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II. TEIL

Ableitung einerneuen Methode zur Bestimmung
der optischen Konstanten zweiachsiger Kristalle

mit Hilfe eines einzigen Prismas
unbekannter Orientierung.

32. In mehreren Fällen des vorangehenden ersten Teiles
(vergi. § 31 Abt. b, c« und Cß) konnte durch Berücksichtigung
des Polarisationszustandes des austretenden Lichtes die Lösung
des Prismenproblems eindeutig gefunden werden. Die Art
und Weise aber, in der dies geschah, hatte einen bloß
qualitativen Charakter und faßte die Beziehung zwischen den
beobachteten Schwingungsrichtungen und den gesuchten
Hauptlichtgeschwindigkeiten nirgends in einer präzisen Formel
zusammen. Eine solche Gleichung ist aber möglich auf
Grund des gegen Ende von § 9 erwähnten Satzes, wornach
für jede Fortpflanzungsrichtung die zugehörigen Schwingungsrichtungen

und Wellennormalengeschwindigkeiten bestimmt
sind durch die Richtung und reziproke Länge der Halbachsen
jener Ellipse, in welcher das Indexellipsoid von der zur
Fortpflanzungsrichtung senkrechten Diametralebene geschnitten
wird. Wie man sich nun geeigneter Schwingungsrichtungen
bedienen kann, um die Hauptlichtgeschwindigkeiten aller
zweiachsiger, also selbst trikliner Kristalle eindeutig zu
bestimmen — das theoretisch darzutun, ist Aufgabe dieses
zweiten Teiles, während die experimentelle Prüfung der
Methode dem dritten Teil zufallen wird.

33. Die erste Aufgabe, welche sich darbietet, ist der
Nachweis, daß das Ausbreitungsgesetz ebener Wellen, so wie
es in Gleichung 'II formuliert wurde,- sich in der soeben

genannten Weise aus dem Indexellipsoid ableitet. Bezogen
auf die optischen Symmetrieachsen\\,r\,Z lautet die Gleichung
des letzteren

a2£2 + b27?2 + c2r2=l.
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Bildet nun eine beliebige Ausbreitungsrichtung mit diesen
Achsen die Winkel vlt vt und vA, so erzeugt die dazu
senkrechte Ebene

£ cos vx+r\ cos v2 + £ cos va 0

mit der Fläche eine Schnittellipse, deren Gleichung sich leicht
mittels einer Koordinatentransformation ergibt, bei der die

Wellennormalenrichtung zur Z-Achse und die Schnittgerade
der Wellenebene mit der Ebene £=0 zur X-Achse genommen
wird. Hierdurch nimmt das Schema I folgende spezielle
Form an.

X Y Z

I
COS1A,

sini'3
cos»/, cosr3

sin?'3
cosv,

n
cosi/, COS1'2COS1'g

COS?'2
siny3 sin ta,

0 — siniA, COSI',

Die daraus fließenden Substitutionen
cosy,

S- x
sinvs
cosr.

sin?/3

X
sinv. sinr.

=— sinv3 Y
führen die Gleichung des Indexellipsoides sofort in die Gleichung
der gesuchten Kurve über, nämlich :

a2 cos2 v2 + b2 cos2vx „2
sin* va
(a2cos2i'i -r-b2cosV2)cos2v3-f-c2sinV3 V2

shvv„

+ 2(a«-b»)cosy'c.osv'c^XY--l.
sin'v.

Die reziproken Quadrate q2 und q2 ihrer Hauptachsen, welche
dem Theorem zufolge den der Richtung vuvt,va zugeordneten
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Geschwindigkeiten entsprechen, ergeben sich als Wurzeln der
biquadrischen Gleichung

a2 (cos2 v. cos2 v, + cos2 v,) + b2 (cos2 j/„ cos2 v. + cos2 v. + c2 sin* v,q4 _ q2 ; J » \ 2 8 U S

sin2 n
a2 b2 (cosV, + cosV2)2 cosV8 + b2 c2 cosVj sinV3 -r c2 a2 cos2v2 sinV3 _

sinV3
Da

cosVgjCosV, + cossV2 cos2r,3cosV1 +(1 — cosVj — cosV8)
(1 — cosV,) (1 — cosV3) (cosV2 + cosV3)sin2v8,
und da ebenso

cosV2 cos2j/3 + cos2?/, (cosVj 4- cosV8) sin2v8,
so kommt für die Abhängigkeit der q-Werte von der Richtung
VpVjjVj der Ausdruck

q* - q2 a2 (cos2v2 + cosV3) + b2 (cosV8 + cosV,) + c2 (cos2^ + cos2v2) \
-f-a2b2cosV3-t-b2c2cosVj + c2a2cosV2 0

oder in Übereinstimmung mit Gleichung II

1-0COS^! COSV2 COS'K,

q2-a2 q2-b2 q2-ca
w. z. b. w.1)

34. Der Einfachheit halber sind die folgenden Formeln
sämtlich auf ein rechtwinkliges, rechtshändiges Achsensystem
x, y, z bezogen, das, vom bisherigen Brauch abweichend, so
mit dem Prisma fest verbunden ist, daß die z-Achse wie
früher mit der Prismenkante zusammenfällt und nach oben

positiv gerechnet wird, die x-Achse aber nicht mehr in der
Halbierungsebene des inneren Prismenwinkels sondern in
der einen Grenzebene des Prismas liegt. Die nach außen

gerichtete Normale dieser Ebene ist die positive y-Achse,
während die positive x-Achse nach der Basis des Prismas
hinzeigt. Durch diese Festsetzung ist jene Grenzebene
eindeutig gekennzeichnet. Bei der gewöhnlichen Aufstellungsart
des Prismas auf dem einkreisigen Goniometer, wo das Licht,
vom Beobachter aus gesehen, nach links abgelenkt wird, ist

i) Über eine andere Ableitung dieser Gleichung aus derjenigen
des Indexellipsoides vergi. Poe k eis, Lehrbuch der Kristall opt ik S. 33 f.
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sie die Austrittsfläche, und +y fällt mit dem Fortpilanzungs-
sinn des Lichtes zusammen.

Neben diesem xyz-System kommt noch das bereits
früher beschriebene f^t-System in Betracht. Für die
Richtungskosinus, welche die positiven Richtungen des einen
Systems in bezug auf die positiven Richtungen des anderen
Systems festlegen, gilt das Schema I der Form nach unverändert.

35. Um jetzt auf den Gegenstand selber einzugehen,
sollen zunächst die Gleichungen des Indexellipsoides und
derWellennormalenfläche auf das neue Achsensystem bezogen
werden. Das geschieht durch die aus dem Schema I folgenden
linearen Beziehungen

£ ax x + a2 y + a3 z
77=/?lx-r-/S2y+/?3z
Z=Y^ + y2-y+Ysz>

deren Substitution in
a2£2 + bV + c2£2=l

die Gleichung ergibt
an x2 + a22 y2 + a33 z2 + 2a12 xy + 2a28yz + 2a31 zx 1. VII

Dabei ist zur Abkürzung
aik a2aiak-)-b2/9i/3k + c2^i/k (aik aki) VIII

gesetzt. Diese sechs Koeffizienten der Gleichung VII wurden
von W.Voigt1) Polarisationskonstanten genannt.

In ebenderselben Weise ergäbe sich die neue Gleichung
der Wellennormalenfläche. Da aber für das Weitere nur ihr
Schnitt mit der Ebene z 0 in Betracht fällt, und für die

vorliegenden Zwecke die Polarkoordinaten bequemer sind
wie die rechtwinkligen, so empfiehlt es sich, die
Transformationsformeln in der bereits oben in § 4 hergeleiteten Form
zu schreiben.

vx ax cosxp + a2 sin xp

v2= ßx cosxp+ß2s'mxp
v3 yx cosxp + y2 s'vaxp.

Die Substitution dieser Ausdrücke in Gleichung II gibt mit
Benutzung der eben definierten Polarisationskonstanten die
Gleichung

i) W. Voigt, Gott. Nachr. 1896 pag. 17.
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P22 — a38 "T" ail Q22 — a33 ail _a31
"l2 ai2 Q12 —ai2a33 ~~ a23 a31
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q4-q2[(a22+a33)cos2v+(a33+an)sin2V;-2ai2sinvcosv]
+ [(a22 a33 ~a|3) C08" V + (a33 ail - all) S'n2V/ IX

-2 (a12 a3S-a23a31) sin^cosxp] 0.

Diese Gleichung stellt die nämliche Kurve dar wie
Gleichung III. Die beiden Gleichungen unterscheiden sich nur
durch das Bezugssystem. Um dies auch in der Schreibweise
anzudeuten, soll für Gleichung IX abkürzend1) gesetzt werden

1 q* — q2(Pu cos2xp + P22s'm2xp — 2P12s'mtp\20Sxp) „+ (Qn cos2?// + Q22 sin2!//— 2 Q12 sini//cosr//) 0.

Darin ist

i=l,2...6
36. Die Konstanten Pik und Qik können durch sechs Wertpaare

(q, xp) eindeutig bestimmt werden. Dagegen ergeben
sich aus den Gleichungen XI a im allgemeinen acht Lösungssysteme

für die Polarisationskonstanten. In der Tat aus

XI a und XI a kommen die Werte
a22 rn a38

an "22 ~~'a33>
(4) (5)

welche in XI a und XI a eingesetzt
a23 a33('ll "~a33)_ Qu
ai3 ~ a33 (*22 _ a33) _ Q22

ergeben, während aus XIa mit Berücksichtigung von XIa folgt:
a2S a31 ==a33 * li V12*

Werden beide Seiten dieser Gleichung quadriert und für
a22 und a23 die soeben gefundenen Werte eingesetzt, so erhält
man zur Bestimmung von a33 die Gleichung vierten Grades

a33 — (°11 ' "22) a33 ' (°11 ' 22 — * 12~^Qll """ Q22)a33 YM- (P,. Q22 + P22 Qn - 2 P12 Q12) a83 + (Qn Q22 - Q22) 0.

Diese Gleichung muß mit Gleichung VI identisch sein, wie
aus der Beziehung zwischen Lik und M;k einerseits sowie

Die Benutzung der früheren Abkürzungen Lik und Mik empfiehlt
sich nicht, weil sie zu (natürlich bloß formalen) Widersprüchen führt
zwischen einigen Sätzen des ersten und zweiten Teiles.
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Pjk und Qik anderseits sofort hervorgeht. Man kann darum
ohne weiteres schließen, daß

a2, b2, c2 und a33 a2 a2.+ b2ß\ + c2 y\
die Wurzeln der Gleichung XII sind (vergi. § 5).

37. Da nach den Gleichungen XIa die P;k und Qik
bekannte Funktionen von aik sind, so kann man sie mit Hilfe
der Gleichungen VIII als Funktionen von a2, b2, c2, a„ ß-t und y-x

ausdrücken und so sechs Beziehungen zwischen diesen zwölf
Größen und den sechs Polarisationskonstanten aufstellen. Die
vier Werte von a33, welche die Gleichung XII liefert, ergeben
dann der Reihe nach für au und a22 je einen zugeordneten
Wert, während sich für a23 und a31 je zwei Werte finden, die
aber nur im Vorzeichen verschieden sind. a12 hat für alle
vier Werte von a33 immer denselben festen Wert

P12 a2 a, a2 + b2 ß1 ßa + c2 yv y2.

Die folgende Tabelle I liefert die Resultate in anschaulicher
Übersicht. Die Werte je einer Kolonne gehören zusammen.
Bei a23 und a31 entsprechen sich die oberen resp. die unteren
Vorzeichen. Der Beweis hierfür ergibt sich aus der Identität

Vl2 ai2 a33 a23 a31*

Wie man sieht, werden für
a33= a > c

a23 und a31 im allgemeinen1) imaginär. Diese beiden Wurzeln
von XII scheiden darum aus und die Gleichung XII wird wie
die Gleichung VI praktisch zweideutig. Ihre Wurzeln
bestimmen mit den zugeordneten Lösungen der Gleichungen XIa
zwei Ellipsoide mit verschieden gerichteten Hauptachsen. Die
größte und kleinste haben in beiden je dieselbe Länge,
dagegen ist die mittlere Achse des einen gleich dem Abschnitt
des anderen auf der z-Achse (entsprechend dem in §25
gefundenen Ergebnis). Jedes dieser Ellipsoide kommt in zwei
Orientierungen vor, die wegen der Zweideutigkeit der
Vorzeichen von a23 und a31 die Eigenschaft haben, daß die eine
Lage aus der anderen durch Drehung von 180° um die

*) Einzig für «j «2 0 resp. yx y2 0 bleiben diese Werte bzw.
reell, werden dann aber mit der vierten Lösung identisch.
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Tabelle I

aS3 a2 b2

a22 b2+c2-{a2a2+b2ß2 + c2y*) c2 + a2-(a2«2+b2/52 + c272)

au b2+c2-(a2ß2 + b2/?2+c272) c2 + a2-(a2a2+b2/?2 + c2/2)

a2i ±«iS/(c2-a2)(a2-b2) ±/3iV/(a2-b2)(b2-c2)

ai3
-,

+ «2V(c2-a2)(a2-b2) + /32V/(a2-b2)(b2-c2)

a12 a2 ax a2 + b2ßx ß2 + c2yx y2 a2ßj a2 + b2ßx ß2 + c2y, y2

a33 c2 a2a2 + b2/92 + c272

a22 a2-r-b2-(a2a2 + b2/32-r-c2/2) a2ß2+b2/92 + c2/2

ail a2+b2-(a2a2-r-b2ß2 + c2r2) a2a2 + b2^2 + c2/2

a23 ± (a2 «2 a3 + b2ßt ß3 + c2 yt y3)±7iV/(b2-ci,)(c2-a2)

ai3 ±{a*aAax + b2ßAßx + c2y3yx):i:72V/(b2-c2)(c2-a2)

' a!2 a2axa2 + b2ßxß2 + c2yxy2 a2axa2 + b2ß1ß2 + c2yxy2

z-Achse abgeleitet werden kann (in genauer Übereinstimmung
mit dem in § 23 Gesagten). Der Beweis ist einfach. Ersetzt
man x und y durch ihre entgegengesetzten Werte, so geht die
Gleichung des einen Ellipsoïdes in diejenige des anderen über.

Die Unbestimmtheit liegt dem Gesagten
zufolge in der Zweideutigkeit der Gleichung XII
(a38 b2,a2«2 -\-b2ßl + c^yfj sowie des Wertes von a13

(die Vorzeichen von a23 und a31 bestimmen sich gegenseitig).
Dieselbe kann nun in einfacher Weise umgangen werden,
wenn die Schwingungsrichtungen jener zwei Wellen in
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Betracht gezogen werden, deren Ebenen parallel zur
Austrittsfläche des Prismas (xz-Ebene) sind.

38. Es ist bekannt, daß die Schwingungsrichtung sich
im allgemeinen ändert, wenn die Welle aus dem Kristall in
die Luft übertritt. Der Grund liegt darin, daß die Schwingungsrichtung

der beiden an der Austrittsebene in den Kristall
hineinreflektierten Wellen im allgemeinen verschieden ist von
der Schwingungsrichtung der im Kristall einfallenden Welle.
Fällt aber die Welle im Kristall parallel zur Grenzebene auf,
so wird sie beim Übergang in die Luft nicht nur nicht
abgelenkt, sondern auch die beiden, durch Reflexion entstandenen
Wellen sind parallel zur Grenzebene und schwingen parallel
und senkrecht zur Schwingungsebene der im Kristall
einfallenden Welle. Dann aber ist die Energie der reflektierten
Welle, die senkrecht zur Schwingungsrichtung der einfallenden
schwingt, null, und wegen der Erhaltung der Energie muß
die ausgetretene Welle parallel zur einfallenden schwingen.

39. Es seien nun qx und q2 (q, < q2) die Geschwindigkeiten

der beiden Wellen, deren Ebenen parallel zur
Austrittsfläche sind und sx und e2 die Azimute der zugehörigen
Schwingungsrichtungen, die im Gegenzeigersinn von +z über

+ x jvon+y aus gesehen) positiv gerechnet werden.
Selbstverständlich unterscheiden sich e, und s2 um tt/2, und man kann

ex e

s2 e + 7ij2
setzen. Nach dem Fresnelschen Satze wird das Indexellipsoid
von der zx-Ebene in einer Ellipse geschnitten, deren
Halbachsen die Länge 1 : q, und 1 : q2 haben und mit der z-Achse
die Winkel e und e + nj2 einschließen. Ihre auf diese
Richtungen als Achsen bezogene Gleichung lautet daher

q2Z2 + q2X2-l=0.
Durch die Substitution

Z z cose + xsine
"X — z sin e + x cos e

erhält man ihre auf das zx-Sxstem bezogene Gleichung
(q2 cos2 e + q2, sin2 e) z2 -t-2(q2 —q2) sine cose zx

-f-(q2sin2e + q2COS2e)x2— 1 =0.
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Anderseits bekommt man für diese nämliche Ellipse aus der
Gleichung des Indexellipsoides

a33 z2 + 2 a31 zx + an x2 — 1 0.
Durch Vergleichung beider Ausdrücke erhält man daher

an q\ sin2 e + q2 cos2 e Rn
a13 (q^ —q2,) sinecose R13 XI b

a33 Q? C0S2 e+<ll SÌn2 S R33>

Hieraus und aus den Gleichungen XIa ergeben sich für die
Polarisationskonstanten die Werte:

ail=°U a22 F>ll— °33 a33 °33

a>3==(°l2^33 Ql2):R13 a31=R13 312=Pl2-
Daneben bestehen noch die drei Bedingungsgleichungen

ail -— ^11 as= 22 33

a23 (Pu-R33)R33-Qu (P12R88-Q22)2:R23
a23 RuR33-Q22 R22.

Da aber die oben ermittelten Werte diesen Gleichungen nicht
streng genügen, indem die aus den Beobachtungen abgeleiteten

Zahlen P,k, Q;k und Rik nicht fehlerfrei sind, so dienen
sie dazu, um an den Polarisationskonstanten Verbesserungen
anzubringen, die sich nach den Regeln der Ausgleichungsrechnung

finden lassen.
40. Die soeben entwickelte Methode hat sich bei der

experimentellen Prüfung leider nicht bewährt. Die Rechnung
hat nämlich in den untersuchten Fällen (Colemanit und Kupfervitriol)

ergeben, daß mindestens die fünf ersten Dezimalstellen
im Zähler von

a23 (* 12 R33 _ Q12) : °13

verschwinden, so daß derselbe, bei der am Goniometer erreichbaren

Genauigkeit gar nicht mehr bestimmbar ist. Selbst das
Vorzeichen von a23 wird zweifelhaft, da es bei dieser
Größenordnung von allerhand Zufälligkeiten abhängt, ob die Differenz

* 12 K33 — V12
positiv oder negativ wird (zumal wenn P12 und Q12 gleiches
Vorzeichen haben).

Diese experimentell gefundene Tatsache kann bezüglich
ihrer allgemeinen Geltung rechnerisch geprüft werden. Um
aber den Gang der hier vor allem wichtigen Ableitung nicht

4
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zu unterbrechen, soll die betreffende Untersuchung als Anhang
dieses zweiten Teiles gegeben werden.

41. Die eben genannten Schwierigkeiten können
umgangen werden, wenn neben dem Polarisationszustand der
zur Austrittsfläche parallelen Wellenebenen auch der
Polarisationszustand jener Wellen in Rechnung gezogen wird, deren
Normalen senkrecht zur anderen Grenzfläche sind. Bei der
Messung wird es am einfachsten sein, das Prisma so um
die z-Achse zu drehen, daß jene Grenzfläche des Prismas,
die vorher Austrittsebene der Wellen war, nun zur Eintrittsebene

wird und umgekehrt. Analytisch wird diese Drehung
durch die Transformationsformeln

x x' cos r + y' sin r
y — x' sin r+ y' cos T

zum Ausdruck gebracht. Natürlich ist im x'y'z'-System y' in
das Kristallinnere hineingerichtet, sofern die positive x'-Achse
von der Kante des Prismas nach der Basis verlaufen soll.
Auf dieses System bezogen, schreibt sich die Gleichung des

Indexellipsoides in der Form :

(an cos2F+ a22 sin2/"— 2 a12 sin /"cos T) x'2 +
(a,, sin2 r+ a22 cos2 T+ 2 a12 sin Tcos T) y'2 + a33 z'2 +
2 (a„ sin Tcos T— a22 sin /"cos T— a12 sin2r+ a12 cos2F) x'y' +
2 (a23 cosr+ a31 sinT) y'z' + 2 (a31 cosT—a23 sinT) z'x' —1=0.

Von der z'x'-Ebene wird diese Fläche in der Kurve
(an cos2r+ a22 sin2F— 2 a12 sin Tcos T) x'2

+ a38 z'2 + 2 (a81 cos T— a23 sin F) z'x'= 1

geschnitten. Anderseits liefert die Beobachtung zunächst die
reziproken Werte ihrer Hauptachsen q\ und q'2 (q\ < q'2) und
wegen der Schwingungsrichtung auch die Orientierung
derselben. Das Azimut der Schwingungsrichtung von q\ werde
mit e' bezeichnet und von +z über-x im Gegenzeigersinn
(von außen gesehen) gemessen. Für die andere Welle kann
es gleich s'-\-nj2 gesetzt werden.

Bezogen auf diese Schwingungsrichtungen als Achsen
hat die Schnittellipse der x'z'-Ebene mit dem Indexellipsoid
die Gleichung

q'2Z'2 + q'2X'2=l,
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und da
Z' — x' sin e' + z' cos e'

X' — x' cose' — z' sine',
so kommt dafür

(q'2 sin2e' + q'2 cos2e') x'2 - 2 (q'f - q'2) sine' cose' x'z' +
(q'2cos2e' + q'2sin2e')z'2=l.

Daraus folgt
an cos2r- 2 a12 sin/"'cosr+ a22 sin2 T q'2 sin2e' + q'2 cos2e' R'u

a31 cos/"1—a23sin.T —(q'2 —q'2) sine' cose' R'i3 XIc
a33 q'f cos2£' H- q'l sin2 e' =R'33

und hieraus
(q'2 — q'2) sine cose + a31 cosT

a,3
sinT

Die Genauigkeit dieser letzten Formel sowie ihr Vorteil der
früheren gegenüber ist bei späterer Gelegenheit noch
eingehend zu untersuchen.

42. Durch die hiermit eindeutig gegebenen Polarisationskonstanten

ist das Indexellipsoid vollständig bestimmt. Zur
Ermittlung der Hauptlichtgeschwindigkeiten und der optischen
Orientierung des Kristalls ist es dem Gesagten zufolge nur
mehr nötig, Größe und Lage der Hauptachsen des Index-
ellipsoides zu finden. Das ist aber ein ganz gewöhnliches
Problem der analytischen Geometrie. Bekanntlich sind die
Koordinaten u, v, w des Endpunktes einer solchen Achse den

Komponenten der zugehörigen Flächennormale, d. h. den

partiellen Differentialquotienten von
an u2 + a22v2-r-a33w2-r-2a1juv + 2a2gvw-r-2au Wu= 1

proportional. Man hat daher

anu + a12v + a13w Jlu

a,,u + a22v + a23w Àv XIII
ai3U + a<3V+a33W==*W>

wo X ein Proportionalitätsfaktor ist. Dieses System von
Gleichungen hat aber dann und nur dann von (0,0,0)
verschiedene Lösungen, falls

au— X a12 a13

al2 a,.,—X a,A =0. XIV
ai3 a23 a33 Ä

4*
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Diese Determinante stellt eine Gleichung dritten Grades in X

dar, deren Wurzeln im allgemeinen verschieden und nach
dem bekannten Weierstraßschen Beweis reell sind. Man
erhält darum drei Werte von X und somit auch drei Systeme
von Lösungen

Uì:vì:wì (i —1,2,3).
Multipliziert man die drei Gleichungen XIII der Reihe nach
mit u, v, w und addiert, so erhält man, falls man X und die
Variablen mit dem Index behaftet,

Xi (Ui2 + v;2 + Wi2) - 1.

Wegen der Voraussetzungen über u, v, w stellt

h
Ui2 + Vi2 + Wj2

das Quadrat der reziproken Länge einer Hauptachse des

Indexellipsoides dar, weshalb die Beziehungen gelten
a VTx, b=Vh, c Vh,

wofern

"\ ^" "2 ^> 3

gewählt wird.
Die Richtungskosinus ergeben sich jetzt unmittelbar.

Man findet beispielshalber

\Ai2 + v2 + w2

und ähnliche Ausdrücke für die anderen acht Richtungskosinus.
Ihre Werte ändern sich also nicht, wenn beliebige Vielfache
von ui, vi, Wj benützt werden, was insofern von Bedeutung
ist, als die Gleichungen XIII nur die Verhältnisse

Ui : Vi : w;
zu finden erlauben.

43. Nachdem es so gelungen ist, das Prismenproblem
allgemein und unabhängig vom Kristallsystem eindeutig zu
lösen, werden jetzt jene Fälle näher zu betrachten sein, bei
denen die entwickelte Methode versagt oder doch zu versagen
scheint. Dies trifft zu, wenn die Ein- oder Austrittsebene
des Prismas oder beide zugleich je auf einer optischen Achse

Binormale) senkrecht stehen — die zu diesen Flächen

parallelen Wellenebenen also keine bestimmte Schwingungs-
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richtung haben. Damit wird natürlich die angegebene Methode
illusorisch und die Formeln XI b bzw. XIc können und
dürfen streng genommen nicht mehr zur Bestimmung der aik

herangezogen werden, da die Voraussetzungen (bestimmte
Schwingungsrichtung), auf Grund derer sie abgeleitet wurden,
nicht mehr erfüllt sind. Indessen ergibt eine kurze
Überlegung analoge Ausdrücke. Es genüge, dies für den Fall
zu zeigen, daß die xz-Ebene auf einer optischen Achse
senkrecht stehe. Das Indexellipsoid wird von derselben in
einem Kreis geschnitten, als dessen Gleichung sich

an x2 + 2 a13 xz + a33 z2 — 1 0

ergibt. Da der Radius desselben gleich 1/b b ist die
Normalengeschwindigkeit längs der optischen Achse), so folgt

an a33 b2> ais 0

Es ist nun interessant zu sehen, daß die Gleichungen XI b
sich genau auf diese Werte reduzieren und somit auch in
diesem Grenzfall gültig bleiben. In der Tat, da

q, q2 b,
so kommt

an a33 b2 (sin2 e + cos2 e) b2

als (q2 —q2)sine cose 0.

Die übrigen Formeln bleiben unverändert, nur zeigt
sich, wie die Bestimmung von a23 nach der Gleichung

a23 l"l2 *^83 V12J ' ^18»

die, wie bereits bemerkt, auch im allgemeinen kein günstiges
Resultat liefert, hier zum vorneherein versagt, weil Nenner
und Zähler verschwinden und a23 sich auf die unbestimmte Form
ai3 0:0 reduziert — ein Grund mehr, die ursprüngliche
Fassung der Methode fallen zu lassen. Die nämliche Schwierigkeit

(Unbestimmtheit von a23) hätte sich übrigens immer
eingestellt, wenna18 0, was offenbar, vom eben behandelten
Fall abgesehen, nur noch eintritt, wenn die zur xz-Ebene
parallelen Wellenebenen parallel und senkrecht zur Prismenkante

schwingen d. h.

1) wenn die Querschnittsebene eine Symmetrieebene ist.
Aus Symmetriegründen verschwindet dann aber neben a13
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auch a23, was zur Folge hat, daß selbst ohne Rücksicht auf
den Polarisationszustand der zu den Grenzflächen parallelen
Wellen die Polarisationskonstanten lediglich auf Grund der

Gleichungen XIa eindeutig bestimmt werden können. Übrigens
handelt es sich hier um den bereits erledigten Fall a) von § 31 ;

2) wenn die yz-Ebene eine Symmetrieebene ist (vergi.
§31 c) und Anm. ganz am Schluß desselben Paragraphen);

3) wenn die Strahlen, die zu den parallel austretenden
Wellen gehören, in der Querschnittsebene bzw. in der
yz-Ebene liegen.

Im folgenden soll nun die Methode für die verschiedenen
Systeme spezialisiert werden.

/. Triklines System.

44. Im triklinen System besteht zwischen kristallo-
graphischer Richtung und optischer Orientierung kein direkt
erkennbarer Zusammenhang. Zudem ist die Lage sämtlicher
Hauptschwingungsrichtungen für die verschiedenen Farben
verschieden. Z,ur Bestimmung der optischen Konstanten
kommt daher die angegebene Methode in ihrer allgemeinen
Fassung zur Anwendung.

//. Monoklines System.

45. Im monoklinen System fällt eine Hauptschwingungsrichtung

mit der Orthodiagonale zusammen, während die
beiden anderen in der Symmetrieebene liegen und mit der
Vertikalachse die unbekannten Winkel d- und n\2 + # bilden,
so daß im ganzen nur vier Größen zu bestimmen sind.
Dementsprechend muß sich auch die Zahl der Beobachtungen
vermindern.

Die Beobachtung der Geschwindigkeiten und
Schwingungsrichtungen der zu den Grenzebenen des Prismas parallelen

Wellenebenen liefert die sechs Gleichungen

an Rn an cos2 F+ a22 sin2 r— 2 a12 sin Tcos / R'n

al3 R13 a31cosr-a23sinr=R'l3
a33 "j3 a33 " " 331

die aber zur Bestimmung der Polarisationskonstanten nicht
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hinreichen, weil a22 und a12 nur in einer und derselben
Gleichung auftreten, a33 dagegen doppelt bestimmt wird.

Sind A,B,C die bekannten Richtungskosinus der
Orthodiagonale in bezug auf das xyz-System, so muß die
Normale des Indexellipsoides in jenem Punkt, dessen
Koordinaten x, y, z den Größen A, B, C proportional sind, dieselben
Richtungskosinus haben. Bezeichnet daher m einen
Proportionalitätsfaktor, so muß nach den Gleichungen XIII

an x + a12 y + a18 z m A
a12x + a22y-l-a23z mB
a18x + a23y + a33z=mC

sein. Hieraus folgt nach einigen Umstellungen und mit
Rücksicht auf die Beziehung

x y z

A~~ÌT "C

das Gleichungssystem
(au-o)A+ a12B+ a18C 0

a12A-f-(a22 — o)B+ a23C 0

a13A+ a28B + (a83-o)C 0,
das durch Elimination des Proportionalitätsfaktors o die
Doppelgleichung

anA + a12B + a13C a12A + a22B+ a23C a13 A + a23B + a33CABCergibt. Im Verein mit XI b und XI c hat man somit zur
Bestimmung der sechs Polarisationskonstanten acht Gleichungen,
so daß dieselben überbestimmt sind und sich die Methode
der kleinsten Quadrate zur Ermittlung genauerer Werte
verwenden läßt.

46. Die Gleichungen XV bieten etwelche Schwierigkeiten,

wenn eine oder zwei der Größen A, B, C verschwinden.
I. Die Orthodiagonale liege in einer Achsenebene des

xyz-Systems und zwar
1) in der Querschnittsebene. Da

A cosa, B sinÀ, C 0,
so bekommt man aus den beiden ersten Gliedern der
Doppelgleichung XV

(a,, — a22) sin 2 X — 2 a12 cos 2 X 0.

XV
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Das dritte Glied muß den beiden ersten, welche endlich sind,
gleich sein. Das ist nur dadurch möglich, daß der Zähler
desselben verschwindet, d. h. daß

al3 cos X + a23 sin X 0.
Statt der beiden Gleichungen XV ergeben sich somit zwei
speziellere, welche für die Rechnung sehr bequem sind.

2) in der yz-Ebene. Die Richtungskosinus der Ortho-
diagonale haben die Werte

A 0, B cos ii, C sin ii,
und eine analoge Überlegung wie soeben führt an Stelle der
Gleichungen XV auf die ebenfalls bequemen Ausdrücke

(a22 — a33) sin 2 pu — 2 a23 cos 2 ii 0

a12 cos u -f- a13 sin /a 0.
3) in der Austrittsebene. Setzt man

A sini/, B 0, C cpsv,
so kommt

a12 sin v + a23 cos v 0

(a33 — au) sin 2 v — 2 a13 cos 2 v 0.

Die letztere Gleichung gibt nichts Neues, sondern stellt
vielmehr eine Beziehung dar, welcher die Rik identisch
genügen. Denn nach den Gleichungen XIb ist

a38_an=(q?-q2)cos2e
2ai3=(q?-qlLsin2e

also auch
(a33 —an) sin2e —2a13 cos2e 0.

Weiter erkennt man aus der Bedeutung von e, daß eine der
beiden Beziehungen

e v bzw. e + n\2=v
erfüllt sein muß. Dadurch kommt in jedem Fall

(a83 —an)sin2i/—2a13cos2i/=(R33 —Rn)sin2v—2R13cos2i/=0.
Zur Berechnung der Polarisationskonstanten kommt demnach
neben den Gleichungen XI b, XI c nur die Gleichung

a12 sinv-|- a23 cosv= 0
in Betracht. Wegen der Bedingung

bleibt aber für die Ausgleichungsrechnung immer noch Raum.
Würde die Orthodiagonale in die andere Begrenzungsebene
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des Prismas fallen, so müßte sich aus der Doppelgleichung XV
eine Beziehung ergeben, der die R'ik identisch genügen.

II. Die Orthodiagonale falle mit einer Achse des xyz-
Systems zusammen, und zwar

1) mit der z-Achse. Die Querschnittsebene ist eine
Symmetrieebene, und die Lösung ergibt sich, wie bereits bemerkt,
in einfachster Weise nach § 31a).

2) mit der y-Achse. Da die Richtungskosinus der Ortho-
diagonale A_Q> B=1> c==0
werden, das erste und letzte Glied der Gleichungen XV aber
endlich bleiben müssen, so kommt

a12 0 und a23 0,
wie sich übrigens direkt aus den Symmetrieeigenschaften des

Indexellipsoides folgern ließe.

3) mit der x-Achse. Es wird einerseits

A=l, B 0, C 0
und anderseits

a12 0 und a13 0,
und für die Anwendung der Ausgleichungsrechnung bleibt,
wie auch im vorangehenden Fall, die einzige Bedingung

K33 " 33"

Es ist beachtenswert, daß in allen Fällen des monoklinen
Systems die Bestimmung der Pik an und-für sich überflüssig ist.

///. Rhombisches System.
47. Infolge der Symmetrie dieses Systems fallen die

Hauptschwingungsrichtungen für alle Farben mit den

kristallographischen Achsen zusammen. Seien, von der soeben
gebrauchten Bezeichnung etwas abweichend, A,,A2,A3; Bj,B2,B3;
Ci,C2,C3 die Richtungskosinus der Brachy- resp.
Makrodiagonale und der Vertikalachse in bezug auf x,y,z. Nach
der Doppelgleichung XV gelten die Beziehungen :

an A,-f-a12 A2 + ai3 Ai _ ai 2 At + a22 A2 + a23 A3 a, 3 A, + a23 A2 + a33 A3

A, A2 A3
a11B1 + a,2B2+a13B3_a12B, + a22B2+a23B3_a13B, + a23B?+a33Ba.

B,
~~

B2 B3 XVI

ailCl~^"ai202 j ai8^3^ai2^1~^a22^2~ra23^'3 ai3^-'l "^" a23^2 ' a38^3

C, C2 C3
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Diese neun Beziehungen sind nicht voneinander unabhängig.
Es gilt vielmehr der Satz: Von den neun Beziehungen
der Gleichungen XVI sind nur drei voneinander
unabhängig, die aber im allgemeinen auf 78
verschiedene Arten kombiniert werden können. Man
kann also in 78-facher Weise aus den neun Gleichungen XVI
so drei wählen, daß die übrigen sechs hierdurch bedingt sind.

Zur Erleichterung des Beweises und im Interesse späterer
Anwendungen seien vier Vorbemerkungen gestattet, a) Eine
einfache Kontrollrechnung zeigt, daß aus zwei Gleichungen
je einer Zeile zwei beliebige Polarisationskonstanten als
Funktionen der vier anderen gefunden werden können. — ß) Man
beweist ferner, daß von den drei Gleichungen, deren Glieder
nur zwei Kolonnen angehören, jede durch die beiden anderen
bedingt ist. In der Tat, schafft man z. B in den zwei
Gleichungen der zwei ersten Zeilen und Kolonnen die- Nenner

weg und addiert, so kommt
(AIA2 + B1B2)an + (A2 + B2-A2-B2)a12+(A2A3 + B2B3)a18

-(A1A2 + B1BJ)a22-(A1A8 + B1Bi)a2,=0.
Mit Rücksicht auf die Orthogonalitätsbedingungen folgt hierfür

CiC2 (a,,— a22) + (C2 — Cj) a12 + C2C3a,3 — CXQ.A a23 0.

Das ist aber genau die den beiden Ausgangsgleichungen
entsprechende dritte Gleichung, falls man darin die Nenner
wegschafft. — y) Weiterhin kann man zeigen, daß zwei in der
genannten Weise aufgestellte Gleichungen nicht unabhängig
sind von den zwei Gleichungen, die sich durch andere
Kombination der Kolonnen ergeben. Man betrachte zu diesem
Zweck die vier Gleichungen :

aA-t-n A -4- a A
0aii A, +a12 A., 4- a13 A3 ai2A, t a22 A2 -f- a28 A3

Ai
anB1-fa12B2 + a13B3 a12B,

A,
+ a22B2 + a23B3

Bt
a12 Aj + a22 A2 + a.,3 A3 ai3 A,

B2

+ a23 A2 + a33 A3

A,
a12B1 + a22B2 + a23B3 ai3Bi

K
+ a23 B2 + a33 B3

B3 Bs
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Subtrahiert man von der ersten Gleichung die zweite, so
kommt der Ausdruck

^_A1_B2 'Ba (A*-BAa +/A3 B3\a _0
\AX A2 B+Bj*" U2 Bjan + \Al~Bj *»~ °'

der mit
A.B,k
AâB3

multipliziert und zur dritten Gleichung addiert nach einigen
Umänderungen die Beziehung ergibt:
rA, (A1B2-A2B1)(A1B1 + A2B2h
te+ A.B..AA J *12 + a22 +

2 *-"2 * »3"8

Al-Al A1B1(A8B2-Ag*Ba)-| B
a23 — d83 — —- a31 — u.rA3A2 A^A^-A^-jL A2A3 A2B2 A3B3 J

Beachtet man, daß

A,B1 + A2B2 + A3B8 0

und formt man den Koeffizienten von a23 in folgende Weise um :

A2B2B3-A2B2B3 + A1B1A3B2-A1B1A2B„_
^2 D« J\$ Djj

A8 B2 (A, B3 + Ax Bx) - A2 B3 (A, B2 + A, Bx) A2A3(B|-B2)
A2B2A3B8

"

A2A3-B2B3
'

so erhält man, falls man die Koeffizienten von a22 und a83 in
selbstverständlicher Weise erweitert,

a12 Bx + a22 B2 + a23 B3 a13 Bx + a23 B2 + a33 B8 ¦

B2 B3

d. h. genau die vierte Gleichung. — d) Hieraus ergibt sich

endlich, daß je eine Gleichung aus jeder Zeile zusammen
ein unabhängiges System bilden, wofern dieselben so gewählt
werden, daß ihre Glieder nicht sämtlich in den zwei
nämlichen Kolonnen figurieren.

Der Beweis des Satzes ist nun leicht zu führen. Da
im ganzen neun Gleichungen vorhanden sind, so kann man
dieselben in

98-7 „.¦84(9\ 9.».
UJ 1.2...3

verschiedene Gruppen von je drei Gleichungen zusammen-
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fassen. Hiervon fallen drei Gruppen weg, weil die Glieder
ihrer Gleichungen nur je einer Zeile angehören. Ebenso
fallen jene drei Gruppen weg, deren Gleichungen aus sechs
Gliedern aufgebaut sind, die nur in je zwei Kolonnen
auftreten. Es verbleiben somit 78 verschiedene Kombinationen
von drei unabhängigen Gleichungen des Systems XVI.

48. Zur Bestimmung der Polarisationskonstanten genügt
die Ermittlung der Geschwindigkeiten und Scbwingungs-
richtungen der zur xz-Ebene parallelen Wellenebenen, da
diese letzteren drei Polarisationskonstanten liefern (an,a13, a33)

und die drei anderen sich aus den Gleichungen XVI ergeben.
Am einfachsten ist die Rechnung, wenn man die Gleichungen
zweier Zeilen nimmt, deren Glieder in der ersten und dritten
Kolonne stehen. Man erhält so a12 und a23 und kann sie in
eine jener beiden Gleichungen eintragen, welche ein Glied der
zweiten Kolonne der noch verbleibenden Zeile enthalten.
Dadurch ergibt sich a22.

Es hat keinen Zweck, die entsprechenden Gleichungen
für a12, a22 und a23 explizit aufzustellen, da man schließlich
alle 78 Systeme betrachten müßte. Sie geben zwar alle das

gleiche Resultat, aber nicht alle brauchen für die Rechnung
gleich günstig zu sein.

Das gleiche Problem (Bestimmung der
Hauptlichtgeschwindigkeiten eines rhombischen Kristalls mit Hilfe eines
einzigen Prismas von beliebiger Orientierung) wurde schon
früher (§ 15 ff.) behandelt. Die Lösung erwies sich möglich,
aber nur auf Grund sehr umständlicher Überlegungen. Auch
die von Born1) angegebene Methode, deren Voraussetzungen
zudem spezieller sind wie die hier gemachten, erfordert die
Bestimmung der Kurve C und demzufolge die Ermittlung
von mindestens sechs Wertpaaren (q, xp). Um wieviel
einfacher ist demgegenüber die soeben entwickelte Methode, die
auf Grund der Ermittlung zweier Lichtgeschwindigkeiten
derselben Fortpflanzungsrichtung und der zugehörigen
Schwingungsrichtungen — im ganzen also drei unabhängige Be-

1) N. Jahrbuch f. Mineral. B.-Bd. 5, 40.



— 61 —
i

obachtungen — die Berechnung der Hauptlichtgeschwindigkeiten

a, b, c gestattet und überdies ergibt, in welcher Weise
sich die optischen Symmetrieachsen auf die kristallographischen
Achsen verteilen.1)

49. Ist die Orientierung des Prismas spezieller Art, so
vereinfachen sich die Gleichungen XVI, was eventuell eine

Vermehrung der Beobachtungen nach sich ziehen kann.

I. Eine kristallographische Achse liege in einer Achsenebene

des xyz-Systems, wogegen die beiden anderen eine
willkürliche Lage haben. Von den neun Richtungskosinus
Aj, Bi, Ci wird einer null. Es verbleiben aber immer noch

genug unabhängige Gleichungssysteme, um die allgemeine
Methode anwenden zu können. Übrigens kann es von Vorteil
sein, ähnliche Überlegungen wie etwa im Falle I, l. des monoklinen

Systems (§ 46) anzustellen und damit einfachere
Beziehungen abzuleiten. Wäre z. B. Ax 0, so käme

ai2 A2+a13A3=0.
Die anderen Gleichungen vereinfachen sich nicht.

II. Eine kristallographische Achse falle mit einer Achse
des xyz-Systems zusammen und zwar

1) Die Brachydiagonale mit der x-Achse. Die neun
Richtungskosinus nehmen die speziellen Werte

Ax \ A2 0 A3 0

Bi 0 B2 cos« B3 sinw
Cx 0 C2 — sin« C8= cosi*

an und statt der Gleichungen XVI kommt

ai2 0 ai3 °
(a22 — a33) sin 2 u — 2 a23cos 2ii=0.

Zur Berechnung der a;k ist es notwendig, die R'ik
heranzuziehen, wodurch Uberbestimmung und damit die Möglichkeit
der Anwendung der Ausgleichungsrechnung vorhanden ist.

2) Die Brachydiagonale mit der y-Achse. Da

*) Hier sei erwähnt, daß auf Grund der nämlichen Beobachtungsdaten—

jedoch mit Hilfe einer wesentlich anderen Formel Th. v. Liebisch
die Bestimmung der optischen Konstanten rhombischer Kristalle theoretisch

durchgeführt hat. (Zeitschr. f. Krist. und Min. 7. 433—437).
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A: 0 A2=l A3 0

B, sin it B2=0 B3=cos,u
Ct costt c2=o C3 —sin

erhält man analog wie vorher
a., 0 ¦*23" 0

(an —a33)sin2,it + 2a13cos2,tt 0.

Die letztere Gleichung ist, wie in § 46, I, 3 gezeigt wurde,
eine Identität und scheidet darum aus, so daß abermals die
R'iif heranzuziehen sind.

3) Die Brachydiagonale mit der z-Achse. — Die Lösung
* ergibt sich, wie schon mehrmals bemerkt, am einfachsten
nach der gewöhnlichen Methode.

Würde statt der Brachydiagonale die Makrodiagonale
oder die Vertikalachse mit einer Achse des xyz-Systems
zusammenfallen, so würden die voranstehenden Formeln im
wesentlichen unverändert bleiben.

III. Das xyz-System fällt mit dem kristallographischen
Achsenkreuz zusammen. Man kommt damit auf den aller-
gewöhnlichsten Fall, der keiner weiteren Erörterung bedarf.

50. Es bleibt noch der interessante Fall zu erledigen,
wo die optische Orientierung beliebig, aber gegeben1) ist.
Man hat ohne weiteres

Rn a2a2 + b2/32 + c272

R13= a2aja3+ b2ßxß3+ c2/x y3
RA3=a2a2 + b2ß2 + c2y\.

Die Determinante dieses Systèmes ist

«Î ßi YÌ a\ + ß2 + y2 ß2 yj 1 ßi Yi

ai«s ßißa YiY-6 <*i<*a+ßiß» + YiYt ßiß» YiY-6 0 ßA Yi?

«3 ßl YÎ «l + ßi + Yl ßl YÎ 1 ßl Yi

ßißiYl-ß23YiYi+ßlYiYs-ßißiYi ß*Ys(ßiY-ßiYi) +
+ ßiYt(ßi)'»- ß6Yi) (ßiYs-ß3Yi)(ßsY* + t\Yx) a2ß2y2

i) Th. v. Liebisch, N. Jahrb. f. Mineral. 1886. I Seite 23.

M. Born, N. J. f. Min. B. Bd. 5 (1887) Seite 40.

Dem § 48 gegenüber wird hier vorausgesetzt, daß es bekannt
sei, mit welchen kristallographischen Achsen die einzelnen optischen
Symmetrieachsen zusammenfallen. Dadurch wird aber nur eine
rechnerische, nicht aber eine sachliche Vereinfachung erreicht.



— 63 —

und darum sicher von null verschieden, wenn die y-Achse
auf keiner optischen Symmetrieachse senkrecht steht. Grund
für das Verschwinden der Determinante ist der, daß in allen
diesen Fällen wenigstens eine optische Symmetrieachse in
die zx-Ebene zu liegen kommt, so daß der Winkel e zum
vorneherein gegeben ist. Es verbleiben demnach nur noch
zwei unabhängige Beobachtungsreihen, die natürlich zur
Bestimmung der drei Unbekannten nicht hinreichen.

51. In Kürze sei noch auf die Verwendungsmöglichkeit
der Methode im Falle optisch einachsiger Kristalle
aufmerksam gemacht.

Setzt man a b o und c e (wobei allerdings die
Annahme a>b>c ganz dahinfällt, indem o ebensogut größer
wie kleiner als e sein kann), so kommt

an (ßj2 + /?i2) o3 + y{- e2

aik {a-xak + ß-,ßk) o2 + yxyk e2.

Wegen der Identitäten
a-2 + ßi2 + yi2=[

und wegen
ctjo:k + ßißk + yiyk — 0

kann die Gleichung VII des Indexellipsoides auf die Form
[o2 + (e2- o2)y2] x2 + [o2 + (e2-o2)y2] y2 + [o2 + (e2-o2) y2] z2

+ 2(e2 - o2)yxy2 xy + 2(e2-o2)y2y3yz + 2 (e2 - o2)y.Ayx zx 1

gebracht werden, aus der die Ausnahmestellung der optischen
Achse allen anderen Richtungen gegenüber deutlich wird
Zugleich ergeben sich für die Polarisationskonstanten die
Werte :

an o2 + (e2-o2)72
:o2 + (e2-o2)/2

/2a33 °2 + (e2-°2)j/3
a12 (e2-o2)^^2
a23 (e2-o2)^273
a3! (e2-o2) 7^.

Es sind nun zwei wesentlich verschiedene Probleme zu
unterscheiden.

1) Die kristallographische Orientierung des
Prismas, welches zur Bestimmung der optischen
Konstanten dienen soll, ist unbekannt und un-
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bestimmbar. Zur Ermittlung von e und o (und der Lage
der optischen Achse) genügen die Gleichungen XIb und XIc.
In der Tat, da die vier den Grenzflächen parallelen Wellenebenen

(q!,q2 und q'„q'8] zweimal den Wert o ergeben, so
kommt mit Rücksicht auf die eben gefundenen Werte der
Polarisationskonstanten :

(e2-o2)r2 Rn-o2 a)
(e2-o2)y3yx^R13 b)

(e2 - o2) y3 yx cos/1- (e2 - o2) y, y.A sinr= R'13. c)

Aus b) und c) bekommt man
Y2 R18cosr—R'13
Yx R18 sinr

und aus a) und b)
Y3 _.;.

^18

Y1 Rn-o2
und damit wegen der Identität

YÌ YÌ YÌ
die beiden Lösungen

YvYpY* und -Yv-Yv — Y»
welche mit Hilfe etwa der Gleichung b) den eindeutigen Wert

e2 —o2
liefern. Da o2 bereits bekannt ist, folgt daraus unmittelbar e2.

Die übrigen drei Gleichungen von XI b und XI c dienen

zur Anwendung der Ausgleichungsrechnung.
2) Die kristallographische Orientierung des

Prismas ist bekannt. Zur Bestimmung von o und e

genügt die Beobachtung von qx und q2. ex e und e2=e + 7r/2
lassen sich aus yx,y2 und y.A berechnen. Man kennt darum
die Schwingungsrichtung von o zum vorneherein und kann
somit leicht entscheiden, welcher der beiden Werte qx und q2

der ordentlichen Wellengeschwindigkeit entspreche. Da ferner

au+a38 2o2 + (e2-o2)(72 + 72) q2 + q2,

so ist
q2 + q2-2o2

e2-o2=———
YÌ + YÌ

Das Problem ist also erledigt.
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Übrigens hat schon Th. v. Liebischl) gezeigt, daß die
Hauptlichtgeschwindigkeiten eines einachsigen Kristalls mit Hilfe
eines Prismas beliebiger Orientierung gefunden werden können.

52. Anhangsweise sei noch die in § 40 erwähnte Tatsache
rechnerisch untersucht. Zu dem Zweck sollen zwei Sätze bewiesen werden.

l.Satz: Die absoluten Werte von aik (a12, a23, a31) liegen
zwischen null und (a2— c2) : 2. Daß aik verschwinden kann, ist
leicht ersichtlich, genügt es doch, daß z. B. das xyz-System mit dem
^>jf-System zusammenfalle. Es erübrigt somit noch der Beweis, daß
(a8—c3):2 die obere Grenze von aik ist.

Mit Rücksicht auf die zweite Gleichung des Systems XI b läßt
sich das Bildungsgesetz der aik (i + k) leicht erkennen. Darnach wird,
ialls der besseren Formulierung wegen

aikEEaj (i*j*k 1,2,3)

gesetzt wird, — wodurch die Beziehung zu einer bestimmten Achse
¦des xyz-Systems besonders hervortritt — a.x bestimmt durch die Differenz
der Geschwindigkeitsquadrate und die Azimute des Schwingungszustandes

jener Wellen, die sich parallel der x-, y- oder z-Achse
fortpflanzen (j=I, 2 oder 3). Bei gegebener Lage der j-Achse kann das
Azimut der dazu senkrechten i- und k-Achse, auf welche die Schwingungs-
richtungen bezogen werden, sich noch beliebig ändern.

3j aik (q.2 - qj'2)-sin eik-cos *ik
setzt sich darum aus den völlig unabhängigen Faktoren q'-2 ~ q'-. und
sin* cose zusammen. Der maximale Wert eines solchen Produktes ist
aber gleich dem Produkt der maximalen Werte seiner Faktoren, d. h.

Max aik= Max (qj2 — q"2) Max sin éik cos fik.
Der erste Faktor hat den selbstverständlichen Wert a2— c2, während
der zweite Faktor sein Maximum für f (4n+l)-n/4 erreicht. Es

kommt somit

Maxaik=a c.
2

Der hiernach bewiesene Satz erlaubt bereits eine Anwendung
auf das in Rede stehende Problem. Es ist nämlich der Zähler von a23

gegeben durch
a23 • a3i Pia R33 — Ql2-

Bedenkt man, daß für den maximalen Wert von a23 der Wert von agl
verschwindet, was mit Rücksicht auf die Werte al—yl=ß2 ß3 0 sofort
begreiflich ist, so folgt, daß der maximale Wert von P12R33—Q12 sicher
kleiner ist als das Produkt der maximalen Werte von a23 und a31, d. h.

(a2— c*)2
P12 R33 — Ql2

In der mehrfach erwähnten Arbeit im N. Jahrb. f. Miner. 1886 1.14.
5
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Es läßt sich aber noch eine schärfere Grenze finden, da ein weiterer
Satz besteht.

2. Satz: Der absoluteWert von a15 • a32 liegt zwischen
null und (a2-c2)2:8.

Mit Berücksichtigung der Bedeutung von a13 und a23 sowie der
sechs unabhängigen Gleichungen zwischen den neun Richtungskosinus,
des Schemas I wird | aI3 ¦ a23 | Maximum, wenn dies der Fall ist für
a* «i«2«l + b* ßißaßl + c* yx y2y% + a2 b2 («2«3 ßtß3 + «3 ax ßaß3) +

+ b2 c2 (ß2 ß3 ys yl + y2 y3 ß3 ßi) + c2 a2 (y2 y3 «g at + a2 «3 y3 Yl) +
+ kl («1 «2 + /»l/»2 +Vi Y») + k2 («2«3 + ßißi + y2 Vi) + ^3 (»3«1 + ßißi + Vi Yi)
+ k4 («f + /ïf + yf - 1) + k5 («I + /s| + yl- I) + k6 («| + /s| + y| - 1).

Hieraus bildet man durch partielle Differentiation nach den neun
Richtungskosinus folgende Gleichungen:
Ai a* «a«2, + a2 b2 «3ß2ß3 + c2 a2 y2y3a3 + k, «2 + ks «s + 2 k4 ax 0

A2 a* «j «2 + a2 b2 «sßx ß3 + c2 a2 y3yx«s + kx «t + k3 «3 + 2 k5 a2 0

A8 2 a4 «! «2«3 + a2 b2 (atß1 ß3 + tt1ß2ß3) + c2 a2 (y2 y3«x + a2y3yx) + k2 «2 +
+k3B1+2 k6 «3 0

Bj b* ß2ß\ + a2 b2 «2 «3/S3 + b2 c2 y2 y3ß3 + kL ß2 + k3 ß3 + 2 k4 /J, 0

Ba b* ß±ß2 + a2 b2 «,,«!,% + b2 c2 ß3y3 Yl + kj fit + k2 ß3 + 2 k5 ß2 0

Bs=2b*/31/S2/Î3 + a2b2(«2a3(S1 + as«1/S2) + b2c2(/S2y3y, + y2y3/sl) + k2/î2 +
-r-k3/*1^-2 k6/î3=0

C, c4y2 y| + b2 c2 ß2ß3Vi + c2 a2 «2«sT'a + kt y2 + k3 y8 + 2 k4 yx 0

C2 c* y, y\ + b2 c2 y3 ß3 /*j + c2 a2 y3 «3 «t + kj yx + k2 y3 + 2 k5 y2 0

C3 2 c4 y^gy.) + b2 c2 (ß2ß3yx + y2/J3£i) + c2 a2 (y2«3«i + K2«syi) + k2y2 +
+ k3y1 + 2k6y3 0

Mit Hilfe der Orthogonalitätsgleichungen beweist man leicht, daß
nachstehende Identitäten gelten.

«i Ai+/S, BI+y1C, alga23 + 2k4 0

a2Ax+ß2B1 + y2Cl=4i + k1=0
«s A, + ß3 B, + y3 Ci a83 a23 4- k3 0

ux A2+ßx B.i + y1C2 a213 + kl=0
k2 A2 + ß2 B2 + ya C2 a18 a23 + 2 ks 0

«3 A2 + ß3B2 + Va C2 a33 at3 4- k2 0

«i A3 + ß1B3 + Vi C3 a12 a13 + au a23 + k3 0

k2 A3 + ß2 B3 + y2 C8 a22 ais + a12 a23 + k2 0

«3 As + ß3 B3 + y3 C3 2 a13 a23 + 2 k6 0

Diese neun Gleichungen gestatten, die k; als Funktionen von a, b, c,
oj, /Sj und y; zu berechnen und liefern überdies drei von k; unabhängige
Beziehungen, die mit den sechs Orthogonalitätsgleichungen jene Werte
von "i,ßi,Yi (i 1,2,3) zu finden erlauben, für welche

]a13a23)| Max.
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Die neun soeben genannten Gleichungen sind folgende:
2 2

a23 — a31 (---k,)
a38 a31 a22 a31 "1" a12 a2S (—-ki)
a23 a33 au a23 + a12 a3t (—-ks)

t+fi+Z-i
Die erste Gleichung zerfällt in die zwei linearen Gleichungen

a28 asi a23 — a31,

mit deren Berücksichtigung aus den übrigen folgt:

Da

a18 la33 "

ai8(a33 ¦

a22) — a12 a13

all) a12 a13

a13 (a83 — a22) — '

a13 (a38 — an) -

' a12 a13

a12 a18.

a23 a31 "
jedenfalls nicht die extremsten Maxima und Minima von a32 a31

ergeben, so kann man an Stelle der obigen drei ersten Gleichungen
folgende zwei Systeme setzen.

A.
a3S — a22 :

a83 — all

; a31

: a12

a12

B.

a88 — a22 :

;—a81
: —aI2
: — a12

Zur Auflösung der Gleichungen dürfte es sich empfehlen, die
geometrische und physikalische Bedeutung der Polarisationskonstanten
heranzuziehen.

Im Falle A wird man ohne weiteres bemerken, daß au a22, a33

und a2g a3i jene Konstanten sind, welche in den Gleichungen der
Schnittellipsen des Indexellipsoides mit den beiden Achsenebenen

y 0 und x 0

auftreten, denn wegen Gleichung VII schreiben sich diese
Ellipsengleichungen ohne weiteres in der Form

aux2 + 2a13xz + a33z2= 1

a22 y2 + 2a28 y z + a33 z2 1.

Diese beiden Ellipsen sind den Beziehungen A zufolge gleich und
können zur Deckung gebracht werden, falls die xz-Ebene soweit um
die z-Achse gedreht wird, bis +x mit +y zusammenfällt. — Sie sind
also symmetrisch nach der Ebene

x-y=0,
die mithin eine optische Symmetrieebene sein muß. In dieser Ebene
liegen zwei optische Symmetrieachsen;

senkrecht dazu ist die
dritte. Es sind folgende drei
durch die Figuren 5 a, 5 b und
5 c erläuterten Fälle denkbar,
für welche das Schema I die Fig-5a Fig-5b Fig5c

umstehende spezielle Form annimmt. Setzt man diese Ausdrücke,
5*



Fall
A. In der xy-Ebene liegt die Zu Fig. 5a, 5b, 5c.

J-Achse >j-Achse f-Achse

X y z X y z X y z

$ V2
2

V2
2

0 vT-1-î.cos*
2

VT—ICOS 9
2

sin .'/ V2Z-=- cos *
2

-*-=-COS#
2

sin *

i Vzv ; cos n
2

Vzv cos »
2

sin* S/2"
2

V2
2

0 -Visin*
2

-V^sin*
2

COS*

f -V^sin*
2

-V^sin*
2

cos * Vz sin* — —-sin*
2

COS *
2

\/2~
2

0
2

Fall
B. In, der xy-Ebene liegt die Zu Fig. 6a, 6b, 6c.

J-Achse ^-Achse f-Achse

x y z X y z X y z

£ Vi
2

V/2
2

0 V2 cos*
N/2
-Ü-Z-COS*

2
sin * S/2"v cos*

2
^lAcos*

2
sin*

2

ï V^cos* VïX_icos*
2

sin * V2
2

V/2"
2

0 Vi sin*
2

v/i".
— —-sin*

2
cos *

2

î N/2"^-=-sin *
2

V/2"__ZljLsin*
>2

cos * —Isin *
2

-Visin*
2

cos* VT
2

V/2"
2

0
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welche den sechs Orthogonalitätsbedingungen sowie der ersten und
der Differenz der beiden andern der Gleichungen A identisch
genügen, in die dritte Gleichung, nämlich

- au a12,

371ein, so erhält man
*

und findet für a28 a8i I bzw.
(b2-c2)2

>

8

Im Falle B bestimmen
au £

4 4

(a8_c2)2 (a2-b2)2
8 8

a31a33> a23

wiederum die beiden Schnittellipsen des Indexellipsoides mit den Ebenen

y 0 und x 0.

Ihre Gleichungen sind wie soeben

aux2 + 2a18xz + a83z2 1

a22ya + 2a28yz + a33z2= 1.

Die hierdurch dargestellten Ellipsen sind wegen der Gleichungen B
ersichtlich gleich und gelangen zur Deckung, wenn die xz-Ebene
soweit um die z-Achse gedreht wird, bis + x mit —y zusammenfällt. Sie
sind also symmetrisch bezüglich

- x + y 0.

Möglich sind demnach nur
folgende drei durch die Figuren 6a,
6 b und 6 c dargestellten
Orientierungen, für welche das Schemal
die auf der vorangehenden Seite zusammengestellten Formen annimmt.
Verfährt man wie bei A, so berechnet sich abermals

* *, ËÏ
4 4

und für [ a23 a311 kommt genau wie vorher
(b2-c2)2 (a2-c2)2 (a2-b2)2

8 8 8

Einige numerische Beispiele mögen diese Formeln erläutern.
Tabelle II

& L
Fig. 6 b Flg. 6 cFig. 6 a

¦ a c
(aa_c2)2

8

Rhomb. Schwefel 0,51270 0,44632 0,000507

Aragonit 0,65354 0,59316 0,000708

Gips 0,65771 0,65376 0,000003

« — Äthylpyruvat-Hydrazon 0,67264 0,53186 0,003594

Diese Zahlen erklären die Erfahrungen, die sich bei der numerischen Prüfung

der auseinandergesetzten Methode unliebsam geltend gemacht haben.
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