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Inhaltsiibersicht und Vorbemerkung.

Die vorliegende Arbeit umiaBt drei Teile.

Im ersten Teil (S. 1—40) werden die Ergebnisse der
bisherigen Forschung iiber das Prismenproblem systematisch
zusammengestellt und mehrfach erginzt.

Im zweiten Teil (S. 41—69Y) wird eine neue Methode
abgeleitet, welche gestattet, die optischen Konstanten zwei-
achsiger Kristalle in allen Fillen (also auch im triklinen System)
mit Hilfe eines einzigen Prismas beliebiger, selbst unbekannter
Orientierung eindeutig zu bestimmen.

Im dritten Teil (S.70—113) wird die neue Methode an
je einem Prisma vonKupfervitriol (S.82ii.) (triklin), Cole-
manit (S. 103 ff.) und Euklas (S. 110 if.) (monoklin) gepriift.

Um das umstidndliche Aufsuchen der zitierten Formeln
zu erleichtern, wurde am Schluf§ der Arbeit (S.114—116) ein
iibersichtliches Formelverzeichnis zusammengestellt.

Die einschldgige Literatur wurde ausgiebig verwertet,
jedoch nur sparsam zitiert, weil sie bereits von F. Pockels
in seinem ,Lehrbuch der Kristalloptik“ sorgtfiltig gesammelt ist.

Die zahlreichen Messungen, welche fiir den dritten Teil
notig waren, wurden im mineralogischen Institut der Univer-
sitdt Freiburg i. d. Schweiz ausgefiihrt. Der Vorstand des-
selben, Herr Prof. Dr. H. Baumhauer, zeigte fiir den Gang
der Arbeit fortwdhrend eine warme und aufmunternde Teil-
nahme und gab mir zu verschiedenen Abschnitten derselben,
insbesondere zum ganzen dritten Teil, mannigfache Anregung.

Fiir dieses sein liebenswiirdiges Entgegenkommen,
namentlich aber fiir die vielseitige Forderung wihrend meiner
Studienjahre iiberhaupt wie auch besonders wihrend der Zeit,
wo ich sein Assistent zu sein die Ehre hatte, drangt es mich,
ihm an dieser Stelle meinen auirichtigsten und herzlichsten
Dank auszusprechen.






I. TEIL

Systematische Zusammenstellung, Ergidnzung
ind Verallgemeinerung der bisherigen
Untersuchungen.

1. Dem allgemeinen Brauch entsprechend, wird den
folgenden Betrachtungen ein rechtwinkliges, rechtshindiges
Achsensystem x,y,z zugrunde gelegt, dessen x- und y-
Achse in der Querschnittsebene (Hauptschnitt) des Prismas
liegen und durch die Halbierungsebene des inneren bzw.
dufleren Prismenwinkels bestimmt sind. Die z-Achse steht
auf beiden senkrecht und féllt mit der brechenden Kante des
Prismas zusammen. Uber dem Hauptschnitt wird sie positiv
gerechnet, wihrend die positive Seite der x-Achse ins Innere
des Prismenwinkels gerichtet ist.

Neben diesem Xy z-System ist noch ein zweites, eben-
falls rechtwinkliges, rechtshidndiges Koordinatensystem &, n,
von Bedeutung, dessen Achsen durch den Ursprung O des
ersten Systems gehen und den Schwingungsrichtungen jener
Wellen parallel sind, die sich mit den Geschwindigkeiten
a bzw.b und ¢ (a>b=> c¢) (Hauptlichtgeschwindigkeiten) im
Prisma ausbreiten. &7, sind demnach die sog. Haupt-
schwingungsrichtungen oder optischen Symmetrieachsen. Fiir
die im allgemeinen unbekannten Richtungskosinus, welche
die positiven Richtungen der Achsen des einen Systems in
bezug auf die positiven Richtungen der Achsen des anderen
Systems festlegen, gelte das Schema I.

X |y | z

Uy
-

o, | o

8|88,
Yo | Vs

ey | S
5
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2. Die Ausbreitung ebener Wellen erfolgt in optisch
zweiachsigen Kristallen nach einem ziemlich verwickelten Ge-
setz, dessen analytischer Ausdruck gewdohnlich auf die Form?)

vi ¥ n vi
q2._a2 q2.__b2 q2_.__c2
gebracht wird. Darin bedeuten: »,»,,v, die Richtungs-
kosinus der Wellennormalen in bezug auf &#,7; q die mit
der Richtung im allgemeinen verdnderliche Wellennormalen- .
geschwindigkeit und a, b, ¢ die bereits oben genannten Haupt-
~ lichtgeschwindigkeiten.

3. Die Messung jener Winkel, welche die Fortpilanzungs-
richtung und Geschwindigkeit einer ebenen Welle eindeutig
bestimmen, ist sehr umsténdlich, wenn die Welle schief zur
Prismenkante einfdllt. Mit einem gewdhnlichen einkreisigen
Goniometer ist sie iiberhaupt nicht ausfiihrbar; es braucht
zum mindesten ein dreikreisiges Instrument. Aus diesem
Grund hat man sich von jeher auf Wellen beschrinkt, die
parallel der brechenden Kante des Prismas einfallen und
darum sowohl beim Gang durch das Prisma als auch nach
dem Austritt aus demselben dieser Richtung parallel bleiben.
Ausnahmsweise machte ViolaZ?) mit Hilie des zweikreisigen
Goldschmidtschen Theodolitgoniometers Beobachtungen bei
,,schiefer Inzidenz*, ist aber genotigt, jene Stellungen des
Prismas und Fernrohrs aufzusuchen, fiir welche die mit
geeignetem Mikrometer meBbare Vertikalablenkung
ungeidndert bleibt, wenn Fernrohr und Kollimator vertauscht
werden, und muBl zudem in der Umgebung dieser Stelle fiir

1) Fiir Wellen, die parallel einer optischen Symmetrieachse
schwingen, versagt die Gleichung II, weil sich ein Term derselben
auf die Unbestimmtheitsform 0:0 reduziert.

2) Viola, Zeitschrift f. Krist. 32, 66 und 545; do. 43, 210 und 588.
Viola, Zeitschr. {. Instrumentenk. 19 (1899), 276. Pockels, Lehrbuch
der Kristalloptik. 148 ff. und Zeitschrift f. Krist. 43, 587.

Den Fall ,schiefer Inzidenz“ studierte iibrigens teilweise schon
A. Cornu in seiner Arbeit: Refraction a travers un prisme suivant une
loi quelconque. Ann. Ecole normale 1. 231 und 3. 1. In Betracht
kommt hauptsichlich 1, 255 ff.
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mehrere, etwa um je einen Grad verschiedene, am Vertikal-
kreis direkt ablesbare Werte von w (=,,Winkel, den die auf
die Eintritts- und Austrittswellen senkrechte Ebene mit der
Basis des Prismas einschlieBt*) die zugehdrigen Brechungs-
indizes bestimmen. Das Maximum oder Minimum derselben
liefert einen Hauptbrechungsindex.

4. Die Gesamtheit aller zur z-Achse parallelen Wellen,
welche gleichzeitig im Punkte O einfallen, umhiillt im Prisma
nach der Zeiteinheit eine Kurve C, welche das Schnittgebilde
der Wellennormaleniliche (Gl. II) mit der Querschnittsebene
des Prismas ist. Bezeichnet etwa v den Winkel, welchen
die Normale einer solchen Welle mit der positiven Richtung
der x-Achse einschlieft, so hat man fiir die Richtungskosinus
dieser Wellennormalen im xyz-System die Werte

Y, =cosy Y, =*siny Y, =0,
falls ¥ von +x iiber +y positiv gerechnet wird.

Zwischen v; und p bestehen wegen des Schemas I die
Beziehungen

v, =0, CoS YW+ a, Sin Y

Vy=[3, cosy+ B,siny

Vs =19, COS Y + ¥, siny,
die in Gleichung II eingesetzt, nach einigen Umiormungen,
die Gleichung') der Kurve C ergeben, nimlich :

q*—q?*(L,, cos*y+L,,sin*y+2L,, sinycosy)+

_ + (M, cos®?y + M,, sin®y + 2 M,, sin y cos y) = 0. i
Darin ist
Lik E(b2+02) aiak+(c2+aﬂ)ﬁiﬁk+(a2+b2) YiYk IVa

Mik5b2c2aiak+c2a2ﬁiﬁk—i—a‘*’b27i7k.

Die Konstanten L;x und M;, lassen sich theoretisch
mit Hilfe von sechs Wertpaaren (q», y,), die sich auf Grund
der Messungen am Spektrometer ohne Schwierigkeit ergeben,
eindeutig als Wurzeln eines Systems von sechs linearen
Gleichungen bestimmen. Wie die Rechnung praktisch aus-
zufiihren ist, wird sich spéter zeigen, hier soll nur ein ein-
faches Veriahren angegeben werden, um mittels des be-

1) Vergl. hierfiir und fiir das Folgende die Arbeit von Th.v. Liebisch
im Neuen Jahrbuch fiir Mineralogie und Geologie. 1886 I pag. 14 ff.

lt
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obachteten Einfalls- und Ablenkungswinkels (i, und A) q und (1
graphisch zu bestimmen. EOA (Fig. 1) sei ein Haupt-
schnitt des Prismas mit dem
brechenden Winkel 7", ] E eine
einfallende, AJ, eine austre-
tende Wellennormale. EW  und
AW, die zugehorigen Wel-
lenspuren. Macht man EJ, —
EW,=AW, =A], —q,, sosind
» die Projektionen von EW, und
AW auf die entsprechenden
Einfallslote EP und AQ bzw.
gleich q,sini, und q,sini, und
die gebrochene Wellenebene
ist der Richtung 0O, paralldl (also wegen ihrer zum Haupt-
schnitt senkrechten Lage vollkommen bestimmt), falls (85
den Schnittpunkt der projizierenden Geraden W,P und W,Q
bedeutet.

Der Beweis ergibt sich unmittelbar, da 00, den Winkel I"

derart in zwei Winkel') r, und r, teilt, daB
r,t+r,=1r
sinr,:sinr, =sini,:sini,.

Der fettgezeichnete Linienzug STUV (TU.LOO,) gibt
die drei aufeinanderfolgenden Lagen einer bestimmten Wellen-
normale an. \

Zur Bestimmung der Geschwindigkeit q, (=UW) kann
man sich der bekannten Huygensschen Konstruktion bedienen,
wie sie in der Figur angedeutet ist (UV=q,).

5. Die Hauptlichtgeschwindigkeiten a,b,c sowie die
Richtungskosinus a;, 3i,%: (i=1, 2, 3) berechnen sich aus
den Gleichungen IVa und sechs weiteren, die wegen der
Orthogonalitit der Achsen zwischen den Richtungskosinus
bestehen, nidmlich:

J,
Fig. 1

1) Man achte auf die Pfeile, denn nur fiir solche gerichtete
WinkelgroBen gelten die bekannten Relationen
Lh+rn=Clundiy+i,=TI+44
allgemein. '
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ai2+;812+712=1 aiak+ﬁiﬁk+g/iyk=0. IVb

- Man kann nun mit Th. v. Liebisch in den Gleichungssystemen

I

IVa und IVb die drei Gleichungen in «3%, 82, y7 fiir sich

betrachten, ebenso jene in «2, 3%, y2 sowie endlich diejenigen:

in o o, 3,8, 7,7, und findet durch einfache Rechnung
folgende Ausdriicke:

= Lgs 8%k My,

at*—L,a*+M,, a2=a4—L22a2+M22 o o —

(ae_b?.) (az_cz) (a2 — b?) (az_cz) 12 (az__bz) (a'*’—c‘-’)
bi_"Lllb2+M11 62=b4—“L22b2+M22 ﬁ )6’ _ _L12b2+M12
(b2""(22) (b'z_az) 2 (bz_ce) (bz__a2) 172 (bz_cz) ( 2_a2)
B - My o B L@ N, —L,cz+M,,

—a) (cr—by) 1P (er—ay (ci—by T

Beachtet man, daB
_ ' afagx(“1a2)2, i
so folgt aus den drei Gleichungen der ersten Zeile von V,
wenn a*—u gesetzt wird:
u“—'(Lu +L22) i 2 (Mu + M22+ L11L22 "“sz) e VI
LMy, +L,, M, —2L ,M;;)u+ (M, M,, —M,3)=0.
Das gleiche Verfahren mit den Gleichungstripeln der zweiten
und dritten Zeile von V liefert fiir b® und c? eine mit VI
identische Gleichung, so daB} sich also a? b?% c* als Wurzeln
dieser Gleichung vierten Grades ergeben, die aber im
allgemeinen noch eine vierte, von diesen verschiedene Wurzel
d? hat, {deren Wert Th. v. Liebisch durch Koetfizienten-
zerlegung zu
d*=a’a3+ b2 35+ c?ys

bestimmte. Es ldBt sich unschwer zeigen, daBl a* die groBite
und c? die kleinste Wurzel von VI ist, wihrend die beiden
mittleren (b? und d?) in keiner {esten, zum vorneherein
gegebenen GroBenbeziehung zu einander stehen, indem b?
ebensogut groBer wie kleiner als d* sein kann. Die Losung
des Problems ist darum im allgemeinen zweideutig.

6. Da in den eben gefundenen Wurzeln der Gleichung VI
von den neun Richtungskosinus des Schemas I nur e, 3,
und y, auftreten, so miissen wegen der bekannten Beziehung

(¢ —a) (¢ —b?)

\Y
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zwischen den Koeffizienten und Wurzeln einer algebraischen
Gleichung auch die Koeffizienten der Gleichung VI neben
a%,b? und c? nur noch von e, 8, und y,, nicht aber von den
sechs anderen Richtungskosinus abhidngen. Der direkte Nach-
weis mit Hilie der Werte fiir Lix und M;x auf Grund der
Orthogonalitdtsgleichungen bietet keine Schwierigkeit. Es
geniige, ihn etwa fiir M,, M,, — M2 durchzufiihren. Durch
Substitution der Gl. IVa, Ausfiihrung der Operationen und
einfache Kiirzung kommt:

MM, M=
a’b?c?[a*(B, 7, — B, 7)) TP (1, @y —yp)* + € (e, By — 0, B,)°].
Nun bestehen zwischen den neun Richtungskosinus
bekanntlich die Beziehungen

B.v.—Beri =0y 11— 7: =8, o, B;—a,B =y,
die, oben eingesetzt, das gewiinschte Resultat ergeben und
zugleich den eben erwidhnten Satz von Th. v. Liebisch
bestatigen:

M, M, ML=a*b*c*(a*a b 52 <c' vl

Gleichung VI ist demnach durch die Orientierung der
brechenden Kante des Prismas in bezug auf die optischen
Symmetrieachsen des Kristalls bei gegebenen a% b? und c?
vollig bestimmt und deshalb von der weiteren Lage des
Prismas ganz unabhidngig. Darin zeigt sich ein wesentlicher
Unterschied zwischen der Gleichung Il und der Gleichung VI.
Gleichung III ist der analytische Ausdruck fiir die Schnitt-
kurve C der Wellennormalenfliche mit der durch e, 3,, 7,
bestimmten Diametralebene und in ihrer Form durch das
Bezugssystem bedingt. Fiir die verschiedenen Prismen mit
gleichorientierter brechender Kante miissen sich ihre Koefii-
zienten dndern, trotzdem sie immer die gleiche Kurve dar-
stellt, eben weil sich das Bezugssystem idndert. Dagegen
bleibt Gl. VI fiir alle diese Prismen stets dieselbe. Sie wird
deshalb nur durch solche Eigenschaiten der Kurve C bestimmt,
welche von ihrer speziellen Orientierung unabhédngig sind.
Diese Eigenschaften sind die Lidngen der extremen Radien-
vektoren.
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7. Um dies zu zeigen, mdge in Gl Il der doppelte
Winkel eingefiihrt werden. Dadurch kommt nach einigen
Umstellungen:

i(q, ) =[My, —M,,)—(L;; —L;s) q*] cos2y
+2(M,;— Ly, q%) sin 29+ [2q* — (L, +Ly) g+ (M, + My,)] =0
oder abkiirzend:

f(q,)=Pcos2y+2Qsin2y +R=0. a)

Die Bedingung, daBl q ein Extremum werde, ist bekannt-

lich das Verschwinden von

of
also im allgemeinen das Verschwinden von é_

Man hat somit -
—Psin2y +2 Q cos 2y =0. b)
Wegen
sin? 2y + cos®* 2y =1 c)
kann man vy eliminieren, indem man etwa &) und &) nach
sin2y und cos 2y auflost und die gefundenen Werte in c¢)
einsetzt. Man erhilt auf diese Weise
R2 — P2 .__4 Q2 - O
P2+ 4Q? :
Das Nullwerden des Nenners in diesem Ausdruck ist bei
reellen Werten an die Bedingungen
P=0 und Q=0

und wegen a) auch

R=0
gekniipft, kann also, wenn iiberhaupt moglich, nur bei ganz
spezieller Orientierung des Prismas eintreten. Im allgemeinen
ist darum

RE—PE—~2 R

die gesuchte Maximums- resp. Minimumsbedingung und gibt
nach Einsetzung der Werte aus Illa, wenn noch

qQ*=u
gesetzt wird,
R*—P?*—4Q*=4[u*—(L,, +L,,) v*+(M,, +M,,+L,, L,,—L 2

—(L;y My, +L,, My, —2L,, M) u+ (M, M, — M1§)] =={)

d. h. genau die Gleichung VI w. z. b. w.

) u*

Illa
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8. Es ist fiir das folgende bedeutungsvoll, auch die
Gleichung |
- P*4+4Q%*=0
ndher zu untersuchen. Ersetzt man dieselbe durch das oben
gefundene, ihr dquivalente Gleichungssystem
| P =0, () =0, R=0,
so folgt durch Elimination von q®.aus den beiden ersten

Gleichungen
Lu “Lez " L12
, M,—M, M},
und hieraus nach Substitution der Werte aus IVa

a*b*(g, 72_62 1) (8, 7+ B, 7o) —atbt(y, aa—y, ) (0, 7, T 0 7,)
+bic? (y, a7, 0,)(y, ¢, Ty, @) —b*ce, By—a, 8,)(e, B, + 8, )
+0432(051182—“2181)(a1181+a2182)*c“’a'4(16’172“18271)(16171+ﬁ272)";0>
wofiir man wegen der bekannten Beziehungen

Bt Bsve=—8s% (und zwei dhnlichen)
Biy:— By =04 (und zwei dhnlichen)

die Gleichung
—a, 3,7, [a*b?(a® —Db?) 4+ b?c?(b®—c?)+ c?a®(c*—a?)|=
o, B, v, (a2 —b?) (b* — c?) (c*—a?) =0
erhédlt. Dieselbe kann jedoch nur bestehen, wenn

;; a31837s=0
ist, d. h. wenn die Prismenkante mindestens auf einer optischen
Symmetrieachse senkrecht steht.
Zur Untersuchung der dritten Gleichung

R=0
empfiehlt es sich, das soeben gefundene Ergebnis zu ver-
werten und zur Vereinfachung der Formeln die in der
xy-Ebene gelegene Symmetrieachse etwa mit der x-Achse
zusammentiallen zu lassen. Natiirlich kann jede der drei
Achsen &7, in Betracht kommen. Es geniige jedoch, die
Rechnung fiir

x| §

durchzufiihren. Dann spezialisiert sich das Schema I zu
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0 0

e
e

0 |cosY| sind

n
| 0 |-sindcosd

—> —>
wo & den Winkel yn=z[ bedeutet, der von+x aus gesehen
im Gegenzeigersinn positiv gerechnet ist. Durch diese Koordi-
natentransformation wird

Q=0,

~ Lys=0 und M, =0,
und an Stelle von

weil

P=0 und R=0
erhédlt man nach einfacher Rechnung die Gleichungen
[2q2—(a®+ b2)] (q?— c?)=—(c2— b2) (q‘z — a?) sinz9
(a% — b?) (q? — c?) = (c* — b?) (q* — a?) sin®9,
deren gleichzeitiges Bestehen nur moglich ist, wenn entweder
q*=c? und sin*9=0
oder aber
q*=D>b? und sin®*3=1
was in beiden Fillen besagt, daB die z-Achse nicht bloB
auf einer optischen Symmetrieachse senkrecht
steht sondern selber eine solche ist. Die Kurve C
zerfdllt deshalb in einen Kreis und ein Oval und hat im
angenommenen Fall die Gleichung
(q* — ¢*) [q* — (b* cos®y + a® sin*y)| =0
bzw. (q*—b? [q®—(c? cos*y + a®sin*y)]=0.

Dem Kreis' eignet kein extremer Radiusvektor — eine
geometrische Eigenschaft, die ihren analytischen Ausdruck
darin findet, daB dq:dy in der Unbestimmtheitsiorm 0:0
auftritt, sobald die Kurve C in ein Oval und einen Kreis
zerfillt und q gleich dem Radius des Kreises gesetzt wird.
Denn da unter der Voraussetzung

P—=0, Q=0, R—0

auch die Gleichung
R2 S P2 =T 4Q"‘ =0
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identisch erfiillt ist, so gilt :
dqg R*—P?—4Q* 0O

dv,u P? +4Q? 0
AbschlleBend kann man sagen daB die Glelchung

P24 4Q%=

dann und nur dann besteht wenn die Prismen-
kante eine optische Symmetrieachse ist, und q
die Geschwindigkeitjener Wellebedeutet, welche
~parallel zur Prismenkante schwingt. — Im Folgenden
moge diese spezielle Orientierung, welche vorlauhg kein

weiteres Interesse bietet, ausgeschlossen sein.

9. In Gl Illa moge jetzt q ein bestimmter Wert bei-
gelegt werden: welches sind die zugehorigen Werte von y?
Um dieselben zu finden, kann man das Glied mit cos2y
auf die eine Seite, die beiden anderen Glieder auf die andere
Seite bringen, ‘sodann quadrieren und hernach cos? 2y durch
1 —sin®* 2y ersetzen. Man erhilt so
2QR+PV Pr—R:+4Q?

Pt 4 1P
In dhnlicher Weise bekommt man?)
PRF2QVP:—R*+40Q*
P2+ 4 Q2

Setzt man diese Werte in Illa ein, so ergibt sich, daB
in sin2y und cos2vy die Radikale mit entgegengesetztem
Vorzeichen zu nehmen sind, so wie es in den beiden Formeln
geschehen ist, wo die beiden obern und die beiden untern
Zeichen jedesmal zusammengehoren.

Um reelle Losungen fiir 9 zu erhalten, mu8 1. der
Radikand positiv und 2. der Zihler in beiden Briichen, ab-
solut genommen, kleiner wie der Nenner sein. Was die erste
Bedingung anbelangt, so beachte man, daB nach dem SchluB
von § 7 die Beziehung besteht

P:—R?+4 Q*=—4(q®—a?) (q*— b?) (q* — b (q* — c*),

sin2y=—

cos 2y = —

- 1) Ist P=Q=R=0, so werden sin2y und cos2y unbestimmt,
in Ubereinstimmung mit dem obigen Ergebnis.
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worin b} und b? die beiden mittleren Wurzeln bedeuten, so
zwar, daB
a'>b2>bZ>ch,

DemgemaB kann ¢* niemals zwischen b? und b2 liegen,
sondern muf} ausschlieBlich dem ersten oder dem dritten
Intervall angehdren, da einzig bei dieser Annahme stets eine
ungerade Anzahl jener vier Faktoren negativ, der ganze Aus-
druck also positiv ist.

Sind demnach die Radikale und damit die Zédhler von
sin 29 und cos 2y immer reell, so bietet die zweite Bedingung
keine Schwierigkeit mehr, wenn man beachtet, daB die Be-
ziehung

sin2y + cos*2y=1
identisch erfiillt wird.

Weil die Kurve C wegen Gl IIl zentrosymmetrisch ist,
kann man sich auf das Intervall

O=y=n
beschrinken und erhdlt somit eindeutig bestimmte Werte
von ¥ und zwar fiir jeden q-Wert zwei verschiedene Werte
von ¥ (0 <y <mn), ausgenommen wenn '
P2—R?*+4Q%*=

d. h. wenn q* eine der vier Wurzeln der Glelchung VI ist,
wodurch die beiden yw-Werte gleich werden. Daraus folgt,
daf die Kurve C im allgemeinen vier gleiche Radienvektoren
hat, die zu je zweien auf einem-Durchmesser liegen. Dagegen
kommen die Radienvektoren mit den Lingen a, b, ¢ und d,
welche an das Verschwinden des Radikanden P? —R?%-+4 (Q?
‘gebunden sind, nur je zweimal vor und bestimmen zusammen
vier ausgezeichnete Durchmesser der Kurve C. Drei dieser
Durchmesser (ndmlich a, b und ¢) miissen, wie eine einfache
Uberlegung an Hand einer Skizze der Wellennormaleniliche
zeigt, die Schnittlinien der optischen Symmetrieebenen mit
dem Hauptschnitt des Prismas sein, wihrend sich die Be-
deutung der vierten Richtung mit Hille des Indexellipsoides
" (Elastizitatsellipsoides) ergibt. Nach Fresnel sind ndmlich fiir
jede Fortpflanzungsrichtung die zugehorigen Schwingungs-
richtungen und Wellennormalengeschwindigkeiten bestimmt
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durch die Richtung und reziproke Linge der Halbachsen
jener Ellipse, in welcher das Indexellipsoid von der zur Fort-
pilanzungsrichtung senkrechten Diametralebene geschnitten
wird. Da sich nun die Gleichung dieses Ellipsoides, be-
zogen auf die Hauptschwingungsrichtungen als Achsen, in

der Form schreibt
1

2+b21/2+c2v2—@
so ergibt sich aus dem Schema I unmittelbar, daB
d*=a?aZ+b*B2+c?y?

das Quadrat der reziproken Ldnge jenes Radiusvekfors des
Indexellipsoides ist, der auf dem Prismenhauptschnitt senk-
recht steht, oder anders ausgedriickt, daB d?* das Quadrat
- der Fortpflanzungsgeschwindigkeit jener Welle ist, die parallel
zur brechenden Kante des Prismas schwingt. Jener vierte
Durchmesser gibt darum die Richtung an, in der sich diese durch
thre Schwingungsrichtung ausgezeichnete Welle fortpflanzt.

10. An Hand einer Skizze der Wellennormaleniflache ')
erkennt man leicht, da a dem #uBeren, ¢ aber dem inneren
Zweige der Kurve angehort, wihrend b bald auf dem inneren,
bald auf dem &uBeren Zweige liegen kann, und zwar ist b
Minimum des duBeren und d Maximum des inneren Zweiges,
wenn der Prismenquerschnitt durch jenen Winkel der optischen
Achsen geht, der von der &-Achse halbiert wird, dagegen
ist b Maximum des inneren und d Minimum des &uBeren
Zweiges, wenn der Prismenquerschnitt durch jenen Winkel
der optischen Achsen geht, der von der Z-Achse halbiert
wird. Im ersten Fall ist b>d, im zweiten b<d und es
gibt fiir den betreffenden Schnitt.-keinen Kurven-
radius, dessen Lange dem Intervall (b, d) angehort
(vergl. d:e Diskussion in § 9).

11. Ohne aui Einzelheiten einzugehen, sei bei dieser
Gelegenheit doch darauf hingewiesen, daB die Entscheidung

1) Man vergl. fiir das folgende: Chr. Soret, Uber die An-
wendung der Totalreflexion zur Messung der Brechungsexponenten
zweiachsiger Kristalle. Zeitsch. fiir Krist. und Mineral. 16. 45. In
Betracht kommt namentlich S. 47 f.
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zwischen b und d getroifen werden kdnnte, wenn die Lage
der optischen Achsen wenigstens insoweit bekannt wire, daB
man wiiBte, durch welchen Winkel derselben der Prismen-
querschnitt verlduft. Da aber die Lagebestimmung der
optischen Achsen den Wert von b meistens voraussetzt oder
selber liefert, so wird diese Methode in der Mehrzahl der
Fille praktisch wertlos. — Die Entscheidung zwischen b und
d konnte natiirlich auch dann getrofien werden, wenn, um
andere, dem Mineralogen weniger naheliegende Beziehungen
zu iibergehen, etwa der scheinbare Winkel der optischen
Achsen bekannt wire oder wenn die Kurve C an einem
zweiten, anders orientierten Prisma?) bestimmt wiirde, wodurch
sich im allgemeinen eine von d verschiedene Wurzel d' ergébe.

12. Damit a, b, ¢ und d wirklich extreme Radienvektoren
der Kurve C seien, miissen neben der Gleichung (vergl. § 7)

ot
oy
noch die beiden Bedingungen
2 2f.
B e £ O
0q dy? oY* oq

erfiillt sein. Die partielle Differentiation von f(q,v) (Gl. Illa)
nach q ergibt den Ausdruck

of ;

g qmzq{4q ~[(Lyy + L) +(Lyy = Lyy) 9529+ 2L, sin 291,
der nach Ersetzung von cos 2w und sin 2w durch die § 9 ge-
fundenen Werte und mit Riicksicht auf den Umstand, dal wegen

qua‘z: b, e, dz.

P2+ 4Q*=R?
gesetzt werden kann, schlieBlich die Form annimmt:

of 2 .
q R {8(17_6 (L, +Lo) @*+ 4 (L, Lyy + M, + M, —LJ) ¢

auch (§ 7)

—2 (Lu M22 T L22 Mu —2 L12 Mm) q}-

1) Das analoge Problem im Fall der Totalreflexion an einer
beliebig orientierten Kristalliliche wurde von Ch.Soretund L.Perrot
behandelt. Vergl. Pockels Lehrbuch p. 130.
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Der Klammerausdruck ist die erste Ableitung der
Gleichung VI (falls darin u wieder durch q? ersetzt wird) und
darum sicher von Null verschieden, wofern die Gleichung VI
keine Doppelwurzel hat. Eine solche wire aber einzig dadurch
moglich, daB d mit einer Hauptlichtgeschwindigkeit zusammen-
fallen — also, um von einem anderen gleich zu behandelnden
Fall vorldufig abzusehen, die Prismenkante eine optische
Symmetrieachse wiirde, was hier ausgeschlossen ist.

Wegen der Annahme, dal die Prismenkante nicht optische
Symmetrieachse sei, ist auch R von Null verschieden, und
da zudem der Klammerausdruck selber fiir keinen der in
Betracht kommenden Werte unendlich groB werden kann,
so bleibt 6i:0q notwendigerweise endlich.

Damit endlich noch

- diq:dy?=+0,
ist wegen des letzten Ergebnisses, wornach of:0q weder
unendlich klein noch unendlich groBl werden kann, notwendig
und hinreichend, daB

0?1 .
=_4(Pcos2v+20Qsin2v)+0
! w+2Qsin2y)

oder daB ; :
Pcos2y+2Qsin2y+0

oder, wenn die trigonometrischen Funktionen wiederum durch
ihre Ausdriicke in P,.Q und R ersetzt werden, daB
P2+ 4 Q?
R .
eine Bedingung, die immer erfiillt ist, wenn
Pr 400 R =2=0,
ohne daB gleichzeitig ‘
P=0, Q=0, R=0,
was hier ja vorausgesetzt ist.
13. Nun moge noch der soeben ausgeschlossene Fall
erledigt werden, wo d gleich einer Hauptlichtgeschwindig- -
keit wird.

Neben dem bereits in § 8 erwéhnten Fall, wo die Prismen-
kante optische Symmetrieachse ist, kann sich das Zusammen-
fallen von zwei Wurzeln der Gl. VI bei zweiachsigen Kristallen

=R=+0,



auch dann noch ereignen, wenn, wie in anderem Zusammen-
hang bewiesen werden soll, eine der beiden optischen Achsen
in die Querschnittsebene des Prismas zu liegen kommt. Eine
einfache Uberlegung zeigt, daB dann die Kurve C zwei Doppel-
punkte hat, fiir welche die Ableitung von q nach ¥ die un-
bestimmte Form
dq:dy=0:0

annehmen muB. Merkwiirdigerweise wird aber der Radius-
vektor dieses Doppelpunktes ein Extremum in vollkommener
Ubereinstimmung mit den obigen Erwidgungen, wornach b
und c¢ die maximalen und minimalen Radienvektoren des
duBeren und inneren Zweiges der Kurve C sind. Ndhern sich
namlich die beiden Zweige, so vermindert sich die Differenz
von b und d, bis schlieBlich im Falle der Beriihrung b und d
gleich werden, so daB an der Beriihrungsstelle (oder besser
Durchdringungsstelle) b maximaler Radiusvektor des inneren
und minimaler des duBeren Kurvenzweiges wird. |

Um dieses der Anschauung entnommene Resultat auch
analytisch herzuleiten, sollen zuerst die speziellen Werte der
Richtungskosinus «;, 8, 7; ermittelt werden. Hierbei empfiehlt
es sich, das £n-System, dessen Achsen zunichst mit x, y
und z zusammenfallen modgen, so um die n=y-Achse zu
drehen, daB etwa die zwischen + & und + { gelegene optische
Achse A, mit + x zusammenfalle. Hernach wird man, um
eine moglichst allgemeine Lage zu erhalten, das bereits ge-
drehte £n-System noch so weit um die x-Achse drehen,
bis +#n zwischen +y und + z zu liegen kommt und mit + y
einen Winkel ¢ bildet. Bezeichnet @ den in der urspriing-
lichen Lage von + z und A, eingeschlossenen Winkel, so
nimmt das Schema I die nachstehende spezielle Form an.

X ¥ z
g sin &2 sin ¢ cos £2 | — cos (p cos 2
n 0 cos ¢ sin ¢
§ cos 2 —singsin 2 | cos g sin Q
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Mit Riicksicht auf die bekannten Beziehungen

a2 — h2 2 _ .2
sin .Q =\/ #—h cos Q —-\/b c
a2___c'2

_c2

wird

L,;=2Db?

L,,=—a®*+ ¢?

L,——sing V(a*—b?) (bt —c?)

M, =b*

M,D—a-c + (a? — b?) (b2 —c?)sin? ¢

M,=—Db?sing \/a —b?* (b*— c2.

Die Substitution dieser Werte in Gleichung III*) gibt fiir
w=0 ohne weiteres '

q*—2b%?q*+b*=(q®* —b??*=0,
dagegen fiir jeden anderen Wert von vy zwei Werte q'* und
q'"? derart, dall

q?<b*<q".

Der Beweis ist duBerst einfach. Ist namlich

f(x*)=x"—q"? (x*—q"*)=0
eine biquadratische Gleichung, so wird, wie bekannt, die
Funktion f(x?) fiir jeden reellen x*-Wert, der zwischen den
beiden reellen und positiven Wurzeln x2=q” und x"2=q"?
liegt, negativ, und umgekehrt muB jeder positive x*>-Wert,.
fiir den f(x?) negativ wird, zwischen den beiden reellen
Wurzeln g% und q"? liegen. Um also zu zeigen, daf die

Doppelungleichung
‘ q2<b® <"

fiir jeden y-Wert in der Umgebung von ¢ =0, n erfiillt ist,
geniigt es, etwa in Gl. llla q* durch b? zu ersetzen und den
vereinfachten Ausdruck auf sein Vorzeichen zu priifen. Eine
einfache Rechnung gibt

f(q*=Db% y)=—(a* —b?) (b* — c?) cos®p (1 — cos*y).
Da die rechte Seite im allgemeinen negativ ist und bei fest-

gegebenem ¢ ((p#:;—t, 3-?”) nur fiir =nn verschwindet, so

1) Die Substitution dieser nimlichen Werte in Gleichung Illa usw.
zeigt, dal fiir y =0 tatsdchlich dq:dy =0:0 wird.
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besagt sie also, daB in der Umgebung von w=0,7 der
Radiusvektor des innern Kurvenzweiges Kkleiner, der des
duBern groBer ist wie b.

Erwidhnenswert ist noch, daB wunter diesen Voraus-
setzungen a?% b?% b? und c? die vier Wurzeln der Gleichung VI
sind, so daB ihre Losungen ganz allgemein und ausnahmslos
die Quadrate der maximalen und minimalen Radienvektoren
der Kurve C ergeben. Sind zwei Wurzeln einander gleich,
so entsprechen sie entweder dem Radius eines Kreises, zu
dem sich der eine Kurvenzweig vereinfacht (uneigentliches
Extremum; die brechende Kante ist eine optische Symmetrie-
achse) oder aber den Doppelpunkten, in welchen sich die
beiden Kurvenzweige kreuzen (die brechende Kante steht
auf einer optischen Achse [=Binormalen] senkrecht).

14. Es war ausdriickliche Voraussetzung der bisherigen
Entwicklungen, da8 die optische Orientierung des Prismas,
d. h. die Lage des £n-Systems in bezug auf das x y z-System
unbekannt sei. Die zu losende Doppelauigabe bestand dem-
nach einerseits in der Ermittlung der drei Hauptlicht-
geschwindigkeiten und anderseits in der Lagebestimmung
der optischen Symmetrieachsen. Diese letztere, wenn iiber-
haupt moglich, hat aber nur dann einen Sinn, wenn es gelingt,
die Orientierung der Hauptschwingungsrichtungen auch
kristallographisch festzulegen. Dazu ist vor allem die Kenntnis
der kristallographischen Orientierung des Prismas erforderlich.
Diese vorausgesetzt, wird sich nun ein wesentlicher Unter-
schied zwischen den drei Systemen der zweiachsigen Kristalle

herausstellen.
I. Rhombische Kristalle.

15. Die kristallographischen Achsenebenen sind optische
Symmetrieebenen. Bei bekannter kristallographischer Orien-
tierung des Prismas ist es mdoglich, ihre Schnittgeraden mit
dem Prismenhauptschnitt zu berechnen und damit die Rich-
tungen festzulegen, lings derer eine Lichtgeschwindigkeit a
bzw. b oder c ist. Da die Fortpflanzungsrichtung der d-Welle
hiervon im allgemeinen verschieden ist — der Beweis soll
spater (§ 27) geliefert werden —, so ist es moglich, b und d

2
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zu unterscheiden und damit die Hauptlichtgeschwindigkeiten
mit Hilie eines beliebigen Prismas eindeutig zu bestimmen.
Wegen der unvermeidlichen Messungsiehler wird die Uber-
einstimmung zwischen Rechnung und Beobachtung nicht
vollkommen sein. Man erhdlt darum drei Bedingungs-
gleichungen als Aquivalent der drei iiberzédhligen Beobach-
tungsreihen.

16. M. Born') kam vor vielen Jahren zu einem &@hnlichen
Resultat, indem er, die Kenntnis der Richtungs-
kosinus des SchemasI voraussetzend, die Gleichung III
nach b?c? c?a? a?b? a? b% und c? ordnet und mit sechs Wert-
paaren (q;, i)} ’
b%ct=A, cfa’=B, a®?=C,

al=A, b =B, G/l
berechnet. Wegen der uberschusmgen Beobachtungen ergeben
sich die Bedingungsgleichungen
A2:B'C1 Bzzgli Cz=ﬁl_§_1.
©A ° B, * G

Nicht unerwdhnt bleibe, daB die Lage der optischen
Symmetrieachsen nicht als vollig bekannt vorausgesetzt zu
werden braucht, sondern daB es geniigt, zu wissen, daB die
betreffenden Richtungen iiberhaupt Symmetrieachsen sind.
Welche derselben die & bzw. - und Z-Achse sei, ergibt
sich dann hinterher durch einfache Uberlegungen.

17. Die einzige Ausnahme dieser Regel tritt ein, wenn
der Prismenhauptschnitt durch eine und nur eine optische
Symmetrieachse geht, so da zwei jener Ebenenspuren zu-
sammentfallen. Ist diese Symmetrieachse die &- oder Z-Achse,
so ist freilich die eindeutige Bestimmung der Hauptlicht-
geschwindigkeiten (und, wie sich spiter § 23 Anm. zeigen
wird, auch der optischen Orientierung) noch maoglich, denn
mit der Richtung dieser Symmetrieachse fallen die Radien-
vektoren b und ¢ bzw. a und b zusammen, wihrend der
Radiusvektor d in anderer Richtung (vergl. § 27) liegt (wegen
der Voraussetzung, daB der Prismenhauptschnitt nur eine

1) M. Born, N. Jahrb. fiir Miner. B.-Bd.8& (1877), 40 ff.



— 19 —

optische Symmetrieachse enthalte). b ist folglich durch die
bekannte Richtung des zugeordneten Radiusvektors der
Kurve C ausgezeichnet und d gegeniiber kenntlich gemacht.
Wird dagegen die im Prismenhauptschnitt gelegene optische
Symmetrieachse zur 7-Achse, so fallen mit dieser bekannten
Richtung' die a und ¢ zugeordneten Radienvektoren zusammen,
wihrend die zu b und d gehorigen Radienvektoren der Kurve C
hiermit einen rechten Winkel bilden, also die gleiche Richtung
haben und folglich nicht mehr unterschieden werden konnen.

18. Eine eindeutige Losung kann indessen in anderer
Weise erzielt werden. Denn wegen der bekannten kristallo-
graphischen Orientierung des
Prismas sind nur die in Fig.2a
und Fig. 2b veranschaulichten
Anordnungen mdglich. Das
Schema I geht dabei in das
folgende (iiber. Fig. 2a Fig. 2b

Fig. 2a X y z

3 singsin{ | —cosg sinY cos &
i

COS (p sin ¢ 0
c --sin¢ cos ¢| cos¢q cos & sin 4
Fig. 2b X y z
£ —sing cos 3| cosqcos I sin
n cos sin 0
C —sing sind |+ cosgsind| —cosd

Auf Grund dieses Schemas, worin ¢ und 3 bekannt sind,
1dBt sich, da beziiglich der Werte von a® und c® jeder Zweifel
ausgeschlossen ist, nicht nur b® von d*® unterscheiden, sondern
auch ermitteln, ob der eine oder der andere der beiden Fille
vorliege. Es ist ndmlich im Falle der Fig. 2a
d?=a?cos*% + c?sin? &
2#
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und im Falle der Fig.2b
d*—=a?sin®* 9 --c? cos®* 9.

Einer dieser Werte von d?, die sich zum vorneherein berechnen
lassen, mufl mit einer der mittleren Wurzeln von Gleichung VI
tibereinstimmen. Dadurch fillt die Zweideutigkeit beziiglich
b? sowohl als auch der Orientierung dahin. Einzig fiir 9 =45°
oder 135° stellt sich eine Zweideutigkeit ein, indem es unmog-
lich wird zu entscheiden, ob es sich um den in Fig. 2a oder
in Fig. 2b dargestellten Fall handelt, ohne daB aber dabei die
Entscheidung zwischen b? und d* selber unmdoglich wiirde.

19. Es ist iibrigens interessant, daB wenn 7 in den
Prismenquerschnitt fillt, die von M. Born angegebene Methode
versagt, denn nach Fig. 2a') und mit Riicksicht auf die zu-
gehorige Form des Schemas I geht Gleichung III iiber in:

sin® (¢ — ;) sin* 3 - b? ¢* + cos® (¢ — ;) - c* a*
- +sin? (@—y) cos?F - a?b? — qi® [cos? (¢ — )
+ sin® (—y) cos® F] a® — qi* sin® (@ — ) - b?
— qi*[sin® (@ — ) sin® & + cos? (¢ — yi)| c* + qi* =0

Man beachtet nun leicht, daB das Gleichungssystem, welches sich
aus sechs zusammengehorigen Wertpaaren qi, ¥; (i=1,2..6)
ergibt, eine identisch verschwindende Determinante hat (weil
nach Abspaltung von sin*J resp. cos*$ die erste Kolonne
gleich der dritten wird usw.), also nicht I6sbar?) ist.

IlI. Monokline Kristalle.

20. Dem Gesagten zufolge ist jede Zweideutigkeit be-
hoben, falls die Orthodiagonale der n-Achse parallel ist, ohne
im Prismenhauptschnitt zu liegen.?)

Ill. Trikline Kristalle.

21. Die Entscheidung zwischen b und d kann nicht ge-
troffen werden.

1) Entsprechendes gilt fiir Fig. 2b.

2) Wiirde eine andere Hauptschwingungsrichtung in die Quer-
schnittsebene des Prismas fallen, so erhielte man die entsprechenden
Formeln durch zyklische Vertauschung von a2 b2 und c2 Daraus
folgt, daf auch in diesen Fillen die Methode Borns versagen mubB.

8) Die vorhergehenden Uberlegungen kénnen wegen Unkenntnis
des Winkels ¢ nicht auf das monokline System iibertragen werden.
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22. Es ist bekannt, daB die Bestimmung der Brechungs-
indizes eines Kristalls mit Hilfe der Totalreflexion an einer
einzigen Flache zu Ergebnissen fiihrt, die den bisher ge-
fundenen?) dhnlich sind, nur handelt es sich dabei um eine
Kurve S, welche man als Grenzlinie der totalen Reflexion
bezeichnen kann. Sie besteht im allgemeinen aus zwei ge-
trennten Teilen, deren Maxima und Minima durch die Radien-
vektoren von der Lédnge a, b, ¢ und d;, bestimmt sind.
Wiederum ist die Losung zweideutig. Da aber d? das Quadrat
der reziproken Linge jenes Radiusvektors des Fresnelschen
Ellipsoides ist, der auf der Grenzebene senkrecht steht, so
mull die d,-Welle parallel der Einfallsebene schwingen und
kann mit Hilfe. eines Nikolschen Prismas von jeder anderen
Welle unterschieden — das Problem also eindeutig gelost
werden.

Es lige nun der Gedanke nahe, auch beim Prisma die
ausgezeichnete Schwingungsrichtung der d-Welle heranzu-
ziehen, um zwischen b und d zu entscheiden. Allein die
Tatsache, daBl der Schwingungszustand des ausgetretenen
Lichtes von demjenigen im Kristall im allgemeinen verschieden
ist, vor allem aber der Umstand, daB die Orientierung des
Prismas die Beobachtung der d-Welle ohne besondere Hilis-
mittel in den seltensten Fillen gestatten wird, machen die
angedeutete Methode, so naturgemidB sie auch erscheinen
mag, vollstandig illusorisch.

23. Wire nun in einem gegebenen Falle die eindeutige
Bestimmung der Hauptlichtgeschwindigkeiten aus irgendeinem
Grunde moglich, so gestatten die beiden ersten Gruppen
(Kolonnen) der Gleichung V die eindeutige Ermittlung der
absoluten Werte von «;, 8;, 7; (i=1,2). Damit sind natiirlich
auch die absoluten Werte von e, 8,7, eindeutig bestimmt.
Die Vorzeichen von e, 3,, 7, kann man beliebig wihlen,
weil dadurch nur der positive Richtungssinn der Achsen

! Auf die soeben erlduterte Ausnahmestellung der rhombischen
und z. T. monoklinen Kristalle, die natiirlich auch im Falle der Total-
reflexion bestehen bleibt, scheint bislang niemand aufmerksam ge-
macht zu haben.
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und die Rechts- oder Linkshédndigkeit des Systems festgelegt
wird. Wegen der dritten Gruppe der Gleichung V findet
man hierdurch ganz bestimmte Vorzeichen fiir ¢, 8., 7.,

wogegen aus
a2a3+26,2183+7273=0
o, a3+ﬁ1 t83+71 75 =10

nur die Verhiltnisse o, : 3, : 7, d.h. die relativen Vorzeichen
von a,, (3,, v, erhalten werden, so daB sowohl (¢, ,, ¢,)....
als auch (e, @,, —¢;).... Losungen der Gl IVb und V sind.
- Die Rechnung ergibt daher fiir die Hauptschwingungsrich-
tungen zwei, den beobachteten Erscheinungen geniigende
Orientierungen, die zur brechenden Kante des Prismas sym-
metrisch liegen. Das beweist — und die Diskussion der
GL IVDb und V bestidtigt es —, daB zur eindeutigen Bestim-
mung der Orientierung die Lage einer Hauptschwingungs-
richtung bekannt sein muf, die aber nicht im Hauptschnitt
des Prismas gelegen sein darf,!) weil sonst die Wahl zwischen
den beiden symmetrischen Systemen nicht moglich ist, da
die gegebene Richtung wegen ihrer symmetrischen Lage zur
brechenden Kante beiden Systemen angehort. Ebenfalls un-
bestimmt wird die Orientierung, wenn eine Hauptschwingungs-
richtung mit z einen Winkel von 45° bildet und eine andere
im Prismenhauptschnitt liegt (vergl. den Schlufl von § 18 und
die vorstehende Anmerkung).

24. Zum gleichen Resultat fiihrt das von Cornu?) und
Viola?) fiir das Reiflexionsproblem abgeleitete, aber auch im
vorliegenden Fall giiltige Gleichungssystem:

1) Wenn oben, § 17, gleichwohl gesagt wurde, die Orientie-
rung lasse sich eindeutig bestimmen, trotzdem die bekannte Haupt-
schwingungsrichtung in die Querschnittsebene des Prismas fillt, so
liegt der Grund darin, daB von den beiden moglichen Systemen, die
zur z-Achse symmetrisch sind, nur das eine mit dem krystallo-
graphischen Achsenkreuz zusammenfallen kann, falls nicht zufillig
die beiden, nicht im Hauptschnitt des Prismas gelegenen optischen
- Symmetrieachsen zur z-Achse selber symmetrisch liegen.

2) Cornu, Bulletin de la soc. fr. de minéral. 25. 17.

3) Zusammenstellung seiner zahlreichen diesbez. Publikationen
im Bull. min. 28. 88. Vergl. auch ib. 147.
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Y -
cos? o, = cotg AB - cotg CA
X -
cos’@; =cotg BC-cotgAB AB+BC+CA=2n
Y Vi |
cos®y;=cotg CA - cotg BC

Y 7Y - |
Die Winkel AB, BC und CA sind aus Fig. 3 verstidndlich,
in der OA, OB, OC die Richtungen angeben, lings derer
die Radienvektoren der Kurve C gleich
a, b und ¢ werden. Dabei wird zu-
nidchst vorausgesetzt, dal die z-Achse
in das Innere oder die Umgrenzung
des Trieders O&n falle — eine An-
nahme, die natiirlich immer zulédssig
ist, wofern die drei Richtungen O,
On und OZ ein rechts- oder links-
hindiges Achsensystem bilden kdnnen.
Will man aber beim einmal ange-
nommenen Rechtssystem bleiben, so
hat man — falls die iiber dem Prismenquerschnitt gelegenen
&n C-Richtungen kein Rechtssystem bilden — blof3 ihre Ver-
lingerungen iiber O hinaus zu betrachten. Da die Winkel
zwischen +z und den positiven Richtungen der &7 Z-Achsen
im einen Fall zu denjenigen im anderen Fall supplementir
sind, so verdndern sich die Quadrate ihrer Kosinus nicht
und das Cornu-Violasche Formelsystem bleibt giiltig, wofern
nur die positive oder negative z-Achse in das Innere oder die
Umrandung des Trieders O £ [ {illt, was immer realisierbar ist.

Aus der Beziehung zwischen A, B und C einerseits
und &, n und 7 anderseits folgt, daB sie aufeinander senkrecht
stehen. Die Pole von &... miissen daher auf den zu A...
senkrechten Durchmessern liegen. Da aber die Gleichungen
des fraglichen Systems in cose,... quadratisch sind, so
erhdlt man — Cornu und Viola scheinen dies nicht beachtet
zu haben — fiir ;... je vier Werte, (ndmlich+ e, ... und
nta,...), welche je zwei durch den Ursprung gehende
Gerade bestimmen. Die der positiven z-Achse zunichst-
liegenden Pole sind in der stereographischen Projektion der




Fig. 3 eingetragen und beweisen augenscheinlich das oben
auf anderem Weg gefundene Resultat.?)

25. Sind die Hauptlichtgeschwindigkeiten a, b und ¢
gegeben, so ist es bei bekannter Lage der Hauptschwingungs-
richtungen moglich, die Richtung OD zu bestimmen, ldngs
der sich jene vierte Welle mit der Geschwindigkeit d fort-
pilanzt. Cornu®) glaubte nun, hieraui eine Methode griinden
zu konnen, welche erlaubt, b und d zu unterscheiden. Nach
ihm brauchte man bloB den einen dieser Werte als den
richtigen anzunehmen und hernach d zu berechnen. Fillt
dieser berechnete Wert mit dem experimentell gefundenen
iiberein, so war die Wahl gut — wenn nicht, so hat man
einfach den anderen Wert als den richtigen zu nehmen.

Viola®) (z. T. auch schon Cornu?)) priiite diese Ansicht
am Beispiel der Weinsteinsdure, wofiir Cornu®) mit Hilfe der
Totalreflexion folgende auf vier Dezimalen abgerundete Werte
gefunden hatte:

1/a=1,4965 8209

1/b=1,5363°) AB=63 25, AD =43"1%

BC=50"15

1/c=1,6063 , DC=70°2%

Mit Hilfe von 1/a, 1/b, 1/c und den zugehdrigen Azimuten
ergibt die Rechnung:
1/d=1,5537 AD=43°40 BD=-—-19°45 CD=-—70°00".
Der Unterschied zwischen den beobachteten und berechneten
Werten ist daher: |

—0,0011 - 025 == [0 DG - == O,

1) Bestimmt man, was im Fall der Totalreflexion an einer Kristall-
platte (nicht aber bei der Lichtbrechung durch das Prisma) mdglich
ist, den Polarisationszustand des Lichtes, so kann die Entscheidung
zwischen den beiden Orientierungen des f 5 {-Systems leicht getrofien
werden. Auf die Weise verfuhr Viola und erhielt darum ohne weiteres
eindeutige Resultate.

2) Bull. min, 25, 19f.

3) Bull. min. 28, 150ff.

4) Bull. min. 28. 26{f.

5) Bull. min. 28. 25, 26.

6) Hierfiir setzt Cornu 1. c¢. pag. 26 félschlich 1,5637.
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Geht man aber umgekehrt von 1/a, 1/d, 1/c und AD, DC,
CA aus, so berechnen sich die Werte:
1/b=1,5353 AB=62°52" DB=19"40' CB=—50°48,
und die Differenz zwischen den gemessenen und berechneten
Werten ist:
—0,0010 0°33 0°30' 0° 33’

Die Unterschiede zwischen Beobachtung und Rechnung liegen
demnach in diesem zweiten Fall ebenso wie im ersten innert
den Grenzen der Beobachtungsiehler, so daB der Vorschlag
Cornus praktisch nicht verwertbar!) erscheint. Ja, er ist
nicht einmal theoretisch?) richtig, da sich zeigen ldf}t, daB
die eine Wertgruppe die notwendige Folge der anderen ist.

Um diesen Satz zu beweisen, kann man von den beiden
Indexellipsoiden?) a?g2+b2n2+c2rt—1

a?g't+ (a?cos? e+ b?cos? 8+ c*cos?y)n'?+ c2 %=1
ausgehen, deren Hauptachsen im allgemeinen verschieden
gerichtet sind, jedoch so, daB die drei Achsenebenen

E=0 FHw(Q z=0

durch eine Gerade gehen (Richtung des Radiusvektors von
der Linge a), welche zur x-Achse gewihlt werden maoge.
Man erhélt dadurch die aus dem nachstehenden Schema er-
sichtlichen Transformationsgleichungen. Dem Winkel o ist
dabei kein Richtungssinn zuzuschreiben.

X y z X y %
3 0 sin o coso) & 0 sin ¢/ cos o
cosy cosy’
i —cos B cotgalcos "= —cos & cotga'|cos
77 sin « g g ) s n - sin¢ s g B
cos 3 cos 3
: —cosycotgalcos ' : —cos¥' cotge|lcosy’
B sin o g | 718 sin o 7 g 7

1) Ob Pockels, Lehrb. der Krist. pag. 132, diese Tatsache oder
einen anderen Grund im Auge hatte, ist nicht recht ersichtlich.

?) Die § 18 verwertete Methode ist in einem gewissen Sinn mit
dem Vorschlage Cornus identisch, unterscheidet sich aber davon
wesentlich darin, dafl die beiden Wellennormalenilichen bzw. Ellipsoide
zusammenfallende Hauptachsen haben.

8) @, g, y seien die Winkel, welche &, 7, { mit z bilden. Entsprechendes
gelte fiir «', 8, 7.
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Nun sollen voraussetzungsgemiB auch die drei Ebenen
;=0 r'=0 z=0
durch eine Gerade gehen (Richtung des Radiusvektors mit
der Linge c). Das ergibt als erste Bedingung

cos 3
: —cosy cotga cosy cos 3
sin « : cos y cotg &
o SIn «
cos 3 , , == , =
. —cosy cotge’ cosy cos 3 , ,
sin o .—— Cosy cotga
sin ¢
0 0 |
Z ' ' '
cos 3 cosy cosa  cos 3 cosy cos e 0
- : ; - : : ; =W
sin ¢’ sin ¢ sin ¢ sin «
oder da
sinz+0 und sin¢ +0
auch
cos 3’ cosy cosa=cos 3 cosy’ cosc'. a)

Da ferner der Abschnitt des einen Ellipsoides auf der
z-Achse gleich der mittleren Halbachse des anderen Ellip-
soides sein soll, so erhdlt man als zweite Bedingungsgleichung

a?cos? o' + (a? cos? @+ b? cos? B+ c* cos? y) cos? '

+ c?cos?y’ =Db?. b)

Nun sind die Richtungen zu beriicksichtigen, deren
zugeordnete Wellen parallel der Prismenkante schwingen. -
Um sie zu ermitteln, lege man durch die z-Achse zwei
Ebenen, welche die beiden Ellipsoide derart in zwei Ellipsen
schneiden, daB je eine ihrer Hauptachsen mit der z-Achse
zusammenfalle. Diese Ebenen sind, wie die analytische
Geometrie lehrt, dadurch ausgezeichnet, daB sie die Tangential-
ebenen im Punkte 0,0,z je lings einer Geraden schneiden,
die der xy-Ebene parallel ist. Zur Auistellung der Gleichung
der besagten Tangentialebene oder noch einfacher der zu
ihr parallelen, durch den Ursprung gehenden Ebene empfiehlt
es sich, die Ellipsoide mit Hilfe des Schemas I zuerst auf
das xyz-System zu transformieren, woraui man durch ein-
fache Rechnung (bei allgemeiner Schreibweise) den Ausdruck
erhalt
(a2 0, +b2 B, 8, + 2y, 7)) x+(ata, 0, + b2 B, B, + ¥y, 7, ¥y

+(a*e2+b*B2+c’y2) z=0.
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Die Schnittgeraden dieser Ebenen mit der xy-Ebene haben
Richtungskoeffizienten von der Form

aea?’a +b263ﬁl —{—ceyc‘lyl

atay a3 +b* B, 8, +cty, 7,

Wegen der bekannten Eigenschaiten des Indexellipsoides muB
diese Gerade (m bzw. m’) senkrecht sein zur Schnittgeraden
der Ebene z=0 mit =0 (resp. =0), in denen sich die
Wellen mit der Geschwmdlgkelt q=Db" (resp. q=D>b) fort-
pilanzen. Die Richtungskoeifizienten dieser letzteren sind

COSs cosy’
w=— ” __ und uw=— : 4 :
cosa cosf3 cosc’ cos/3
Man hat somit die Beziehungen
1 1
m=—— und m'=——,
u' w

die sich mit Benutzung der obigen speziellen Formen des
Schemas [ schreiben:

(b*—c?) cosf cosy cos ¢ cos e cos 3
a®sin® ¢ —b? cos? @ — c? cos®y cosy’
und

¢)

(a® cos®* ¢+ b? cos? @ — c?sin®y) cos 3' cos ¥’
a? sin? o' — (a? cos? @ + b? cos? 3 + c? cos®y) cos? ' —c? cos* ¥’
cos o' cosa cos
_ B d)
cos y

Aus der quadrierten Gleichung @) und aus der Gleichung &)
kann man mit Hilfe von

cos? o' + cos? '+ cos?y =1
cos? @ und cos®y’ eliminieren und bekommt nach einfachen
Transformationen die Gleichung
(a® sin® ¢ — b? cos? 8 — c? cos? ) cos® B cos* o’ +
[(a® sin®e cos?e. — b? sin?B cos?B + c? (cos?3— cos® &) cos?y] cos®e’
— (b®*—c?*) cos* e cos*y =0
deren emzxge in Betracht fallende Losung

(b*~c* cos’y
a?sin® ¢ —b?cos? 3 —c*cos® y
ist, da 1 e andere Losung

cos? o =




cos’ o

cos* o' = —
cos?f3

keine reellen Werte fiir o' liefert.
Bringt man Gleichung @) aui die Form
l___cosﬁ cos ¥’ cos o
~ cos 3 cosy cos
und multipliziert die beiden Seiten derselben mit den ent-
sprechenden Seiten der Gleichung ¢), so kommt unmittelbar
(b*—c?) cos®y
a®sin? ¢ —b? cos* § — c*cos® y
Weiterhin gibt Gleichung d), wenn ihre rechte Seite wegen
Gleichung ) mit

cos? o =

| cos @3 cos y cos &

cos 8 cosy’ cosa’
multipliziert wird, nach einigen Umstellungen
a?cos’a+ b*cos* 3 —c?sin®y
a®sin? o — (a? cos® & + b? cos? B + c¢? cos® y) cos? 3’ — c® cos? y'

- cos*a

cos?y
woraus man mit abermaliger Benutzung der Gleichung @) und
Abspaltung eines von null verschiedenen Faktors wiederum

(b*—¢* cus®y

a*sina —b? cos®* B —c? cos’y
erhdlt. Die Bedingungsgleichungen 4), ¢) und d) sind mit-
hin dquivalent, denn sie unterscheiden sich nur durch einen
Zahlenfaktor. Demnach sind auch die Eigenschaiten der
beiden Ellipsoide, welche zur Aufstellung der dritten und
vierten Bedingungsgleichung fiihrten, bloBe Folgen der zuerst
genannten, und damit ist die Unhaltbarkeit des Cornuschen
Gedankens bewiesen.

Diese Ableitungcn beweisen zundchst nur, daB der
Gedanke Cornus nicht auf die Prismen iibertragbar ist. Sie
sind  aber ohne weiteres im Falle Cornus verwendbar, sofern
die Hauptlichtgeschwindigkeiten durch die Hauptbrechungs-
indizes, d. h. die Indexellipsoide, durch die zugehorigen
Fresnelschen Ellipsoide ersetzt werden.

cos? o =
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Ubrigens ist der Inhalt des bewiesenen Satzes gleich-
wertig dem bekannten Satz von Brill.

26. Erweist sich dem Gesagten zufolge die Annahme
Cornus nicht als zutreffend, so gestatten doch die Cornu-
Violaschen Formeln im monoklinen System, wo die Entschei-
dung zwischen b und d nach dem Bisherigen noch nicht in
jedem Fall getroifen werden konnte, eine restlose Losung
des Prismenproblems, falls die kristallographische Orientierung
des Prismas gegeben ist und die brechende Kante desselben
nicht senkrecht zur Orthodiagonale?!) steht.

Der Beweis hierfiir ist einfach. Im monoklinen System
ist die Orthodiagonale optische Symmetrieachse, so daB bei
bekannter kristallographischer Orientierung des Prismas eine
der GroBen

a35 63’ ?/3
einen gegebenen Wert haben muB. Da aber nach den

Formeln von Cornu-Vicla diese Werte Funktionen der
bekannten Azimute von A, B, C und D sind, so hat man
nur zu priifen, fiir welchen der beiden Werte b und d die
Ubereinstimmung befriedigt.?)

DaB bei dieser Uberlegung nicht der gleiche Fehler
unterlaufen ist, wie bei Cornu, ergibt sich schon daraus, daB
die Wahl zwischen b und d nicht auf Grund geometrischer
Eigenschaiten der Kurve C, sondern auf Grund einer dieser
Kurve fremden gegebenen Grofe getroffen wurde, kann aber.
zum UberfluB noch strenge bewiesen werden. Dabei kann
der Fall, wo die Orthodiagonale zur 7n-Achse wird, hier iiber-
gangen werden, weil er bereits friiher (§ 20) erledigt wurde.

1) Fillt die im Prismenhauptschnitt liegende Orthodiagonale mit
der - oder {-Achse zusammen, so ergibt sich nach einer Uberlegung,
die derjenigen von § 17 ganz d&hnlich ist, auf Grund der in § 23
gefundenen Resultate, dafl nur die Orientierung zweideutig ist; fallt
sie aber mit der y-Achse zusammen, so ist, wie bereits § 20 bemerkt
wurde, neben der Lagebestimmung der Hauptschwingungsrichtungen
auch die Ermittelung der Hauptlichtgeschwindigkeiten zweideutig.

2) Dieses Verfahren fiihrt auch im Falle der Totalreflexion zum
Ziel, scheint aber bislang keine Beachtung gefunden zu haben, was
allerdings um so begreiflicher ist, als die allgemeine Methode von
Viola in der Anwendung einfach und sicher ist. '
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Es kommen darum nur noch die beiden Fille in Betracht,
wo eine der GroBen e, und y, einen zum voraus gegebenen
Wert hat. Fiir beide kann der Beweis in iibereinstimmender
Weise gefiihrt werden, so daB es geniigt, ihn fiir den Fall
durchzufiihren, wo etwa «, den gegebenen Wert annimmt.
Bezeichnet M die Richtung, lings der sich die b- oder d-Welle
fortpflanzt, so gilt die Beziehung:
‘ cos” e, = cotg AM-cotg CA,
woraus
cotg AM = cos? -tg CA.

Diese Gleichung gibt aber fiir AM einen einzigen, zwischen
0 und 7 gelegenen Wert, so daB wegen des einmal an-
genommenen Umlauisinnes die Richtung OM eindeutig festliegt.

Stillschweigende Voraussetzung dieses Beweises ist die
Annahme, daB die Fortpilanzungsrichtungen der b- und
d-Welle nicht zusammenfallen. -

Nach getroffener Entscheidung zwischen b und d ist,
wenn die brechende Kante nicht senkrecht zur Orthodiagonale
steht, natiirlich auch die Berechnung der Lage der optischen
Symmetrieachsen eindeutig, eben weil die Lage einer solchen
bekannt ist.

27. An dieser Stelle moge der Beweis dafiir erbracht
werden, daB die Fortpflanzungsrichtungen der b-und d-Welle im
allgemeinen nicht zusammenfallen ),
Zu diesem Zwecke diene die beisteh-
ende Fig. 4, welche in stereogra-
phischer Projektion auf den Prismen-
hauptschnitt die optischen Symmetrie-
ebenen sowie die sogen. optischen
Achsen A, und A, darstellt. Die Fort-
pilanzungsrichtung OD jener Welle,
die parallel Oz schwingt, ist bekannt-
: lich dadurch bestimmt, daB die Ebenen

Flgu 4 ODA, und ODA, in bezug auf den
Grundkreis gleichgeneigt sind. Nimmt man von A, das

1) Auf diesen Beweis wurde im vorangehenden schon mehrmals
verwiesen, z. B. § 15,
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Spiegelbild A, beziiglich der Grundebene, oder — was wegen
der symmetrischen Eigenschaiten der Kugel ohne weiteres
gestattet ist, den Gegenpunkt von A, also A',, so ist die
Schnittgerade der Ebene A OA’, mit der Grundebene die
gesuchte Richtung. Ein Blick auf-die Figur zeigt sofort, daB
diese Richtung nur dann mit der b-Richtung zusammentfillt,
wenn 7 oder eine optische Achse in der Querschnittsebene
liegt. Da aber durch die bloBe Anndherung von 7 oder
einer optischen Achse an diese Grenzlage der Winkel BOD
sich immer mehr und mehr verkleinert, so wird infolge der un-
vermeidlichen Beobachtungsiehler die Entscheidung zwischen
b und d praktisch ebenfalls unméglich, doch ist es fiir die
Bestimmung der Hauptlichtgeschwindigkeiten dann belanglos,
wenn gleichzeitig mit der Abnahme des Winkels BOD auch
der Unterschied von b und d kleiner wird, d. h. wenn die
optische Achse in die Prismenquerschnittsebene fillt.

28. Selbstverstdandlich wird durch den Umstand, daB es
moglich ist, mit Hilie eines einzigen Prismas bekannter
kristallographischer Orientierung die optischen Konstanten
rhombischer und monokliner Kristalle eindeutig zu bestimmen,
der Satz von Brill in keiner Weise in Frage gezogen, denn
es sind eben, wie nochmals bemerkt sei, nicht die geome-
trischen Eigenschaften der Kurve C, welche diese eindeutige
Losung gestatten, sondern kristallographische Beziehungen,
durch welche wesentlich neue Elemente einbezogen werden.

29. So interessant nun diese Ergebnisse auch sind, so
haben sie doch bis dahin wegen ihrer Umstédndlichkeit keine
praktische Verwertung gefunden und sind vom rein theoreti-
schen Standpunkt aus insofern unelegant, als sie mehr Be-
obachtungen erheischen, wie Unbekannte vorkommen, wobei
sich dann allerdings als Gegenwert der iiberschiissigen Be-
obachtungen gleichviele Bedingungsgleichungen ergeben, auf
Grund derer die Ausgleichungssrechnung gestatten wiirde,
bessere, von den Beobachtungsiehlern unabhingigere Endwerte
zu berechnen. Es ist darum ganz begreiilich, daB die Praxis
des Mineralogen ausschlieBlich solche Prismen beriicksichtige,
welche eine 1. vollkommen eindeutige und 2. moglichst ein-



fache Bestimmung (Minimum der Ablenkung bei symmetri-
schem Durchgang) der optischen Konstanten erlauben. Die
einschlidgigen theoretischen Fragen sind von Liebisch, Born,
Viola usw. eingehend!) behandelt worden. Gleichwohl moge
es gestattet sein, hier nech einige Punkte besonders zu
beleuchten.

30. Fiir welche speziellen Prismenorientie-
rungen ergeben die Wurzeln der Gleichung VI
eine eindeutige Losung des Problems?

Es sind drei Fille denkbar.

a) Man weiBl, welcher der beiden Werte b und d der
groBere ist. Praktische Bedeutung hat dieser Fall im triklinen
(und z. T. monoklinen) System. Liegt ndmlich ein kiinstlich
hergestelltes Prisma vor, dessen xyz-Achsen mit den opti-
schen Symmetrieachsen fiir eine bestimmte Lichtart zusammen-
fallen, so mochte man versucht sein, mit demselben auch die
Brechungsindizes fiir Licht anderer Wellenldnge zu bestimmen.
Das ist oifenbar mdglich. Denn wiewohl sich die Orientierung
mit der Wellenlidnge stetig dndert, so diirfte man doch immer,
zumal wenn man sich wenig auseinanderliegender Spektral-
linien bedient, in der Lage sein, zu entscheiden, durch welchen
der Winkel der optischen Achsen der Prismenquerschnitt
jedesmal verlaufe, und damit die Entscheidnng zwischen b
und d eindeutig zu treffen. Dagegen bleibt die Orientierung
der Hauptschwingungsrichtungen zweideutig, weil die Aus-
gangslage der optischen Symmetrieachse zu speziell ist, um
daraus giiltige Schliisse auf ihre neue Lage ziehen zu konnen,
denn die Anderung kann ja ebensogut im einen wie im
anderen Sinn erfolgen.

Ein kiinstliches, genau orientiertes Prisma aus einem
triklinen Kristall herzustellen, ist iibrigens keine leichte Sache
und scheint bisher einzig von C. Pape ausgefiihrt worden zu
sein, der folgenden Untersuchungsgang vorgeschlagen und
im wesentlichen auch eingehalten hat: ,Um die Richtung der
optischen Achsen sowie die drei Hauptbrechungsexponenten

1) Uber die reiche Literatur vergl. z. B. Pockels, Lehrb. 144.
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zu bestimmen, muB bei Kristallen des 1 + 1-gliedrigen Systems
im allgemeinen zunidchst die Ebene der optischen Achsen
ihrer Lage nach ungefihr bekannt sein und darauf mittels
eines aus dem Kristalle geschlifienen Prismas, dessen brechende
Kante senkrecht zu dieser Ebene steht, der mittlere Brechungs-
exponent angendhert ermittelt werden. Darauf ist eine Platte
aus dem Kiristall zu schleifen, deren parallele Flichen recht-
winklig zu der ersten Mittellinie stehen, und an derselben der
Winkel der scheinbaren optischen Achsen zu messen, sowie
die Lage beider zu der dem Beobachter zugekehrten, nach
ihrer Lage am Kristall bekannten Fliche und noch- zweien
an der Platte vorhandenen natiirlichen Kristallilichen. Aus
diesen Beobachtungen und dem zuerst gefundenen mittleren
Brechungsexponenten 148t sich dann die Richtung der wahren
optischen Achsen ableiten. Nach diesen Resultaten sind
darauf Prismen anzufertigen, deren brechende Kanten den
drei Elastizititsachsen parallel laufen, und an ihnen die drei
Brechungsexponenten zu beobachten. Da jedes richtig ge-
schliffene Prisma zwei Brechungsexponenten liefert, bei drei
Prismen jeder also doppelt bestimmt ist, so besitzt man im
Vergleiche beider das Mittel, zu priifen, ob die urspriingliche
Bestimmung des mittleren Brechungsexponenten hinreichend
zuverldssig ist oder nicht. Im letzteren Falle wiirde man
mit dem Mittel aus seinen zuletzt erhaltenen Werten die
wahren optischen Achsen von neuem berechnen und nach
dieser Rechnung neue Prismen schleifen miissen.“!) |

Es wire entschieden einfacher, an einem triklinen Kristall
zuerst die Ebene der optischen Achsen fiir eine bestimmte
Lichtart moglichst genau zu bestimmen und hierauf ein
Prisma so herzustellen, daB sein Hauptschnitt mit jener Ebene
einen Winkel von ca. 20— 30° oder 60—70° bilden wiirde und
zu den beiden optischen Achsen ungeidhr gleich geneigt
widre. In diesem Falle wire die Richtung der b-Welle fiir
jene Farbe genau bekannt, widhrend diejenige der d-Welle
hierzu fast senkrecht stinde. Da sich die optischen Kon-
stanten mit der Wellenldnge stetig dndern, wire es moglich,

1) C. Pape, Pogg. Ann. Ergb. 6, 387.
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die Hauptlichtgeschwindigkeiten sowie die Lage der zugehd-
rigen Schwingungsrichtungen fiir alle Wellenlingen zu
bestimmen, wofern man sich wenig auseinanderliegender
Spektrallinien bedienen wiirde.

b) -d? {dllt mit einer der drei anderen Wurzeln der
Gleichung VI zusammen. Sei diese Wurzel etwa a%. Man
erhidlt dann die Beziehung

a’=a*o5+b*Bi+c?yl,
welche mittels der bekannten Identitit
@+ G+ yi=1
auf die Form
(a?—Db?% @2+ (a® —c?) y2=0
gebracht werden kann. Weil voraussetzungsgemaB
a>b>c,

so ist diese Gleichung nur moglich, wenn

| B;=0und y,=0
d. h, wenn die Prismenkante gleichzeitig §&-Achse ist. Wegen
der damit bekannten Lage einer Hauptschwingungsrichtung
wird dem Friiheren zufolge auch die Ermittlung aller Haupt-
schwingungsrichtungen eindeutig, und da fiir die beiden
anderen Fille eine #hnliche Uberlegung gilt, so ergibt sich
der bekannte Satz: Die Bestimmung der Hauptlicht-
geschwindigkeiten sowie der Lage der Haupt-
schwingungsrichtungen eines zweiachsigen Kristalls
ist mit Hilie eineseinzigen Prismas in allen jenen
Fidllenmoglich, wo die brechende Kante mit einer
optischen Symmetrieachse zusammentallt.

Die Identitit

bt*=afal+b? 031 cly2
1aBt neben a;=0, 82=1, 7,=0 noch andere reelle Lésungen
zu. In der Tat ergibt sich mit Riicksicht auf die Bedingungs-
gleichung |

| i+ B2+ y2i=1 a)
dhnlich wie oben |

(a%—Db" a2 (b= " y2=10. b)
FaBt man nun e, 8,, 7, als rechtwinklige Koordinaten auf, so
stellen die Gleichungen @) und 4) zwei Kreise dar, die beide
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das Zentrum im Ursprung haben und sich aui der n-Achse
schneiden. Die trigonometrische Tangente ihres Neigungs-
winkels zur Z-Achse ist
)
iva2_b2
Sie stehen also auf den optischen Achsen senkrecht. Mithin
der weitere Satz: Die eindeutige Bestimmung der
Hauptlichtgeschwindigkeiteneines zweiachsigen
Kristalls ist in allen jenen Fillen moglich, wo die
brechende Kante auf einer optischen Achse senk-
recht steht!) Beziiglich der Orientierung gilt das friiher
Gesagte. Praktische Bedeutung kommt aber dieser Losung
keine zu, weil die kristallographische Lage der optischen
Achsen nicht ohne weiteres gegeben ist. Uberdies konnte
wegen ihrer Dispersion die Orientierung des Prismas nur
fiir eine Wellenlinge genau ertiillt sein.

c) b oder d oder beide zugleich sind der direkten
Beobachtung zuginglich. Das ist (praktisch genommen) so
zu verstehen, dal sich diese Werte beim Minimum der
Ablenkung mit symmetrischem Durchgang ergeben. Nach
den bereits genannten Arbeiten v. Liebischs und Violas ist
dazu notwendig und hinreichend, daB die x-Achse mit der
n-Achse susammenialle (b und d) oder daB die Halbierungs-
ebene des inneren Prismenwinkels eine die n-Achse enthal-
tende optische Symmetrieebene - sei (b) oder endlich daB} x
zur &- oder Z-Achse werde (d). Die anderen Fille, wo die
Halbierungsebene des &@uBeren Prismenwinkels den Winkel
der beiden von y und den optischen Achsen gebildeten Ebenen
halbiert — also die Beobachtung von d moglich wire —
sind praktisch wertlos.

In allen diesen Fillen liefert das Theorem von Brill, falls
die z-Achse nicht selber optische Symmetrieachse ist oder auf
einer optischen Achse senkrecht steht eine doppelte Losung.
Wird sie hier eindeutig, so liegt der tiefere Grund darin, daB
z. T. kristallographische Elemente, z. T. die Schwingungs-

2

= cotg Q.

1) Dieser Satz wurde bereits in § 13 verwertet.
3*
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richtung — in jedem Fall also GroBen, welche den geome-
trischen Eigenschaiten der Kurve C fremd sind, herangezogen
und beriicksichtigt werden. ‘

31. Prismen spezieller Orientierung. Es wurde
bereits oben darauf hingewiesen, daBl der Mineraloge zur
Bestimmung der optischen Konstanten eines Minerals mit
Vorliebe, ja mit AusschlieBlichkeit solche Prismen benutzt,
welche die direkte Ermittlung der Hauptlichtgeschwindig-
keiten gestatten. Hierbei kommen einzig die eben genannten
speziellen Orientierungen in Betracht, wo die Prismenkante
oder die Halbierungslinien des inneren oder duBeren Prismen-
winkels Symmetrieachsen sind. In allen diesen Fillen ist
das Minimum der Ablenkung wenigstens fiir eine Welle mit
symmetrischem Durchgang verbunden, Messung und Rechnung
folglich iiberaus einfach. Die entsprechende Welle wird an
ithrer Schwingungsrichtung erkannt. Dabei ist aber nicht zu
vergessen, daB sich die Schwingungsrichtung beim Ubergang
vom Kristall zur Luft in manchen Fillen in wahrnehmbarer
Weise dndern muB. Diese Anderung konnte an einem Prisma
von rhombischem Schwefel, das von (111) und (111) gebildet
war und Prof. Baumhauer?) seinerzeit zur optischen Unter-
suchung dieses Minerales diente, deutlich wahrgenommen
werden. Indessen diirfte sie in keinem praktischen Fall so
groBl werden, daB man iiber die Schwingungsrichtung der
Welle im Kristall im Zweifel sein konnte.

Es ist besonderer Erwidhnung wert, daB in den soeben
genannten drei Fillen, wo also eine Achse des xy z-Systems
optische Symmetrieachse ist, nicht nur die direkte Bestimmung
einer oder zwei Hauptlichtgeschwindigkeiten ermoglicht ist,
sondern die Bestimmung aller wesentlich vereinfacht wird.
Einige Hinweise auf dieses z. T. vieltach behandelte Problem
sowie die Hervorhebung einiger noch weniger beachteter
Punkte mogen geniigen.

a) Die Prismenkante ist optische Symmetrieachse. Die
Kurve C zerfillt in einen Kreis und ein Oval. Das ist die

1) Baumhauer, Zeitschr, f. Krist. 47, 12.
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einzige Orientierung, die bis anhin dazu gedient hat, mit
Hilie eines einzigen Prismas sdmtliche Hauptlichtgeschwindig-
keiten eines Kristalls zu bestimmen,?)

b) Die Halbierungslinie des inneren Prismenwinkels sei
eine optische Symmetrieachse und falle etwa mit § zusammen.
Bezeichnet 9 den, von + x aus gesehen, im Gegenzeigersinn

.‘
gemessenen Winkel z[, so gilt das folgende Schema:

X y z

£ 1 0 0

n 0 cosJ | sind

0 —gind| cosd

- Die Gleichung Il nimmt damit die einfache Form an
q*—q*(L,, cos*y +L,,sin*y) + M,, cos?y + M,, sin*y =0,
wo
L,,=b%+¢? L =4+ b¥sin* 3+ ctcos S

M, =b?¢? M,,=a? (b?sin?* 3 + c? cos?* ).

Beim Minimum der Ablenkung, das aus Symmetriegriinden
bei gleichem Einfalls- und Austrittswinkel (also ¥ = m/2) er-
folgt, liefert die voranstehende Gleichung, mit Riicksicht auf
die getroffenen Festsetzungen, fiir jene Welle, die parallel
der Symmetrieachse (also parallel der Querschnittsebene)
schwingt, direkt den Wert von a, fiir die andere aber

q2=b?*sin*J + c® cos*J.
Da hierdurch L,, und M,, bekannt?) sind, so geniigen zwei?®)
weitere Messungen zur Bestimmung von L,, und M,,. b?und
c® berechnen sich dann als Wurzeln der Gleichung

- w—L,, 8+ M, =0,

3 wird, vom rhombischen System abgesehen, mehrdeutig.

1) Lang,Wiener Sitz.76,793. Born, N. Jahrb. . Mineral. B.-B. &, 42.

2) Eine mehrmalige Wiederholung der Messungen macht von
den Einstellungsfehlern ziemlich unabhidngig und liefert, falls das
Prisma tadellos geschliffen und homogen ist, sehr gute Werte von
ng und M22- '

8) Um sich von den Einstellungsfehlern maglichst unabhidngig
zu machen, sind natiirlich mehr Messungen erfordert.
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Ahnliche Formeln erhdlt man fiir die beiden anderen
moglichen Fille. |
c) Die Halbierungslinie des duBeren Prismenwinkels sei
eine Symmetrieachse und falle
«) mit der §-Achse zusammen. Bei analoger Voraussetzung
iiber den Winkel 9 wie im vorangehenden Falle b) ergibt
, sich das Schema:

X y z

0 1 0

—cos 3 0 sin 9

| 3 Uy

sin 9 0 cos&

An Stelle der Gleichung III kommt

q*— q*(L,, cos®y+L,, sin*y) + (M, cos*y + M,, sin%*y) =0,
wo , ;
L,,=a*+ b®sin*J + c? cos*I L =b2 43
M,, =a?*(b?sin?*3 + c? cos?9) M, —bic:.
Aus Symmetriegriinden ist ohne weiteres ersichtlich, daB beim
Minimum der Ablenkung direkt b? und c? gefunden werden.
Wie vorher geniigen noch zwei weitere Messungen zur
Bestimmung der Konstanten L, und M,,, und a? findet sich als
groBte Wurzel der Gleichung

u*—L;; u+M,=0.

& ist im monoklinen System (das trikline kommt praktisch
nicht in Betracht) natiirlich zweideutig. Die Zweideutigkeit
besteht darin, daB den Formeln zufolge  ebensogut im Winkel
x0z wie xOz liegen kann. Beriicksichtigt man aber beim
Minimum der Ablenkung den Schwingungszustand der ent-
sprechenden Welle, so diirite die Zweideutigkeit oit behoben
werden konnen. Im rhombischen System wird sie schon durch
die kristallographische Orientierung des Prismas umgangen.

@3) Fillt die Z-Achse mit der y-Achse zusammen, so erhilt

man beim Minimum der Ablenkung direkt a und b, wihrend
man aus den Gleichungen |
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L,, =c®+ a?sin®9 + b? cos®F

M,, =c?(a?sin’3 + b? cos?9)
dhnlich wie soeben c? als die kleinere Wurzel der quadra-
tischen Gleichung

W' —L,u+M, =0
findet, wihrend die andere, gréBere wiederum gleich dem
Quadrat der Geschwindigkeit jener Welle ist, die senkrecht
zur Querschnittsebene des Prismas schwingt.
Beziiglich & gilt das soeben Gesagte.

y) Ganz anders, wenn n mit y zusammenfillt! Das Mini-
mum der Ablenkung liefert a und c, widhrend man aus zwei
weiteren Messungen die Gleichungen erhilt

L. =b*+i¢? gin® & -4 cos* 3

M,, =Db?*(c?*sin*3 + a®cos?® ).
Die Wurzeln der quadratischen Gleichung

u*—L, u+M, =0
sind b? und d?=c?sin* 3 + a%cos? &, von denen die eine ebenso-
gut groBer oder kleiner wie die andere sein kann. Im mo-
noklinen System ist die Losung mithin unbestimmt, wogegen
im rhombischen System die Uberlegungen von § 18 Geltung
haben. |
In den beiden Fillen b) und c) wurde vorausgesetzt,

dal eine der optischen Symmetrieachsen mit der Halbierungs-
linie des inneren oder duBeren Prismenwinkels zusammen-
falle, widhrend die iibrige Orientierung als unbekannt be-
trachtet wurde. Das Problem ist also gegeniiber der Be-
handlung bei Pockels!) wesentlich verallgemeinert, indem
daselbst der Fall b) nicht ganz erledigt und c) nur unter der
ausdriicklichen Voraussetzung studiert wird, daB der Winkel
bekannt?) sei. Im rhombischen System mag diese Annahme
keine wesentliche Einschrinkung bedeuten, wohl aber im
monoklinen System, wo wegen der geringeren Symmetrie die
Verhiltnisse viel komplizierter liegen. |

B

1) Lehrb. d. Krist. pag. 146 und 147.

2) Wire ¢ bekannt, so wiirde sich im Fall ¢, der Wert von b
eindeutig bestimmen, weil d2=a%cos23+c2sin2?% eine bekannte Funktion
von a, ¢ und ¢ ist und darum von b2 unterschieden werden kann.



S R

Bei eingehender Betrachtung der unter b) und c) ent-
wickelten Formeln geht hervor, daBl es sogar ohne Bedeutung
ist, zu wissen, welche der drei optischen Symmetrieachsen
den inneren resp. duBeren Prismenwinkel halbiere. Die
beiden Methoden gewinnen dadurch noch mehr an aligemeinem
Wert und konnen in allen jenen Fillen Verwendung finden,
wo aus der bloBen kristallographischen Orientierung des
Prismas hervorgeht, daB die Halbierungslinie des inneren
oder duBeren Prismenwinkels mit einer optischen Symmetrie-
achse zusammenfallen muB.

DaB sich im rhombischen System alle dret
Fidlle, wo eine Achse des xyz-Systems optische
Symmetrieachse ist, zur Bestimmung der Bre-
chungsindizes, mit Hilie eines einzigen Prismasin
gleicher Weise eignen, ist ein unmittelbares und
praktisch wertvolles Ergebnis dieser Ausfiih-
rungen?)

1) Durch Verallgemeinerung einer Bemerkung v. Groth’s, Physi-
kalische Kristallographie pag. 102f., kénnen diesen Fillen noch jene
angegliedert werden, wo die eine Prismenfliche Symmetrieebene bzw.
ihre Schnittlinie mit der Querschnittsebene oder endlich ihre Normale
Symmetrieachse ist.
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Ableitung einer neuen Methode zur Bestimmung
der optischen Konstanten zweiachsiger Kristalle
mit Hilfe eines einzigen Prismas
unbekannter Orientierung.

32. In mehreren Fillen des vorangehenden ersten Teiles
(vergl. § 31 Abt. b, cx und cg) konnte durch Beriicksichtigung
des Polarisationszustandes des austretenden Lichtes die Lsung
des Prismenproblems eindeutig gefunden werden. Die Art
und Weise aber, in der dies geschah, hatte einen blof quali-
tativen Charakter und faBte die Beziehung zwischen den
beobachteten Schwingungsrichtungen und den gesuchten Haupt-
lichtgeschwindigkeiten nirgends in einer prédzisen Formel
zusammen. Eine solche Gleichung ist aber mdglich auf
Grund des gegen Ende von § 9 erwidhnten Satzes, wornach
fiir jede Fortpflanzungsrichtung die zugehorigen Schwingungs-
richtungen und Wellennormalengeschwindigkeiten bestimmt
sind durch die Richtung und reziproke Linge der Halbachsen
jener Ellipse, in welcher das Indexellipsoid von der zur Fort-
pflanzungsrichtung senkrechten Diametralebene geschnitten
wird., Wie man sich nun geeigneter Schwingungsrichtungen
bedienen kann, um die Hauptlichtgeschwindigkeiten aller
zweiachsiger, also selbst trikliner Kristalle eindeutig zu
bestimmen — das theoretisch darzutun, ist Auigabe dieses
zweiten Teiles, wihrend die experimentelle Priifung der
Methode dem dritten Teil zufallen wird.

33. Die erste Auigabe, welche sich darbietet, ist der
Nachweis, daB das Ausbreitungsgesetz ebener Wellen, so wie

. es in Gleichung 'Il formuliert wurde,” sich in der soeben

genannten Weise aus dem Indexellipsoid ableitet. Bezogen
aui die optischen Symmetrieachsen &, 7, lautet die Gleichung

des. letzteren
a2§2+b2n2+02;-2= 1.
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Bildet nun eine beliebige Ausbreitungsrichtung mit diesen
Achsen die Winkel v, v, und v,, so erzeugt die dazu senk-
rechte Ebene
Ecosv,tncosv,+cosv,=0

mit der Fliche eine Schnittellipse, deren Gleichung sich leicht
mittels einer Koordinatentransformation ergibt, bei der die
Wellennormalenrichtung zur Z-Achse und die Schnittgerade
der Wellenebene mit der Ebene =0 zur X-Achse genommen
wird. Hierdurch nimmt das Schema I folgende spezielle
Form an.

X Y Z
Cosv, COSV, COSV,
§ : , cosv,
sinv, sinv,
cosv, COSV,COSV,
n ——— : cosv,
sinv, sinv,
z 0 =giny, cosv,

Die daraus flieBenden Substitutionen

E— 008, 3 COBY; CO8Yy
siny, sinv,

_ _Cosy, ¢ | COSY, COSY,
sinv, sinv,

filhren die Gleichﬁng des Indexellipsoides sofort in die Gleichung
der gesuchten Kurve iiber, nimlich:

a? cos®v, + b? cos?v

1 X2
sinv,
(a? cos®v, + b? cos®v,) cos®v, + c?sinty, yve
sin®v,
COS ¥, COS ¥V, COSYV
+ 2 (a* —b? : 2 {XY=1.

sin*v,
Die reziproken Quadrate q? und q3 ihrer Hauptachsen, welche
- dem Theorem zufolge den der Richtung v, v,, v, zugeordneten
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Geschwindigkeiten entsprechen, ergeben sich als Wurzeln der
biquadrischen Gleichung

, a?(cos?v, cos?v, + cos?v,) + b?(cos?v, cos? v, + cos?v,) + c?sinty,

4
q9°—q P
. sin?v,
n a*b? (cos®», + cos®v,)* cos® v, + b? ¢ cos?y, sin*y, + c?a® cos®v,sin'y, 0
- 4 i
sin*v,
Da

cos?v, cos®y, + cos?v, =cos?v, cos?y, + (1 — cos?v, —cos?,) =
(I —cos?»,) (1 — cos?v,) =(cos*v, + cos?»,) sinv,,
und da ebenso
cos*v, cos?y, + cos?y, = (cos?v, + cos?vy) sin®y,,
so kommt fiir die Abhdngigkeit der g-Werte von der Richtung
V),V vy der Ausdruck

b { a*(cos®v, + cos®v,) + b?(cos?v,; + cos?»,) + c* (cos?, + cos®v,) }

+a?b® cos®»,;+ b*c®cos®v, + c?a® cos®’v,=0
oder in Ubereinstimmung mit Gleichung II
cos’v,’ cos*v, cos?y,

q2_a2 q2_b2+q2_c2

=0

w. z. b. w.1)

34. Der Emfachhelt halber sind die folgenden Formeln
samtlich auf ein rechtwmkhges rechtshindiges Achsensystem
X, Yy, z bezogen, das, vom bisherigen Brauch abweichend, so
mit dem Prisma fest verbunden ist, daB die z-Achse wie
friiher mit der Prismenkante zusammentiillt und nach oben
positiv gerechnet wird, die x-Achse aber nicht mehr- in der
Halbierungsebene des inneren Prismenwinkels sondern in
der einen Grenzebene des Prismas liegt. Die nach aufien
gerichtete Normale dieser Ebene ist die positive y-Achse,
wihrend die positive x-Achse nach der Basis des Prismas
hinzeigt. Durch diese Festsetzung ist jene Grenzebene ein-
deutig gekennzeichnet. Bei der gewdohnlichen Aufstellungsart
des Prismas auf dem einkreisigen Goniometer, wo das Licht,
vom Beobachter aus gesehen, nach links abgelenkt wird, ist

1) Uber eine andere Ableitung dieser Gleichung aus derjenigen
des Indexellipsoides vergl. Pockels, Lehrbuch der Kristalloptik S. 33 f.
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sinn des Lichtes zusammen. |
Neben diesem xyz-System kommt noch das bereits
frither beschriebene §7nZ-System in Betracht. Fiir die Rich-
tungskosinus, welche die positiven Richtungen des einen
Systems in bezug auf die positiven Richtungen des anderen
Systems festlegen, gilt das Schema I der Form nach unveridndert.
36. Um jetzt auf den Gegenstand selber einzugehen,
sollen zunidchst die Gleichungen des Indexellipsoides und
der Wellennormalenfldche auf das neue Achsensystem bezogen
werden. Das geschieht durch die aus dem Schema I folgenden
linearen Beziehungen
| E=a xta,ytaz
77=181X+182y+1882
C=71X+7/2)}+}'32,

deren Substitution in
a2§2+b2n2+c2c2=1

die Gleichung ergibt

a,, X2+ a,, y* + a,, 22+ 2a,, xy + 2a,,yz + 2a,, zx=1. VII
Dabei ist zur Abkiirzung

ax=a’ajox +b2Bi B+ c?yiyx (aix=aw) VIII
gesetzt. Diese sechs Koetifizienten der Gleichung VII wurden
von W. Voigt!) Polarisationskonstanten genannt.

In ebenderselben Weise ergibe sich die neue Gleichung
der Wellennormaleniliche. Da aber fiir das Weitere nur ihr
Schnitt mit der Ebene z=0 in Betracht fillt, und fiir die
vorliegenden Zwecke die Polarkoordinaten bequemer sind
wie die rechtwinkligen SO empfiehlt es sich, die Transfor-
mationsformeln in der bereits oben in § 4 hergeleiteten Form
zu schreiben.

vV, =0, cosw+a281nw

v,= [, cosy+ 3, siny

vy =17, COsy + ¥, siny.
Die Substitution dieser Ausdriicke in Gleichung II gibt mit
Benutzung der eben definierten Polarisationskonstanten die
Gleichung

1) W. Voigt, Gott. Nachr. 1896 pag. 17.
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q*— q*[(a,,Ta,,) cos?y+(az; +a,,) sin*y—2a,, sinycosy]

+[(ay, a5 —aZ,) cos?y + (a, a,, —a2,) sin®y IX

—2(a,, 853 a,5 a,,) siny cosy] =0.

Diese Gleichung stellt die ndmliche Kurve dar wie
Gleichung IIl. Die beiden Gleichungen unterscheiden sich nur
durch das Bezugssystem. Um dies auch in der Schreibweise
anzudeuten, soll fiir Gleichung IX abkiirzend?!) gesetzt werden

- q*—q*(P,, cos*y + P,, sin*y — 2P, siny'cosy)

+(Q,, cos’y + Q,, sin*y'— 2 Q,, sinywcosy)=0. X
Darin ist
P,,=a,,+ay Q, =2, 3, —a} Xl(i)
P,=a,+a, Q= 4,2, —aj 1 za 6
P,=a, Q=28 —aya, - = R

36. Die Konstanten P;; und Qi kénnen durch sechs Wert-
paare (q,) eindeutig bestimmt werden. Dagegen ergeben

sich aus den Gleichungen X149 im allgemeinen acht Losungs-
systeme fiir die Polarisationskonstanten. In der Tat aus

X14 und XI2 kommen die Werte
a5, =P, —ay, .
@ (5)311 =P,, —ay,,
welche in XIa und XIa eingesetzt
ags =54 (P, —ag) — Qyy
a3y =y, (Py; —ay5) — Qy
6) . L 3, o
ergeben, wiahrend aus XI1% mit Beriicksichtigung von XI1% folgt:
255 83, =853 P, — Q.
Werden beide Seiten dieser Gleichung quadriert und fiir
a2, und aZ, die soeben gefundenen Werte eingesetzt, so erhilt
man zur Bestimmung von a,;, die Gleichung vierten. Grades

a;;;_' (Pu + P22) 323 + (Pu P22 o sz + Qu + sz) a§3 XII
—(Py; Qap T Py Q;; —2P, Q) a5 +(Qy; Qe — 32)=0.

Diese Gleichung muf mit Gleichung VI identisch sein, wie

aus der Beziehung zwischen Lix und M einerseits sowie

1) Die Benutzung der fritheren Abkiirzungen Lik und Mik empfiehlt
sich nicht, weil sie zu (natiirlich blofi formalen) Widerspriichen fiihrt
zwischen einigen Sdtzen des ersten und zweiten Teiles.
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P;x und Qix anderseits sofort hervorgeht. Man kann darum
ohne weiteres schlieBen, daB

a?,b% c* und a;;, =a* a2+ b* 82+ c?y2
die Wurzeln der Gleichung XII sind ( vergl § 5).

37. Da nach den Gleichungen X12 die Pix und Qix be-
kannte Funktionen von a;; sind, so kann man sie mit Hilfe
der Gleichungen VIII als Funktionen von a% b? c? a;, 5; und y;
ausdriicken und so sechs Beziehungen zwischen diesen zwdli
GroBen und den sechs Polarisationskonstanten aufstellen. Die
vier Werte von a,;, welche die Gleichung XII liefert, ergeben
dann der Reihe nach fiir a,, und a,, je einen zugeordneten
Wert, wihrend sich fiir a,; und a,;, je zwei Werte finden, die
aber nur im Vorzeichen verschieden sind. a,, hat fiir alle
vier Werte von a,; immer denselben festen Wert

P,=a%c a,+b*8 8,1+ 2y, 7.
Die folgende Tabelle I liefert die Resultate in anschaulicher
Ubersicht. Die Werte je einer Kolonne gehdren zusammen.
Bei a,; und a,;, entsprechen sich die oberen resp. die unteren
Vorzeichen. Der Beweis hierfiir ergibt sich aus der Identitit
Q=22 —aya,,.
Wie man sieht, werden fiir
a;, —a? c?
a,; und a,, im allgemeinen?) imagindr. Diese beiden Wurzeln
von XII scheiden darum aus und die Gleichung XII wird wie
die Gleichung VI praktisch zweideutig. Ihre Wurzeln be-

stimmen mit den zugeordneten Losungen der Gleichungen XIa
zwei Ellipsoide mit verschieden gerichteten Hauptachsen. Die
groBte und kleinste haben in beiden je dieselbe Linge, da-
gegen ist die mittlere Achse des einen gleich dem Abschnitt
des anderen auf der z-Achse (entsprechend dem in § 25 ge-
fundenen Ergebnis). Jedes dieser Ellipsoide kommt in zwei
Orientierungen vor, die wegen der Zweideutigkeit der Vor-
zeichen von a,; und a;, die Eigenschait haben, daB die eine
Lage aus der anderen durch Drehung von 180° um die

1) Einzig liir ¢; =a; =0 resp. y; =y, =0 bleiben diese Werte bzw.
reell, werden dann aber mit der vierten Losung identisch.



Tabelle I

' 2 2
dgs a b

a,, [b2+ c?—(a?a2+ b2 B2 + c?y?) ¢t + a2 — (a® a2+ b2 B2 + cty?)

a,, [bY et (aeag+ b2 82+ e®pd) ¥k a2—(aﬁa_§+ b*p%1-iclyd)

| e V(ct—a?)(a?—b? + 5, V/(a? — b?) (b? — c?)

Al + o \/@:2 — a?) (a? —b?) +8:V/(a? — b*) (b* —c?)

a,| ate,a,+ b8, 0, Fctyy, | afe 0+ b8 B+ cty,

2 B hlk 2 2 L 4
a, c a*aZ-+b ,@s—l—c i

a,, |a*+b?*—(a*a2+b? 82+ c?y?) a’a2+b*B2+c?yl

2

a, |a*+b*—(a?a2+b2@2+c*y?)|  ate?+b?R2+ iy

&y T7Vibr— c?) (c?—a?) |T(a%ayuy b3, 0+ Cty,ys)

a| +7e \/(b2 —c?) (c—a?) |+ (@’ o, +Db* B, 8, + ey, 7))

: al2 a2ala2+b2181182+cgy172 a2al a2+b218].182+c27172

z-Achse abgeleitet werden kann (in genauer Ubereinstimmung
mit dem in § 23 Gesagten). Der Beweis ist einfach.. Ersetzt
man X und y durch ihre entgegengesetzten Werte, so geht die
Gleichung des einen Ellipsoides in diejenige des anderen iiber.

Die Unbestimmtheit liegt dem Gesagten zu-
folge in der Zweideutigkeit der Gleichung XII
(a;g=Db*a’ a2 +b*B2+c*y2) sowie des Wertes von ag
(die Vorzeichen von a,; und a;, bestimmen sich gegenseitig).
Dieselbe kann nun in einfacher Weise umgangen werden,
wenn die Schwingungsrichtungen jener zwei Wellen in



Betracht gezogen werden, deren Ebenen parallel zur Aus-
trittsflache des Prismas (xz-Ebene) sind.

38. Es ist bekannt, daB die Schwingungsrichtung sich
im allgemeinen dndert, wenn die Welle aus dem Kristall in
die Luit iibertritt. Der Grund liegt darin, daB die Schwingungs-
richtung der beiden an der Austrittsebene in den Kristall
hineinreflektierten Wellen im allgemeinen verschieden ist von
der Schwingungsrichtung der im Kristall einfallenden Welle.
Féllt aber die Welle im Kristall parallel zur Grenzebene auf,
so wird sie beim Ubergang in die Luit nicht nur nicht ab-
gelenkt, sondern auch die beiden, durch Reflexion entstandenen
Wellen sind parallel zur Grenzebene und schwingen parallel
und senkrecht zur Schwingungsebene der im Kristall ein-
fallenden Welle. Dann aber ist die Energie der reflektierten
Welle, die senkrecht zur Schwingungsrichtung der einfallenden
schwingt, null, und wegen der Erhaltung der Energie muf
die ausgetretene Welle parallel zur einfallenden schwingen.

39. Es seien nun q, und q, (q, <q,) die Geschwindig-
keiten der beiden Wellen, deren Ebenen parallel zur Aus-
trittsiliche sind und & und e, die Azimute der zugehorigen
Schwingungsrichtungen, die im Gegenzeigersinn von 4 z iiber
+X (von 4y aus gesehen) positiv gerechnet werden. Selbst-
verstiandlich unterscheiden sich ¢, und &, um 7/2, und man kann

g =

: g, =€+ 7|2
setzen. Nach dem Fresnelschen Satze wird das Indexellipsoid
von der zx-Ebene in einer Ellipse geschnitten, deren Halb-
~ achsen die Linge 1:q, und 1:q, haben und mit der z-Achse
die Winkel ¢ und ¢ + 72 einschlieBen. Ihre auf diese Rich-
tungen als Achsen bezogene Gleichung lautet daher

QP72+ g2 X*—1=0.
Durch die Substitution
Z=zcose+xsing
; ‘X=—zsine-+xcose
erhdlt man ihre auf das zx-Sxstem bezogene Gleichung
(q? cos® & + g%sin’¢) z? +2(q3 — q3) sine cos e zx
+(q%sin*e +q3cos’e)x*—1=0.
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Anderseits bekommt man fiir diese ndmliche Ellipse aus der
Gleichung des Indexellipsoides
a,2°1+2a;,zx+a,, x*—1=0,
Durch Vergleichung beider Ausdriicke erhdlt man daher
a,=q?sin*e+qicos?e=R,,
a,,=(q?—q? sinecose =R, - XIb
a3 =q2cos’e+ g2sin* s =R,,.
Hieraus und aus den Gleichungen Xla ergeben sich fiir die
Polarisationskonstanten die Werte:

a,, =R, a5 =P, — Ry a;, =Ry,
a’3 (Pl2 R33 Ql2 adl R13 al% p 2"
Daneben bestehen noch dle dre1 Bedmgungsglelchungen
a, =R, R‘_,3
a223H(Pll Qll P12 R.—)& Q122)2: R123
aj, =R, Ra.«; sz

Da aber die oben ermittelten Werte diesen Gleichungen nicht
streng geniigen, indem die aus den Beobachtungen abgelei-
teten Zahlen Pj, Qix und Rj nicht fehlerfrei sind, so dienen
sie dazu, um an den Polarisationskonstanten Verbesserungen
anzubringen, die sich nach den Regeln der Ausgleichungs-
rechnung finden lassen.

40. Die soeben entwickelte Methode hat sich bei der
experimentellen Priifung leider nicht bewéhrt. Die Rechnung
hat namlich in den untersuchten Fillen (Colemanit und Kupfer-
vitriol) ergeben, daBl mindestens die fiinf ersten Dezimalstellen

im Zihler von
o (P Ry — Qys): R
verschwinden, so dal derselbe, bei der am Goniometer erreich-
baren Genauigkeit gar nicht mehr bestimmbar ist. Selbst das
Vorzeichen von a,; wird zweifelhait, da es bei dieser Gro8en-
ordnung von allerhand Zufilligkeiten abhédngt, ob die Ditierenz
PRy —Qpe

positiv oder negativ wird (zumal wenn P,, und Q,, gleiches
Vorzeichen haben).

Diese experimentell gefundene Tatsache kann beziiglich
ihrer allgemeinen Geltung rechnerisch gepriift werden. Um
aber den Gang der hier vor allem wichtigen Ableitung nicht

4
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zu unterbrechen, soll die betreffende Untersuchung als Anhang
dieses zweiten Teiles gegeben werden.

41. Die eben genannten Schwierigkeiten konnen um-
gangen werden, wenn neben dem Polarisationszustand der
zur Austrittsfliche parallelen Wellenebenen auch der Polari-
sationszustand jener Wellen in Rechnung gezogen wird, deren
Normalen senkrecht zur anderen Grenziliche sind. Bei der
Messung wird es am einfachsten sein, das Prisma so um
die z-Achse zu drehen, daB jene Grenziliche des Prismas,
die vorher Austrittsebene der Wellen war, nun zur Eintritts-
ebene wird und umgekehrt. Analytisch wird diese Drehung
durch die Transformationsformeln

x=xcos’+y sinl
y=—x'sinl"t+y' cosl’

zum Ausdruck gebracht. Natiirlich ist im x'y’z'-System y’ in
das Kristallinnere hineingerichtet, sofern die positive x'-Achse
von der Kante des Prismas nach der Basis verlauien soll.
Auf dieses System bezogen, schreibt sich die Gleichung des
Indexellipsoides in der Form:
(a,, cos*I't+ a,, sin®*I'—2a,,sinl'cos ') x'2+

(a,, sin®*I'+ a,, cos*I't+ 2a,,sinl'cos ") y'?+a,, z'* +

2(a,, sinl'cosI'— a,, sinl'cos I'—a,, sin*/"+a,, cos*I') X'y’ +

2 (ayy cosl™ta,, sinl")y'z' + 2 (a;, cosl™—a,; sinl’) z'x' — 1 =0.
Von der z'x'-Ebene wird diese Flidche in der Kurve

(a,, coa®l+a,, sin*l"—2a,.sinFcosl’) x*

| +a,, 22+ 2(a;, cos'—a,sinl) z'x'=1

geschnitten. Anderseits liefert die Beobachtung zunichst die
reziproken Werte ihrer Hauptachsen q', und ¢, (q', <{',) und
- wegen der Schwingungsrichtung auch die Orientierung der-
selben. Das Azimut der Schwingungsrichtung von q';, werde
mit & bezeichnet und von +z iiber —x im Gegenzeigersinn
(von aullen gesehen) gemessen., Fiir die andere Welle kann
es gleich &+ /2 gesetzt werden.

Bezogen auf diese Schwingungsrichtungen als Achsen
hat die Schnittellipse der x'z-Ebene mit dem Indexellipsoid

die Gleichung
q2Z"*+q2X"%=1,



5] —

und da |
Z'=—x'sing + z' cosé’
X'=—x'cos¢ — z'sin¢,
so kommt datiir |
(q'2sin*¢’ + q'2cos?e’) x'? —2(q'2 — q'2) sing’' cose’ x'z' +
(q'2 cos*e’ + q'2sin*e) z* = 1.
Daraus folgt
a;, cos’I'=2a, sinl'cosI"+ a,, sin* I'=q'?sin*¢’ + q'2 cos*’s’ =R,
a;, cosl'—a sinl'=—(q'2—q'?) sin¢ cose’ =R'|; Xlc
a5, =q'jcos’s +q'3sin*¢ =Ry
und hieraus o -
(q'2—q'%) sine cose + a,, cosI”
sinl’
Die Genauigkeit dieser letzten Formel sowie ihr Vorteil der
friiheren gegeniiber ist bei spiterer Gelegenheit noch ein-
gehend zu untersuchen.

42, Durch die hiermit eindeutig gegebenen Polarisations-
konstanten ist das Indexellipsoid vollstindig bestimmt. Zur
Ermittlung der Hauptlichtgeschwindigkeiten und der optischen
Orientierung des Kristalls ist es dem Gesagten zufolge nur
mehr notig, GroBe und Lage der Hauptachsen des Index-
ellipsoides zu finden. Das ist aber ein ganz gewdhnliches
Problem der analytischen Geometrie. Bekanntlich sind die
Koordinaten u,v,w des Endpunktes einer solchen Achse den
Komponenten der zugehorigen Flichennormale, d. h. den
partiellen Differentialquotienten von ‘

a,, u*+ta,,v:+a,w?+2a,uv+2a, vw+2a, wu=1
proportional. Man hat daher

a, uta,vta,,w=1iu
a,uta,vta,w=Aav XIII
a ,uta,v-ta,w=Iiw,
wo A ein Proportionalititsfaktor ist. Dieses System von
Gleichungen hat aber dann und nur dann von (0,0, 0) ver-
schiedene Losungen, falls

' a,—4 A a3 I
a, a,—i .a, ’=O. XIV
a3 By A4

4*
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Diese Determinante stellt eine Gleichung dritten Grades in 2
dar, deren Wurzeln im allgemeinen verschieden und nach
dem bekannten WeierstraBschen Beweis reell sind. Man
erhilt darum drei Werte von 4 und somit auch drei Systeme
von Losungen ,

UjiVvi:wj (i=],2,3).
Multipliziert man die drei Gleichungen XIII der Reihe nach
mit u, v, w und addiert, so erhidlt man, falls man 2 und die
Variablen mit dem Index behaitet,

Ai (Ui T v+ wif) = 1.
Wegen der Voraussetzungen iiber u, v, w stellt

1

ut+vif+wy?
das Quadrat der reziproken Lénge einer Hauptachse des
Indexellipsoides dar, weshalb die Beziehungen gelten

a=\/l_1: b=\/i_2’ Cz\/g’

> Ao >> 4y

wofern

gewidhlt wird.
Die Richtungskosinus ergeben sich jetzt unmittelbar.
Man findet beispielshalber

u,

Vuz+vz+w?
und dhnliche Ausdriicke fiir die anderen acht Richtungskosinus.
Ihre Werte dndern sich also nicht, wenn beliebige Vielfache

von uj, vi, w; beniitzt werden, was insofern von Bedeutung
ist, als die Gleichungen XIII nur die Verhiltnisse

o, =u, a=

U;:Vi.Wj
zu finden erlauben.

43. Nachdem es so gelungen ist, das Prismenproblem
allgemein und unabhidngig vom Kiristallsystem eindeutig zu
16sen, werden jetzt jene Fidlle ndher zu betrachten sein, bei
denen die entwickelte Methode versagt oder doch zu versagen
scheint. Dies trifit zu, wenn die Ein- oder Austrittsebene
des Prismas oder beide zugleich je auf einer optischen Achse
- (=DBinormale) senkrecht stehen — die zu diesen Flichen
. parallelen Wellenebenen also keine bestimmte Schwingungs-
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richtung haben. Damit wird natiirlich die angegebene Methode
illusorisch und die Formeln XIb bzw. XIc kénnen und
diirfen streng genommen nicht mehr zur Bestimmung der aj
herangezogen werden, da die Voraussetzungen (bestimmte
Schwingungsrichtung), auf Grund derer sie abgeleitet wurden,
nicht mehr erfiillt sind. Indessen ergibt eine kurze Uber-
legung analoge Ausdriicke. Es geniige, dies fiir den Fall
zu zeigen, daB} die xz-Ebene auf einer optischen Achse
senkrecht stehe. Das Indexellipsoid wird von derselben in
einem Kreis geschnitten, als dessen Gleichung sich

A X0+ 28, X2 +8g 28— =10
ergibt. Da der Radius desselben gleich 1/b (b ist die
Normalengeschwindigkeit lings der optischen Achse), so folgt
a,, = ag, =Db? 313=O
Es ist nun interessant zu sehen, daB die Gleichungen XIb

sich genau auf diese Werte reduzieren und somit auch in
diesem Grenziall giiltig bleiben. In der Tat, da

QIzq‘a:b’

a,, = ay, = b? (sin® & + cos®¢) =Db?
a,3=(q2—q3) sine cose =0.

so kommt

Die iibrigen Formeln bleiben unverdndert, nur zeigt
sich, wie die Bestimmung von a,, nach der Gleichung

Pl2 R53 Q12 13)

die, wie bereits bemerkt, auch im allgemeinen kein giinstiges
Resultat liefert, hier zum vorneherein versagt, weil Nenner
und Zéhler verschwinden und a,, sich auf die unbestimmte Form
a,;—0:0 reduziert — ein Grund mehr, die urspriingliche
Fassung der Methode fallen zu lassen. Die ndmliche Schwie-
rigkeit (Unbestimmtheit von a,,) hitte sich iibrigens immer
eingestellt, wenn a,; —0, was offenbar, vom eben behandelten
Fall abgesehen, nur noch eintritt, wenn die zur xz-Ebene
parallelen Wellenebenen parallel und senkrecht zur Prismen-
kante schwingen d. h.

1) wenn die Querschnittsebene eine Symmetrieebene ist.
Aus Symmetriegriinden verschwindet dann aber neben a
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auch a,;, was zur. Folge hat, daB selbst ohne Riicksicht auf
den Polarisationszustand der zu den Grenzilichen parallelen
Wellen die Polarisationskonstanten lediglich auf Grund der

Gleichungen XI1% eindeutig bestimmt werden kénnen. Ubrigens
handelt es sich hier um den bereits erledigten Fall a) von § 31;

2) wenn die yz-Ebene eine Symmetrieebene ist (vergl.
§ 31 ¢) und Anm. ganz am SchluB desselben Paragraphen);

3) wenn die Strahlen, die zu den parallel austretenden
Wellen gehoren, in der Querschnittsebene bzw. in der
yz-Ebene liegen.

Im folgenden soll nun die Methode fiir die verschiedenen
Systeme spezialisiert werden.

l. Triklines System.

44. Im triklinen System besteht zwischen kristallo-
graphischer Richtung und optischer Orientierung kein direkt
erkennbarer Zusammenhang. Zudem ist die Lage simtlicher
Hauptschwingungsrichtungen fiir die verschiedenen Farben
verschieden. Zur Bestimmung der optischen Konstanten
kommt daher die angegebene Methode in ihrer allgemeinen
Fassung zur Anwendung.

Il. Monoklines System.

45. Im monoklinen System fillt eine Hauptschwingungs-
richtung mit der Orthodiagonale zusammen, wihrend die
beiden anderen in der Symmetrieebene liegen und mit der
Vertikalachse die unbekannten Winkel 9 und 7/2+ & bilden,
so daB im ganzen nur vier Grofen zu bestimmen sind. Dem-
entsprechend mufl sich auch die Zahl der Beobachtungen
vermindern.

Die Beobachtung der Geschwindigkeiten und Schwin-
gungsrichtungen der zu den Grenzebenen des Prismas paral-
lelen Wellenebenen liefert die sechs Gleichungen

a,, =R, a,, cos’ '+ a,, sin* I'— 2a,, sin 'cos '=R’,
. ’

a,,=R,, ag, cos I'—a, sin '=R';
3 ’

a53=R43 a3 =Ry,

die aber zur Bestimmung der Polarisationskonstanten nicht
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hinreichen, weil a,, und a,, nur in einer und derselben Glei-
chung auftreten, a,; dagegen doppelt bestimmt wird.

Sind A,B,C die bekannten Richtungskosinus der
Orthodiagonale in hezug auf das xyz-System, so muB die
Normale des Indexellipsoides in jenem Punkt, dessen Koor-
dinaten x, y,z den GroBen A, B, C proportional sind, dieselben
Richtungskosinus haben. Bezeichnet daher m einen Pro-
portionalitdtsfaktor, so mul nach den Gleichungen Xlll

a,Xta,,ytazz=—mA
8,x+a,yt+a,z=mB
a,sxﬂ-azay—kaﬁZ—mC
sein. Hieraus folgt nach emlgen Umstellungen und mit
Riicksicht auf die Beziehung

das Gleichungssystem
(a,,—@)A+ 8,y B-F a,;, C=0
a;, A+(a,—¢)B+ 2,, C=0
* 313A+ a,3 Bt (a;—0) C=0,
das durch Elimination des Proportionalititsiaktors ¢ die Doppel-
gleichung
a,A+a,B+a,C a,A+a,B+a,C a,A+a,B+a,C
A B C
ergibt. Im Verein mit XIb und XIc¢ hat man somit zur Be-
stimmung der sechs Polarisationskonstanten acht Gleichungen,
so daB dieselben iiberbestimmt sind und sich die Methode
der kleinsten Quadrate zur Ermittlung genauerer Werte ver-
wenden 146t.
46. Die Gleichungen XV bieten etwelche Schwierig-
keiten, wenn eine oder zwei der GroBen A, B, C verschwinden.
I. Die Orthodiagonale liege in einer Achsenebene des
Xyz-Systems und zwar
1) in der Querschnittsebene. Da
' A=cosi, B=sini, C=0,
so bekommt man aus den beiden ersten Gliedern der Doppel-
gleichung XV

(a,, —ay)sin21—2a,cos21=0.

XV
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Das dritte Glied muB8 den beiden ersten, welche endlich sind,
gleich sein. Das ist nur dadurch mdoglich, daB der Zéahler
desselben verschwindet, d. h. dal
a,, COS Lt a,;sin 1 =0.
Statt der beiden Gleichungen XV ergeben sich somit zwei
speziellere, welche fiir die Rechnung sehr bequem sind.
2) in der yz-Ebene. Die Richtungskosinus der Ortho-
diagonale haben die Werte
A=0, B=cos u, C=sinu,
und eine analoge Uberlegung wie soeben fiihrt an Stelle der
Gleichungen XV auf die ebenfalls bequemen Ausdriicke
(a5, —ay)SIN2 0 — 22,5, c082 =0
a,cosuta,sinu=0.
3) in der Austrittsebene. Setzt man
A =sinv, B=0, C=cpsv,
so kommt
a,, siny +a,, cosy=0
(agg—a,;)sin2v¥ —2a,4cos 2y =0.

Die letztere Gleichung gibt nichts Neues, sondern stellt
vielmehr eine Beziehung dar, welcher -die Ri. identisch ge-
niigen. Denn nach den Gleichungen XIb ist

a3, —a;,=(q}—q3)cos2¢
zalsz(qf_qg)f’_ip_ze
also auch n
(a;;—a,,)sin2e—2a,, cos2e=0.
Weiter erkennt man aus der Bedeutung von &, daB eine der
beiden Beziehungen

_ e=vbzw.et+ 2=y
erfiillt sein muB. Dadurch kommt in jedem Fall
(a33—a,,)sin2v—2a,,cos2v=(Ry; —R,,) sin2»— 2R ;cos2»=0.
Zur Berechnung der Polarisationskonstanten kommt demnach
neben den Gleichungen XIb, XIc nur die Gleichung

a,, siny+a,, cosy=0
in Betracht. Wegen der Bedingung

- R33=R'33
bleibt aber fiir die Ausgleichungsrechnung immer noch Raum.

Wiirde die Orthodiagonale in dieandere Begrenzungsebene
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des Prismas fallen, so miite sich aus der Doppelgleichung XV
eine Beziehung ergeben, der die R'jc identisch geniigen.
II. Die Orthodiagonale falle mit einer Achse des xyz-

Systems zusammen, und zwar

1) mit der z-Achse. Die Querschnittsebene ist eine Sym-
metrieebene, und die Losung ergibt sich, wie bereits bemerkt,
in einfachster Weise nach § 31a).

2) mit der y-Achse. Da die Richtungskosinus der Ortho-

diagonale A—0, B—=1, C—0
werden, das erste und letzte Glied der Gleichungen XV aber
endlich bleiben miissen, so kommt

' a,—0 und a,—0,
wie sich iibrigens dlrekt aus den Symmetrleelgenschaiten des
Indexellipsoides folgern lieBe.

3) mit der x-Achse. Es wird einerseits
A=1, B=0, C=0

a,=0 und a,=0,
und fiir die Anwendung der Ausgleichungsrechnung bleibt,
wie auch im vorangehenden Fall, die einzige Bedingung
Ry =R’y
Es ist beachtenswert, daB in allen Fdllen des monoklinen
Systems die Bestimmung der Pix an und.fiir sich iiberfliissig ist.

IIl. Rhombisches System.

47. Infolge der Symmetrie dieses Systems fallen die
Hauptschwingungsrichtungen fiir alle Farben mit den kristallo-
graphischen Achsen zusammen. Seien, von der soeben ge-
brauchten Bezeichnung etwas abweichend, A, A,,A;; B,,B,,B;;
C,,C,,C, die Richtungskosinus der Brachy- resp Makro-
diagonale und der Vertikalachse in bezug auf x,y,z. Nach
der Doppelgleichung XV gelten die Beziehungen:

auA +a, A, ta A, __ A, +a,A,ta, Ay a A ta A tag A,

und anderseits

A A, - A,
aHBl+al2 B2+ alBB3=al2Bl+a22 BQ+ 3'23 Bs=a13B1+a23 B?+a33B3 XV]
B, B, B, .

all C1+a12CZ+ a13c3=a12cl+a22 C2+328 C3=alﬁcl _I_ a23c2+ a33 C3
C, C, Cy
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Diese neun Beziehungen sind nicht voneinander unabhingig.
Es gilt vielmehr der Satz: Von den neun Beziehungen
der Gleichungen XVI sind nur drei voneinander
unabhingig, die aber im allgemeinen auf 78 ver-
schiedene Arten kombiniert werden k6nnen. Man
kann also in 78-facher Weise aus den neun Gleichungen XVI
so drei wihlen, daB die iibrigen sechs hierdurch bedingt sind.

Zur Erleichterung des Beweises und im Interesse spéterer
Anwendungen seien vier Vorbemerkungen gestattet. «) Eine
einfache Kontrollrechnung zeigt, da aus zwei Gleichungen
je einer Zeile zwei beliebige Polarisationskonstanten als Funk-
tionen der vier anderen gefunden werden konnen. — 3) Man
beweist ferner, dal von den drei Gleichungen, deren Glieder
nur zwei Kolonnen angehoren, jede durch die beiden anderen
bedingt ist. In der Tat, schafit man z. B. in den zwei
Gleichungen der zwei ersten Zeilen und Kolonnen die Nenner
weg und addiert, so kommt
(A A, +B,By)a,, +(Aj+Bi— A7 —Bja, +(A, A, +B,B))a,,

—(AA, +B,B,)ay, — (A A+ B By ay, #0°
Mit Riicksicht auf die Orthogonalititsbedingungen folgt hierfiir
C,C, ()~ ay,) T (C3—Cfa, + C,Cya; — C,Cyay, =0.

Das ist aber genau die den beiden Ausgangsgleichungen
entsprechende dritte Gleichung, falls man darin die Nenner
wegschafft. — y) Weiterhin kann man zeigen, daB zwei in der
genannten Weise aufgestellte Gleichungen nicht unabhingig
sind von den zwei Gleichungen, die sich durch andere
Kombination der Kolonnen ergeben. Man betrachte zu diesem
Zweck die vier Gleichungen:

a A ta, A, ta Ay a,A ta, A, tay A _

A, A, ' 0

a’llBl_}—alg B2+alBB3___a12 Bl+a22 B2+a23B3=0
B, B,

a,A ta,A,Ta, As___ a3 A ta, A, tay, Asﬁo
A, Ay

a, B, +a,,B,+a,B, 9 B, +a,B,ta;B, —0.

B, B,
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Subtrahiert man von der ersten Gleichung die zweite, so
kommt der Ausdruck

A, A, B, B). (A, B A, B,
(—_ A _“—+ 1)312_(_5_—§) a23+( _‘%)adlqo
2

A, A, BB A, B A, B,
der mit
' o) A, B,
A;B,

multipliziert und zur dritten Gleichung addiert nach einigen
Uménderungen die Beziehung ergibt:

A, (A;B,—A,B,)(A,B,+A,B,)
11k - +
AS—AZ A B A B, — A, B,)
i ] .,,1—0.
A, A, A,B,  A,B,

Beachtet man, dafB
AB +A B, +A B —10
und formt man den Koeffizienten von a,; in folgende Weise um:
AlB,B;,—A}B,B,+A B A;B,— A B A,B;

A,B,A,B,
A,;B,(A;B,+ A B)—A,B;(A,B,+AB,) A,A,(B;—Bj
| A,B,A,B, - A,A,-B,B,

so erhdlt man, falls man die Koeffizienten von a,, und a;; in
selbstverstindlicher Weise erweitert,
a1281+a22B2+a23B3 alSBl+a23B2+a33B
B, B,
d. h. genau die vierte Gleichung. — ) Hieraus ergibt sich
endlich, daB je eine Gleichung aus jeder Zeile zusammen
ein unabhéngiges System bilden, wofern dieselben so gewihlt
werden, daB ihre Glieder nicht sdmtlich in den zwei ndm-
lichen Kolonnen figurieren.
Der Beweis des Satzes ist nun leicht zu fithren. Da
im ganzen neun Gleichungen vorhanden sind, so kann man
dieselben in

50

9, 9.8.7
= —84
(3) 1.2.3

‘verschiedene Gruppen von je drei Gleichungen zusammen-

i
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fassen. Hiervon fallen drei Gruppen weg, weil die Glieder
ihrer Gleichungen nur je einer Zeile angehoren. Ebenso
fallen jene drei Gruppen weg, deren Gleichungen aus sechs
Gliedern auigebaut sind, die nur in je zwei Kolonnen aui-
treten. Es verbleiben somit 78 verschiedene Kombinationen
von drei unabhingigen Gleichungen des Systems XVI.

48. Zur Bestimmung der Polarisationskonstanten geniigt
die Ermittlung der Geschwindigkeiten und Scbwingungs-
richtungen der zur xz-Ebene parallelen Wellenebenen, da
diese letzteren drei Polarisationskonstanten liefern (au,als,ass)
und die drei anderen sich aus den Gleichungen XVI ergeben.
Am einfachsten ist die Rechnung, wenn man die Gleichungen
zweier Zeilen nimmt, deren Glieder in der ersten und dritten
Kolonne stehen. Man erhilt so a,, und a,; und kann sie in
eine jener beiden Gleichungen eintragen, welche ein Glied der
zweiten Kolonne der noch verbleibenden Zeile enthalten
Dadurch ergibt sich a,,. :

Es hat keinen Zweck, die entsprechenden Gleichungen
fir a,,, a,, und a,, explizit aufzustellen, da man schlieBlich
alle 78 Systeme betrachten miiBte. Sie geben zwar alle das
gleiche Resultat, aber nicht alle brauchen fiir die Rechnung
gleich giinstig zu sein.

Das gleiche Problem (Bestimmung der Hauptlicht-
geschwindigkeiten eines rhombischen Kristalls mit Hilfe eines
einzigen Prismas von beliebiger Orientierung) wurde schon
frither (§ 15 if.) behandelt. Die Losung erwies sich moglich,
aber nur auf Grund sehr umstidndlicher Uberlegungen. Auch
die von Born') angegebene Methode, deren Voraussetzungen
zudem spezieller sind wie die hier gemachten, erfordert die
Bestimmung der Kurve C und demzufolge die Ermittlung
von mindestens sechs Wertpaaren (q, w). Um wieviel ein-
facher ist demgegeniiber die soeben entwickelte Methode, die
auf Grund der Ermittlung zweier Lichtgeschwindigkeiten der-
selben Fortpilanzungsrichtung und der zugehdrigen Schwin-
gungsrichtungen — im ganzen also drei unabhidngige Be-

1) N. Jahrbuch f. Mineral. B.-Bd. 5, 40.
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obachtungen — die Berechnung der Hauptlichtgeschwindig-
keiten a, b,c gestattet und iiberdies ergibt, in welcher Weise
sich die optischen Symmetrieachsen auf die kristallographischen
Achsen verteilen.?)

49. Ist die Ori_enﬁ'erung des Prismas spezieller Art, so
vereinfachen sich die Gleichungen XVI, was eventuell eine
Vermehrung der Beobachtungen nach sich ziehen kann.

I. Eine kristallographische Achse liege in einer Achsen-
ebene des xyz-Systems, wogegen die beiden anderen eine
-willkiirliche Lage haben. Von den neun Richtungskosinus
A;, B;, C; wird einer null. Es verbleiben aber immer noch
genug unabhdngige Gleichungssysteme, um die allgemeine
Methode anwenden zu konnen. Ubrigens kann es von Vorteil
sein, dhnliche Uberlegungen wie etwa im Falle I, 1. des mono-
klinen Systems (§ 46) anzustellen und damit einfachere Be-
ziehungen abzuleiten. Wire z. B. A, =0, so kidme

s BTl g A==l
Die anderen Gleichungen vereinfachen sich nicht.

II. Eine kristallographische Achse falle mit einer Achse

des xyz-Systems zusammen und zwar

1) Die Brachydiagonale mit der x-Achse. Die neun
Richtungskosinus nehmen die speziellen Werte

A=1 A,=0 A,=0
B,=0 B,=cosu B,=sinu
C,=0  C,=-—sinu C;,=cosu
an und statt der Gleichungen XVI kommt
a,—0 a,,="0

(ag, —ay,) sin 2 —2a,,cos2u=0.
Zur Berechnung der aj ist es notwendig, die R'jx heran-
zuziehen, wodurch Uberbestimmung und damit die Moglichkeit
der Anwendung der Ausgleichungsrechnung vorhanden - ist.

2) Die Brachydiagonale mit der y-Achse. Da

1) Hier sei erwihnt, dafl auf Grund der nimlichen Beobachtungs-
daten — jedoch mit Hilfe einer wesentlich anderen Formel Th. v. Liebisch
die Bestimmung der optischen Konstanten rhombischer Kristalle theore-
tisch durchgefiihrt hat. (Zeitschr. f. Krist. und Min. Z. 433—437).
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A =0 A1 A,=0
B, =singw * B,=~0 B,=cosu
C,=cosu @ C,=0 C,=—siny,
erhdlt man analog wie vorher
a,,="0 2y3=0

(a,; —agy)sin2u +2a,,cos2u—0.
Die letztere Gleichung ist, wie in § 46, I, 3 gezeigt wurde,
eine Identitit und scheidet darum aus, so daB abermals die
R'ix heranzuziehen sind.

3) Die Brachydiagonale mit der z-Achse. — Die Losung
‘ergibt sich, wie schon mehrmals bemerkt, am einfachsten
nach der gewohnlichen Methode.

Wiirde statt der Brachydiagonale die Makrodiagonale
oder die Vertikalachse mit einer Achse des xyz- Systems
zusammentiallen, so wiirden die voranstehenden Formeln lm
wesentlichen unverdndert bleiben.

lll. Das xyz-System fillt mit dem kristallographischen
Achsenkreuz zusammen. Man kommt damit auf den aller-
gewdohnlichsten Fall, der keiner weiteren Erorterung bedart.

50. Es bleibt noch der interessante Fall zu erledigen,
wo die optische Orientierung beliebig, aber gegeben!) ist.
Man hat ohne weiteres

R,,—a%a2+b*B2+ cty?
Rg~ata.a. 108 B, 1 iy v,
R=—afa2+bi g2 +chtyl, -
Die Determinante dieses Systemes ist \
of Bt 7 of+Bityt B vi| |} BT 7

o0y 8,85 717s|= a1a3+/6’1183+7173 B85 7,7s| =10 8.8, Tils ™
o 8% 7 a}+83+tys B 75 I 8% 73

=B8.8,7: = B3, 7st By 75— BBV =8,y (Bivs— Buya) +
+ 8,71 81 ys— Bs7) = (8175~ Bs7:) (Bsys+ Biyi) =0,0,7,

1) Th. v. Liebisch, N. Jahrb, f. Mineral. 1886. I Seite 23.

M. Born, N. J. f. Min. B. Bd. 5 (1887) Seite 40.

Dem § 48 gegeniiber wird hier vorausgesetzt, daB es bekannt
sei, mit welchen kristallographischen Achsen die einzelnen optischen
Symmetrieachsen zusammentfallen. Dadurch wird aber nur eine rech-
nerische, nicht aber eine sachliche Vereinfachung erreicht.
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und darum sicher von null verschiedén, wenn die y-Achse
auf keiner optischen Symmetrieachse senkrecht steht. Grund
fiir das Verschwinden der Determinante ist der, daBl in allen
diesen Fillen wenigstens eine optische Symmetrieachse in
die zx-Ebene zu liegen kommt, so daB der Winkel ¢ zum
vorneherein gegeben ist. Es verbleiben demnach nur noch
zwei unabhidngige Beobachtungsreihen, die natiirlich zur
Bestimmung der drei Unbekannten nicht hinreichen.

51. In Kiirze sei noch auf die Verwendungsméoglichkeit
der Methode im Falle optisch einachsiger Kristalle aui-
merksam gemacht.

Setzt man a=b=o0 und c=e (wobei allerdings die
Annahme a>b > ¢ ganz dahinfillt, indem o ebensogut groBer
wie kleiner als e sein kann), so kommt

dji = (OC12 + ﬂig) 0° ‘}"7’12 e’
aix = (ejox + Bi Bk) 02 + iy €2
Wegen der Identitdten
o+ 8+ yif =1

oo+ Bifk + yiyr=0
kann die Gleichung VII des Indexellipsoides auf die Form
[o*d(e® —o®o2] x5 0¥ [ef—0Y vi] ¥ | o*F (et 0% p2 ] 2
T2(e* —0%)y,y, Xy +2(e* — 0%y yy yz + 2(e* — 0%y, 2x =1
gebracht werden, aus der die Ausnahmestellung der optischen
Achse allen anderen Richtungen gegeniiber deutlich wird

Zugleich ergeben sich fiir die Polarisationskonstanten die
Werte :

und wegen

a;, —o?+ (=07 g
a,, =0%+(e? — 0?)y2

Es sind nun zwei wesentlich verschiedene Probleme zu
unterscheiden. |
1) Die kristallographische Orientierung des
Prismas, welches zur Bestimmung der optischen
Konstanten dienen soll, ist unbekannt und un-
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bestimmbar. Zur Ermittlung von e und o (und der Lage
- der optischen Achse) geniigen die Gleichungen XIb und Xlec.
In der Tat, da die vier den Grenzilichen parallelen Wellen-
ebenen (q,q, und q',,q’,) zweimal den Wert o ergeben, so
kommt mit Riicksicht auf die eben gefundenen Werte der
Polarisationskonstanten :

(e* — o) y2=R,, — o* a)
(e*—0%y3 71 =Ry b)
(e? —o?) y, ¥, cos'—(e? — 0%y, 7, sml"— Ry ¢)

Aus 4) und ¢) bekommt man
7,_Ry cos I'— R,

/ R, sinl"
und aus @) und &)
- Ys_ Ry
7y R,—0o?
und damit wegen der Identltat
| y: 1
+%+h 75

die beiden Losungen
Yo 70 ¥s UNd — 7y, —y5 — ¥y,
welche mit Hilfe etwa der Gleichung ) den eindeutigen Wert
ph=gk
liefern. Da o® bereits bekannt ist, folgt daraus unmittelbar eZ,
Die iibrigen drei Gleichungen von XIb und Xlc dienen
zur Anwendung der Ausgleichungsrechnung.

2) Die kristallographische Orientierung des
Prismas ist bekannt. Zur Bestimmung von o und e
geniigt die Beobachtung von q, und q,. & =¢ und s,=¢+7/2
lassen sich aus y,,y, und 5, berechnen. Man kennt darum
die Schwingungsrichtung von o zum vorneherein und kann
somit leicht entscheiden, welcher der beiden Werte q, und q,
der ordentlichen Wellengeschwindigkeit entspreche. Da ferner
| a,, Ta,=20"+(e*—o%) (yi+y3)=qi+d}

8o ist
| qi+q;—20*

yity}?

e2— o —

Das Problem ist also erledigt.
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Ubrigens hat schon Th. v. Liebisch?) gezeigt, daB die Haupt-
lichtgeschwindigkeiten eines einachsigen Kristalls mit Hilie
eines Prismas beliebiger Orientierung gefunden werden kdnnen.

52. Anhangsweise sei noch die in § 40 erwihnte Tatsache rech-
nerisch untersucht. Zu dem Zweck sollen zwei Sitze bewiesen werden.

1.Satz: Die absoluten Werte von a; (ay, a3, a3) liegen
zwischen null und (a2—c?):2. DaB a;, verschwinden kann, ist
leicht ersichtlich, geniigt es doch, daB z. B. das xyz-System mit dem
£nl-System zusammenfalle. Es eriibrigt somit noch der Beweis, daB
{a?—c?):2 die obere Grenze von a;, ist.

Mit Riicksicht auf die zweite Gleichung des Systems XIb laBt
sich das Bildungsgesetz der a;, (i+k) leicht erkennen. Darnach wird,
falls der besseren Formulierung wegen

ap=2a; (i+j+k=1,2,3)

gesetzt wird, — wodurch die Beziehung zu einer bestimmten Achse
des xyz-Systems besonders hervortritt — a; bestimmt durch die Differenz
der Geschwindigkeitsquadrate und die Azimute des Schwingungs-
zustandes jener Wellen, die sich parallel der x-, y- oder z-Achse fort-
pflanzen (j=1, 2 oder 3). Bei gegebener Lage der j-Achse kann das
Azimutder dazu senkrechten i- und k-Achse, auf welche die Schwingungs-
trichtungen bezogen werden, sich noch beliebig indern.

2 15 T
== (Qj — )-sm £ COS &
setzt sich darum aus den véllig unabhingigen Faktoren ;> — q? und
sine cose zusammen. Der maximale Wert eines solchen Produktes ist
aber gleich dem Produkt der maximalen Werte seiner Faktoren, d. h.
Max a;, — Max (q}z— qurz) - Max sin g, cose;,.
Der erste Faktor hat den selbstverstindlichen Wert a2—c2, wahrend

der zweite Faktor sein Maximum fiir e=(4n+1)-2/4 erreicht. Es
kommt somit

a2— c?
"
Der hiernach bewiesene Satz erlaubt bereits eine Anwendung

auf das in Rede stehende Problem. Es ist nimlich der Zihler von ayg
gegeben dlirch

Max a;, —

ap3 + 431 = P13 Rg3 — Qo
Bedenkt man, daﬁ fiir den maximalen Wert von ay; der Wert von ag,
verschwindet, was mit Riicksicht auf die Werte «;= y, = 8, = 83 =0 sofort
begreiflich ist, so folgt, daB der maximale Wert von P53 Rg3— Qs sicher
kleiner ist als das Produkt der maximalen Werte von ay und 331; d. h.

a2 — ¢c2)2
PiaRg3— Qs [ < “(*"T)—

1) In der mehrfach erwdhnten Arbeit im N. Jahrb. . Miner. 1886 1. 14.
5



Es 148t sich aber noch eine schirfere Grenze finden, da ein weiterer
Satz besteht. | |
2. Satz: Der absolute Wert von a 3-a, liegt zwischen
null und (a2—c2)2:8.
Mit Beriicksichtigung der Bedeutung von a;3 und a,; sowie der
sechs unabhingigen Gleichungen zwischen den neun Richtungskosinus
des Schemas I wird | a;3- ap3| Maximum, wenn dies der Fall ist fiir

atwyagcl +bh g By +cty, yav3 + a2 b? (eqag By B + ag g By f) +
+b2c2 (8383 y3y1 T 72v3B3hy) T cBa(yaygagey Hezagygyy) +
+ky (ey@g + 8182 Ty172) T Ko (gag + B9 83+ va v3) + K3 (agey + 8381 T ¥371)
+ky (o + T+~ DF b (GH B+ — D) ke (G + 45 +75— 1)
Hieraus bildet man durch partielle Differentiation nach den neun
Richtungskosinus folgende Gleichungen:
A, =at azag +a2b? agByBs +c2al yyyzay + Ky ag +Kgag+2ky ey =0
A, = a4ala3 a2b2«gB 3 t+c2aygy gtk +kyag+2ksay=0
Ag=2atajayag + a2 b2 (agfy 3+ @82 83) T c2a? (yy 730y +eyy3y) T koag +
tkye; +2kgag=0
= bt ﬂaﬂs +a?b2agugfy b2 ypy383 T ki + kB3 +2ky 5y =0
Ba =b4 g5+ atbagey Byt b2 Byygy; +ky Byt Ky Byt 2Ks B3 =0
Bg =2b44,6383+ a2b2(agagfy +agay fo) +b2C2 (Bayg vy +72738:) T kg 3+
+kyp, +2 kg B3 =0
C, =chyay;tb2c?pypsystctatagegys t Ky yatkyys+2kyy, =0
Co=Cly y3+bBc2ygps8; +c2a yyagay +ky 9+ Kyys+2Ks =0
Cg =2cty 73yg+ bEcE (82371 vaBsfy) T c2 a2 (ypegey T agagy,) thyyp +
+k3y;t2kgys=0
Mit Hilfe der Orthogonalititsgleichungen beweist man leicht, da8
nachstehende Identitidten gelten.
ay Ay +4 B +y G = s aggt+2k;=0
wg Ayt By Bl +y, Gy = a5+ k; =0
ag Ay + By By +y3 Cy =agz 253 + k3=10
e, Ag+ 8, Byt ngafs+kl=0
ag Agt 83 Byt y9Cy=ajgag+2ky=0
ag Ayt A3 By ty3 Ca=agga;3+ke=0
@y Agt+ 8 B3ty Cs=a3a;31a;, 237 k3=0
ay Agt+ 3Byt 7, Cs=ag a3t apag+k;=0
wg Ag T A3 By +y;C3=2a3a,3+2ks=0
Diese neun Gleichungen gestatten, die k; als Funktionen von a, b, c,
a;, 8; und y; zu berechnen und liefern iiberdies drei von k; unabhéngige
Beziehungen, die mit den sechs Orthogonalititsgleichungen jene Werte
von «;, 8;, v; (i=1,2,3) zu finden erlauben, fiir welche

l Ay 323}1 = Max. .
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Die neun soeben genannten Gleichungen sind folgende:

az=aj (=—k)
agg 87 = Agg a3y 1 ay9 Agg (=—ky)

. 3223 333 = ay; a3 T 259 23 (=—ky)
o A+ yi=1
e o BB T i v =0 -
Die erste Gleichung zerfillt in die zwei linearen Gleichungen

Apg = dg, | gz = — agyy
mit deren Beriicksichtigung aus den iibrigen folgt:
a3 (ag3 — agg) = a;p Ay3 a3 (agg — agp) = — a;9 453
a;3'(agg —ay;) =ajpay3 | a3 (agg —ay;) =— ayp ay3.

a
agg=ag =0
jedenfalls nicht die extremsten Maxima und Minima von ag, ag

ergeben, so kann man an Stelle der obigen drei ersten Gleichungen
folgende zwei Systeme setzen.

A. ap3 = agy B. a9 = — gy
Agg — dgg = Ay9 dgg — dgg = — a4
agg —aq; = ajg dgg —ady = — Ay

Zur Auflésung der Gleichungen diirfte es sich empfehlen, die
geometrische und physikalische Bedeutung der Polarisationskonstanten
heranzuziehen.

Im Falle A wird man ohne weiteres bemerken, daB a,; = a,y, ags
und ayg=ag; jene Konstanten sind, welche in den Gleichungen der
Schnittellipsen des Indexellipsoides mit dem beiden Achsenebenen

y=0 und x=0
auftreten, denn wegen Gleichung VII schreiben sich diese Ellipsen-
gleichungen ohne weiteres in der Form

au X2+2a13 Xz+a33 22= l
Agg y2+2323 yz+a3322== 1.

Diese beiden Ellipsen sind den Beziehungen A zufolge gleich und
konnen zur Deckung gebracht werden, falls die xz-Ebene soweit um

die z-Achse gedreht wird, bis +x mit +y zusammenfillt. — Sie sind
also symmetrisch nach der Ebene .
X—y=0,

die mithin eine optische Symmetrieebene sein muf. In dieser Ebene
liegen zwei optische Symmetrie-
achsen; senkrecht dazu ist die

dritte. Es sind folgende drei  J&/- NS e/
durch die Figuren 5a, 5b und £ S A SN
5c erlduterten Fille denkbar, * = =

fiir welche das Schema I die Fig.5a Fig.5b Fig. 5¢

umstehende spezielle Form annimmt. Setzt man diese Ausdriicke,
5#
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welche den sechs Orthogonalitdtsbedingungen sowie der ersten und
der Differenz der beiden andern der Gleichungen A identisch ge-
niigen, in die dritte Gleichung, namlich
d3g — 411 = d19,
5T S
4 4

ein, so erhalt man

und findet fiir | agg agy | bzw.
(b2 — c2)? (a2 — c2)2 (a? — b2)2
8 8 8
Im Falle B bestimmen
a1 = agg, Agg, Apg=—dg _
wiederum die beiden Schnittellipsen des Indexellipsoides mit den Ebenen
y=0 und x=0. .
Ihre Gleichungen sind wie soeben
a;;x2+2a;3xz+aggz2=1
a50y2 +2a,3yz +aggz2=1.
Die hierdurch dargestellten Ellipsen sind wegen der Gleichungen B
ersichtlich gleich und gelangen zur Deckung, wenn die xz-Ebene
soweit um die z-Achse gedreht wird, bis + x mit — y zusammentillt, Sie
sind also symmetrisch beziiglich

- x+y=0. 5 . X
Méglich sind demnach nur fol- (>~ (o] /5 N 6
gende drei durch die Figuren 6a, W
6b und 6c dargestellten Orien- ' vy .
tierungen, fiir welche das Schemal Fig. 6a Fig.6b Fig.6¢

die auf der vorangehenden Seite zusammengestellten Formen annimmt.
Verfahrt man wie bei A, so berechnet sich abermals

bl 2

4 4
und fiir | agg ag, | kommt genau wie vorher
(b2 —c2)2 (a2 —c2)2 (a2 —b2)2
. ;

8 8 8
Einige numerische Beispiele mogen diese Formeln erldutern.
Tabelle 11
2.
a c _(a_-i)i!
8
Rhomb. Schwefel 0,51270 | 0,44632 |0,000507 |
Aragonit 0,65354 | 0,59316 | 0,000708
Gips 0,65771 | 0,65376 |0,000003
a« — Athylpyruvat-Hydrazon | 0,67264 | 0,53186 |0,003594

Diese Zahlen erkldren die Erfahrungen, die sich bei der numerischen Prii-
fungderauseinandergesetzten Methode unliebsam geltend gemacht haben.
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Experimentelle Priifung der im zweiten Teil
entwickelten Methode.

53. Die im zweiten Teil erlduterte Methode zur Bestimmung
der Brechungsindizes optisch zweiachsiger Kristalle wurde
an je einem Prisma von

Kupfervitriol, '

Colemanit und

Euklas |
gepriiit. Die dabei gewonnenen Erfahrungen sollen im
folgenden samt den erzielten Resultaten mitgeteilt werden.

54. Die Beobachtungen wurden mit Hilfe eines FueBschen
Goniometers Modell II ausgefiihrt. Als Lichtquelle diente
eine mit Helium gefiillte GeiBlerrohre, doch konnte auch im
giinstigsten Falle (Euklas) nur auf vier Linien eingestellt
werden: rot (668 wu), gelb (588), griin (502) und indigo (447).
Als Spalt wurde der Webskysche gewihlt, weil er die Schirfe
mit groBer Helligkeit verbindet. Wegen der geringen Zahl
von Linien konnte keine storende Ubereinanderlagerung der
Farben eines und desselben Spektrums entstehen.

5b. Bei den verschiedenen Ablesungen wurde im all-
gemeinen folgender Gang eingehalten. Nachdem das Prisma
zentriert, justiert und in jene Lage gebracht war, welche fiir
die Beobachtung des gebrochenen Lichtes geeignet erschien,
wurden der Teilkreis sowie die Achse des Kristalltrdgers fest-
geklemmt und die Fernrohrachse in die Verlingerung der
Kollimatorachse geriickt, um das Azimut des unabgelenkten
Spaltbildes zu ermitteln. Der groBeren Genauigkeit wegen
wurden Einstellung und Ablesung dreimal vorgenommen,
nachdem das Prisma zuvor aus dem Zentrum des Gesichts-
feldes entfernt worden war. Hierauf wurde die Prismen-
kante wieder mit dem Fadenkreuz zur Deckung gebracht,
sodann das Fernrohr herumgedreht, bis das an der Eintritts-
ebene reflektierte Spaltbild sich mit dem Fadenkreuz deckte.
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Diese Einstellung wurde zweimal vorgenommen. Nachher
wurde das Fadenkreuz der Reihe nach auf die einzelnen
Farben der beiden Spektra  (zuerst des weniger abgelenkten
und dann des stirker abgelenkten) von rot bis indigo und
dann zuriick von indigo bis rot eingestellt. Wenn sich dig
zwei durch Doppelbrechung erzeugten Spektra iiberlagerten,
wurden sie durch einen vor das Auge gehaltenen Nikol
unterschieden. Nach diesen Ablesungen wurde wieder eine
zweimalige Einstellung des reflektierten Lichtes gemacht, her-~
nach in der beschriebenen Weise neuerdings auf die beiden
Spektra eingestellt und das Fernrohr zum Schlusse, nachdem
das Azimut des reflektierten Spaltbildes vorher noch zweimal
abgelesen war, dreimal auf das unabgelenkte Spaltbild (bei
weggeriicktem Prisma) gerichtet.

56. Folgende Tabelle Ill, die dem Beobachtungsheit auis
Geratewohl entnommen ist, zeigt, welche Genauigkeit erzielt

Tabelle III.

| Reflekt. | Direkt. | He Abgelenkt. Spaltbild

20038, 299°30° | (ohgr, . (323021 | 017 | 02 | o1t

|38 29, (55313#) 087/,| 09 | 387, | 09
| : riin ;
38, 297, | 5020w | 19| 19% | 19% | 19%,

38t,| 30 (ﬂ‘;‘lﬁ;) 30/, | 30%), | 30, | 307/,

rot
383/4 297/, (668 ww) 203/4 200 | 20, 1 204

elb ; ;

| 38y 30 | (sBeu | 27| 27 | 27°, | 27%s
riin
AR
indigo

W47 ) | A8°1a| 49 | 49Y, | 49,
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werden kann. Bemerkt sei noch, daB bei der Ablesung die
Achtelsminuten geschitzt wurden. Die Teilung erlaubt be-
kanntlich die direkte Ablesung von halben Minuten. Viertels-
minuten konnen leicht geschitzt werden. Um aber genau
gine solche zu haben, miissen zwei aufeinanderfolgende Teil-
striche des Nonius so zwischen zwei aufeinanderfolgenden
Strichen des Teilkreises liegen, daB das Intervall zwischen
den beiden Strichen links gleich dem Intervall zwischen den
beiden Strichen rechts ist. Besteht ein merklicher Unterschied,
so wird mit Benutzung von Achtelsminuten eine groBere
Genauigkeit erzielt. '

57. Aus den Azimuten des reiflektierten, nicht abgelenkten
und abgelenkten Spaltbildes berechnen sich in einfacher Weise
die beiden Winkel i, und i,. Zur Berechnung von y und g
dienen die bekannten Formeln (die Bedeutung der Buchstaben
ist dieselbe wie friiher; vergl. auch Fig. 1)

r r r . I'+4 r+4
tg(;—rl):tg(ro—z)_—_tgmz—- tg(lo-——)cotg :

Die Rechnungen wurden tabellarisch angeordnet. Es geniige
ein beliebig gewéhltes Beispiel (Colemanit) mitzuteilen (vergl
Tab. 1V). Dabei soll ausdriicklich bemerkt werden, daB bei
den entsprechenden Messungen, abweichend von den Fest-
setzungen des § 34, die Eintrittsilache zur xz-Ebene

gewidhlt wurde. Sofern man sich ndmlich die Formel
r r, . ror+4 4

tg(ro— 5)-—=tg—2—tg(1o—-——)cotg

bedient, erzielt man bei dieser Stellung den groBen Vorteil,
daB die Berechnung von i, dahinfdllt und fiir die einzelnen
Farben der beiden Spektra einer Beobachtungsreihe q; (bei
Colemanit also 6 Werte) stets denselben Nenner hat, was beim
logarithmischen Rechnen eine nicht zu unterschédtzende Ver-
einfachung ist. Um aber bei den einmal abgeleiteten Formeln
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bleiben zu kdnnen, wurde, wenn die Eintrittsiliche als xz-Ebene
diente, der ganze Kristall um eine zur brechenden Kante
senkrechte Achse gedreht gedacht, so daB die positive Rich-
tung der z-Achse von oben nach unten lief.

Tabelle 1V. Rechnungs-Schema.

rot gelb griin - rot gelb griin
| | ] ! |
6!‘07” 9'5 IH o 5’38" 6!28” 9' l 9”
A 2230 39’ 23"(2230 45’ 30" (2230 55' 21”|2230 49’ 43" 2230 56/ 11”|2240 05' 30"
D 2030 59’ 50”2030 59’ 50”2030 59’ 50’2030 59’ 50”2030 59’ 50"'|2030 59" 50"
A 190 39’ 33”7| 190 45" 40" 190 55' 31| 190 49’ 53" 190 56' 21| 200-05' 40"
r 280 21’ 29"| 280 21’ 29| 28021’ 29”| 280 21’ 29| 280 21’ 29"| 280 21’ 29"
r+4 480 01 02| 480 07’ 09”| 480 17' 00| 480 11’ 22"| 480 17'50"| 480 27' 09"
Pl |
T, | 24000317 24003 357| 240 08' 30"| 240 05' 41"| 240 08' 55| 240 13' 35"
iy 450 31" 17| 450 31 17| 450 31" 17| 45031’ 17| 450 31' 17"| 450 31’ 17"
. It+4
g ———— 21030/ 46"| 210 27 42"| 210 22 47"| 210 25' 36| 210 22' 22"| 210 17' 42"
304" 455" —2'49” 314" 440
logtg - | 94025183 | 9,4025183 | 9,4025183 | 9,4025183 | 9,4025183 | 9,4025183
:  I41y| 9,5953975 | 9,5942851 | 9,5924263 | 9,5935423 | 9,5924263 | 9,5905617
°gtg(‘°“ > ) 2840 2508 | 2916 2229 1365 2614
8,9981998 | 8,9970632 | 8,9952362 | 8,9962835 | 8,9950811 | 8,9933414
log to [T 1| 96485831 | 9,6496023 | 9,6512074 | 9,6502809 | 9,6512974 | 9,6529881
ok - 1756 1980 1693 2317 3103 1969
logtg(ro_;) 9,3494411 | 9,3472629 | 9,3437695 | 9,3457709 | 9,3434734 | 9,3401564
3290 69494 3578 552 3578 | 397391
1121 3135 4117 157 1156 4173
,
o~ 120 36" 11"| 120 32' 31"| 120 26’ 41”| 120 30’ 01" 120 26' 11| 120 20’ 41"
I" &
= 140 107 45”| 140 10 45”| 140 10’ 45”| 140 10’ 45”| 140 10’ 45"| 140 10’ 45"
Iy 260 46' 56"| 260 43' 16260 37" 26""| 260 40’ 46""| 260 36' 56"| 260 31' 26"
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(Fortsetzung der Tabelle IV.)

rot gelb griin rot gelb griin

9,9507138 | 9,9509685 | 9,9513492 | 9,9511590 | 9,9513492 | 9,9517282
log cos 269 ., + 42 — 170 —1375 — 487 + 42 — 273
9,9507180 | 9,9509515 | 9,9513217 | 9,9511103 | 9,9513534 | 9,9517009
log cos226.. | 99014360 | 9,9019030 | 9,9026434 | 9,9022206 | 9,9027068 | 9,9034018
1 899 392 05 | 39%
49 35 42 01 24 25
sin2 y 0,796959 | 0,797817 | 0,799178 | 0,798400 | 0,799294 | 0,800575
96538084 | 9,6528059 | 9,6512966 | 9,6520521 | 9,6512966 | 9,6497807
log sin 260 . . . 18T + 669 1092 1928 =168’ 1097
9,6537917 | 9,6528728 | 9,6514058 | 9,6522449 | 9,6512798 | 9,6498904
log sin2269.. | 9,3075834 | 9,3057456 | 9,3028116 | 9,3044898 | 9,3025596 | 9,2997808
16 382 76 690 474 687
18 14 40 208 122 121

cos? iy 0,203041 | 0,202183 | 0,200822 | 0,201600 | 0,200706 | 0,199425 .
log 2 0,3010300 | 0,3010300 | 0,3010300 | 0,3010300 | 0,3010300 | 0,3010300
logsiny | 9,9507180 | 9,9509515 | 9,9513217 | 9,9511103 | 9,9513534 | 9,9517009
logcosy | 9,6537917 | 9,6528728 | 9,6514058 | 9,6522449 | 9,6512798 | 9,6498904
9,9055397 | 9,9048543 | 9,9037575 | 9,9043852 | 9,9036632 | 9,9026213
68 07 2 o1 596 174
29 36 3 51 36 39
2sinycosy | 0,804525 | 0,803257 | 0,801231 | 0,802389 | 0,801057 | 0,799137
logsinr | 9,6537917 | 9,6528728 | 9,6514058 | 9,6522449 | 9,6512798 | 9,6498904
logsini | 9,8534013 | 9,8534013 | 9,8534013 | 9,8534013 | 9,8534013 | 9,8534013
logq - 9,8003904 | 9,7994715 | 9,7980045 | 9,7988436 | 9,7978785 | 9,7964891
log g2 9,6007808 | 9,5989430 | 9,5960090 | 9,5976872 | 9,5957570 | 9,5929782
769 327 30 42 497 57
39 103 60 30 73 25
q? 0,398824 | 0,397140 | 0,394465 | 0,395993 | 0,394237 | 0,391722

58. Bei der Berechnung von sin2y, 2siny cosy und cos2y ist
zu beachten, daB derjenige Wert von 2siny cosiy, welcher mit Hilfe
der Logarithmen von siny und cosy gefunden wird, fiir ein gewisses
Intervall des Argumentes v im allgemeinen verschieden ist von dem-




, — 75 —

jenigen Wert, der sich dadurch ergibt, dafi das Produkt der Zahlen-
werte von sin?y und cos?y radiziert wird. Zur Erlduterung mogen
die beiden in der Tabelle V zusammengestellten Beispiele dienen. In
den beiden ersten Kolonnen sind die Logarithmen der in Betracht
kommenden trigonometrischen Funktionen und ihrer Quadrate hin-
geschrieben; die drei folgenden Kolonnen enthalten die auf Grund dieser
Logarithmen gefundenen Werte von sin?y, cos2y und 2siny cosy,
widhrend in der letzten Kolonne die aus den hingeschriebenen sechs-
stelligen Werten von sin?y und cos2y berechnete Grofie von 2 siny cos v
vermerkt ist.

Tabelle V.
Y log siny log cos - sin2y cos2y 2siny cos Y| 21/ sin2 1 cos? y
: log sin?y | log cos?y ,
joff 8,2418553 | 9,9999338 0,000305 | 0,999695 | 0,034899 0,034923
6,4837106|  9,9998676
40| 8,8435845 1 9,9989408 0,004866 | 0,095134 | 0,139173 0,139173
76871690 |  9,0978816

Die Ungleichheit der Zahlen der beiden letzten Kolonnen fiir
¥ =10 ist ebenso augenfillig wie ihre Ubereinstimmung fiir v = 49.

Der Grund fiir dieses eigenartige Verhalten liegt darin, dal bei
der logarithmischen Berechnung von 2sin 1) cos v im Falle von =10
fiir sin2y der Wert
0,304586

1000
in Betracht gezogen wird, wahrend im zweiten Fall sin219=0,000305
zur Geltung kommt. Demnach ergibt bei der logarithmischen Rechnung
sin2y cos2y einen Bruch mit dem Nenner 1000, dessen Zihler ungefdhr
um 4 Einheiten der vierten Dezimale kleiner ist wie im Fall, wo
sin2 10 = 0,000305

gesetzt wird. Inwieweit dieser Unterschied das Endresultat beein-
fluBt, kann aus der Formel

d@eVax) — \/
Wird darin

8in2 10 =

2 . dx
x

abgeschitzt werden.

x = 0,304586
0,999695
T und
dx = 0,0004

gesetzt, so ergibt sich fiir die Variation des fraglichen Ausdruckes
d 2V a x) = 0,000023,

was mit der Diiferenz der beiden in der Tabelle aufgefiihrten Werte
bestens iibereinstimmt., Der richtigere Wert von 2 siny cos v ist selbst-
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verstindlich der aus den Tafeln gefundene und nicht der nach der
anderen Methode berechnete.

Fiir y — 49 wird die Ubereinstimmung der beiden Werte aus dem
Grunde so vollkommen, weil sin240?=0,00486597 von dem bei der Rech-
nung verwendeten (=0,004866) nur um ca. 0,000003 - 10~ verschieden
ist. Verfahrt man wie soeben, so ergibt sich der Fehler im ganzen
zu ca. 0,0000005. Natiirlich spielt hier das giinstige Zusammenwirken
der Umstiande wesentlich mit, da im ungiinstigsten Fall der Fehler
ungefdhr sieben Einheiten der sechsten Dezimale ausmachen miifite.

59. Am umstidndlichsten war die Beobachtung jener
Wellen, deren Ebenen im Kristall den Grenzilichen parallel
sind. Solange es sich nur darum handelt, die Ablenkung usw.
(also q und ) festzustellen, ist es natiirlich bei weitem das
Einfachste, wenn man die Grenzebene, zu der die Wellen-
ebene parallel sein soll, senkrecht zur Kollimatorachse stellt.
Das bietet keine Schw1er1gke1t. Bestimmt man namlich bei
festgeschraubtem Teilkreis und Kristalltriger die Azimute des
reflektierten und des nicht abgelenkten Spaltbildes, so gibt
die Halbierende des Nebenwinkels der Fernrohrstellungen fiir
das reflektierte und direkt durchgehende Licht die Flichen-
normale an, die man durch Drehung des mit dem Kristall-
triger verbundenen Teilkreises um den berechneten Winkel
leicht in die Verlangerung der Kollimatorachse bringen kann.?)
Indessen ist diese Anordnung nicht geeignet, um den Schwin-
gungszustand der zur Austrlttsilache parallelen Wellenebenen
zu untersuchen.

Zum Zwecke dieser Bestimmung wurde urspriinglich
die Austrittsebene senkrecht zur Fernrohrachse gestellt (mit
Hilfe von Manipulationen, die den soeben erwihnten voll-
stindig entsprechen) und dann das Fernrohr samt dem mit
dem Kristalltriger festverschraubten Teilkreis soweit gedreht,
bis das abgelenkte Spaltbild in der Mitte des Gesichtsfeldes
erschien. Die erforderlichen Operationen sind aber sehr um-
stindlich und zeitraubend, da es nur durch vielfaches Probieren
und Ablesen gelingt, das genannte Spaltbild derart mit dem
Fadenkreuz zur Deckung zu bringen, daB Teilkreis und Fern-
rohr in der bestimmten gegenseitigen Lage sind. Man kann

1) Vergl. v. Groth, Physikalische Krystallographie 4. Aufl. Seite 694.
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aber in etwas anderer Weise verfahren, um die gewiinschte
Einstellung mit jeder beliebigen Genauigkeit zu erzielen.
Hierzu dreht man das Fernrohr zuerst so, dafl seine neue
Lage zur alten symmetrisch ist beziiglich der verldngerten
Kollimatorachse (Drehung = 2 4). Hierauf dreht man das
Prisma, welches mit der Eintrittsifliache senkrecht
zur Kollimatorachse steht, samt dem Teilkreis, um
180°+ 4 (je nach dem Drehsinn), wihrend das Fernrohr fest-
geklemmt bleibt. Durch diese beiden Drehungen sind Kolli-
mator und Fernrohr sozusagen vertauscht worden, wogegen
infolge der Umkehrbarkeit der Lichtwege die Richtung der
Lichtausbreitung in bezug auf das Prisma (vom Fortpflanzungs-

sinn abgesehen) unverdndert geblieben ist. War also das
An Hand der Fig.7 kann man sich c
3
die Richtungen der Kollimator- bzw. Fern- ‘\‘h
so wird OC mit OF, AOB mit AOB" und  Fig7

Fernrohr anfinglich auf irgendein Spaltbild eingestellt, so
wird es auch in der zweiten Lage richtig eingestellt sein.
hiervon leicht vergewissern. Sei AOB die

Anfangsstellung des Prismas, OC und OF

rohrachse. Bringt man letztere mit der “
Richtung OF' zur Deckung (FOF'=2 4) und B
dreht dann das Prisma bei festgeklemmtem

Fernrohr in der Pfeilrichtung um 180°— 4, '

OF mit OC zusammenfallen, d. h. es ist als ob in der Tat
Fernrohr und Kollimator ihre Rollen vertauscht hitten.!)

60. Zur Bestimmung der Schwingungsrichtungen dieser
zur Austrittsfliche parallelen Wellenebenen wurde auf den
Kollimator (zwischen Lichtquelle und Spaltéiinung) und das
Fernrohr (zwischen Auge und Okular) je ein Nikol aufgeklemmt,
dessen Drehung an einem gridBeren Teilkreis mit Hilfe eines
Nonius auf Zehntelsgrade genau abgelesen werden konnte.
Der Nikol vor dem Kollimator diente dazu, das einfallende
Licht so zu polarisieren, daB das eine der beiden Spektren

) Dafl diese Einstellungen wesentlich erleichtert wiirden, falls
auch der Kollimator beweglich wire, ist unmittelbar verstindlich.
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(zur Vermeidung storender Lichteindriicke oder Uberlagerung
der beiden Spektra) verschwand.

61. Die wichtigste Arbeit vor Gebrauch des Analysators
war die Orientierung seines Teilkreises in bezug auf die
Drehachse des Instrumentes (z-Achse). Dazu dienten zwei
natiirliche Kristallprismen von Apatit und Euklas. Bei dem
Apatitprisma war die brechende Kante parallel der optischen
Achse, die Schwingungsrichtungen des austretenden Lichtes
also horizontal und vertikal. Die Austrittsebene des Euklas-
prismas war eine Fliche aus der Zone der Orthohemidomen,
wihrend die brechende Kante im Klinopinakoid lag. Da der
Kristall iiberdies so auigestellt war, daB die Normalen der
austretenden Wellenebenen auf der Austrittsfliche senkrecht
standen, waren ihre Schwingungsrichtungen ebenso wie beim
Apatitprisma horizontal und vertikal.

Die FEinstellung auf maximale Dunkelheit gab keine
giinstigen Resultate ; es erschien vielmehr angezeigt, den Nikol
einmal rechtsherum und nachher linksherum so weit zt1 drehen,
bis die Sichtbarkeit des Spaltbildes praktisch verschwand.!) Die
Beobachtungsdaten mogen hier folgen. Es verschwindet die

schnellere langsamere
Welle bei

Apatit 1 137,90° 138,60°  228,05° 228,50°
138,50 138,60 228,40 22860

138,60 138,00 228,00 228,20

Apatit I 138,65 138,90 228,30 228,65
138,15 138,80 22855 22835

138,40 138,75 228,25 22815

Euklas 1 22845 228,75 137,95 138,65
228,60 22855 138,25 138,50

, 22820 228,65 138,15 138,15
Euklas 1I 228,00 ° 228,60 138,70 138,10
228,35 228,55 138,00 138,35
228,35 228,45 137,95 138,65

1) Es war die Vorsorge getroffen, da8 maoglichst wenig Neben-
licht in das Fernrohr eindrang. Die Spaltbilder erschienen darum auf
einem dunklen Hintergrund, so dafi das Verschwinden mit verhaltnis-
miBig groler Genauigkeit festgestellt werden konnte.
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Die zweiten Beobachtungsreihen wurden einige Tage spiter als
die anderen gemacht, nachdem inzwischen die Schwingungs-
azimute der drei Kristalle, an denen die Methode erprobt
werden sollte, bestimmt waren.

Die Mittel obiger Versuche sind:

Apatit [

Apatit Il
Euklas |

Euklas Il

138,33° + 0,219

138,40 + 0,200
138,40 + 0,144
138,82 + 0,044
138,12 + 0,088
138,43 + 0,148
138,22 + 0,242
138,37 +0,159

228,15° 4 0,126
228,43 + 0,120
228,37 + 0,093
22838 +0,145
228,42 +0,117
228,65 + 0,058
22823 +0,117
22853 + 0,045

Diese Zahlen zeigen zunichst, daB der Analysator wihrend
der Versuche seine Stellung nicht dnderte. Ferner zeigen sie
die fast unerwartet genaue Bestimmungsidhigkeit dieser
Schwingungsazimute. Die den einzelnen Mittelwerten bei-
gefiigten Fehler sind ndmlich die sogen. mittleren quadrati-
schen Fehler des Mittelwertes. Zu ihrer Berechnung be-
stimmt man zuerst den Mittelwert, sucht hierauf den Fehler
jeder Beobachtung, dividiert die Summe ihrer Quadrate
durch n(n-—1), falls n die Anzahl der Beobachtungen be-
deutet, und zieht die Wurzel. Symbolisch schreibt man

M=-\/ [ee]
nn—1)

Ahnlich wie die BeobachtungsgrioBen zu Teilmitteln
vereinigt wurden, konnen sie auch zu einem Gesamtmittel
zusammengefalft werden. Man findet

138,3854° + 0,0635 228,3958° + 0,0442.

Die geringe Abweichung von der theoretisch geforderten
Differenz der beiden letzten Zahlen ist beachtenswert!

Bedenkt man, daB jede Beobachtung der einen Reihe fiiglich
auch als Beobachtung der anderen Reihe gedeutet werden kann,
falls man 90° addiert oder subtrahiert, so kommt endgiiltig

138,3906°
228,3906° } 4505
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so daB die Ungenauigkeit kleiner wie 2!/, Bogenminuten
wird.

Diesem Ergebnis zufolge verschwindet beim Apatitprisma
die schnellere Welle bei der Nikolstellung 138,39° die lang-
samere bei 228,39°. Die Doppelbrechung des Apatit ist
negativ, d. h. @ > ¢, die schnellere Welle ist daher die auBer-
ordentliche, ihre Schwingungsrichtung im vorliegenden Fall
also parallel der brechenden Kante, d.h. vertikal. Vertikal
schwingendes Licht wird demnach vom Analy-
sator nicht durchgelassen, wenn er auf 138,39°
eingestellt ist. Der Nullpunkt fiir die Zdhlung der
Schwingungsazimute ist darum 228,39°.

62. Es eriibrigt noch ein Wort iiber I, d. h. den brechenden Winkel
des Prismas, der in dreifacher Hinsicht bedeutungsvoll ist. Zunichst
kommt er bei der Ermittlung der Rix und R'ik in Betracht, weil die der
Eintrittsebene parallelen Wellenebenen an der Austrittsfliche total
reflektiert werden, sobald

sin I'> q

(wo q wie friiher die Wellennormalengeschwindigkeit bezeichnet). In
der folgenden Tabelle VI sind unter I'm die den dariiber geschriebenen
Werten von q entsprechenden oberen Grenzen von I' eingetragen, unter
der Voraussetzung, daB es sich um isotrope Prismen handle — eine
Annahme, die keine Beschrinkung bedeutet, da es ja nur darauf
ankommt, einen Einblick in die Gro8enordnung der auftretenden
Winkel usw. zu geben.

Tabelle VI
q 0,40 0,45 0,50 0,55 0,60 | 0,65 0,70 0,75
5
I'm

23034’ 417126044’ 37'"|130000' 00133022’ 01"(36052' 12"{40032" 30"|44025' 37'"|48035' 25"

Wie sich spiter zeigen wird, spielt zweitens der Prismenwinkel
eine nicht zu unterschitzende Rolle bei der Bestimmung von Py,
und Py, von denen insbesondere die letztere GroBe genauer wird,
wenn es moglich ist, die Beobachtungen bei solchen Einfallswinkeln
vorzunehmen, daB8 einem nicht zu kleinen Koeffizienten von P;; ein
ungefdhr gleich grofler mit dem umgekehrten Vorzeichen entspricht.
Nach Gleichung X ist dieser Koeifizient gegeben durch 2 g2 sin v cos -
Die genannte Forderung ist also im wesentlichen erfiillt, wenn es
gelingt, fiir 1 solche Werte zu wihlen, daB 2 sin vy cos ¥ moglichst
groB wird, sowohl nach der negativen wie nach der positiven Seite.
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Hat der Prismenwinkel den vorhin genannten Wert I'm, so variiert, wenn'
vom Bewegungssinn des Lichtes abgesehen wird, v zwischen #/2 — I'm
und /2, falls man stetig von streifender zu senkrechter Inzidenz iiber-
geht. Wird aber der Prismenwinkel I" verkleinert, so erfolgt der
streifende Austritt erst fiir y = I'm — I'+2/2. Es gilt daher die Doppel-
uangleichung

2 By £ £ [iw=T¥—
2 - 2

Solange Im — I'< 450 ist, wichst der maximale Wert wvon
2sin 1 cos vy, absolut genommen, mit dieser Differenz und ist gleich
—s8in2 (I'm—I'). Die extremen Werte dieser Funktion sind in Tabelle VII
eingetragen unter der Voraussetzung, daB der Prismenwinkel I" der

Reihe nach 50,100, 150 und 20° kleiner ist wie sein groSter Wert I'm.
Tabelle VII.

I'm—T 59 100 1590 200 L

!
Extr. 2sinw cosw | —0,173648 | —0,342020 | — 0,500000 | — 0642788

Einen gleich groBSen positiven Wert von 2sin ¢ cos i zu finden,
wird im allgemeinen keine Schwierigkeit machen,

Es ist jedoch zu beachten, daB fiir Werte von vy, welche kleiner
sind als der dem Minimum der Ablenkung zugeordnete, die Breite
des Spektrums sich schnell verringert und bald so klein wird, daB ein
unscheinbarer Einstellungs- oder Ablesungsfehler den Wert von q
wesentlich zu beeinflussen vermag. Anderseits nimmt mit wachsendem 1
die Breite der Signalbilder rasch zu, so dal wegen der Verzerrung
und Verschwommenheit derselben eine genaue Einstellung abermals
erschwert wird. Diese beiden Umstinde haben zur Folge, daB man
sich den Grenzen

B eTm<y<lm—r+Z%
2 2
nie allzusehr ndhern kann.

In dritter Linie beeinfluBt I die Genauigkeit von ayg, wofiir sich
der Ausdruck

(42 — q7) sin¢ cose + a5 cos I’

A25 = .
sin I’
ergab. Angenommen, der mittlere Fehler » von (qF —q7) sinecos ¢
und a3 sei ungeldhr derselbe (hieriiber spidter mehr), so gibt die Aus-
gleichungsrechnung fiir den mittleren quadratischen Fehler von agg
den Ausdruck
n n \/1 + cos2 I’

sin ™
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Nun ist

d (\/l+cosﬁf)__ 2cos I

ar sin 7 sing 7V'1 + cos? I'

notwendig negativ, d. h. der mittlere Fehler von ay; nimmt mit wach-
sendem Prismenwinkel ab. Der Anschaulichkeit wegen sind die
Werte von ‘
V1 +cos2r
sin I’
in Tabelle VIII {iir einige Prismenwinkel aufgefiihrt,
Tabelle VIIIL

r 45 40 35 30 25 20 15

V1 +cosI:sin " | 1,73205 | 1,95973 | 2,25371 | 2,64575 | 3,19340 | 4,01214 | 5,37182

Man erkennt aus den drei Tabellen VI, VII und VIII ohne weiteres,
daB namentlich fiir den zweiten Fall ein kleinerer Prismenwinkel vor-
teilhafter ist wie ein groBerer, wdhrend fiir den dritten Fall gerade das
Gegenteil zutrifft. Es hidlt deshalb &duBerst schwer, eine allgemein
giiltige Regel aufzustellen, um so mehr, als, wie bekannt, auch die
Genauigkeit der g-Werte durch den Prismenwinkel beeinflut wird.
So viel scheint aber nach den gemachten Erfahrungen festzustehen,
daB neben anderen Messungen auch solche vorzunehmen sind, fiir
welche cos?iy nicht allzu klein wird und die' Koeffizienten von Py,
entgegengesetztes Vorzeichen haben.

Nun sollen die Untersuchungsergebnisse der drei Kristalle

einzeln besprochen werden.

A. Kupfervitriol=S0,Cu-5H,0.
a:b:¢=0,5721:1:0,5554
a=82"5" B=107°8 y=102°41" (Barker!)

63. Fiir die Messungen diente ein Kristall, der unter
vielen selbstgezogenen als der geeignetste erschien. Die
Flichen der vertikalen Prismenzone waren daran meistens
glinzend, aber stark gerillt, Uber ihre nihere Lage und -
Beschaffenheit orientiert die nachstehende Ubersicht.

m (110) 220°59%/ Reilex gut

A (7120) 321°2% Schimmer

1) Vergl. Groth, Chem. Kristallographie II. 419.




w (110) 343°421);
a (100)

m (110) 41°10
b (010) 94°29
A (120) 141°56
w (110) 164°17
a (100) 195°35
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doppelt

16° 91/," gut, infolge der Politur (siehe unten)

etwas aus der Zone geriickt.
sehr breit
Schimmer
Schimmer
breit
sehr breit.

Die Richtigkeit der Auifstellung folgt aus der Gegeniiber-
stellung der gemessenen und der aus den Parametern berech-
neten!) Winkeln.

gemessen berechnet
(100):(010) 101° 06’ 100°54'
(100):(110) 25°24%] ' 26" 07'
(110):(110) 56° 423/, 57° 16’
(110):(110) 122°42%("  122°44
(100): (120) 5339’ 53°50'.

Das obere Ende des Kristalls ist ganz unentwickelt; am
unteren konnten die Flichen q und w durch folgende Mes-
sungen sichergestellt werden.

m (110) 185°59%/ } 04 83 0 A

o (1T1) 258° 131 72°13°]) 72°2 (berechnet)
m (110) 191"25‘/’2’} e

q (011) 309°45' 1187197,

Aus der letzten Messung berechnet sich
(110):(011)=61°40" '
wiahrend Barker 61°47 gemessen hat.

64. Als optisches Prisma dienten die Flichen (110) und(100),
von denen die letztere von der Firma Dr. Steeg & Reuter
poliert und dadurch, wie bereits in der Winkeltabelle bemerkt,
in ihrer Lage etwas verdndert wurde. Die Beschaiienheit
des Kristalls gestattet leider nicht, ihre genauere Lage zu
bestimmen. Fiir die Berechnung der Hauptlichtgeschwindig-
keiten ist dieser Mangel absolut belanglos, ergibt aber fiir
die Orientierung der Hauptschwingungsrichtungen eine gewisse

1) Vergl. Groth. Chem. Kirist. 1. c.
b*
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Unsicherheit. Beim vorliegenden Prismenwinkel, der
sich aus zwolf Messungen zu 24°52!/' fand, kann
sie in besonderen Fillen einen Betrag erreichen, der etwas
mehr wie doppelt so grof ist als die immerhin kleine
Abweichung der Fldche aus ihrer Soll-Lage.

656. Von den weiter oben genannten vier Linien des
Heliumspektrums konnten nur zwei erkannt werden, die
gelbe (588) und griine (502). Die Einstellung auf die erstere
bot im allgemeinen keine Schwierigkeit. Ebenso war die
griine meistens recht scharf und deutlich wahrnehmbar. Doch
ist zu bemerken, daB im Gegensatz zu jenen Wellenebenen,
‘welche ungebrochen aus der natiirlichen Prismenifliache
austreten, die aus der kiinstlichen Grenziliche ungebrochen
austretenden Wellenebenen auBerordentlich schwache und ver-
schwommene Spaltbilder erzeugten.!) Infolgedessen konnten
die q'; und ¢ und damit die R’y also auch a,; nicht mit groBer
Zuverlidssigkeit bestimmt werden. Allein mit Riicksicht auf
die bei der Bearbeitung des Zahlenmaterials verwendete Zeit,?)
wie auch im Hinblick auf die Zeitlage, welche die Beschaifung
eines neuen Prismas verunmoglichte, erschien es statthait,
sich mit der erreichten Genauigkeit zu begniigen, um so mehr
als die erzielten Resultate an der praktischen Verwertbarkeit
der angegebenen Methode keinen Zweifel zulassen.

66. Beim Kupfervitriol wurden fiir He- gelb (588) zu 17
verschiedenen Einfallswinkeln die zusammengehorigen Wert-
paare (im ganzen 34) von q und v bestimmt. Fiir He- griin
war die Bestimmung nur bei 14 Einfallswinkeln,moglich und
lieferte somit 28 Wertpaare von q und . In der Tabelle IX

1) Schuld hieran waren zwei Umstinde: einerseits mufte, um
ein einheitliches Signalbild zu erhalten, (110) grofitenteils mit Tusche
zugedeckt werden, und anderseits war auf der Kunstfliche (100) die
Politur einer Randstelle etwas angegriffen und darum weniger durch-
sichtig. Nun traf es sich, daB die Wellen, welche durch (110) eintraten,
beim genannten Austritt durch (100) (und nur in diesem Fall) die be-
schidigte Stelle passieren mubten.

2) Wie aus dem II. Teil, § 40, ersichtlich ist, wurden die
Schwingungsazimute der zu (100) parallelen Wellen erst nachtriglich

bestimmt.
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Tabelle IX.

¥4 7T p
5 2 ¥ q* (inte:}):liert) G

L ARIRN | 0435134 | o420811 |
240 33,066 0,420753

5 [ 24082280} o) 0,435062 | | 0420785 |
240 52 250 | 0420785

g [.21048000 | ] 0434236 | 0420412 |
210 26,462 0,420349

o, |aseasTie | .| 043303 | o200t |
o 190 29,234 0,420015

o |L.213776 | | 0429271 | 0419925 |
20 29458 0,419924

KX L 0428928 | 0419958 |
00 50,106 0,419955

7 | 0000000 | L 0,429096 | 0420216 |
o 0° 00,000 0,420216

g |Z.1004675 ) ... 0428562 | 0419983 | .
e — 00 47,846 0,419973

g | 2040086 |- 0428217 | 0420026 |
— 2022842 0,420030
— 4911,917 0.427880 0420045 |
AU aomager | T 0.420012

o 50 39,277 0,427586 0420149
11 | _5021,662 T e 0’420176

o, |mTeon7is || 0427284 | 0420070 |
— 60 43,557 0,420051

18 Do BOBTO | s e 0,42695¢ | 0420152 |
— 80 02,655 0,420133

4 |T12esvoss |l 0425833 | 0420004 |
—120 45,700 0,420001

I bt LN R T 0,425635 | 0420082 |
—130 48,959 0,420034

o | 14005393 | | 0425479 | 04199 |
o —130 59,762 0,419942

7 |T14042,069 & 0425364 | 0420002 |
—149 36,458 0,419994
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sind die Werte fiir He- gelb angegeben. Alle g>-Werte sind
auf 6 Dezimalen berechnet. Sie diirften aber kaum auf mehr
als eine oder zwei Einheiten der vierten Dezimale genau
sein. Beweis hierfiir sind z. B. die unregelmiBig zu- und
abnehmenden Werte der fiiniten Kolonne. Auch sei erwihnt,
daB die q*-Werte der siebenten Querreihe merklich aus der
Ordnung herausfallen, obwohl sie die Mittel von fiinf Be-
obachtungsreihen sind, die zu verschiedenen, mehrere Monate
auseinanderliegenden Zeiten angestellt wurden. Die vierte
Dezimale der q*-Werte ist also kaum mehr zuverldssig. Wenn
gleichwohl noch weitere Stellen berechnet und mitgeteilt
wurden, so geschah es, um einerseits die Ungenauigkeit der
vierten Dezimale durch die Abrundungsiehler nicht zu ver-
groBern (z. B. in der fiiniten Kolonne), andererseits um auf
Grund dieser ,,zufélligen Fehler* mit Hilfe der Ausgleichungs-
rechnung moglichst gute Werte von ajx zu berechnen.

67. Die erste grofe Schwierigkeit, die sich bot, war die
Berechnung der Py und Qik, die sich, wie frither bemerkt,
als Wurzeln eines Systems von sechs linearen Gleichungen
ergeben. Theoretisch und praktisch kann zwar ein solches
System im allgemeinen mit jeder wiinschbaren Genauigkeit
gelost werden. Im vorliegenden Fall bietet sich sogar eine
nicht unbedeutende Vereinfachung, indem P,, und Q,, gleich
der Summe bzw. gleich dem Produkt der Geschwindigkeiten
jener beiden Wellen sind, die ungebrochen durch die zx-Ebene
aus dem Kiristall heraustreten, denn hierbei reduz1ert sich die
Gleichung X wegen der Bedmgung

1p=5
auf die einfache Form
q‘*—P,,q*+ Q,, =0,
womit die obige Behauptung bewiesen ist. Sind aber P,,
und Q,, bekannt, so bleiben nur mehr vier Gleichungen mit
vier Unbekannten zu losen, was die Aufgabe selbstverstind-
lich wesentlich vereinfachte, wenn nur nicht durch die
Substitution vonP,, und Q,, die Absolutglieder so
verkleinert wiirden, dall die Fehlerhaftigkeit der
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Beobachtungswerte allzu schwer ins Gewicht
fiele. Auch ist es moglich, — und die Rechnung hat dies
mehrfach bewiesen — daBl sich die gesuchten Unbekannten
in Form von Briichen ergeben, deren Zidhler und Nenner
vier, fiinf und vielleicht noch mehr Nullen vor der ersten
geltenden Dezimalstelle aufweisen. Welchen VerlaB man
aber auf die materielle (nicht formelle) Richtigkeit eines solchen
Resultates noch haben kann, ist leicht zu erraten.

Uber die allgemeine Giiltigkeit dieser in verschiedenen Einzel-
fillen gefundenen Resultate kann man sich durch folgende Uberlegung
vergewissern. Denkt man sich ndmlich die Substitution der Werte
von Py, und Qg in Gleichung X ausgefiihrt, so verbleiben vier
Gleichungen von der Form
Q,, cos2y;—2Q,, siny;cos y; — Py, q2 cos? y; +2 Py, q;2 sin yp; cos ;= A
Ihre Determinante wird, vom Vorzeichen abgesehen,
cos v, siny; q?cosyy gisiny,
cos 1y sin Y Q] COS Yy q}siny,

cos Y3 sin ¥y q2 cosyg qisinyg
cos 1y sin Y, q2 cos iy, qlsinyy

i

A (q, 1) = 4 cos; CO8 1 COS g COS 1Yy

Es ist natiirlich iiberaus schwierig, die obere Grenze dieses Aus-
druckes zu finden, zumal die darin auftretenden ?-Groben ebenialls
von 1; abhidngen, und Wy nicht unbeschrinkt variabel ist. Man kann
aber durch folgende Uberlegung zu einem angendherten Resultat
gelangen: Das Problem, um welches es sich hier handelt, ist im Grunde
genommen die Bestimmung der Kurve C. Aber genau so, wie man
durch zwei sehr nahe bei einander gelegene Punkte (d. h. Kreise mit
sehr kleinem Radius, Beobachtungsiehler!) gerade Linien von betrdcht-
licher Divergenz legen kann, ebenso muB die eindeutige experimentelle
Bestimmung der Kurve unmdglich sein, soball die hierzu nétigen
Punkte zu nahe beieinander gelegen sind. Da die Substitution Py,
und Qs geometrisch die Bestimmung der Kurvenabschnitte auf der
y-Achse bedeutet, und da die Kurve durch vier weitere ,Punkte®
(Beobachtungsfehler!) bestimmt ist, so wird es wohl das Vorteilhafteste
sein, wenn diese Punkte so gewidhlt werden, daB sie auf dem inneren
und duBeren Kurvenzweig zu beiden Seiten der y-Achse und in nicht
zu kleinem Abstand davon zu liegen kommen. Fiir diesen Fall mub
dann aus Analogiegriinden, im allgemeinen wenigstens, die Deter-
minate 4 (q, ) einen ebenfalls moglichst giinstigen Wert annehmen.
Wie nun aus der Tabelle IX ersichtlich ist, bleiben die q2-Werte des
inneren Kurventeiles fast konstant, so da man ohne groBlen Fehler etwa

q% = q? = q? = 0,420000
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setzen kann. Sind ferner qgund q, zwei Radienvektoren des duBeren
Kurvenzweiges, so erhdlt man fiir die Determ. 7/ (q, ) =4 (q* — q?) X

(g2 — qJ) sin (1 — Wg) - sin (Y3 — ) - COS 1 COS 1, COS g cos W, lhr ab-
soluter Wert wird, wie leicht einzusehen ist, fiir den inneren Kurven-
zweig am groBten, wenn, um beim Beobachtungsmaterial zu verbleiben,
W, = n|2 — 249 59, 725/
e =72+ 140 42, 169’ |
gesetzt wird. Im weiteren zeigt sich, dall, um einen méglichst groBSem

Wert zu erhalten, die nimlichen Azimute auch fiir den dufleren Kurven-
zweig zu nehmen sind. Man findet so

4 (q, 1) = 0,00000144.

Jede andere Kombination von zwei duferen und zwei inneren Kurven-
punkten muB8 einen kleineren, also ungiinstigeren Wert fiir « (q, v)
ergeben. Wollte man z. B. nach Substitution von Py und Q,, nur innere
Kurvenpunkte in Betracht ziehen, so wiirde « (q,v), weil alle q!'2 fast
gleich sind, dem Grenzwert null sehr nahe kommen. Denselben Wert
erhielte man, falls man von den vier fraglichen Punkten drei auf dem
inneren Teile wihlen wiirde. Weiter auf diese und andere Kombina-
tionen einzugehen, ist zwecklos, da der obige Wert, wenn nicht das
iiberhaupt erreichbare Maximum, so doch die Grofenordnung des-
selben angibt.

68. Zur Umgehung dieser Schwierigkeit erwies sich das
folgende Verfahren geeignet. Nennt man q' und q” die beiden
Wellengeschwindigkeiten, die einer gegebenen Richtung v
entsprechen, so gelten wegen der bekannten Eigenschaft der
Gleichungen zweiten Grades die Beziehungen

Py cos?y +P,, sin®yy — 2P, siny cosy =q*+q"

Q,, cos?y + Q,, sin*y —2Q,, siny cosy =q'2q"%

Da P,, und Q,, békannt sind, so geniigen zwei yw-Werte im
Verein mit den vier zugehdrigen q-Werten, um P, und P,,
bzw. Q,, und Q,, wenigstens angenéhert zu bestimmen. Diese
Berechnung wird genauer, wenn, worauf friiher § 62 schon
verwiesen wurde, die beiden w-Werte so gewihlt werden,
daB siny, cosy, und siny, cosy, nicht zu klein sind und
entgegengesetztes Vorzeichen haben, da sich dann bei der
Elimination von P,, (resp. Q,,) die Absolutglieder, deren Vor-
zeichen in allen praktisch vorkommenden Fillen gleich sind,
addieren, ebenso wie der Nenner, der cos®y, + cos®vy, wird.
Angenommen, es wire
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cosy, =—cosy,=0,16 d. h. ¥, —=ca81° und y, = ca99°,
so wiirde '
cos®y, + cos?*y,> 0,05,
und da im Falle des Kupfervitriols P,;, von der GréBenordnung
0,8 ist, so wiirde der Zédhler von der GroBenordnung 0,04
sein, und P,, konnte auf ungefdhr drei Dezimalen genau?)
ermittelt werden.

Leider stellen sich der praktlschen Verwertung dieses
Gedankens expenmentelle Schwierigkeiten entgegen, da es
nicht moglich ist, die einem beliebigen w-Wert entsprechenden
zwei q-Werte am Goniometer zu bestimmen. Priift man aber
im Falle des Kupfervitriols die qj2-Werte néher, so findet
man, daB sie sich nur unbedeutend mit vy &ndern. Eine
einfache Interpolation mufl es darum ermdoglichen, die ver-
langten q'*-Werte zu berechnen. Das ist nun in diesem Fall
geschehen und die gefundenen Werte sind in der vierten
Kolonne der Tabelle IX eingetragen.

Sollten sich in einem anderen Falle beide q-Werte stark
mit @ dndern, so hitte man y derart um dv zu dndern,
daB die Welle sich ungefdhr in der verlangten Richtung fort-
pflanzt, worauf man dann die Interpolation noch anzuwenden
hitte. Unter Umstdnden wiirde auch eine Interpolation zum
Ziele fiihren, die mehr wie zwei gq-Werte beriicksichtigt.

69. Die in der angegebenen Art und Weise berechneten Pik- und
Qik-Werte hingen von allen Zufilligkeiten der Beobachtungsfehler ab
und sind darum nur von méaBiger Genauigkeit®). Mit Hilfe der Aus-
gleichungsrechnung wird es aber moglich sein, bedeutend genauere
Resultate zu erhalten. Zu ihrer vorteilhaiten Anwendung ist aber
erfordert, daB ziemlich viele und méglichst genaue Beobachtungen
angestellt werden, die sich iiber ein umfangreiches Intervall der y-Werte
erstrecken sollten und an den beiden Grenzen gegen die Totalreflexion

hin vielleicht etwas zu hdufen widren. Auch sind den Rechnungen
die linearen Gleichungen

1) Man konnte iibrigens die Rechnung fiir mehrere ;- und 14-
Werte durchfiihren und als Nidherungswerte fiir P;; und Py, (resp. Qg
und Q,) die Durchschnittswerte der verschiedenen Ergebnisse einfiihren.

2) Die Fehler von Py; und Py, (resp. Q; und Q,g) konnen, wie
die oblgen Auseinandersetzungen zeigen, zehn- und mehrmal groBer
sein wie diejenigen von Py, resp. Qgo.
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cos2y; Pyy 4+ sin2y; Py —28iny; cosy; Py, =q;2 + g;"2

cos2y; Q; +sin2y; Qg — 2siny; cos v; Qg = q;'2 ;"2
zugrunde zu legen, und q;2+q;"?2 bzw. q;'2q,"2 als Beobachtungs-
grofen anzusehen. Nennt man p,, und q;, die Verbesserungen, welche
an den Ndherungswerten anzubringen sind, um die wahrscheinlichsten
Werte von P;, und Q;, zu erhalten, so ergeben sich die Fehler-
gleichungen (v ist nachfolgend iiberall als » zu lesen)

cos2y, pyy +sin2y, pye —2siny, cosy, pa=¢,
cos2y, gy +sin2uy qgp — 28inwg cosS Uy Q=1

wo ¢, und 7, die Fehler sind. Man kann diesen Gleichungen eine fiir
die Rechnung bequemere Form geben, wenn man

P11 =P P22 = P11 + Pae P12 = P12
Qit =011 Jg2 = (11 + (g G2 =01e
setzt, nimlich
P11+ 8in2ipy pag —28inypy cosy, pra=¢,

O11 -+ 8IN2 4y Gog — 28INTpy COSYy Qi3 =1y,
Ist n die Anzahl der Beobachtungen, so berechnen sich die p; aus
den drei folgenden Gleichungen.

n

n n
“Dn+ >3 Sinalpvpgg—f—z 5 simpv cos, (—po)= = ¢

Z smgtp n11+ Z 8ln4'Pv Pae +

V=
2 = smswv cosyy, (—Py2) = > &, 8in2y,
v=1 v=1
. |

2 smupv cosy, Py +2

= sm31pv COS 1y, Pa3 +
v=1 =

V=
. ,
4 = sin2y cos2y, (—pe) =2 = &, 8iny, cosip,

v=1 v=

Die Gleichungen fiir die g;. sind diesen ganz analog.

70. Auf die Frage, ob die Determinante dieses Systems nicht
auch unendlich klein werde, kann man unter gewissen vereinfachenden
Voraussetzungen eine allgemeine Antwort geben. Angenommen, man
hitte n Beobachtungen gemacht, von deren zugehorigen -Werten je
zwei benachbarte sich um die konstante Gréfe ¢ unterscheiden, —
eine Annahme, die nur angendhert verwirklicht sein kann, aber den
tatsichlich in Betracht kommenden Verhdltnissen angepafit ist —
so kommt

po=p—(vV—-1)¢,
wo vy etwa den groBten der iy ,-Werte bezeichnen mag. Nun beachte
man, daB die auftretenden Koefﬁznenten folgenderwetse transformiert
werden konnen. :
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n nl—cos2y, n 1n
ey, =5 ——=———3 cos 2y,
1 1 2 2 21

n

n
2Zsiny, cosyp,=Zsin2y,
1

1

n nl—2cos2vy, +cos22y n 3—4cos2y_ +cos4

Z sinép, == v V_> Yy 2%

1 1 4 1 8

I8 2 2 coszy, + 2 cosd
=-———23c0821 r 08 41
8 27 i 87 ¢ Py

n n 1 —cos 2 1 i 1 .
2 xsind 1y, cos Y, =xsin 2y, o =_§31n2ap‘,_—£‘sm4 Yy

1 1 2 21 41

n n nl—cos4 n 1
4zsin2wvcosﬂwv=zsm22wv=,z_.____f}i"4=___§"cos4q;v.

1 1 1 2 2 24

Unter den gemachten Voraussetzungen sind diese Summen
bekanntlich ausfiihrbar, und wenn man, um X cos 2y, und = cos4 v,
bzw. X sin2 ¥, und Z'sin 4y, gleichzeitig behandeln zu konnen, allge-
meiner schreibt

2cos2my, und Zsin2my,,

8o kommt
2cos2my,=cos2mytcos2m(py—e¢)+..... cos2m[y—(n—1)g]
Zsin 2my,=sin 2my+sin 2m (y —¢)+..... sin2m[py—(n—1)¢]

Nach Multiplikation der zweiten Summe mit

=Vt

folgen auf Grund der bekannten Eulerschen Formeln die nachstehenden
Gleichheiten.

Zcos2miyp, +iZTsin2my, =

2mi-lp+62mi-(tp-—cp) CZmi-[w—(n—l)q’]

€ g 3 TP ~+
=e2mi-tp[1+e%2mi-(p+e—2mi-2:p+ ..... e—2mi-(n——l)rp]
- 2mi-1}:lme__zmni'(p__e2miolp_l—e_zmni'(p_l—‘-ezmi'(p
l_e—2mi-cp‘ £ g —2mi-¢ i_ﬁ21‘r1i-qn

2 1.1 2 i- — —1 5 2 i- _— 2mi‘l+1
g 2mivw  2mi-[y—m—1l¢] 2mi-[y—ng] [v+ ]

2—2cos2my

Driickt man in dieser letzten Formel die Exponentialfunktionen
wiederum durch trigonometrische Funktionen aus, so erhidlt man, da
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der reelle (bzw. imaginire) Teil links gleich dem reellen (bzw. imagi-
nidren) Teil rechts sein muB, folgende zwei Ausdriicke.

cosm[2y—(n—1)¢]cosm(n—1)¢p —cosm[2y —(n—1)¢p]cosm(n+1) ¢

Zcos2my =
v 1—cos2my
sinmneg
=cosm2y—(n—1)¢]————=c¢

_ i —(n— — 1) ¢ —si — (1 = 1
Esin2mwpv=smm[2w (n—1)¢] cosm (n .ll)ioszl:::[mp (mn—1Dglcosmn+1)¢

) sinmng
=Smm[21,lf—(n—l)(p]—sin‘m(p =8

m*

Nun kann man die Determinante des Gleichungssystems folgender-
weise entwickeln.

n E_& S]_ n E_E}' S
2 2 . 2 2
g | B G S0 C  H B Sl 10 B B T B Byl
2 2 8 2 8 2 4 2 2 8 8 2 4
81 Sg n_GC 81 8 n G
$1 2 4 2 2 St STy 2 2

1 n 2(n—c¢) 28,
Zml_ﬁ H+C1 n—Cy 231+32 5
Sy 28, — 8y n—Csy

Die zweite Determinante findet man aus der ersten, indem man die
erste Querreihe von der zweiten subtrahiert. Multipliziert man in
dieser zweiten Determinante die zweite und dritte Vertikalreihe mit
dem Faktor 2, die zweite Horizontalreihe aber mit 4, so kommt die
dritte Determinante. Durch Ausfiihrung der Operationen und Substi-
tution der entsprechenden Werte folgt die weitere Formel

1
A=~[n3—n(sg+cg)—2n(s‘;’+c%)+202(0%—8?)+40181 82]

16

1 sin22n sin2n sin2ng sin?ng
=—Ind—n——— Jﬁ—Zn - q)+z : £ . .

16 sin22¢ sinZ¢ sin2¢  sin2¢

Die Variation dieses Ausdruckes fiir variierende n und ¢ ist aus
der nachfolgenden Tabelle X ersichtlich.})

1) Bei der Auflosung des fraglichen Gleichungssystemes kommt
die Determinantenrechnung allerdings kaum in Betracht, da es aus
verschiedenen Griinden vorteilhafter ist, sich der iiblichen Methode zu
bedienen. Die Resultate ergeben sich hiernach in Form von Briichen,
deren Nenner kleiner ist wie der Wert der Determinante und je nach
der GroBe von n usw. zwischen 0,005 und 2,9 schwanken kann.



Tabelle X.
n ¢ A
5 8 0,017920
10 4 0,17154
'20 2 1,4309
40 1 11,565 )

71. Sind damit jene Werte von P und Qi bekannt,
welche sich aus den Beobachtungen als die wahrscheinlichsten
finden lassen, so wird es sich darum handeln, die a; zu
bestimmen. In welcher Art und Weise dies zu geschehen
hat, wurde bereits firither gesagt. Es geniige hier, die ge-
fundenen Zahlen, soweit wie notig, anzugeben.

Fiir die Schwingungsrichtungen der parallel zu den
Grenzilichen austretenden Wellen wurden folgende Azimute

gefunden:
Wellenebenen parallel xz: ¢ =12%77
Wellenebenen parallel der anderen Grenziliche: ¢ =—8°ca.

Es wurde frither schon (§ 65) darauf hingewiesen, daff die
letztere Bestimmung sehr schwierig war, indem in dieser
Stellung das Spaltbild iiberaus schwach und unbestimmt
erschien. Dementsprechend werden auch die Endresultate
nicht allzu sicher sein konnen.

72. Ein Punkt verdient hier aber spezielle Erwdhnung.
Wie bekannt ist die Schwingungsrichtung der parallel zu den
Grenzilichen austretenden Wellenebenen fiir verschiedene
Farben im allgemeinen verschieden. Allerdings ist diese
Dispersion fiir gewohnlich gering und wurde hier vernach-
lassigt. Der Fehler ist wegen des kleinen Spektralbereiches
kaum bedeutungsvoll. Unter giinstigen Umstdnden, wo man
iiber grofe, tadellose Prismen verfiigt, welche helle Signal-
bilder entwerfen, diirite es bei sorgtfiltigster Messung moglich
sein, diese Dispersion der Schwingungsrichtungen experimentell
zu konstatieren, insbesondere wenn man sich statt des ge-
wohnlichen Nikolschen Prismas einer genaueren Vorrichtung
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zur Bestimmung der Schwingungsrichtungen bedienen wiirde.
Werden dann aber die verschiedenen zusammengedringten
Linien des Spektrums diese Bestimmung nicht erschweren oder
gar verunmoglichen? Wahrscheinlich wohl. Es diirfte darum
geraten sein, das Licht schon auBerhalb des Kollimators durch
ein Prisma zu zerlegen und nur absolut homogenes Licht auf
das Kristallprisma durch den Kollimator auifallen zu lassen.

73. Da gerade von der Dispersion der Schwingungsrichtungen
die Rede ist, so mag hier der geeignete Ort sein, um den Einfluf zu
studieren, den ein Fehler in der Bestimmung von ¢ auf die Berechnung
von a;, ausiiben muB. Es ist

: a;;=q?sin?¢+q2cos2e
a;3=(q} —q?) sine¢cose
agg=(q!cos2s+qsin2e¢
Werden q4 und qg als richtig vorausgesetzt, so wird
da;;= (q}—q2) sin2¢de
dajg= (q;7—q? cos2ede
dagg=—(q>—q3) sin2«de.
a;; und agg dndern sich also um die gleiche Grobe, aber im entgegen-
gesetzten Sinn. — Wie man sieht, dndern sich ag3 und a;; um den
groften Betrag, wenn ¢ ==z4 oder 32/4, um den kleinsten aber, wenn
¢ =0 oder 7|2, Bei a;g sind die Verhiltnisse gerade umgekehrt. In
der folgenden Tabelle XI sind die Anderungen fiir einige Werte von
¢ zusammengestellt unter der Voraussetzung, daf
d e =30"=0,008727 und
q? — q%=10,1000.
Im vorliegenden Fall, wo q? —q3=0,009 ist und ¢ =121/, (angenihert),
wird nach der Tabelle durch Interpolation

1 9 2985 + 4363 + 9 +
da;; =" ——><0,000 =T 0,0003674 = == 0,000033 und
100 2 100
+ 8200 + 7558 9
day, =T —><0,000 = ><0,0007879 = 0,000071.
! 100 2 100

Ohne Interpolation bekommt man die genaueren Werte

da;; = 0,00003445

day, == 0,00007 ;.
Man erkennt hieraus, daf es bei sorgfiltiger Beobachtung mdéglich
sein muB, a;;, a;3 und agg mit grofer Genauigkeit zu ermitteln, falls die
Beschaffenheit und Grofe des Prismas eine prizise Arbeit gestatten.

Bei dieser Untersuchung wurde die Richtigkeit von q? und q?}

(dq?} =dq3=0) ausdriicklich vorausgesetzt. Es braucht allerdings eine
vielmal wiederholte Einstellung und Messung, um hierfiir ganz be-
friedigende Mittelwerte zu erhalten.

“
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Tabelle XI.
2 00 | 50 l 100 | 150 | 200 | 250 | 300 | 350 | 400
| e |- ‘ ' 450
a 900 | 850 | 800 | 750 | 700 | 65° | 600 | 550 | 500
I '
zlelelelzlelel22]e]2]g
=" . En- O w [=)) (= ot N (3] -]
o lda)| S | 5| 28| & 3| 2|8 8| 2|8
I
= cle|lele|lele| ol
S lday |2 | 2| 8| 3|22 38|58
S| -|S|2|8/&| 8|5 2|8|5|S8

7. Fiir die drei Polarisationskonstanten a,, a,; und
a5, sowie die drei GroBen R, R, und Ry, ergaben sich
folgende Werte.

He- gelb (588) He- griin (502)

a,— 0428512 a, — 0,425213

a,——0,001919 a,, ——0,001904

a;, = 0,420527 a;;— 0,417291
R,,= 0,434804 R, = 0,430981
R',;=—0,001972 R';;=—0,001960
R,,= 0,421048 R.,,= 0,417312.

Der Bedeutung nach sollte :
a, =Ry

sein. Die Ubereinstimmung der gefundenen Zahlen ist
ziemlich befriedigend (namentlich fiir He-griin) und 4Bt
erkennen, welche Genauigkeit etwa erzielt werden konnte.
Als zuverldssigere Zahl empfiehlt es sich, den Mittelwert
beider einzufiihren.

Weiterhin berechnet sich nach der Formel (Gl. XI ¢)

a,ysinl’—a,, cos'=—R',,
der Wert von a,, so daB sich folgende Ndherungswerte ergeben.
He- gelb (588) He- griin (502)
a, = 0,428512 a,, = 0,425213
a,, = 0,420788 a;;— 0,417302
a,; ——0,001919 a,;=—0,001904.

a,,— 0,000549 a,,— 0,000553.
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Anderseits erhdlt man auf Grund der Ausgleichsrechnung
nach dem oben erlduterten Verfahren bzw.

P, — 0,852014 l 0,843610
P,,— 0,848938 0,842502
P,— 0007371 |  —0,007250.

und findet hieraus, wenn man vom oben ermittelten Néhe-
rungswert |

| a,— 0,420788 |  0,417302

ausgeht, :
a,— 0,428150 0,425200
a,,— 0,431226 0,426308
a,,— 0,420788 0,417302
a,,= 0,000549 0,000553
a, —--0,001919 —0,001904
a,, ——0,007371 —0,007250.

Zu diesen Werten wurden Verbesserungen berechnet aui Grund
der Ausdriicke

cos®y; (a,, + ay,) + sin*y; (a;, +a,,) — 2 siny; cosy;a,, = qi'*+qi"*
und _
COS™Y; (a,, 8y, — a%) +siny; (agza,, —ajy) -

2 sinw; cosy; (a;, g5 — y5 8y ) = qi'* qi"%

Fiir a,, und a,, findet man keine plausiblen Verbesserungen,
weil die zugehorigen Koetifizienten duBerst klein sind. Sie
wurden darum ohne weiteres als richtig angenommen. Unter
dieser Voraussetzung bekommt man als endgiiltige Werte der
Polarisationskonstanten

He- gelb (588) He- griin (502)
a,— 0,428291 a,= 0,425205
a,,= 0,431099 a,,— 0,426320
a,— 0,420677 a,— 0,417299
a,,— 0,000549 a,,— 0,000553

——0,001919 31 —0,001904
a,=—0,007411 —0,007254.

Man hitte bei der Anwendung der Ausgleichungsrechnung
noch in anderer Weise verfahren konnen. Es wurden auch
mehrere Methoden versucht; sie befriedigen aber ebenso
wenig, wie die soeben mitgeteilte. Der tiefere Grund ist der,
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daB bei der Linearmachung der quadratischen Gleichungen
Glieder vernachlédssigt werden miissen, deren Summe mit dem
Fehler ¢ vergleichbar wird.

Weitere Versuche und Rechnungen werden hieriiber
vollige Klarheit bringen.

76. Nach Auffindung der a;x bestimmen sich die Haupt-
lichtgeschwindigkeiten als Wurzeln einer Gleichung dritten
‘Grades (Gleichung XIV), welche die merkwiirdige Eigenschait
hat, daB der Koeffizient von x* sechs, derjenige von x zwolf
und das Absolutglied 18 Dezimalstellen haben. Und einzig
diese Gleichung hat notwendigerweise drei reelle Wurzeln,
wihrend die Abkiirzung sdmtlicher Koetffizienten auf die nim-
liche Stellenzahl zu komplexen Wurzeln fithren kann. Es ist
interessant, diesen Sachverhalt wenigstens in einem Fall
numerisch zu verfolgen. Fiir Kupfervitriol He- gelb ist

x?—1,280067 x2+0,546102'521956 x — 0,077647'237781'243428 = 0

die fragliche Gleichung. Ihre Wurzeln sind
a?=0,437401 . b*=0,422722 c?=0,419944.
Daraus findet sich
a=1,512029 8 =1,538058 v =1,543136.

Hitte man die Koeifizienten der obenstehenden Gleichung
auf sechs Dezimalen gekiirzt, die Gleichung also in der Form
x3 — 1,280067 x2 + 0,546103 x — 0,077647 =0
geschrieben, so hitten sich als Losungen folgende Zahlen

ergeben.
a*—0,434984 b*=0,428534  ¢*=0,416549
o=1,51622 B=152759 y—=1,54941.

Kiirzt man endlich die Koeifizienten obiger Gleichung dritten
Grades noch mehr, d. h. schreibt man die Gleichung in
der Form
x*—1,2801 x*+ 0,5461 x — 0,0776 =0,

so erhilt man als Wurzeln

x, =10,391381'293255 | ‘

x, — 0,444359'353373 + 0,028581'2575761

x, = 0,444359'353373 — 0,028581'257576 i.
"Selbstverstindlich  setzt das Rechnen mit solchen Zahlen

| 7
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geeignete Hilfsmittel voraus. Im vorliegenden Fall diente
eine Multiplikationsmaschihe, System ,,Milliondr‘ aus der Fabrik
von Dimen-Schmid & Cie., Ziirich, die den gewdhnlichen
Additions-Rechenmaschinen weit iiberlegen ist.

76. Uber die Berechnung der Richtungskosinus der
optischen Symmetrieachsen ist nicht viel zu sagen. Beachtens-
wert ist, daB a;— 4 von der GroBenordnung der ay wird.
Die beiden ersten Dezimalstellen werden also null. Die Folge
davon ist, daB die prozentuelle Sicherheit der Koeffizienten
‘bedeutend abgenommen hat. Inwieweit dadurch fiir die
Orientierung weniger genaue Werte herauskommen wie fiir
die Lichtgeschwindigkeiten, ist sehr schwierig zu sagen, da
die Ausdriicke kompliziert, uniibersichtlich und der analytischen
Behandlung nicht leicht zugidnglich sind. Jedentfalls bietet
die Berechnung der e;, ©; und y; keine rechnerischen
Schwierigkeiten. Um auch hiefiir ein Beispiel zu geben und
die auftretenden Verhiltnisse der Anschauung ndher zu riicken,
sei hier das Gleichungssystem fiir die ¢; mitgeteilt, worin
alle Zahlen mit 10° multipliziert sind.

9110, + 7411 ¢, + 1919, =0
7411, + 6302, — 549¢;,=0
1919, — 549 @, + 16724 o, =0. |
Da diese Gleichungen nur zur Bestimmung des Verhiltnisses
BT RT A |
hinreichen, kann man «;,=1 setzen, so dal aus der ersten
und zweiten Gleichung folgt
o, : o, o, =—6,49527 : 7,72540 : 1,00000
oder
o, =—6,49527 ¢
o, 7,712540 g
o, = 1,00000 g,
wo ¢ einen Proportionalititsiaktor bezeichnet, der sich aus
der Identitit |

a2+ o2+ ai=1=(6,49527%1+17,72540% +-1) ¢*
berechnet. Man findet so
a, =—0,64040 o, =0,76167 a, = 0,09860.



Natiirlich geniigen diese Werte den Gleichungen nicht absolut
genau. So werden die rechten Seiten derselben bzw. gleich
den GroBen

~0,09423 —0,09146 1,90197.

Die Abweichung ist bei der dritten Gleichung am empfind-
lichsten, weil dieselbe bei der Berechnung nicht herangezogen
wurde. Zwar sollte der Theorie zufolge auch die dritte Gleichung
streng erfiillt sein, wenn es die beiden ersten sind. Trifit
das hier nicht zu, so ist es deswegen, weil die Voraus-
setzungen der Theorie praktisch nie erfiillt werden konuen,
da die theoretisch geforderten Irrationalzahlen nie genau,
sondern immer nur angendhert durch Rationalzahlen dar-
gestellt werden konnen.

77. Die beim Kupfervitriol erhaltenen Endresultate sind
in der Tabelle XII zusammengestellit.

Tabelle XII.

He- gelb (588 wu) He- griin (502 uu)
| ) | .

o I} ¥y o 8 v

S on | 15120 | 1,3381 | 1,5431 | 15193 | 1,5448 | 1,5494

X y z X y z

e | 129049 | 40023 ] sa020 | 132055 43°34'| 83053
| 18050 | 127°27'| 630 14’ | 127°33'| 129°54 62013
Tz | eev1a| 77003 | 21027 | 6602 | 75022 | 28035

Die optischen Konstanten des Kupiervitriols wurden
friiher von Pape, Kohlrausch, Lavenir und G. Wulf ganz bzw.
teilweise bestimmt.!) Ersterer ermittelte zunichst, wie oben
§ 30 mitgeteilt wurde, die Orientierung der Hauptschwingungs-
richtungen und schnitt dann drei Prismen, welche die Be-
stimmung von je zwei Hauptbrechungsindizes fiir die D-Linie
gestatteten. Eines dieser Prismen erlaubte sogar die Ein-

1) Vergl. Groth, Chem. Krist. II Seite 420 f.
T¥
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stellung auf verschiedene Fraunhofersche Linien und lieferte
Werte fiir ¢ und 4. Kohlrausch und Lavenir bedienten sich
der Totalreflexion, gaben aber keine Werte fiir die Orientierung
an. Mit dieser befaBte sich dagegen G. Wuli.

Die vorliegenden Hauptbrechungsindizes sind in der
Tabelle XIII iibersichtlich zusammengestelit.

Tabelle XIII.
/) o |Adag| B |dsy| 7y |[Aeay

151541 2513|1,54054| 657 1,54711{ 3170

589 | D1|1,51587 | 2238 |1,53825 | 741|1,54566| 2979
1,51564 | 2376 1,53940| 699 | 1,54639| 3075 vol:-d;::t?rlzggaen
589| D | 1,51615 1,54604 | 2989 |\ Pape
527| E | 1,51983 1,54996 | 3013
486 | F | 1,52307 1,55351 | 3044
431| G | 152872 | 1,55978 | 3106
589| D | 1,5140 | 228 | 15368 | 65 | 1,5433 | 293 | Kohlrausch
589| D | 1,51408 | 2276 | 1,53684| 661| 1,54345| 2937 | Lavenir

Die Angaben Papes sind wohl weniger zuverldssig wie
die anderen, weil das Schneiden der Prismen, das mit freier
Hand vorgenommen wurde, trotz groBter Sorgfalt nicht all-
zugenau ausfallen konnte. Immerhin sind sie achtung-
gebietend und stimmen beziiglich der Doppelbrechung mit
den anderen ordentlich iiberein.

8. Was nun die neugewonnenen Resultate anbelangt,
80 stehen sie mit den anderen in ziemlich befriedigender
Ubereinstimmung. Fiir einen Vergleich eignen sich allerdings
zundchst nur die Werte von He-gelb, dessen Wellenlinge
nahezu gleich derjenigen von D ist. Von den entsprechenden
drei Werten stimmt y fast genau mit den Angaben von
Kohlrausch und Lavenir iiberein. Dagegen ist diesen gegen-
iiber ¢ um 20 Einheilen der vierten Dezimalstelle zu klein
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und 8 um 13 Einheiten derselben Dezimale zu gro. Doch
paBt @ wieder vorziiglich zu dem einen von Pape gefun-
denen Wert. :

Um ein Urteil iiber die Zuverldssigkeit der fiir He- griin
(502) gefundenen Brechungsexponenten zu gewinnen, kann
man zundchst auf Grund der Cauchyschen Dispersionsformel
und der Papeschen Angaben die Werte von e und ¢ berechnen.
Bei Benutzung der beiden zunichstliegenden Werte fiir die E-
und F-Linien bekommt man

a502=1,52171 und 750221,55202.
Gegeniiber den zugehorigen Papeschen Werten fiir die D-
Linie, ndmlich

a539~—l 51615 und 7539——] 54604
hat man somit eine Zunahme von 0,00556 bzw. 0,00598.
Nun ist bekannt, daB man an einem ganz mittelmédBigen
Prisma, das fiir die Brechungsindizes nur schlechte Werte
liefern wiirde, die Dispersion immer noch ziemlich genau
bestimmen kann. Werden demnach die berechneten Zahlen
als wirkliches Ma der Dispersion angenommen, so hat man
mit Hille der zuverldssigeren Grundwerte von Kohlrausch

a2 = 1,5140 4+ 0,00556 — 1,51956
7502 = 1,5433 + 0,00598 = 1,54928.

Hiermit stimmen die neuen Werte vorziiglich iiberein.

DaB iibrigens ¢ und y von He- griin dem tatséchlichen
Verhalt ziemlich nahe kommen, ist auch darum recht wahr-
scheinlich, weil die Doppelbrechung gleich 0,0301 ist und
der von Kohlrausch gefundenen Doppelbrechung gut ent-
spricht, zumal nach den Zahlen Papes mit wachsender Licht-
brechung auch die Doppelbrechung zuzunehmen scheint.

Das Verhalten von 2 diirite dem oben genannten fiir
He- gelb dhnlich sein, soweit wenigstens die Doppelbrechung
gegeniiber ¢ in Betracht kommt.

79. Beziiglich der Orientierung der Hauptschwingungs-
richtungen liegen folgende Angaben vor. Nach Pape’) liegt
die erste Mittellinie im vordern rechten oberen Oktanten und

1) Pogg. Ann. d. Phys. Erg. Band @ (1874). Seite 45.
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bildet fiir mittlere Farben — nach Papes AuBerung selber
,mit groBter Anndherung fiir Licht von der Brechbarkeit der
Fraunhoferschen Linie E — mit den Normalen von m (110),

u (110) und o (111) die Winkel 43%/,°, 98!/,° und 73°.

Die Lage der anderen optischen Symmetrieachsen gibt
Pape nicht an. Dagegen hat er (loc. cit. Seite 48) eine Tabelle
mitgeteilt, aus der die Orientierung der Flachen eines optischen
Prismas hervorgeht, dessen brechender Winkel 45° betrigt und
innen und auBlen von je einer optischen Symmetrieachse
halbiert wird. Unter der Annahme, daB die brechende Kante
z. B. parallel n sei und der innere Prismenwinkel von 7 halbiert
werde, findet er folgende Werte, falls I und Il die Normalen
der beiden Prismenflichen bedeuten.

I: 110=57°50,5 II: 110=143°29,0
111=52°48,0 111= 86°32,1
110=177°26',5 110= 93° 9'8.

Hierdurch sind die optischen Symmetrieachsen natiirlich ein-
deutig bedingt. In stereographischer Projektion erhdlt man
die drei Punkte, die in der
Fig. 81') durch ausgezogene
Kreisbogen verbunden sind.
u/(i1) Nach einer neueren Be-
stimmung von G. Wulf?) schlieft
‘die Normale der Achsenebene
Z mit den Normalen zu m (110),
T w (110) und o (111) bzw. die
Winkel 53!/,° 12!,° und 113°
urm . ein. Ob es sich hierbei um eine
wirklich neue Ermittlung dieser
- Werte handle oder ob nur eine
miiio) Umrechnung der Werte von
Fig. 8 Pape vorliege, ist nicht ersicht-
lich. Das letztere ist wegen der vollkommenen Uberein-
stimmung der beiden Angaben nicht ausgeschlossen.

(170)

a0y

5

1) Die Figur ist nach dem ,optischen Prisma“ orientiert. Durch
ein Versehen wurden aber (110) und (110) auf dem Klische mit u statt «
bezeichnet. = 2) Groth, Chem. Kristallogr. II, 420.
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Die optische Orientierung, die sich aus den in dieser
Arbeit getundenen Werten der Polarisationskonstanten ergibt,
ist ebenfalls in der Fig. 8 eingetragen, und zwar sowohl fiir
die gelbe wie die griine Heliumlinie. Die beiden neuen &-Achsen
nihern sich in befriedigender Weise der von Pape gefundenen
Lage. Um so groBer ist dafiir die Unstimmigkeit beziiglich
der beiden anderen Achsen. Mag die Unzuverldssigkeit der
Papeschen Werte auch ihren Teil hierzu beitragen, so findet
sie doch ihre volle Erklarung nur auf Grund der Bemerkungen
des § 76 und der Diskussionen des vorangehenden Paragraphen,
aus denen hervorgeht, da die Difierenzen a,, —q;®* und
a,, — q;* fiir i=1,2 sehr unsicher werden.

Der tiefste Grund dieser Ungenauigkeit ist die in § 65
erwahnte Unzuldnglichkeit des Prismas, was im folgenden
klar zutage treten wird.

B. COleaﬂit=Ba O” Cdg . 5H2 0.
a:b:c—0,7769:1:05416 S2—110°17

80. Der Kristall stammt von San Bernardino Co. in Kali-
fornien und zeigt, von einigen schmalen Kantenabstumpfungen
abgesehen, folgende Formen: {110}, {001}, {101}, {121} und
untergeordnet {100}, {010}, {120}. Zum Zwecke der optischen
Untersuchung wurde auf der hinteren Seite des Prismas eine
Fliche angeschlifien, welche zur Orthodiagonale nur wenig
geneigt und zur Vertikalachse fast parallel gelegen ist.

Die Durchmessung der Prismenzone, wobei die Kante
(110): (110) parallel zur Drehachse gestellt wurde, lieferte
folgende Werte.

(110) 47°543] heller Reflex mit schmalem Nebenschein.

(120) 67°23'  duBerst schmale Fliche; breiter Reflex,
der vorziiglich in der Zone liegt.

(010) 101°56' etwas verbreiteter, nicht ganz in der

| Zone gelegener Reilex.

(120) 136°26' duBerst schwacher, unbestimmter, aber
gut in der Zone gelegener Reilex.

(110) 155°54%| ' scharfer Reflex, zwar nicht hell, aber

| gut einstellbar.
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K e sm oy e = kiinstliche Flache und
H0) o ... .. liegen ziemlich stark auBerhalb der Zone.
(A %% ol s liegt genau in der Zone, Reflex schlecht,
‘darunter ein zweiter. '
010) .. .... schmale Spaltungsfliche, Reflex unscharf,

aber gut in der Zone.

Diese Messungen zeigen, dal} der Kristall nicht besonders
vollkommen ausgebildet ist. Immerhin wird man den wirk-
lichen Verhiltnissen recht nahe kommen, falls man die
genannte Kantenrichtung zur Vertikalachse und die innere
Winkelhalbierende der beiden Fldchen (110) und (110) zur
Orthodiagonale wihlt. Die Klinodiagonale ist fiir das Folgende
belanglos. Wichtigkeit hat nur die Annahme, daB die zur
Orthodiagonale senkrechte Ebene eine Symmetrieebene sei.

81. Die wichtigste Auifgabe, die sich zunichst bietet, ist
die Lagebestimmung der Kunstfliche. Zu dem Zweck wurden
folgende Messungen vorgenommen.

K:(110)=151°38% (110): (001)= 73" 48
:(110)= 43°41 (110):(001)=106° 08,

K:(001)= 108° 455 (001):(121)= 57°51

K:(121)= 80°31-Y (110): (121)= 77°25

(110):(121)=51°44
Ist X,Y,Z ein rechtwinkliges, rechtshindiges Achsen-
system, dessen Y- und Z-Achse mit der oben definierten
b- bzw, c-Achse zusammenfallen, so erhdlt man fiir die
Kunstfliche K die Gleichung
IX+mY-+nZ=0.
| und m lassen sich aus den Winkeln
(110): K=151°38%; und (110): K =43°413
bestimmen, und da die Identitit
P+m2+ni=1
besteht, so erhdlt man gleichzeitig den absoluten Wert von n,
‘dessen Vorzeichen aus dem gemessenen Winkel
(001): K=108°457 _
ermitteltwerdenkann. Weil die Messungen nichtfehlerfreisind und
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der Kristall iiberhaupt nicht ideal ausgebildet ist, stimmt der Wert
von n, der aus dem zuletzt angegebenen Winkel berechnet wird,
mit dem zuvor ermittelten nur auf einige Minuten genau iiberein.
Geht man von anderen Kombinationen aus, so bekommt
man wiederum andere Werte. Dabei bemerkt man, daB n inner-
halb weiterer Grenzen schwankt, als m.und 1, die bedeutend
genauer sind: Das riihrt davon her, daB der n zugeordnete
Winkel fast 90°, die Variation von n also ein Maximum ist.
Aus vier verschiedenen Kombinationen ergaben sich
die Mittelwerte ;
| I =—0,990809 m = 0,133526 n=0,021168,
welche aber, wie ohne weiteres verstindlich ist, der Bedingung
*mEtnt=]
nicht genau geniigen. Da n jedenfalls am unzuverléssigsten
ist, so wurde hierfiir mit Hilfe der eben genannten Identitat
ein neuer Wert bestimmt. Die Gleichung der angeschliffenen
- Flache wird dadurch |
—0,990809 X +0,133526Y +0,021641 Z =0.

82. Wird (110) als zx-Ebene gewihlt, so ist es ein
leichtes, die Beziehungen zwischen dem XY Z-System und dem
xyz-System aufzustellen. Man erhilt das folgende Schema.

% y l z
X 0,587219 |  0,808985 i—oozonﬁ |
LY | 0808145 | — 0587829 | 0,036849 |
Z | —0,045550 | 0,000000 !——0,998962 |

- 83. Infolge der Zugehorigkeit des Colemanit zum mono-
klinen System ergeben sich aus den kristallographischen
Symmetrieeigenschaften zwei optische Bedingungsgleichungen,
die nach Gleichung XV auf die Form

a,A+a,B+a,;C_ a;A+a,B+a,C

| A C
a,A+a,B+a,C a;A+a,B+a,C
| B C
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gebracht werden konnen. A, B, C sind die Richtungskosinus
von Y in bezug auf x,y, z. Es empfiehlt sich, hieraus a,, und
a,, als Funktionen der vier anderen Polarisationskonstanten
zu berechnen. Man erhilt so die Ausdriicke

a,,—1,374795 a,, — 1,374795 a,, + 30,087797 a,,—21,931019 a,,
a,, — 1,890061 a,, — 0,890061 a,, + 19,433534 a,,— 14,261136 a,,.

Die Koeifizienten dieser Gleichungen sind von der Wellen-
linge unabhingig.

84. Zur Bestimmung von a,;, a,, und a,; dienen die Ge-
schwindigkeiten und Schwingungsrichtungen jener Wellen,

die sich parallel der y-Achse im Kristall fortpflanzen. Die
Messung ergab

T
e =— 4 24°,
2

Uber die Polarisationskonstanten orientiert folgende Zusammen-
stellung.

rot (668) | gelb (588) | griin (502)
a, 0,394774 0,392920 0,390333
a,, 0,000800 | 0,000775 0,000778
o 0,396216 | 0,394317 | 0,391734

Die Schwingungsrichtungen jener Wellen, deren Nor-
malen senkrecht zur kiinstlichen Fliache sind, wurden nicht
bestimmt. Da aber diese Fliche der Z-Achse fast parallel
ist und auch mit dem Orthopinakoid nur einen kleinen Winkel
bildet, so darf man in erster Anndherung voraussetzen, daf}
jene Richtungen parallel und senkrecht zur Prismenkante
seien, oder noch genauer, daB

.

el

2
Unter dieser Voraussetzung findet man fiir alle drei Farben
den Naherungswert
' a,; = 0,0014.

Indessen 146t sich dieser Wert noch in anderer Art ermitteln.
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Wie oben (§ 68) gezeigt wurde, ist es
Gleichungen von der Form

(a,, + a,5) cos®y; + (a,;, +a,,) sin*y;—2 a,, siny; cosy;=qi'* +qi"*
auizustellen. Ersetzt man hierin auf Grund der Bedingungs-
gleichungen a , und a,, durch ihre Werte, so erhdlt man eine
gewisse Anzahl Gleichungen, die als einzige Unbekannte a,,
enthalten. Wihrend nun die einzelnen Gleichungen den Be-
obachtungsiehlern unterworifen sind und darum fiir a,, etwas
verschiedene Werte liefern, ist die Summe aller Gleichungen
von den zufilligen Fehlern ziemlich frei und erlaubt deshalb,
fiir a,; einen recht guten Wert zu finden. |

moglich, lineare

| Dieses Verfahren wurde bei allen Farben angewandt
und ergab:

rot (668) gelb (588) griin (502)

a,q 0,001260 0,001253 ; 0,001261

Zur Verbesserung der Niherungswerte fiir a,,, a,, a,,
und a,, dient die Methode der kleinsten Quadrate. Es
kommen so die endgiiltigen Werte der Tabelle XIV.

. Tabelle XIV.

rot gelb I\ griin
a,, 0,394745 | 0,3920912 |  0,390306
a,, 0,390945 | 0,388824  0,386097
a,, 0,396187 |  0,394300 = 0,391707
a,, 0,001267 | 0,001256 | 0,001268
a,, 0,000800 0,000775 0,000800
a, | —0,005689 | —0,006138 | — 0,006324

Die weiteren Rechnungen bieten keine prinzipiellen Schwierig-
keiten. Nur zeigt es sich von neuem, daB man die Koeffizienten
der Gleichung dritten Grades nicht beliebig kiirzen darf.
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83. Die ermittelten Hauptbrechungsindizes sind aus der
folgenden Tabelle XV ersichtlich.

Tabelle XV.

[ T
rot” I 15834, | 1,5882, 1,6082,
 gelb 1,5864, 1,5920, 1,6133,
griin 1,5013, 15973, 1,6194,

Fur die Orlentlerung der Hauptschwmgungsnchtungen m

Xyz- bzw. XY Z-System (vergl. die Festsetzungen von§81) gelten
die in den Tabellen XVI und XVII zusammengestellten GroBen.

f

Tabelle XVI.

rot (668) gelb (588) griin (502) .
X y 'z & y z - y z
75 [ 0,80818 |—0,58778/—0,03692] 0,80774|—0,58757|0,03693] 0,80866|—0,58746|—0,03099)
7 0,12637 0,10346| 0,98732] 0,11426] 0,09494 0,98890| 0,10866| 0,09742 098929
T 0,5};—57 0,80233 —0,15464| 0,57782| 0,80338 —0,14390' 0,57810, 0,80341|—0,14260
Tabelle XVII.
rot (668) gelb (588) griin (502)
ol x Y z X Y | z X Y z
el 900 00 900 900 0o | 900 900 | 00 900
y H;2° 40’ 900__ 1720 40" || 830 14’ 900 *% 1730 14| 83018 900 1730 18’
¢ 7020 900 82040'|| 6946’ | 900 83014’ 6042 900 830 18’
Die gefundenen Hauptbrechungsindizes stehen in recht
befriedigender Ubereinstimmung mit den Angaben Miil-

heims!), wie aus Tabelle XVIII ersichtlich ist.

1) Miilheims, Groth’s Zeitschriit 14, Seite 230.
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Tabelle XVIIIL

v | e [de| B | ey | v

| B 687 | 158230 | 577 | 158807 | 2171 | 1,60978
He- rot 668 | 1,68342 | 485 | 1,68827 | 2001 | 1,6082s
C . | 656 | 158345 | 577 | 158922 | 2178 | 1,61100 |

D 589 | 1,58626 | 576 | 1,59202 219 | 1,61398
He-gelb | 588 | 1,58642 | 565 | 1,5920s | 2127 | 1,61335

! E | 527 | 158952 | 579 | 159531 | 2231 | 1,61762
b, 518 159017 | 58 | 159601 | 2235 | 1,61836

He- griin 502 1,6913s 597 1,69735 | 2205 1,61940

! F 486 1,59214 ! 596 1,59810 | 2234 1,62044

Am ungenauesten scheint rot, am genauesten griin geraten
zu sein. Der Grund mag darin liegen, daB} es zuweilen recht
schwierig ist, das Fadenkreuz aui die rote Linie einzustellen,
weil sie im strahlenden Glanz der gelben Linie stark ver-
blaBt. Uberhaupt war es bei den verschiedenen Ablesungen
eine auffallende Erscheinung, daB die griine Linie auBer-
ordentlich scharf begrenzt war und Einstellungen erlaubte,
die bei den verschiedenen Wiederholungen meistens identisch
waren und selten um mehr als eine Viertelsminute variierten,
wihrend bei der gelben Linie Variationen von !/,- bis ®/,-Minuten,
bei der roten sogar von mehr wie einer Minute die Regel waren.
Beziiglich der Orientierung teilt v. Groth?!) folgende
Zahlen mit: Die Ebene der optischen Achsen ist senkrecht
zu {010}; die erste Mittellinie bildet in {010} einen Winkel
von 83°%) mit der c-Achse im stumpfen Winkel §.
DieseAngabenstimmenprachtvollmitdenneu-
gewonnenen Resultaten iiberein, welche fiir rot, gelb
und griin bzw. die Werte 82° 40’, 83° 14’ und 83° 18 lieferten®).

1) Chemische Kristallogr. II, 283. 2) Nach Miilheims 1. c. 82043".

3) Aus diesen schonen Ergebnissen ist der Riickschlull gestattet,
daB der geringere Erfolg beim Kupfervitriol tatsachlich auf die mangel-
hafte Beschafienheit des Prismas zuriickzufiihren ist.
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| C. Euklas=S8Si0,Be[AlOH].
a:b:c=0,3237:1:0,3332 3=100°16" (Schabus)

86. Zur Verwendung gelangte ein ziemlich groBes (12 mm
langes) Bruchstiick, das ringsum von drei Flichen begrenzt,
an den beiden Enden aber abgebrochen ist. Die eine Fliche
ist als Spaltfliche {010} deutlich erkennbar. Hierzu senkrecht
steht eine andere Fliache, die ca. 5 mm breit, aber in ihrer
Ausbildung durch eine vieliache Fiederung usw. teilweise -
gestort ist. Wegen des rechten Winkels, den sie mit {010}
bildet, ist sie der Orthodiagonale parallel. Die dritte Fliche
bildet mit der zweiten einen ziemlich spitzen Winkel
(I'—32°27'20") und spiegelt wunderbar. Uberhaupt ist der
Kristall von herrlicher Klarheit und erzeugt dementsprechend
Spektrallinien von strahlender Helligkeit. Leider 148t ihre
Schérfe noch zu wiinschen iibrig.

Die zuletzt genannte Fliche gehort der Form {120} an,
entsprechend dem im Handbuch v. Hintze angegebenen
Werte 120:010=57°30". Ob sie aber rechts oder links von
der Symmetrieebene gelegen sei, bleibt unentschieden. Gliick-
licherweise ist jedoch diese Unbestimmtheit fiir die Aufstellung
der dem monoklinen System eigentiimlichen Bedingungs-
gleichungen vollig belanglos. Denn da die ebengenannte
Fliche {120} zur xz-Ebene gewihlt wurde, folgt ohne weiteres,
daB die Richtungskosinus der Orthodiagonale gleich sind
den Ausdriicken

A=cosl’ B=—sinI" . C=0.
Nach Gleichung XV hat man also die beiden Bedingungs-
gleichungen (A—=—1T")

(a,, —a,,) sin2I't+2a,,cos 2I'=0 und

a,,cosl’—a,sinl'=0.

Beachtenswert ist noch, da jene Welle, deren Normale senk-
recht zur zweitgenannten Fliche {100} ist und parallel der
z-Achse schwingt, direkt den Wert a,, gibt, widhrend die
andere Welle dieser Fortpilanzungsrichtung eine Hauptlicht-
geschwindigkeit liefert. Eine Zusammenstellung (Tabelle XIX)
der durch direkte Beobachtung (erste Kolonne) bzw. mit Hilie
von &, q, und q, (zweite Kolonne) ermittelten Werte von a,
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diirfte interessieren und erlaubt zudem ein Urteil iiber die
erzielte Genauigkeit.

"~ Tabelle XIX.
77 Beobachtung Rechnung
rot 0,36269 || 0,362791
gelb 0,36130 0,361509
griin 0,35904 0,359292
indigo |  0,35696 |  0,356857

87. Die Polarisationskonstanten wurden in verschiedener
Weise bestimmt. Das erstemal wurde ungefdhr so ver-
fahren, wie im zweiten Teil bei der Anwendung der all-
gemeinen Methode auf monokline Kristalle angegeben wurde;
spédter wurden zuerst die Pjx und Qix (aber ohne Interpolation
der qi"-Werte) bestimmt und die Polarisationskonstanten in
der Weise berechnet, da aus den Gleichungen

— 2
a‘zz—i_ass“‘Pu dgo a33—a23—Q11
- 2
.‘ a33+all'_P22 aaaall‘—a;n _Q22
vermoge der Bedingungsgleichung
Ay =1, (m=cotg I')

zundchst a,, eliminiert und dann durch Substitution der Werte
von a,, bzw. a,;, aus den Gleichungen links in den Gleichungen
rechts das einfache System
33 (Pu — Ayy) — m* a%3= Qll
dgg (P22 - asa) _ a%3= Q22
abgeleitet wurde, aus dem sich schlieBlich durch Elimination
von a,, die Gleichung
(m?—1)af;—(m* Py, — P ) a, + (m? Q,, —Q,,) =0
ergibt. Diese Gleichung ist unabhéngig von e, liefert aber
zwei Werte fiir a,, unter denen wegen des bekannten
Nédherungswertes der wahre leicht zu erkennen ist.
88. Die nach den verschiedenen Methoden erhaltenen
Resultate stimmen recht gut untereinander iiberein. Die Mittel-
werte sind in der Tabelle XX aufgetfiihrt.
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Tabelle XX. ‘
o Ag| B Asy 7
rot  (668) | 16474, | 46, | 1,6520, | 156, = 1,6676, |

gelb (588) | 1,6507, | 45, | 1,6553, | 161, 16714,

griin  (502) 1,6559, | 46, | 1,6605, | 161, 1,6766,

indigo (447) | 1,6606, | 46, | 1,6652, | 161 | 1,6814,

Zur Kontrolle dienen die direkt gewonnenen Werte fiir
die mittleren Hauptbrechungsindizes, namlich
Baes =1,6521,
Bras = 1,6553,
By0e = 1,6605,
8, = 1,6653,.

Die einzigen iiber Euklas vorliegenden optischen Kon-
stanten wurden von Descloizeaux') ermittelt, der fiir mittlere
Farben folgende Angaben macht.

e=1,6520 . @==1,6053 y=1,6710

Die Ubereinstimmung dieser 3- und y-Werte mit den
obigen fiir He- gelb ist fast iiberraschend; dagegen stimmt ¢
etwas weniger gut.

Als Ebene der optischen Achsen wurde iibereinstimmend
mit den bekannten Angaben {010} gefunden. Ebenso ergibt
sich 7 als spitze Bissektrix. Sie bildet mit. der z-Achse einen
Winkel, fiir den sich die Werte der Tabelle XXI ergeben haben.

Tabelle XXI.

rot gelb griin indigo \

39030 | 39°49' | 39°14' | 35°31'

Nach Descloizeaux ?) ist er gleich 40° 32'. Die Ubereinstimmung
ist also, vom letzten Wert abgesehen, verhiltnismiBig gut
und beweist neuerdings die Zuverldssigkeit der Methode, wenn

1) Descloizeaux, Man.I, 482.
2) Bull. Soc. Min. & 317.
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~die Lichtverhidltnisse und die Beschaiienheit des Materials
ein genaues Arbeiten gestatten.

Die erzielten Resultate des dritten Teiles diirften die
praktische Verwertbarkeit der im zweiten Teil erlduterten
Methode zur Geniige gezeigt haben. Wenn ein Punkt nicht
ganz befriedigt, so ist es der, daB anscheinend die GroBe
~der Doppelbrechung nicht immer mit groBer Genauigkeit
ermittelt werden kann. Beriicksichtigte man aber den Wert
von (q'®*—q"%?, welcher einerseits wegen der Beobachtungen
bekannt ist und sich anderseits iiberraschend einfach durch
P;x und Q;x rational darstellt, so wird es moglich, selbst diese
Mingel vollstindig zu beheben. Es wird mir deshalb ein
besonderes Vergniigen sein, dies in einer weiteren Arbeit
experimentell und theoretisch darzutun.’)

Belfaux, den 29. September 1916.

1) Trotz eifrigen Bemiihens war es bis zur Drucklegung noch
nicht moglich, die erforderlichen Pridparate zu beschaffen.
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u*— (L, +Lg)u®+ (M, + M, +L, L, — Ll?é) u?

— (L My, + Ly, My, —2L, M) u+ (M M,, —M3)=0

a,, X2+ a,, y* 1+ a5 2% + 2a,, xy + 2a,,yz + 2a,, zx =1

ajy —a’ ai‘ak +b2Bif tctyiye (i = axi)
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- o
| B
PIEEam

— S
Qu = Ay, 3-33 azs

— — 2
Q22 == a33 au 3‘31
Q12 = Ay dyy T dyg Ay,
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— 2 2 ! 12 12 D!
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XVI (57);
;A ta, A2+3-13A3=-312A1+a22A2+a23A3=atsA1+a~zsA2+assA3
Al Ar_) As
a,B;,*T2a,B,ta,;B; a, Bl+a22B2+a23B3=alsBl+a23B!+a33BS
B, B, By
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