingestellt, so
wird es auch in der zweiten Lage richtig eingestellt sein.

An Hand der Fig. 7 kann man sich
hiervon leicht vergewissern. Sei AOB die
Anfangsstellung des Prismas, OC und OF
die Richtungen der Kollimator- bzw.
Fernrohrachse. Bringt man letztere mit der
Richtung OF' zur Deckung (FOF' 2z/) und
dreht dann das Prisma bei festgeklemmtem
Fernrohr in der Pfeilrichtung um 180° — ^/, F' F

so wird OC mit OF', AOB mit A'OB' und Fi«- 7

OF mit OC zusammenfallen, d. h. es ist als ob in der Tat
Fernrohr und Kollimator ihre Rollen vertauscht hätten.1)

60. Zur Bestimmung der Schwingungsrichtungen dieser
zur Austrittsfläche parallelen Wellenebenen wurde auf den
Kollimator (zwischen Lichtquelle und Spaltöffnung) und das

Fernrohr (zwischen Auge und Okular) je ein Nikol aufgeklemmt,
dessen Drehung an einem größeren Teilkreis mit Hilfe eines
Nonius auf Zehntelsgrade genau abgelesen werden konnte.
Der Nikol vor dem Kollimator diente dazu, das einfallende
Licht so zu polarisieren, daß das eine der beiden Spektren

l) Daß diese Einstellungen wesentlich erleichtert würden, falls
auch der Kollimator beweglich wäre, ist unmittelbar verständlich.
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(zur Vermeidung störender Lichteindrücke oder Überlagerung
der beiden Spektra) verschwand.

61. Die wichtigste Arbeit vor Gebrauch des Analysators
war die Orientierung seines Teilkreises in bezug auf die
Drehachse des Instrumentes (z-Achse). Dazu dienten zwei
natürliche Kristallprismen von Apatit und Euklas. Bei dem

Apatitprisma war die brechende Kante parallel der optischen
Achse, die Schwingungsrichtungen des austretenden Lichtes
also horizontal und vertikal. Die Austrittsebene des Euklas-
prismas war eine Fläche aus der Zone der Orthohemidomen,
während die brechende Kante im Klinopinakoid lag. Da der
Kristall überdies so aufgestellt war, daß die Normalen der
austretenden Wellenebenen auf der Austrittsfläche senkrecht
standen, waren ihre Schwingungsrichtungen ebenso wie beim
Apatitprisma horizontal und vertikal.

Die Einstellung auf maximale Dunkelheit gab keine
günstigen Resultate ; es erschien vielmehr angezeigt, den Nikol
einmal rechtsherum und nachher linksherum so weit zu drehen,
bis die Sichtbarkeit des Spaltbildes praktisch verschwand.1) Die
Beobachtungsdaten mögen hier folgen. Es verschwindet die

schnellere langsamere
Welle bei

Apatit I 137,90° 138,60° 228,05° 228,50°
138,50 138,60 228,40 228,60
138,60 138,00 228,00 228,20

Apatit II 138,65 138,90 228,30 228,65
138,15 138,80 228,55 228,35
138,40 138,75 228,25 228,15

Euklas I 228,45 228,75 137,95 138,65
228,60 228,55 138,25 138,50
228,20 228,65 138,15 138,15

Euklas II 228,00 228,60 138,70 138,10
228,35 228,55 138,00 138,35
228,35 228,45 137,95 138,65

J) Es war die Vorsorge getroffen, daß möglichst wenig Nebenlicht

in das Fernrohr eindrang. Die Spaltbilder erschienen darum auf
einem dunklen Hintergrund, so daß das Verschwinden mit verhältnismäßig

großer Genauigkeit festgestellt werden konnte.
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Die zweiten Beobachtungsreihen wurden einige Tage später als
die anderen gemacht, nachdem inzwischen die Schwingungsazimute

der drei Kristalle, an denen die Methode erprobt
werden sollte, bestimmt waren.

Die Mittel obiger Versuche sind:

Apatit I 138,33° + 0,219 228,15°+ 0,126
138,40 +0,200 228,43 +0,120

Apatit II 138,40 ±0,144 228,37 +0,093
138,82 +0,044 228,38 +0,145

Euklas I 138,12 +0,088 228,42 ±0,117
138,43 ±0,148 228,65 ±0,058

Euklas II 138,22 ±0,242 228,23 ±0,117
138,37 ±0,159 228,53 ±0,045

Diese Zahlen zeigen zunächst, daß der Analysator während
der Versuche seine Stellung nicht änderte. Ferner zeigen sie
die fast unerwartet genaue Bestimmungsfähigkeit dieser
Schwingungsazimute. Die den einzelnen Mittelwerten
beigefügten Fehler sind nämlich die sogen, mittleren quadratischen

Fehler des Mittelwertes. Zu ihrer Berechnung
bestimmt man zuerst den Mittelwert, sucht hierauf den Fehler
jeder Beobachtung, dividiert die Summe ihrer Quadrate
durch n(n—T), falls n die Anzahl der Beobachtungen
bedeutet, und zieht die Wurzel. Symbolisch schreibt man

M-V M ¦

n(n-l)
Ähnlich wie die Beobachtungsgrößen zu Teilmitteln

vereinigt wurden, können sie auch zu einem Gesamtmittel
zusammengefaßt werden. Man findet

138,3854° ± 0,0635 228,3958° ± 0,0442.

Die geringe Abweichung von der theoretisch geforderten
Differenz der beiden letzten Zahlen ist beachtenswert 1

Bedenkt man, daß jede Beobachtung der einen Reihe füglich
auch als Beobachtung der anderen Reihe gedeutet werden kann,
falls man 90° addiert oder subtrahiert, so kommt endgültig

138,3906°i
228,3906° j±°>0383>
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so daß die Ungenauigkeit kleiner wie 2lj3 Bogenminuten
wird.

Diesem Ergebnis zufolge verschwindet beim Apatitprisma
die schnellere Welle bei der Nikolstellung 138,39°, die
langsamere bei 228,39°. Die Doppelbrechung des Apatit ist
negativ, d. h. ro > e, die schnellere Welle ist daher die
außerordentliche, ihre Schwingungsrichtung im vorliegenden Fall
also parallel derbrechenden Kante, d.h. vertikal. Vertikal
schwingendes Licht wird demnach vom Analysator

nicht durchgelassen, wenn er auf 138,39°
eingestellt ist. Der Nullpunkt für die Zählung der
Schwingungsazimute ist darum 228,39°.

62. Es erübrigt noch ein Wort über r, d. h. den brechenden Winkel
des Prismas, der in dreifacher Hinsicht bedeutungsvoll ist. Zunächst
kommt er bei der Ermittlung der Rik und R'ik in Betracht, weil die der
Eintrittsebene parallelen Wellenebenen an der Austrittsfläche total
reflektiert werden, sobald

sin r> q

(wo q wie früher die Wellennormalengeschwindigkeit bezeichnet). In
der folgenden Tabelle VI sind unter rm die den darüber geschriebenen
Werten von q entsprechenden oberen Grenzen von r eingetragen, unter
der Voraussetzung, daß es sich um isotrope Prismen handle — eine
Annahme, die keine Beschränkung bedeutet, da es ja nur darauf
ankommt, einen Einblick in die Größenordnung der auftretenden
Winkel usw. zu geben.

Tabelle VI

q 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75

rm 23034'41" 26044'37" 30000' 00" 33022'01" 36052' 12" 40032' 30" 44° 25' 37" 48035' 25"

Wie sich später zeigen wird, spielt zweitens der Prismenwinkel
eine nicht zu unterschätzende Rolle bei der Bestimmung von Pu
und P12, von denen insbesondere die letztere Größe genauer wird,
wenn es möglich ist, die Beobachtungen bei solchen Einfallswinkeln
vorzunehmen, daß einem nicht zu kleinen Koeffizienten von P]2 ein
ungefähr gleich großer mit dem umgekehrten Vorzeichen entspricht.
Nach Gleichung X ist dieser Koeffizient gegeben durch 2 q2 sin o cos xp.

Die genannte Forderung ist also im wesentlichen erfüllt, wenn es

gelingt, für xp solche Werte zu wählen, daß 2 sin o cos O möglichst
groß wird, sowohl nach der negativen wie nach der positiven Seite.
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Hat der Prismenwinkel den vorhin genannten Wert rm, so variiert, wenn
vom Bewegungssinn des Lichtes abgesehen wird, xp zwischen n\2— rm
und n\2, falls man stetig von streifender zu senkrechter Inzidenz übergeht.

Wird aber der Prismenwinkel T verkleinert, so erfolgt der
streifende Austritt erst für o rm— r+n\2. Es gilt daher die
Doppelungleichung

n
2

Solange rm — r < 45° ist, wächst der maximale Wert von
2 sin xp cos xp, absolut genommen, mit dieser Differenz und ist gleich
— sin 2 (I'm — r). Die extremen Werte dieser Funktion sind in Tabelle VII
eingetragen unter der Voraussetzung, daß der Prismenwinkel r der
Reihe nach 5°, 10°, 15° und 20° kleiner ist wie sein größter Wert rm.

Tabelle VII.

*m< xji< rm-
n

¦ r+—
2

rm-r 5» 100 15° 200

Extr. 2sino coso -0,173648 - 0,342020 -0,500000 -0,642788

Einen gleich großen positiven Wert von 2 sin o cos xp zu finden,
wird im allgemeinen keine Schwierigkeit machen.

Es ist jedoch zu beachten, daß für Werte von o, welche kleiner
sind als der dem Minimum der Ablenkung zugeordnete, die Breite
des Spektrums sich schnell verringert und bald so klein wird, daß ein
unscheinbarer Einstellungs- oder Ablesungsfehler den Wert von q
wesentlich zu beeinflussen vermag. Anderseits nimmt mit wachsendem xp

•die Breite der Signalbilder rasch zu, so daß wegen der Verzerrung
und Verschwommenheit derselben eine genaue Einstellung abermals
•erschwert wird. Diese beiden Umstände haben zur Folge, daß man
sich den Grenzen

--rra<o<rm-r+-
2 2

tiie allzusehr nähern kann.
In dritter Linie beeinflußt T die Genauigkeit von a23, wofür sich

der Ausdruck
(q',2 — q'2) sin f cos s + a13 cos r

a23
sinT

•ergab. Angenommen, der mittlere Fehler n von (q'j — q2) sin e cos f
und a)S sei ungefähr derselbe (hierüber später mehr), so gibt die
Ausgleichungsrechnung für den mittleren quadratischen Fehler von a2s

den Ausdruck
r, V\ + cos2 r+ -

sinr
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Nun ist

_d_(Vì +
dr

/Vi + cos2/A

\ sin T I
2cosr

sin2rV'l +COS2/"

notwendig negativ, d. h. der mittlere Fehler von a23 nimmt mit
wachsendem Prismenwinkel ab. Der Anschaulichkeit wegen sind die
Werte von

Vi + cos2r
sinr

in Tabelle VIII für einige Prismenwinkel aufgeführt.

Tabelle VIII.

r 45 40 35 30 25 20 15

1,73205 2,64575 3,19340 4,01214 5,37182Vi + cos2r:sinr 1,95973 2,25371

Man erkennt aus den drei Tabellen VI, VII und VIII ohne weiteres,
daß namentlich für den zweiten Fall ein kleinerer Prismenwinkel
vorteilhafter ist wie ein größerer, während für den dritten Fall gerade das
Gegenteil zutrifft. Es hält deshalb äußerst schwer, eine allgemein
gültige Regel aufzustellen, um so mehr, als, wie bekannt, auch die
Genauigkeit der q-Werte durch den Prismenwinkel beeinflußt wird.
So viel scheint aber nach den gemachten Erfahrungen festzustehen,
daß neben anderen Messungen auch solche vorzunehmen sind, für
welche cos'O nicht allzu klein wird und die Koeffizienten von PX2

entgegengesetztes Vorzeichen haben.

Nun sollen die Untersuchungsergebnisse der drei Kristalle
einzeln besprochen werden.

A. Kupfervitriol SOjCu -5H20.
a:b:c 0,5721 : 1:0,5554

« 82°5' /3=107°8' ^=102°41' (Barker1)

63. Für die Messungen diente ein Kristall, der unter
vielen selbstgezogenen als der geeignetste erschien. Die
Flächen der vertikalen Prismenzone waren daran meistens
glänzend, aber stark gerillt, Über ihre nähere Lage und
Beschaffenheit orientiert die nachstehende Übersicht.

m (110) 220° 593/; Reflex gut
l (120) 321° 25' Schimmer

i) Vergi. Groth, Chem. Kristallographie II. 419.



LI (110) 343° 421/,
a (100) 16° 91/,'

m (ÏÏO) 41° 10'

b (010) 94° 29'

l (120) 141° 56'

ii (110) 164° 17'

a (100) 195° 35'
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doppelt
gut, infolge der Politur (siehe unten)

etwas aus der Zone gerückt,
sehr breit
Schimmer
Schimmer
breit
sehr breit.

Die Richtigkeit der Aufstellung folgt aus der Gegenüberstellung

der gemessenen und der aus den Parametern berechneten1)

Winkeln.
gemessen berechnet

(100):(0T0) 101° 06' 100° 54'

(100): (110) 25° 243/; 26" 07'

(110):(lT0) 56° 423/; 57» 16'

(110): (HO) 122° 423/4' 122° 44'

(100): (120) 53° 39' 53° 50'.

Das obere Ende des Kristalls ist ganz unentwickelt; am
unteren konnten die Flächen q und w durch folgende
Messungen sichergestellt werden.

m (HO) 185°59*q 72°2'(berechnet)
w (111) 258°131/2'J ò/4 ' l (Derecnnet)

m (110) 191»25V8'Ì
q (011) 309° 45' / h

Aus der letzten Messung berechnet sich
(110):(011) 61°4012'

während Barker 61°47' gemessen hat.

64. Als optisches Prisma dienten die Flächen 110) und 100),

von denen die letztere von der Firma Dr. Steeg & Reuter
poliert und dadurch, wie bereits in der Winkeltabelle bemerkt,
in ihrer Lage etwas verändert wurde. Die Beschaffenheit
des Kristalls gestattet leider nicht, ihre genauere Lage zu
bestimmen. Für die Berechnung der Hauptlichtgeschwindigkeiten

ist dieser Mangel absolut belanglos, ergibt aber für
die Orientierung der Hauptschwingungsrichtungen eine gewisse

i) Vergi. Groth. Chem. Krist. 1. c.

6*
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Unsicherheit. Beim vorliegenden Prismenwinkel, der
sich aus zwölf Messungen zu 2 4°521/4' fand, kann
sie in besonderen Fällen einen Betrag erreichen, der etwas
mehr wie doppelt so groß ist als die immerhin kleine
Abweichung der Fläche aus ihrer Soll-Lage.

65. Von den weiter oben genannten vier Linien des

Heliumspektrums konnten nur zwei erkannt werden, die

gelbe (588) und grüne (502). Die Einstellung auf die erstere
bot im allgemeinen keine Schwierigkeit. Ebenso war die

grüne meistens recht scharf und deutlich wahrnehmbar. Doch
ist zu bemerken, daß im Gegensatz zu jenen Wellenebenen,
welche ungebrochen aus der natürlichen Prismenfläche
austreten, die aus der künstlichen Grenzfläche ungebrochen
austretenden Wellenebenen außerordentlich schwache und
verschwommene Spaltbilder erzeugten.1) Infolgedessen konnten
die q'i und e' und damit die R'ik also auch a23 nicht mit großer
Zuverlässigkeit bestimmt werden. Allein mit Rücksicht auf
die bei der Bearbeitung des Zahlenmaterials verwendete Zeit,2)
wie auch im Hinblick auf die Zeitlage, welche die Beschaffung
eines neuen Prismas verunmöglichte, erschien es statthaft,
sich mit der erreichten Genauigkeit zu begnügen, um so mehr
als die erzielten Resultate an der praktischen Verwertbarkeit
der angegebenen Methode keinen Zweifel zulassen.

66. Beim Kupfervitriol wurden für He- gelb (588) zu 17

verschiedenen Einfallswinkeln die zusammengehörigen Wertpaare

(im ganzen 34) von q und xp bestimmt. Für He- grün
war die Bestimmung nur bei 14 Einfallswinkeln, möglich und
lieferte somit 28 Wertpaare von q und xp. In der Tabelle IX

1) Schuld hieran waren zwei Umstände : einerseits mußte, um
ein einheitliches Signalbild zu erhalten, (110) größtenteils mit Tusche
zugedeckt werden, und anderseits war auf der Kunstfläche (100) die
Politur einer Randstelle etwas angegriffen und darum weniger
durchsichtig. Nun traf es sich, daß die Wellen, welche durch (110) eintraten,
beim genannten Austritt durch (100) (und nur in diesem Fall) die
beschädigte Stelle passieren mußten.

2) Wie aus dem II. Teil, § 40, ersichtlich ist, wurden die
Schwingungsazimute der zu (100) parallelen Wellen erst nachträglich
bestimmt.
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Tabelle IX.

*_o'
2 2

q'2 q"2
(interpoliert)

qi"2

1
24« 59,725

240 33,066

0,435134 0,420811

0,420753

2
240 52,250

240 52,250

0,435062 0,420785

0,420785

3
210 48,609

210 26,462

0,434236 0,420412

0,420349

4
190 48,776

190 29,234

0,433603 0,420071

0,420015

5
20 13,776

20 29,458

0,429271 0,419925

0,419924

6
00 33,797

00 50,106

0,428928 0,419958

0,419955

7
00 00,000

00 00,000

0,429096 0,420216

0,420216

8 - 10 04,675

- 0° 47,846

0,428562 0,419983

0,419973

9 - 20 40,036

- 20 22,842

0,428217 0,420026

0,420030

10 - 40 11,917

- 30 54,287

0.427880 0,420045

0,420012

11 - 50 39,277

- 5« 21,662

0,427586 0,420149

0,420176

12 - 70 01,715

- 60 43,557

0,427284 0,420070

0,420051

13 - 80 20,676

- 80 02,655

0,426954 0,420152

0,420133

14
-12° 51,088

-120 45,700

0,425833 0,420004

0,420001

15
-130 54,578

-130 48,959

0,425635 0,420082

0,420034

16
-14° 05,393

-13° 59,762

0,425479 0,419990

0,419942

17
-140 42,169

-140 36,458

0,425364 0,420002

0,419994
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sind die Werte für He- gelb angegeben. Alle q2-Werte sind
auf 6 Dezimalen berechnet. Sie dürften aber kaum auf mehr
als eine oder zwei Einheiten der vierten Dezimale genau
sein. Beweis hierfür sind z. B. die unregelmäßig zu- und
abnehmenden Werte der fünften Kolonne. Auch sei erwähnt,
daß die q2-Werte der siebenten Querreihe merklich aus der

Ordnung herausfallen, obwohl sie die Mittel von fünf
Beobachtungsreihen sind, die zu verschiedenen, mehrere Monate
auseinanderliegenden Zeiten angestellt wurden. Die vierte
Dezimale der q2-Werte ist also kaum mehr zuverlässig. Wenn

gleichwohl noch weitere Stellen berechnet und mitgeteilt
wurden, so geschah es, um einerseits die Ungenauigkeit der
vierten Dezimale durch die Abrundungsfehler nicht zu
vergrößern (z. B. in der fünften Kolonne), andererseits um auf
Grund dieser „zufälligen Fehler" mit Hilfe der Ausgleichungsrechnung

möglichst gute Werte von aik zu berechnen.

67. Die erste große Schwierigkeit, die sich bot, war die

Berechnung der P^ und Qik, die sich, wie früher bemerkt,
als Wurzeln eines Systems von sechs linearen Gleichungen
ergeben. Theoretisch und praktisch kann zwar ein solches

System im allgemeinen mit jeder wünschbaren Genauigkeit
gelöst werden. Im vorliegenden Fall bietet sich sogar eine
nicht unbedeutende Vereinfachung, indem P22 und Q22 gleich
der Summe bzw. gleich dem Produkt der Geschwindigkeiten
jener beiden Wellen sind, die ungebrochen durch die zx-Ebene
aus dem Kristall heraustreten, denn hierbei reduziert sich die

Gleichung X wegen der Bedingung
n

auf die einfache Form
q*-P22q2 + Q22 0,

womit die obige Behauptung bewiesen ist. Sind aber P22

und Q22 bekannt, so bleiben nur mehr vier Gleichungen mit
vier Unbekannten zu lösen, was die Aufgabe selbstverständlich

wesentlich vereinfachte, wenn nur nicht durch die
Substitution von P22 und Q22 die Absolutglieder so
verkleinert würden, daß die Fehlerhaftigkeit der
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Beobachtungswerte allzu schwer ins Gewicht
fiele. Auch ist es möglich, — und die Rechnung hat dies
mehrfach bewiesen — daß sich die gesuchten Unbekannten
in Form von Brüchen ergeben, deren Zähler und Nenner
vier, fünf und vielleicht noch mehr Nullen vor der ersten
geltenden Dezimalstelle aufweisen. Welchen Verlaß man
aber auf die materielle (nicht formelle) Richtigkeit eines solchen
Resultates noch haben kann, ist leicht zu erraten.

Über die allgemeine Gültigkeit dieser in verschiedenen Einzelfällen

gefundenen Resultate kann man sich durch folgende Überlegung
vergewissern. Denkt man sich nämlich die Substitution der Werte
von P22 und Q32 in Gleichung X ausgeführt, so verbleiben vier
Gleichungen von der Form

Qu cos2 Oi~ 2Q12 sin Ojcos xp{ — Pn q^ cos2 0;+2 P12 q^ sin o; cos O; Aj
Ihre Determinante wird, vom Vorzeichen abgesehen,

cos Oj sin o, q\ cos Oj q\ sin o,

/1 (q, xp) 4 cos ot cos o2 cos o8 COS xpi
cos o2 sin Oj q^ cos xpt q^ sin o2
cos o3 sin o3 q] cos xps q] sin o8
cos o4 sin 04 q* cos o4 qj sin o4

Es ist natürlich überaus schwierig, die obere Grenze dieses
Ausdruckes zu finden, zumal die darin auftretenden q^-Größen ebenfalls

von Oj abhängen, und Oj nicht unbeschränkt variabel ist. Man kann
aber durch folgende Überlegung zu einem angenäherten Resultat
gelangen: Das Problem, um welches es sich hier handelt, ist im Grunde

genommen die Bestimmung der Kurve C. Aber genau so, wie man
durch zwei sehr nahe bei einander gelegene Punkte (d. h. Kreise mit
sehr kleinem Radius, Beobachtungsfehler!) gerade Linien von beträchtlicher

Divergenz legen kann, ebenso muß die eindeutige experimentelle
Bestimmung der Kurve unmöglich sein, sobalB die hierzu nötigen
Punkte zu nahe beieinander gelegen sind. Da die Substitution P22

und Q2g geometrisch die Bestimmung der Kurvenabschnitte auf der
y-Achse bedeutet, und da die Kurve durch vier weitere „Punkte"
(Beobachtungsfehler!) bestimmt ist, so wird es wohl das Vorteilhafteste
sein, wenn diese Punkte so gewählt werden, daß sie auf dem inneren
und äußeren Kurvenzweig zu beiden Seiten der y-Achse und in nicht
zu kleinem Abstand davon zu liegen kommen. Für diesen Fall muß
dann aus Analogiegründen, im allgemeinen wenigstens, die
Determinate /i (q, xp) einen ebenfalls möglichst günstigen Wert annehmen.
Wie nun aus der Tabelle IX ersichtlich ist, bleiben die q2-Werte des
inneren Kurventeiles fast konstant, so daß man ohne großen Fehler etwa

q2 q2 q2 0,420000
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setzen kann. Sind ferner q3 und q4 zwei Radienvektoren des äußerer»
Kurvenzweiges, so erhält man für die Determ. t1 (q, o) =4(q«_q|)x:
(i2 — q*) sin (xpx — xp%) ¦ sin (o3 — o4) • cos xpx cos o2 cos os cos o4. Ihr
absoluter Wert wird, wie leicht einzusehen ist, für den inneren Kurvenzweig

am größten, wenn, um beim Beobachtungsmaterial zu verbleiben,
O, n\2 - 24° 59, 725'

02 77/2+14° 42, 169'

gesetzt wird. Im weiteren zeigt sich, daß, um einen möglichst großem
Wert zu erhalten, die nämlichen Azimute auch für den äußeren Kurvenzweig

zu nehmen sind. Man findet so

x*(q, o) 0,00000144.

Jede andere Kombination von zwei äußeren und zwei inneren Kurvenpunkten

muß einen kleineren, also ungünstigeren Wert für ^(q, xp)

ergeben. Wollte man z. B. nach Substitution von P22 und Q22 nur innere
Kurvenpunkte in Betracht ziehen, so würde ^/ (q, O), weil alle q','2 fast
gleich sind, dem Grenzwert null sehr nahe kommen. Denselben Wert
erhielte man, falls man von den vier fraglichen Punkten drei auf dem
inneren Teile wählen würde. Weiter auf diese und andere Kombinationen

einzugehen, ist zwecklos, da der obige Wert, wenn nicht das

überhaupt erreichbare Maximum, so doch die Größenordnung
desselben angibt.

68. Zur Umgehung dieser Schwierigkeit erwies sich das.

folgende Verfahren geeignet. Nennt man q' und q" die beiden
Wellengeschwindigkeiten, die einer gegebenen Richtung tp
entsprechen, so gelten wegen der bekannten Eigenschaft der
Gleichungen zweiten Grades die Beziehungen

Pu cos2xp + P22 s\n2xp — 2 P12 sin?// cosxp — q'2+ q"2

Qn cos2?// + Q22 s'm2xp — 2Q12 s'mxp cosxp q'2 q"2.

Da Pt2 und Q22 bekannt sind, so genügen zwei ?//-Werte im
Verein mit den vier zugehörigen q-Werten, um Pu und P12

bzw. Qn und Q12 wenigstens angenähert zu bestimmen. Diese
Berechnung wird genauer, wenn, worauf früher § 62 schon
verwiesen wurde, die beiden i//-Werte so gewählt werden,
daß sin xpx cos xpx und sini//2 cosi//2 nicht zu klein sind und
entgegengesetztes Vorzeichen haben, da sich dann bei der
Elimination von P12 (resp. Q12) die Absolutglieder, deren
Vorzeichen in allen praktisch vorkommenden Fällen gleich sind,
addieren, ebenso wie der Nenner, der cos2î//j + cos2?//2 wird.
Angenommen, es wäre
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cosxpx — cosxp2 0,lb d.h. xpx =ca81° und tp2 ca99°,
so würde

cos2xpx +cos2xp2> 0,05,

und da im Falle des Kupfervitriols Pn von der Größenordnung
0,8 ist, so würde der Zähler von der Größenordnung 0,04
sein, und Pu könnte auf ungefähr drei Dezimalen genau1)
ermittelt werden.

Leider stellen sich der praktischen Verwertung dieses
Gedankens experimentelle Schwierigkeiten entgegen, da es

nicht möglich ist, die einem beliebigen ?//-Wert entsprechenden
zwei q-Werte am Goniometer zu bestimmen. Prüft man aber
im Falle des Kupfervitriols die q'^-Werte näher, so findet
man, daß sie sich nur unbedeutend mit xp ändern. Eine
einfache Interpolation muß es darum ermöglichen, die
verlangten q"2-Werte zu berechnen. Das ist nun in diesem Fall
geschehen und die gefundenen Werte sind in der vierten
Kolonne der Tabelle IX eingetragen.

Sollten sich in einem anderen Falle beide q-Werte stark
mit xp ändern, so hätte man xp derart um dxp zu ändern,
daß die Welle sich ungefähr in der verlangten Richtung
fortpflanzt, worauf man dann die Interpolation noch anzuwenden
hätte. Unter Umständen würde auch eine Interpolation zum
Ziele führen, die mehr wie zwei q-Werte berücksichtigt.

69. Die in der angegebenen Art und Weise berechneten Pik- und

Qik-Werte hängen von allen Zufälligkeiten der Beobachtungsfehler ab

und sind darum nur von mäßiger Genauigkeit2). Mit Hilfe der
Ausgleichungsrechnung wird es aber möglich sein, bedeutend genauere
Resultate zu erhalten. Zu ihrer vorteilhaften Anwendung ist aber
erfordert, daß ziemlich viele und möglichst genaue Beobachtungen
angestellt werden, die sich über ein umfangreiches Intervall der o-Werte
erstrecken sollten und an den beiden Grenzen gegen die Totalreflexion
hin vielleicht etwas zu häufen wären. Auch sind den Rechnungen
die linearen Gleichungen

x) Man könnte übrigens die Rechnung für mehrere xpx- und 02-
Werte durchfuhren und als Näherungswerte für Pu und P12 (resp. Qu
und Q12) die Durchschnittswerte der verschiedenen Ergebnisse einführen.

2) Die Fehler von Pu und P12 (resp. Qn und Q12) können, wie
die obigen Auseinandersetzungen zeigen, zehn- und mehrmal größer
sein wie diejenigen von P22 resp. Q22.
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cos « Oj P,i + sin 2o; P22 - 2 sin y« cos Oj P12 qj'2 + q^'2

cos20; Qn +sin20; Q22 - 2 sinOj cos Oj Q12 q.'2 q/'2
zugrunde zu legen, und qj'2 + q;"2 bzw. qi'2qj"2 als Beobachtungsgrößen

anzusehen. Nennt man pik und qik die Verbesserungen, welche
an den Näherungswerten anzubringen sind, um die wahrscheinlichsten
Werte von Pik und Qik zu erhalten, so ergeben sich die
Fehlergleichungen (v ist nachfolgend überall als v zu lesen)

cos a ov pu + sin 2 ov p22 - 2 sin xpv cos xpv p12 ev

cos2Ov qu + sin2'/>v q22 - 2sinov cosOv q12 <?v,

wo ev und yv die Fehler sind. Man kann diesen Gleichungen eine für
die Rechnung bequemere Form geben, wenn man

Pll=Pll p22 Pll+P22 Pl2 Pl2

qu in ^22 cru + a»2 qt2 du
setzt, nämlich

pu + sin2xpv p22 - 2sinxpv cos xpv p12 fv

Q,i + sin2 xpv q2t - 2sinov cos xpv q12 r,v

Ist n die Anzahl der Beobachtungen, so berechnen sich die pik aus
den drei folgenden Gleichungen.

n n n
npn+ Z sin2Ovp22 + 2 Z sin Ov cos xpv (- p12) Z cvv=l v=l v l

n n
Z sin2ovpu+ Z ainirpvp22 +

v=l v=l
n n

2 Z sinSovcosov(-p12) Z «vsin2ov
v=l v=l

n n
2 Z sinovcosi//vpn + 2 Z sinSovcosOvp23 +

v l

4 Z sin2ovcos2ov(-p12) 2 Z «vsinovcosov
v=l v=l

Die Gleichungen für die qik sind diesen ganz analog.

70. Auf die Frage, ob die Determinante dieses Systems nicht
auch unendlich klein werde, kann man unter gewissen vereinfachenden
Voraussetzungen eine allgemeine Antwort geben. Angenommen, man
hätte n Beobachtungen gemacht, von deren zugehörigen o-Werten je
zwei benachbarte sich um die konstante Größe q> unterscheiden, —
eine Annahme, die nur angenähert verwirklicht sein kann, aber den
tatsächlich in Betracht kommenden Verhältnissen angepaßt ist —
so kommt

'/V O - (V - 1) (f;
wo xp etwa den größten der i^v-Werte bezeichnen mag. Nun beachte
man, daß die auftretenden Koeffizienten folgenderweise transformiert
werden können.
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n ni — C08 2 O n 1 n
Zsirfxp =Z Z cos2ov
1 l 2 2 2 1 v

n n
2 Z sin xp cos 0„ Z sin 2 o„

i v v i
n n 1 — 2 cos 2 o„ + COS2 2 o„ n 3 — 4 cos 2 o„ + COS 4 o„
Zsin*Ov=2- - Z - -i i 4 1 8

3n 1 n In
—-~-Zcoa2xpv +-Z cos4ov

O £. 1 öl
„ n „ n „ 1 — COS 2 O 1 n In2 2Sinso cos O =.rsin2o — -.xsin 2 ov 2 sin 4 Ov

i i 2 2 14 1

n n ni— COS 4 Ov n 1 n
4zsin2ovcos2i/'v=zsin22ov x — — 2COS4 xp

i 1 12 2 2 1

Unter den gemachten Voraussetzungen sind diese Summen
bekanntlich ausführbar, und wenn man, um Z cos 2 Ov und Z cos 4 ov
bzw. Z sin 2 Ov und Z sin 4 ov gleichzeitig behandeln zu können,
allgemeiner schreibt

Z cos 2 m Ov und 2 sin 2 m ov
so kommt

Z cos 2 m ov cos 2 m o + cos 2 m (o — <p) + cos 2 m [o — (n — 1) ip]

Z sin 2 m ov sin 2 m o + sin 2 m (o — <j>) + sin 2 m [xp — (n — I) (f ].

Nach Multiplikation der zweiten Summe mit

folgen auf Grund der bekannten Eulerschen Formeln die nachstehenden
Gleichheiten.

Z cos 2 m xpv + i Z sin 2 m ov
2 m i • xp 2mi-(xp —if) 2 m i • [O — (n — 1) q]

e + e + + e

2 mi'Of —2 mi-ai — 2 m i ¦ 2 » — 2 m i • (n— 1) «il
e [1+e +e + e

— 2 m n i • «i — 2 m n i ¦ «i 2 m i • o>

2 m i ¦ O 1 — e 2 m i • O 1 — e 1—e
e =e •

— 2 m i • w — 2 m i • w 2 m i • o>

1-e H 1-e i-e
2mi-ifi 2 m i • [o — (n — 1) «.] 2 mi-[o —noi] 2 m i • [xp + y,]

e + e —e —e

2 — 2 cos 2 m «i

Drückt man in dieser letzten Formel die Exponentialfunktionen
wiederum durch trigonometrische Funktionen aus, so erhält man, da
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2cos2mov

der reelle (bzw. imaginäre) Teil links gleich dem reellen (bzw. imaginären)

Teil rechts sein muß, folgende zwei Ausdrücke.

cos m [2o—(n — !)«>] cos m (n— \)ip — cos m [2 Q — (n— 1) <p] cos m (n + l)«i
1 — cos2m«i

Z sin2m Ov

r. ,n i sin m n «i
cos m [2 o — (n — 1) «il — — cm

sin m «i

sin m [2 Q — (n — 1) «¦] cos m (n — 1) tp — sin m [2 Q — (n — 1) ip] cos m (n + 1) «¦

1 — cos 2 m «i

sin m n «i _sinm [2o — (n— l)u>]——'¦ — s„
sin m ip

Nun kann man die Determinante des Gleichungssystems folgenderweise

entwickeln.

t1

n

2

£l
2

3n
8

Sì
2

Ct^Cg
2 8

ül.
2

1

16

lt.
2

n
2

n

4

Cg

2

2(n-c,)

2

n

2

n

8

Sl

Cl

2

c_2

8

l2
4

8l
2

n
2

4

Ça

2

2 s,
n + ct n — c2 2s1 + s2

Si 2S! — s2 n-c2
Die zweite Determinante findet man aus der ersten, indem man die
erste Querreihe von der zweiten subtrahiert. Multipliziert man in
dieser zweiten Determinante die zweite und dritte Vertikalreihe mit
dem Faktor 2, die zweite Horizontalreihe aber mit 4, so kommt die
dritte Determinante. Durch Ausführung der Operationen und Substitution

der entsprechenden Werte folgt die weitere Formel

^=16[n3-n(s2 + cl)-2n(s2 + c2) + 2c2(c2-sf) + 4c1s1s2]

sin22n«i sin2n«i sin2n«. sin2n«ii
— — -2n - + 2 -I«
sin2 2«i 8in2«i sin2(/ sin2«> 1

Die Variation dieses Ausdruckes für variierende n und «i ist aus
der nachfolgenden Tabelle X ersichtlich.!)

Mr
16 l

n»
16 f

l) Bei der Auflösung des fraglichen Gleichungssystemes kommt
die Determinantenrechnung allerdings kaum in Betracht, da es aus
verschiedenen Gründen vorteilhafter ist, sich der üblichen Methode zu
bedienen. Die Resultate ergeben sich hiernach in Form von Brüchen,
deren Nenner kleiner ist wie der Wert der Determinante und je nach
der Größe von n usw. zwischen 0,005 und 2,9 schwanken kann.
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Tabelle X.

n '/' Ti

5 8 0,017920

10 4 0,17154

20 2 1,4309

40 1 11,565

71. Sind damit jene Werte von P,k und Qik bekannt,
welche sich aus den Beobachtungen als die wahrscheinlichsten
finden lassen, so wird es sich darum handeln, die a,k zu
bestimmen. In welcher Art und Weise dies zu geschehen
hat, wurde bereits früher gesagt. Es genüge hier, die
gefundenen Zahlen, soweit wie nötig, anzugeben.

Für die Schwingungsrichtungen der parallel zu den
Grenzflächen austretenden Wellen wurden folgende Azimute
gefunden:

Wellenebenen parallel xz: e=12°,77
Wellenebenen parallel der anderen Grenzfläche: e' — 8°ca.

Es wurde früher schon (§ 65) darauf hingewiesen, daß die
letztere Bestimmung sehr schwierig war, indem in dieser
Stellung das Spaltbild überaus schwach und unbestimmt
erschien. Dementsprechend werden auch die Endresultate
nicht allzu sicher sein können.

72. Ein Punkt verdient hier aber spezielle Erwähnung.
Wie bekannt ist die Schwingungsrichtung der parallel zu den
Grenzflächen austretenden Wellenebenen für verschiedene
Farben im allgemeinen verschieden. Allerdings ist diese

Dispersion für gewöhnlich gering und wurde hier vernachlässigt.

Der Fehler ist wegen des kleinen Spektralbereiches
kaum bedeutungsvoll. Unter günstigen Umständen, wo man
über große, tadellose Prismen verfügt, welche helle Signalbilder

entwerfen, dürfte es bei sorgfältigster Messung möglich
sein, diese Dispersion der Schwingungsrichtungen experimentell
zu konstatieren, insbesondere wenn man sich statt des
gewöhnlichen Nikolschen Prismas einer genaueren Vorrichtung
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zur Bestimmung der Schwingungsrichtungen bedienen würde.
Werden dann aber die verschiedenen zusammengedrängten
Linien des Spektrums diese Bestimmung nicht erschweren oder

gar verunmöglichen? Wahrscheinlich wohl. Es dürfte darum
geraten sein, das Licht schon außerhalb des Kollimators durch
ein Prisma zu zerlegen und nur absolut homogenes Licht auf
das Kristallprisma durch den Kollimator auffallen zu lassen.

73. Da gerade von der Dispersion der Schwingungsrichtungen
die Rede ist, so mag hier der geeignete Ort sein, um den Einfluß zu
studieren, den ein Fehler in der Bestimmung von * auf die Berechnung
von aik ausüben muß. Es ist

au q2 sin2s + q,cos2«
ai3 (q,-q2) sin* cos*
a33 q* cos2£ + q2 sin2e

Werden qj und q2 als richtig vorausgesetzt, so wird

dau= (qj-qp sin2f df
dais (q? — q") cos2« de
daS3 -(q2-q|)sin26df.

an und a33 ändern sich also um die gleiche Größe, aber im entgegengesetzten

Sinn. — Wie man sieht, ändern sich a33 und alx um den
größten Betrag, wenn e=nji oder 3n/4, um den kleinsten aber, wenn
f =0 oder n/2. Bei aI3 sind die Verhältnisse gerade umgekehrt. In
der folgenden Tabelle XI sind die Änderungen für einige Werte von
€ zusammengestellt unter der Voraussetzung, daß

d * 30'= 0,008727 und
q2 _ q2 0,1000.

Im vorliegenden Fall, wo q2 —q| 0,009 ist und s I2lj2 (angenähert),
wird nach der Tabelle durch Interpolation

9 2985 + 4363 ,9d ai; ± — x 0,000 ± 0,0003674 ± 0,000033 und
11 100 2 100

9 8200 + 7558 9
— x 0,000 —
100 2 100

Ohne Interpolation bekommt man die genaueren Werte
daü =±0,00003485
daik ± 0,00007155.

Man erkennt hieraus, daß es bei sorgfältiger Beobachtung möglich
sein muß, au, a13 und aS3 mit großer Genauigkeit zu ermitteln, falls die
Beschaffenheit und Größe des Prismas eine präzise Arbeit gestatten.

Bei dieser Untersuchung wurde die Richtigkeit von qj und q|
(dq2 =dq| 0) ausdrücklich vorausgesetzt. Es braucht allerdings eine
vielmal wiederholte Einstellung und Messung, um hierfür ganz
befriedigende Mittelwerte zu erhalten.

d aik= - T^.x O.000 ~ * 7^ x 0,0007879 0,000071.
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Tabelle XI.
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74. Für die drei Polarisationskonstanten an, a13 und
a33, sowie die drei Größen R'n, R'18 und R'33 ergaben sich

folgende Werte.

He-gelb (588)

an= 0,428512
a13 -0,001919
a33 0,420527

R'n 0,434804
R'13= 0,001972
R'3a= 0,421048

Der Bedeutung nach sollte
a

He- grün (502)

au= 0,425213
a13 -0,001904
a33 0,417291

R'n 0,430981
R'13 - 0,001960
R'„ 0,417312.

R'„33 iv 33

sein. Die Übereinstimmung der gefundenen Zahlen ist
ziemlich befriedigend (namentlich für He-grün) und läßt
erkennen, welche Genauigkeit etwa erzielt werden könnte.
Als zuverlässigere Zahl empfiehlt es sich, den Mittelwert
beider einzuführen.

Weiterhin berechnet sich nach der Formel (Gl. XI c)

a2gsinr—a31 cosr= —R'1S

der Wert von a23, so daß sich folgende Näherungswerte ergeben.
He- gelb (588) He- grün (502)

an= 0,428512 an= 0,425213

"33-

ai3
a2S

0,420788
0,001919
0,000549

a33= 0,417302
a13 -0,001904
a^ 0,000553.
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Anderseits erhält man auf Grund der Ausgleichsrechnung
nach dem oben erläuterten Verfahren bzw.

Pu- 0,852014 0,843610
P1 22 0,848938 0,842502

Pl,—-0,007371 -0,007250.
und findet hieraus, wenn man vom oben ermittelten Nähe

rungswert
a33 0,420788 0,417302

ausgeht,
an 0,428150 0,425200
a22 0,431226 0,426308
a38 0,420788 0,417302
a23== 0,000549 0,000553

a31=- -0,001919 -0,001904
ai2='-0,007371 — 0,007250.

Zu diesen Werten wurden Verbesserungen berechnet auf Grund
der Ausdrücke
cos2i//i (a22 + a83) + sin2î//i (a33 + an) — 2 sim//i cost//; a12 qi'2+ q-"2
und
cos2Vi (a22 a33 - a223) + sm2xpi (aA3 an

2sim//i cosxp-,
*13l

qi'2 qi"2.
Für a23 und a31 findet man keine plausiblen Verbesserungen,
weil die zugehörigen Koeffizienten äußerst klein sind. Sie
wurden darum ohne weiteres als richtig angenommen. Unter
dieser Voraussetzung bekommt man als endgültige Werte der
Polarisationskonstanten

He- gelb (588)

an= 0,428291
a22 0,431099
a33 0,420677

a28= 0,000549
a31 =-0,001919
a,, — 0,007411

He-grün (502)

an — 0,425205
a22 0,426320

a33= 0,417299
a23 0,000553

a31=- 0,001904
a12 -0,007254.

Man hätte bei der Anwendung der Ausgleichungsrechnung
noch in anderer Weise verfahren können. Es wurden auch
mehrere Methoden versucht; sie befriedigen aber ebenso
wenig, wie die soeben mitgeteilte. Der tiefere Grund ist der,
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daß bei der Linearmachung der quadratischen Gleichungen
Glieder vernachlässigt werden müssen, deren Summe mit dem
Fehler e vergleichbar wird.

Weitere Versuche und Rechnungen werden hierüber
völlige Klarheit bringen.

75. Nach Auffindung der aik bestimmen sich die Haupt-
ïichtgeschwindigkeiten als Wurzeln einer Gleichung dritten
Grades (Gleichung XIV), welche die merkwürdige Eigenschaft
hat, daß der Koeffizient von x2 sechs, derjenige von x zwölf
und das Absolutglied 18 Dezimalstellen haben. Und einzig
diese Gleichung hat notwendigerweise drei reelle Wurzeln,
während die Abkürzung sämtlicher Koeffizienten auf die nämliche

Stellenzahl zu komplexen Wurzeln führen kann. Es ist
interessant, diesen Sachverhalt wenigstens in einem Fall
numerisch zu verfolgen. Für Kupfervitriol He- gelb ist

x3-1,280067 x2+0,546102'521956 x - 0,077647'237781 '243428 0

die fragliche Gleichung. Ihre Wurzeln sind
a2 0,437401 b2 0,422722 c2 0,419944.

Daraus findet sich
a 1,512029 ß — 1,538058 y 1,543136.

Hätte man die Koeffizienten der obenstehenden Gleichung
auf sechs Dezimalen gekürzt, die Gleichung also in der Form

x3 - 1,280067 x2 + 0,546103 x - 0,077647 0

geschrieben, so hätten sich als Lösungen folgende Zahlen
ergeben.

a2 0,434984 b2 0,428534 c2 0,416549
«=1,51622 /3=1,52759 y 1,54941.

Kürzt man endlich die Koeffizienten obiger Gleichung dritten
Grades noch mehr, d. h. schreibt man die Gleichung in
der Form

x3— 1,2801 x2 + 0,5461 x - 0,0776 - 0,

so erhält man als Wurzeln

xx 0,39138 T293255

x2 0,444359'353373 + 0,02858 T257576 i
'

x3 0,444359'353373 - 0,02858 T257576 i.

Selbstverständlich setzt das Rechnen mit solchen Zahlen
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geeignete Hilfsmittel voraus. Im vorliegenden Fall diente
eine Multiplikationsmaschine, System „Millionär" aus der Fabrik
von Dämen-Schmid & Cie., Zürich, die den gewöhnlichen
Additions-Rechenmaschinen weit überlegen ist.

76. Über die Berechnung der Richtungskosinus der
optischen Symmetrieachsen ist nicht viel zu sagen. Beachtenswert

ist, daß an — l von der Größenordnung der aik wird.
Die beiden ersten Dezimalstellen werden also null. Die Folge
davon ist, daß die prozentuelle Sicherheit der Koeffizienten
bedeutend abgenommen hat. Inwieweit dadurch für die

Orientierung weniger genaue Werte herauskommen wie für
die Lichtgeschwindigkeiten, ist sehr schwierig zu sagen, da
die Ausdrücke kompliziert, unübersichtlich und der analytischen
Behandlung nicht leicht zugänglich sind. Jedenfalls bietet
die Berechnung der o;, ßi und y, keine rechnerischen
Schwierigkeiten. Um auch hiefür ein Beispiel zu geben und
die auftretenden Verhältnisse der Anschauung näher zu rücken,,
sei hier das Gleichungssystem für die a-x mitgeteilt, worin
alle Zahlen mit 106 multipliziert sind.

9110a1-r-7411«2-r- 1919o3 0

7411«!+ 6302 Og- 549o3 0

1919ox- 549 a2 + 16724 o3 0.

Da diese Gleichungen nur zur Bestimmung des Verhältnisses
ax : a2 : a.A

hinreichen, kann man a3=l setzen, so daß aus der ersten
und zweiten Gleichung folgt

ax : o2 : o3 - 6,49527 : 7,72540: 1,00000
oder

ax=- 6,49527 o

o2= 7,72540 o

o3 1,00000 (f,
wo ty einen Proportionalitätsfaktor bezeichnet, der sich aus
der Identität

a\ + a\ + a\ 1 ee (6,495272 + 7,725402 + 1 o2

berechnet. Man findet so

ax — 0,64040 o2 0,76167 o8 0,09860.
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Natürlich genügen diese Werte den Gleichungen nicht absolut
genau. So werden die rechten Seiten derselben bzw. gleich
den Größen

0,09423 -0,09146 1,90197.

Die Abweichung ist bei der dritten Gleichung am empfindlichsten,

weil dieselbe bei der Berechnung nicht herangezogen
wurde. Zwar sollte der Theorie zufolge auch die dritte Gleichung
streng erfüllt sein, wenn es die beiden ersten sind. Trifft
das hier nicht zu, so ist es deswegen, weil die
Voraussetzungen der Theorie praktisch nie erfüllt werden können,
da die theoretisch geforderten Irrationalzahlen nie genau,
sondern immer nur angenähert durch Rationalzahlen
dargestellt werden können.

77. Die beim Kupfervitriol erhaltenen Endresultate sind
in der Tabelle XII zusammengestellt.

Tabelle XII.

He-gelb (588,uu) He- grün (502 (ili)

a ß Y a ß Y

n 1,5120 1,5381 1,5431 1,5193 1,5448 1,5494

X y z X y z

§ 129° 49' 40° 23' 84° 20' 132° 55' 43° 34' 83° 53'

71 130° 50' 127° 27' 63° 14' 127° 33' 129° 54' 62° 13'

l 66° 14' 77° 03' 27° 27' 66° 02' 75° 22' 28° 35'

Die optischen Konstanten des Kupfervitriols wurden
früher von Pape, Kohlrausch, Lavenir und G. Wulf ganz bzw.
teilweise bestimmt.1) Ersterer ermittelte zunächst, wie oben
§ 30 mitgeteilt wurde, die Orientierung der Hauptschwingungsrichtungen

und schnitt dann drei Prismen, welche die
Bestimmung von je zwei Hauptbrechungsindizes für die D-Linie
gestatteten. Eines dieser Prismen erlaubte sogar die Ein-

i) Vergi. Groth, Chem. Krist. II Seite 420 f.
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Stellung auf verschiedene Fraunhofersche Linien und lieferte
Werte für o und y. Kohlrausch und Lavenir bedienten sich

der Totalreflexion, gaben aber keine Werte für die Orientierung
an. Mit dieser befaßte sich dagegen G. Wulf.

Die vorliegenden Hauptbrechungsindizes sind in der
Tabelle XIII übersichtlich zusammengestellt.

Tabelle XIII.

1 O \à aß ß Aßy y \d «y

589 D

1,51541 2513 1,54054 657 1,54711 3170

Mittel der
vorangebenden

Werte

Pape

1,51587 2238 1,53825 741 1,54566 2979

1,51564 2376 1,53940 699 1,54639 3075

589 D 1,51615 1,54604 2989

527 E 1,51983 1,54996 3013

486 F 1,52307 1,55351 3044

431 G 1,52872 1,55978 3106

589 D 1,5140 228 1,5368 65 1,5433 293 Kohlrausch

589 D 1,51408 2276 1,53684 661 1,54345 2937 Lavenir

Die Angaben Papes sind wohl weniger zuverlässig wie
die anderen, weil das Schneiden der Prismen, das mit freier
Hand vorgenommen wurde, trotz größter Sorgfalt nicht
allzugenau ausfallen konnte. Immerhin sind sie
achtunggebietend und stimmen bezüglich der Doppelbrechung mit
den anderen ordentlich überein.

78. Was nun die neugewonnenen Resultate anbelangt,
so stehen sie mit den anderen in ziemlich befriedigender
Übereinstimmung. Für einen Vergleich eignen sich allerdings
zunächst nur die Werte von He-gelb, dessen Wellenlänge
nahezu gleich derjenigen von D ist. Von den entsprechenden
drei Werten stimmt y fast genau mit den Angaben von
Kohlrausch und Lavenir überein. Dagegen ist diesen gegenüber

o um 20 Einheiten der vierten Dezimalstelle zu klein
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und ß um 13 Einheiten derselben Dezimale zu groß. Doch
paßt ß wieder vorzüglich zu dem einen von Pape gefundenen

Wert.

Um ein Urteil über die Zuverlässigkeit der für He- grün
(502) gefundenen Brechungsexponenten zu gewinnen, kann
man zunächst auf Grund der Cauchyschen Dispersionsformel
und der Papeschen Angabtn die Werte von o und y berechnen.
Bei Benutzung der beiden zunächstliegenden Werte für die E-
und F-Linien bekommt man

0502=1,52171 und /502== 1,55202.

Gegenüber den zugehörigen Papeschen Werten für die D-
Linie, nämlich

0589=1,51615 und ym 1,54604,

hat man somit eine Zunahme von 0,00556 bzw. 0,00598.
Nun ist bekannt, daß man an einem ganz mittelmäßigen
Prisma, das für die Brechungsindizes nur schlechte Werte
liefern würde, die Dispersion immer noch ziemlich genau
bestimmen kann. Werden demnach die berechneten Zahlen
als wirkliches Maß der Dispersion angenommen, so hat man
mit Hilfe der zuverlässigeren Grundwerte von Kohlrausch

O502 1,5140 + 0,00556 1,51956

yi02 1,5433 + 0,00598 1,54928.

Hiermit stimmen die neuen Werte vorzüglich überein.
Daß übrigens o und y von He-grün dem tatsächlichen

Verhalt ziemlich nahe kommen, ist auch darum recht
wahrscheinlich, weil die Doppelbrechung gleich 0,0301 ist und
der von Kohlrausch gefundenen Doppelbrechung gut
entspricht, zumal nach den Zahlen Papes mit wachsender
Lichtbrechung auch die Doppelbrechung zuzunehmen scheint.

Das Verhalten von ß dürfte dem oben genannten für
He- gelb ähnlich sein, soweit wenigstens die Doppelbrechung
gegenüber / in Betracht kommt.

79. Bezüglich der Orientierung der Hauptschwingungsrichtungen

liegen folgende Angaben vor. Nach Pape1) liegt
die erste Mittellinie im vordem rechten oberen Oktanten und

*) Pogg. Ann. d. Phys. Erg. Band 6 (1874). Seite 45.
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u/VO)

bildet für mittlere Farben — nach Papes Äußerung selber
„mit größter Annäherung für Licht von der Brechbarkeit der
Fraunhoferschen Linie E" — mit den Normalen von m (110),
fi(llO) und m (ìli) die Winkel 438/4°, 984l2° und 73°.

Die Lage der anderen optischen Symmetrieachsen gibt
Pape nicht an. Dagegen hat er (loc. cit. Seite 48) eine Tabelle
mitgeteilt, aus der die Orientierung der Flächen eines optischen
Prismas hervorgeht, dessen brechender Winkel 45° beträgt und
innen und außen von je einer optischen Symmetrieachse
halbiert wird. Unter der Annahme, daß die brechende Kante
z. B. parallel rj sei und der innere Prismenwinkel von Z, halbiert
werde, findet er folgende Werte, falls I und II die Normalen
der beiden Prismenflächen bedeuten.

I: 110 57° 50',5 II: 110= 143° 29',0
Tll=52°48',0 111= 86°32',1
110 77° 26',5 110= 93° 9',8.

Hierdurch sind die optischen Symmetrieachsen natürlich
eindeutig bedingt. In stereographischer Projektion erhält man

die drei Punkte, die in der
Fig. 81) durch ausgezogene
Kreisbogen verbunden sind.

.u/551 Nach einer neueren Be¬

stimmung von G.Wulf2) schließt
die Normale der Achsenebene
mit den Normalen zu m (110),

ii{flO) und <o (111) bzw. die
Winkel 531//, 12x/2° und 113°

ein. Ob es sich hierbei um eine
wirklich neue Ermittlung dieser
Werte handle oder ob nur eine

Umrechnung der Werte von
Pape vorliege, ist nicht ersicht-

a 11001

(grun)

011)

ae!b)

grun)

(grun.

fgeitfi

a/100

mfllO)

Fig. 8

lieh. Das letztere ist wegen der vollkommenen
Übereinstimmung der beiden Angaben nicht ausgeschlossen.

*) Die Figur ist nach dem „optischen Prisma" orientiert. Durch
ein Versehen wurden aber (ITO) und (TlO) auf dem Klische mit u statt u

bezeichnet. 2) Groth, Chem. KristaIlogr.il, 420.
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Die optische Orientierung, die sich aus den in dieser
Arbeit gefundenen Werten der Polarisationskonstanten ergibt,
ist ebenfalls in der Fig. 8 eingetragen, und zwar sowohl für
die gelbe wie die grüne Heliumlinie. Die beiden neuen |-Achsen
nähern sich in befriedigender Weise der von Pape gefundenen
Lage. Um so größer ist dafür die Unstimmigkeit bezüglich
der beiden anderen Achsen. Mag die Unzuverlässigkeit der
Papeschen Werte auch ihren Teil hierzu beitragen, so findet
sie doch ihre volle Erklärung nur auf Grund der Bemerkungen
des §76 und der Diskussionen des vorangehenden Paragraphen,
aus denen hervorgeht, daß die Differenzen a22 — qr2 und
a33 — qi2 für i=l,2 sehr unsicher werden.

Der tiefste Grund dieser Ungenauigkeit ist die in § 65

erwähnte Unzulänglichkeit des Prismas, was im folgenden
klar zutage treten wird.

B. Colemanit B6O,,Ca2-5H20.
a :b:c 0,7769: 1:0,5416 /5= 110° 17'

80. Der Kristall stammt von San Bernardino Co. in Kali-
lornien und zeigt, von einigen schmalen Kantenabstumpfungen
abgesehen, folgende Formen: {ilo}, {00l}, {Ì01}, {T2l} und
untergeordnet {100}, {010}, {l20}. Zum Zwecke der optischen
Untersuchung wurde auf der hinteren Seite des Prismas eine
Fläche angeschliffen, welche zur Orthodiagonale nur wenig
geneigt und zur Vertikalachse fast parallel gelegen ist.

Die Durchmessung der Prismenzone; wobei die Kante
(110):(TÌ0) parallel zur Drehachse gestellt wurde, lieferte
lolgende Werte. «

(HO) 47°543/4' heller Reflex mit schmalem Nebenschein.
(120) 67°23' äußerst schmale Fläche; breiter Reflex,

der vorzüglich in der Zone liegt.
(010) 101° 56' etwas verbreiteter, nicht ganz in der

Zone gelegener Reflex.
{120) 136° 26' äußerst schwacher, unbestimmter, aber

gut in der Zone gelegener Reflex.

(110) 155°543/8' scharfer Reflex, zwar nicht hell, aber

gut einstellbar.
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K künstliche Fläche und
(110) liegen ziemlich stark außerhalb der Zone.
(100) liegt genau in der Zone, Reflex schlecht,

darunter ein zweiter.
{010) schmale Spaltungsfläche, Reflex unscharf,

aber gut in der Zone.
Diese Messungen zeigen, daß der Kristall nicht besonders

vollkommen ausgebildet ist. Immerhin wird man den
wirklichen Verhältnissen recht nahe kommen, falls man die
genannte Kantenrichtung zur Vertikalachse und die innere
Winkelhalbierende der beiden Flächen (110) und (HO) zur
Orthodiagonale wählt. Die Klinodiagonale ist für das Folgende
belanglos. Wichtigkeit hat nur die Annahme, daß die zur
Orthodiagonale senkrechte Ebene eine Symmetrieebene sei.

81. Die wichtigste Aufgabe, die sich zunächst bietet, ist
die Lagebestimmung der Kunstfläche. Zu dem Zweck wurden
folgende Messungen vorgenommen.

K:(lT0)=151°38^' (ff0):(001)= 73° 48'

K:(110)= 43041-|' (Ïf0):(001)= 106°084'

K:(001)=108°454' (001):(121)= 57°5l4'
K: (121)= 80°31-§' (U0):(12I)= 77°254'

(H0):(121) 51°44^'
Ist X, Y, Z ein rechtwinkliges, rechtshändiges Achsensystem,

dessen Y- und Z-Achse mit der oben definierten
b- bzw. c-Achse zusammenfallen, so erhält man für die
Kunstfläche K die Gleichung

lX + mY + nZ 0.
1 und m lassen sich aus den Winkeln

(lT0):K=151°38|i und (110): K 43°4l4
bestimmen, und da die Identität

l2 + m2 + n2 l
besteht, so erhält man gleichzeitig den absoluten Wert von n,
dessen Vorzeichen aus dem gemessenen Winkel

(001):K=108°45|'
ermitteltwerden kann. Weildie Messungen nichtfehlerfrei sind und
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der Kristall überhaupt nicht ideal ausgebildet ist, stimmt der Wert
von n, der aus dem zuletzt angegebenen Winkel berechnet wird,
mit dem zuvor ermittelten nur auf einige Minuten genau überein.

Geht man von anderen Kombinationen aus, so bekommt
man wiederum andere Werte. Dabei bemerkt man, daß n innerhalb

weiterer Grenzen schwankt, als m.und 1, die bedeutend

genauer sind. Das rührt davon her, daß der n zugeordnete
Winkel fast 90°, die Variation von n also ein Maximum ist.

Aus vier verschiedenen Kombinationen ergaben sich
die Mittelwerte

1 -0,990809 m 0,133526 n 0,021168,
welche aber, wie ohne weiteres verständlich ist, der Bedingung

l2 + m2 + n2=l
nicht genau genügen. Da n jedenfalls am unzuverlässigsten
ist, so wurde hierfür mit Hilfe der eben genannten Identität
ein neuer Wert bestimmt. Die Gleichung der angeschliffenen
Fläche wird dadurch

- 0,990809 X -f- 0,133526 Y + 0,021641 Z 0.

82. Wird (110) als zx-Ebene gewählt, so ist es ein

leichtes, die Beziehungen zwischen dem XYZ-System und dem
xyz-System aufzustellen. Man erhält das folgende Schema.

X y z

X

Y

0,587219 0,808985 -0,026776

0,808145 -0,587829 -0,036849

Z -0,045550 0,000000
' - 0,998962

83. Infolge der Zugehörigkeit des Colemanit zum monoklinen

System ergeben sich aus den kristallographischen
Symmetrieeigenschaften zwei optische Bedingungsgleichungen,
die nach Gleichung XV auf die Form

auA4-al2B + a13C a13A + a28B + a33C

a12A + a22B + a23C a13 A + a23 B + a33 C

B
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gebracht werden können. A, B, C sind die Richtungskosinus
von Y in bezug auf x, y, z. Es empfiehlt sich, hieraus a12 und
a22 als Funktionen der vier anderen Polarisationskonstanten
zu berechnen. Man erhält so die Ausdrücke

a12= 1,374795 an - 1,374795 a83 + 30,087797 a13-21,931019a23
a22= 1,890061 au -0,890061 a33+ 19,433534 a13— 14,261136a28.
Die Koeffizienten dieser Gleichungen sind von der Wellenlänge

unabhängig.

84. Zur Bestimmung von an, a13 und a33 dienen die
Geschwindigkeiten und Schwingungsrichtungen jener Wellen,
die sich parallel der y-Achse im Kristall fortpflanzen. Die
Messung ergab

£ -4-24°.
2

Über die Polarisationskonstanten orientiert folgende Zusammenstellung.

rot (668) gelb (588) grün (502)

an 0,394774 0,392920 0,390333

ai3 0,000800 0,000775 0,000778

a33 0,396216 0,394317 0,391734

Die Schwingungsrichtungen jener Wellen, deren
Normalen senkrecht zur künstlichen Fläche sind, wurden nicht
bestimmt. Da aber diese Fläche der Z-Achse fast parallel
ist und auch mit dem Orthopinakoid nur einen kleinen Winkel
bildet, so darf man in erster Annäherung voraussetzen, daß

jene Richtungen parallel und senkrecht zur Prismenkante
seien, oder noch genauer, daß

i n
~

2

Unter dieser Voraussetzung findet man für alle drei Farben
den Näherungswert

a23 0,0014.

Indessen läßt sich dieser Wert noch in anderer Art ermitteln.
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Wie oben (§ 68) gezeigt wurde, ist es möglich, lineare
Gleichungen von der Form

(a22 + a33) cos2xpi + (a33 + au) s\n2xpi—2 a12 smxpi cosxp-, q/3 + q{'2

aufzustellen. Ersetzt man hierin auf Grund der Bedingungsgleichungen

a12 und a22 durch ihre Werte, so erhält man eine

gewisse Anzahl Gleichungen, die als einzige Unbekannte a23

enthalten. Während nun die einzelnen Gleichungen den
Beobachtungsfehlern unterworfen sind und darum für a23 etwas
verschiedene Werte liefern, ist die Summe aller Gleichungen
von den zufälligen Fehlern ziemlich frei und erlaubt deshalb,
für a2S einen recht guten Wert zu finden.

Dieses Verfahren wurde bei allen Farben angewandt
und ergab:

rot (668) gelb (588) grün (502)

a23 0,001260 0,001253 0,001261

Zur Verbesserung der Näherungswerte für an, a3g, a13

und a32 dient die Methode der kleinsten Quadrate. Es
kommen so die endgültigen Werte der Tabelle XIV.

Tabelle XIV.

rot gelb grün

an 0,394745 0,392912 0,390306

a32 0,390945 0,388824 0,386097

a33 0,396187 0,394309 0,391707

a28 0,001267 0,001256 0,001268

a31 0,000800 0,000775 0,000800

a12 -0,005689 0,006138 -0,006324

Die weiteren Rechnungen bieten keine prinzipiellen Schwierigkeiten.

Nur zeigt es sich von neuem, daß man die Koeffizienten
der Gleichung dritten Grades nicht beliebig kürzen darf.
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85. Die ermittelten Hauptbrechungsindizes sind aus der
folgenden Tabelle XV ersichtlich.

Tabelle XV.

a ß Y

rot 1,5834,
-

1,58827 1,60828

gelb 1,5864, l,5920a 1,61333

grün 1,59138 1,59735 1,61940

Für die Orientierung der Hauptschwingungsrichtungen im

x y z- bzw. X Y Z-System (vergi, die Festsetzungen von §81) gelten
die in den Tabellen XVI und XVII zusammengestellten Größen.

Tabelle XVI.

1

rot (668) gelb (588) grün (502)

X y z X y z X y z

0,80818 -0,58778 -0,03692 0,80774 -0,58757 -0,03693 0,80866 -0,58746 -0,03099

0,12037 0,10346 0,98732 0,11426 0,09494 0,98890 0,10866 0,09742 0,98929

0,57651 0,80233 -0,15464 0,57782 0,80338 -0,14390 0,57810 0,80341 -0,14260

Tabelle XVII.

rot (668) gelb (588) grün (502)

X Y Z X Y Z X Y Z

5 90« 0« 90° 90« 0 90» 90« 0« 90°

1 82« 40' 90» 172» 40' 83« 14' 90» 173« 14' 83« 18' 90» 173« 18'

C 7« 20' 90» 82« 40' 6« 46' 90« 83» 14' 6» 42' 90» 83° 18'

Die gefundenen Hauptbrechungsindizes stehen in recht
befriedigender Übereinstimmung mit den Angaben
Mülheims1), wie aus Tabelle XVIII ersichtlich ist.

') Mülheims, Groth's Zeitschrift 14, Seite 230.
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Tabelle XVIII.

I a Jaß ß Aßy Y

B 687 1,58230 577 1,58807 2171 1,60978

He- rot 668 1,68342 485 1,58827 200l 1,6082s

C 656 1,58345 577 1,58922 2178 1,61100

D 589 1,58626 576 1,59202 2196 1,61398

He- gelb 588 1,58642 56e 1,5920s 212? 1,6133s

E 527 1,58952 579 1,59531 2231 1,61762

b4 518 1,59017 584 1,59601 2235 1,61836

He- grün 502 1,5913s 597 1,5973s 2205 l,6194o

F 486 1,59214 596 1,59810 2234 1,62044

Am ungenauesten scheint rot, am genauesten grün geraten
zu sein. Der Grund mag darin liegen, daß es zuweilen recht
schwierig ist, das Fadenkreuz auf die rote Linie einzustellen,
weil sie im strahlenden Glanz der gelben Linie stark
verblaßt. Überhaupt war es bei den verschiedenen Ablesungen
eine auffallende Erscheinung, daß die grüne Linie
außerordentlich scharf begrenzt war und Einstellungen erlaubte,
die bei den verschiedenen Wiederholungen meistens identisch
waren und selten um mehr als eine Viertelsminute variierten,
während bei der gelben Linie Variationen von 1ji- bis 3/4-Minuten,
bei der roten sogar von mehr wie einer Minute die Regel waren.

Bezüglich der Orientierung teilt v. Groth1) folgende
Zahlen mit: Die Ebene der optischen Achsen ist senkrecht
zu {010}; die erste Mittellinie bildet in {010} einen Winkel
von 83°2) mit der c-Achse im stumpfen Winkel ß.

Diese Angaben stimmen prachtvoll mit den
neugewonnenen Resultaten überein, welche für rot, gelb
und grün bzw. die Werte 82° 40', 83° 14' und 83° 18 lieferten3).

i) Chemische Kristallogr. II, 283. *) Nach Mülheims I. c. 82«43'.

3) Aus diesen schönen Ergebnissen ist der Rückschluß gestattet,
daß der geringere Erfolg beim Kupfervitriol tatsächlich auf die mangelhafte

Beschaffenheit des Prismas zurückzuführen ist.
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C. Euklas Si 04 Be [Al OH].
a : b : c 0,3237: 1: 0,3332 ß 100° 16' (Schabus)

86. Zur Verwendung gelangte ein ziemlich großes (12 mm
langes) Bruchstück, das ringsum von drei Flächen begrenzt,
an den beiden Enden aber abgebrochen ist. Die eine Fläche
ist als Spaltfläche {010} deutlich erkennbar. Hierzu senkrecht
steht eine andere Fläche, die ca. 5 mm breit, aber in ihrer
Ausbildung durch eine vielfache Fiederung usw. teilweise

gestört ist. Wegen des rechten Winkels, den sie mit {010}
bildet, ist sie der Orthodiagonale parallel. Die dritte Fläche
bildet mit der zweiten einen ziemlich spitzen Winkel
(T= 32°27'20") und spiegelt wunderbar. Überhaupt ist der
Kristall von herrlicher Klarheit und erzeugt dementsprechend
Spektrallinien von strahlender Helligkeit. Leider läßt ihre
Schärfe noch zu wünschen übrig.

Die zuletzt genannte Fläche gehört der Form {l20| an,
entsprechend dem im Handbuch v. Hintze angegebenen
Werte 120: Ol0 57° 30'. Ob sie aber rechts oder links von
der Symmetrieebene gelegen sei, bleibt unentschieden.
Glücklicherweise ist jedoch diese Unbestimmtheit für die Aufstellung
der dem monoklinen System eigentümlichen Bedingungsgleichungen

völlig belanglos. Denn da die ebengenannte
Fläche {120} zur xz-Ebene gewählt wurde, folgt ohne weiteres,
daß die Richtungskosinus der Orthodiagonale gleich sind
den Ausdrücken

A cosT B -sinT - C 0.

Nach Gleichung XV hat man also die beiden Bedingungsgleichungen

(k=—r)
(au — a22) sin2r+2a12 cos 2F=0 und

a13 cos r~- a23 sin F= 0.
Beachtenswert ist noch, daß jene Welle, deren Normale senkrecht

zur zweitgenannten Fläche {lOO} ist und parallel der
z-Achse schwingt, direkt den Wert a33 gibt, während die
andere Welle dieser Fortpflanzungsrichtung eine
Hauptlichtgeschwindigkeit liefert. Eine Zusammenstellung (Tabelle XIX)
der durch direkte Beobachtung (erste Kolonne) bzw. mit Hilfe
von s, qx und q2 (zweite Kolonne) ermittelten Werte von a33
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dürfte interessieren und erlaubt zudem ein Urteil über die
erzielte Genauigkeit.

Tabelle XIX.

Beobachtung Rechnung

rot 0,36269 0,362791

gelb 0,36130 0,361509

grün 0,35904 0,359292

indigo 0,35696 0,356857

87. Die Polarisationskonstanten wurden in verschiedener
Weise bestimmt. Das erstemal wurde ungefähr so
verfahren, wie im zweiten Teil bei der Anwendung der
allgemeinen Methode auf monokline Kristalle angegeben wurde ;

später wurden zuerst die Pik und Qik (aber ohne Interpolation
der qi"-Werte) bestimmt und die Polarisationskonstanten in
der Weise berechnet, daß aus den Gleichungen

a22 -r a33 r jj a22 a33 a23 KJxx

a33-r-aji P22 aa3au —a2x — Q22

vermöge der Bedingungsgleichung
a23 ma13 (m cotgr)

zunächst a23 eliminiert und dann durch Substitution der Werte
von a22 bzw. alx aus den Gleichungen links in den Gleichungen
rechts das einfache System

(Pu
a33 1*22 a3

m2a?3 Qn
— a

13

abgeleitet wurde, aus dem sich schließlich durch Elimination
von ai3 die Gleichung

(m8-l)a|3-(mS!P22rP11)a88 + (maQM-Q11)r0
ergibt. Diese Gleichung ist unabhängig von s, liefert aber
zwei Werte für a33, unter denen wegen des bekannten
Näherungswertes der wahre leicht zu erkennen ist.

88. Die nach den verschiedenen Methoden erhaltenen
Resultate stimmen recht gut untereinander überein. Die Mittelwerte

sind in der Tabelle XX aufgeführt.
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Tabelle XX.

o AKß ß Aßy Y

rot (668) 1,6474, 464 1,65206 1566 1,66766

gelb (588) 1,6507, 458 1,65532 1612 1,67144

grün (502) 1,65598 460 1,66058 161j 1,67669

indigo (447) 1,66062 466 1,66528 1615 1,68143

Zur Kontrolle dienen die direkt gewonnenen Werte für
die mittleren Hauptbrechungsindizes, nämlich

As68= 1,6521G

ßis»= 1,65533

/?5M-l,6605j
ßiil= 1,66532.

Die einzigen über Euklas vorliegenden optischen Konr
stanten wurden von Descloizeaux1) ermittelt, der für mittlere
Farben folgende Angaben macht.

o l,6520 /3=1,6553 ^—1,6710
Die Übereinstimmung dieser ß- und /-Werte mit den

obigen für He- gelb ist fast überraschend ; dagegen stimmt a
etwas weniger gut.

Als Ebene der optischen Achsen wurde übereinstimmend
mit den bekannten Angaben {Oio} gefunden. Ebenso ergibt
sich Z als spitze Bissektrix. Sie bildet mit der z-Achse einen

Winkel, für den sich die Werte der Tabelle XXI ergeben haben.

Tabelle XXI.

rot gelb grün indigo

39° 39' 39° 49' 39° 14' 35° 31'

Nach Descloizeaux2) ist er gleich 40°32'. Die Übereinstimmung
ist also, vom letzten Wert abgesehen, verhältnismäßig gut
und beweist neuerdings die Zuverlässigkeit der Methode, wenn

i) Descloizeaux, Man. I, 482.

2) Bull. Soc. Min. 5 317.
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die Lichtverhältnisse und die Beschaffenheit des Materials
ein genaues Arbeiten gestatten.

Die erzielten Resultate des dritten Teiles dürften die

praktische Verwertbarkeit der im zweiten Teil erläuterten
Methode zur Genüge gezeigt haben. Wenn ein Punkt nicht
ganz befriedigt, so ist es der, daß anscheinend die Größe
der Doppelbrechung nicht immer mit großer Genauigkeit
ermittelt werden kann. Berücksichtigte man aber den Wert
von (q'2 — q"2)2, welcher einerseits wegen der Beobachtungen
bekannt ist und sich anderseits überraschend einfach durch
Pik und Qik rational darstellt, so wird es möglich, selbst diese

Mängel vollständig zu beheben. Es wird mir deshalb ein
besonderes Vergnügen sein, dies in einer weiteren Arbeit
experimentell und theoretisch darzutun.1)

Belfaux, den 29. September 1916.

t) Trotz eifrigen Bemühens war es bis zur Drucklegung noch
nicht möglich, die erforderlichen Präparate zu beschaffen.
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i (D1)

II (2)

III (3)

{c-Kurve)

Illa (7)

IV a (3)

IVb (5)

V (5)

o

x y z

f «1 «2 o3

v: ßt & ß3

z Yi Y2 Y*

ri vl v\
q2 — a2 q2 b2 q2

q* — q2 (Ljj cos2 xp + L22 sin2 xp + 2LX2 sin xp cos xp) +
+ (Mjj cos2 xp + M22 sin2 xp + 2MX2 sin tp cos tp) 0

î (q, v) [(Mjj - M22)- (Lj, - L22) q2] cos 2 xp +
2(Mj2-Lj2q2)sin2<// + [2q*-(Lll+L22)q2 + (Mjj + M22)] 0

Lit (b2 + c2) «i ok + (c2 + a2) ßi ßk + (a2 + b2) y, yk
Mik b2 c2 Oi ak + c2 a2 ßx ßk + a2 b2 y\ yk

«i2+A2 + 7i2 i aiak-\-ßißk + yiyk 0

2 a*-L„a2 + M„
1

(aä-b2) (a2-c2)

b*-Lj,b2 + Mn

(b2-c2) (b2-a2)

c^-LjjC^ + Mjj
!-a2) (c2-b2)

a4-L22a2 + M22

ßi'

Yi

ß

Ï2

2
(a2-b2) (a2-c2)

>2 b*-L22b2 + M22
2 (b2-c2) (b2-a2)

2_ c*-L22c2 + M22
1 - a2) (c2 - b2

Oj o2

ßxß2

Y1Y2

L,2a2 + M,„

(a2 -b2) (a2-c2)
— L12b2 + M;0

(b2 - c2) (b2 - a2)

-L12c2 + MJ2

(c2-a2) (c2-b2)

') Die angeklammerten Zahlen geben die Seiten an.
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VI (5)
u4 - (L,, + L22) u3 + (Mjj + M22 + L,, L22 - L,|) u2

- (Lu M22 + L22 M,j — 2 L12 Mj2) u + (M,, M22 - M,2) 0

VII (44) ajj x2 + a22 y2 + a33 z2 + 2aj2 xy + 2a23yz + 2a31 zx 1

VIII (44) aik a2aiOk + b2/3i/3k + c27i7k (aik aki)

q* — q2 [(a22-ra33) cos2i// + (at,3+au) s'm2xp— 2 a12 s'mxpcosxp]
IX (45) +-[(a22a33-a23)cos2V/ + (aa3a1i-a21)sin2^

— 2 (a12 a83 — a23 adl) s'mxp cosxp] 0

X (45)
q4 —q2(Pjj cos2xp + P22 sin2xp — 2 Pxi s'mxp cosxp)

+ (Qu cos2xp + Q22s'm2xp—2 Q12sini//cosi//) 0

fll =a22 + a33 Qll:=;a22ad3 323

» 22 — "33
Pl2 aj2

a33 + ail Qz a33ail a31

Qt2 ai2a33 a23a31

aa q2 sin2 e + q\ cos2 £ Rjj
XIb(49) a13 (q2 —q2) sinecose R,3

a33 °xÌ C0S'2 k + °ll SÌn2 e R33

XIc(51)

a,j cos2 r— 2 ax2 sin T' cos T+- a22 sin2 F
q'Ì sin2e' + q'2 cosV R'n

a31 cos T—a23sin T —(q'2 —q'2) sine' cose' R'l3
a33~q'?cos2£' + q'2sin2g' =R'83

XII (45) a33-(P11+P22)a^3+(PnP22-P?2+Q11+Q22)a^
-(P,jQ22 + P22Q1j-2P12Qj2)a33 + (Q1jQ22-Q22) 0

l2
33

ajjU + a12v + a13w lu
a12u + a22v +- a23w Iv
ai3u + a23v + a33w Aw
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XIV (51)
a,,— X a12

ai 2 a22 ^
ai3

»23 "33

'23

aa» /.

0

XV (55)
alt A + a12 B + a18C a12 A + a22B + a28C _a13 A + a28 B -+ a88 CABCXVI (57),

an -^i ~r~ ai2 A3-h aia A3 _^ a12 At + a22 A2 + a23 A3
_^

a, 8 At + a28 A2 + a33 A3

A, A, A3

anBj. + a,2B2+ai3B3 a,2Bj + a22B2+a23B3 aj8B1 + a23B>+a33B8
B, B2 B8

au Ci"i"ai2^2~r ai8^8
=_

ai2 ^*i j~ a22 C2 ~*~ a23 C3 _ «^îa^i + a28C2-r a33 L3
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