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II. TEIL

Ableitung einer neuen Methode zur Bestimmung
der optischen Konstanten zweiachsiger Kristalle
mit Hilfe eines einzigen Prismas
unbekannter Orientierung.

32. In mehreren Fillen des vorangehenden ersten Teiles
(vergl. § 31 Abt. b, cx und cg) konnte durch Beriicksichtigung
des Polarisationszustandes des austretenden Lichtes die Lsung
des Prismenproblems eindeutig gefunden werden. Die Art
und Weise aber, in der dies geschah, hatte einen blof quali-
tativen Charakter und faBte die Beziehung zwischen den
beobachteten Schwingungsrichtungen und den gesuchten Haupt-
lichtgeschwindigkeiten nirgends in einer prédzisen Formel
zusammen. Eine solche Gleichung ist aber mdglich auf
Grund des gegen Ende von § 9 erwidhnten Satzes, wornach
fiir jede Fortpflanzungsrichtung die zugehorigen Schwingungs-
richtungen und Wellennormalengeschwindigkeiten bestimmt
sind durch die Richtung und reziproke Linge der Halbachsen
jener Ellipse, in welcher das Indexellipsoid von der zur Fort-
pflanzungsrichtung senkrechten Diametralebene geschnitten
wird., Wie man sich nun geeigneter Schwingungsrichtungen
bedienen kann, um die Hauptlichtgeschwindigkeiten aller
zweiachsiger, also selbst trikliner Kristalle eindeutig zu
bestimmen — das theoretisch darzutun, ist Auigabe dieses
zweiten Teiles, wihrend die experimentelle Priifung der
Methode dem dritten Teil zufallen wird.

33. Die erste Auigabe, welche sich darbietet, ist der
Nachweis, daB das Ausbreitungsgesetz ebener Wellen, so wie

. es in Gleichung 'Il formuliert wurde,” sich in der soeben

genannten Weise aus dem Indexellipsoid ableitet. Bezogen
aui die optischen Symmetrieachsen &, 7, lautet die Gleichung

des. letzteren
a2§2+b2n2+02;-2= 1.
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Bildet nun eine beliebige Ausbreitungsrichtung mit diesen
Achsen die Winkel v, v, und v,, so erzeugt die dazu senk-
rechte Ebene
Ecosv,tncosv,+cosv,=0

mit der Fliche eine Schnittellipse, deren Gleichung sich leicht
mittels einer Koordinatentransformation ergibt, bei der die
Wellennormalenrichtung zur Z-Achse und die Schnittgerade
der Wellenebene mit der Ebene =0 zur X-Achse genommen
wird. Hierdurch nimmt das Schema I folgende spezielle
Form an.

X Y Z
Cosv, COSV, COSV,
§ : , cosv,
sinv, sinv,
cosv, COSV,COSV,
n ——— : cosv,
sinv, sinv,
z 0 =giny, cosv,

Die daraus flieBenden Substitutionen

E— 008, 3 COBY; CO8Yy
siny, sinv,

_ _Cosy, ¢ | COSY, COSY,
sinv, sinv,

filhren die Gleichﬁng des Indexellipsoides sofort in die Gleichung
der gesuchten Kurve iiber, nimlich:

a? cos®v, + b? cos?v

1 X2
sinv,
(a? cos®v, + b? cos®v,) cos®v, + c?sinty, yve
sin®v,
COS ¥, COS ¥V, COSYV
+ 2 (a* —b? : 2 {XY=1.

sin*v,
Die reziproken Quadrate q? und q3 ihrer Hauptachsen, welche
- dem Theorem zufolge den der Richtung v, v,, v, zugeordneten
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Geschwindigkeiten entsprechen, ergeben sich als Wurzeln der
biquadrischen Gleichung

, a?(cos?v, cos?v, + cos?v,) + b?(cos?v, cos? v, + cos?v,) + c?sinty,

4
q9°—q P
. sin?v,
n a*b? (cos®», + cos®v,)* cos® v, + b? ¢ cos?y, sin*y, + c?a® cos®v,sin'y, 0
- 4 i
sin*v,
Da

cos?v, cos®y, + cos?v, =cos?v, cos?y, + (1 — cos?v, —cos?,) =
(I —cos?»,) (1 — cos?v,) =(cos*v, + cos?»,) sinv,,
und da ebenso
cos*v, cos?y, + cos?y, = (cos?v, + cos?vy) sin®y,,
so kommt fiir die Abhdngigkeit der g-Werte von der Richtung
V),V vy der Ausdruck

b { a*(cos®v, + cos®v,) + b?(cos?v,; + cos?»,) + c* (cos?, + cos®v,) }

+a?b® cos®»,;+ b*c®cos®v, + c?a® cos®’v,=0
oder in Ubereinstimmung mit Gleichung II
cos’v,’ cos*v, cos?y,

q2_a2 q2_b2+q2_c2

=0

w. z. b. w.1)

34. Der Emfachhelt halber sind die folgenden Formeln
samtlich auf ein rechtwmkhges rechtshindiges Achsensystem
X, Yy, z bezogen, das, vom bisherigen Brauch abweichend, so
mit dem Prisma fest verbunden ist, daB die z-Achse wie
friiher mit der Prismenkante zusammentiillt und nach oben
positiv gerechnet wird, die x-Achse aber nicht mehr- in der
Halbierungsebene des inneren Prismenwinkels sondern in
der einen Grenzebene des Prismas liegt. Die nach aufien
gerichtete Normale dieser Ebene ist die positive y-Achse,
wihrend die positive x-Achse nach der Basis des Prismas
hinzeigt. Durch diese Festsetzung ist jene Grenzebene ein-
deutig gekennzeichnet. Bei der gewdohnlichen Aufstellungsart
des Prismas auf dem einkreisigen Goniometer, wo das Licht,
vom Beobachter aus gesehen, nach links abgelenkt wird, ist

1) Uber eine andere Ableitung dieser Gleichung aus derjenigen
des Indexellipsoides vergl. Pockels, Lehrbuch der Kristalloptik S. 33 f.



sie die Austrittsiliche, und +y fillt mit dem Fortpilanzungs-
sinn des Lichtes zusammen. |
Neben diesem xyz-System kommt noch das bereits
frither beschriebene §7nZ-System in Betracht. Fiir die Rich-
tungskosinus, welche die positiven Richtungen des einen
Systems in bezug auf die positiven Richtungen des anderen
Systems festlegen, gilt das Schema I der Form nach unveridndert.
36. Um jetzt auf den Gegenstand selber einzugehen,
sollen zunidchst die Gleichungen des Indexellipsoides und
der Wellennormalenfldche auf das neue Achsensystem bezogen
werden. Das geschieht durch die aus dem Schema I folgenden
linearen Beziehungen
| E=a xta,ytaz
77=181X+182y+1882
C=71X+7/2)}+}'32,

deren Substitution in
a2§2+b2n2+c2c2=1

die Gleichung ergibt

a,, X2+ a,, y* + a,, 22+ 2a,, xy + 2a,,yz + 2a,, zx=1. VII
Dabei ist zur Abkiirzung

ax=a’ajox +b2Bi B+ c?yiyx (aix=aw) VIII
gesetzt. Diese sechs Koetifizienten der Gleichung VII wurden
von W. Voigt!) Polarisationskonstanten genannt.

In ebenderselben Weise ergibe sich die neue Gleichung
der Wellennormaleniliche. Da aber fiir das Weitere nur ihr
Schnitt mit der Ebene z=0 in Betracht fillt, und fiir die
vorliegenden Zwecke die Polarkoordinaten bequemer sind
wie die rechtwinkligen SO empfiehlt es sich, die Transfor-
mationsformeln in der bereits oben in § 4 hergeleiteten Form
zu schreiben.

vV, =0, cosw+a281nw

v,= [, cosy+ 3, siny

vy =17, COsy + ¥, siny.
Die Substitution dieser Ausdriicke in Gleichung II gibt mit
Benutzung der eben definierten Polarisationskonstanten die
Gleichung

1) W. Voigt, Gott. Nachr. 1896 pag. 17.
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q*— q*[(a,,Ta,,) cos?y+(az; +a,,) sin*y—2a,, sinycosy]

+[(ay, a5 —aZ,) cos?y + (a, a,, —a2,) sin®y IX

—2(a,, 853 a,5 a,,) siny cosy] =0.

Diese Gleichung stellt die ndmliche Kurve dar wie
Gleichung IIl. Die beiden Gleichungen unterscheiden sich nur
durch das Bezugssystem. Um dies auch in der Schreibweise
anzudeuten, soll fiir Gleichung IX abkiirzend?!) gesetzt werden

- q*—q*(P,, cos*y + P,, sin*y — 2P, siny'cosy)

+(Q,, cos’y + Q,, sin*y'— 2 Q,, sinywcosy)=0. X
Darin ist
P,,=a,,+ay Q, =2, 3, —a} Xl(i)
P,=a,+a, Q= 4,2, —aj 1 za 6
P,=a, Q=28 —aya, - = R

36. Die Konstanten P;; und Qi kénnen durch sechs Wert-
paare (q,) eindeutig bestimmt werden. Dagegen ergeben

sich aus den Gleichungen X149 im allgemeinen acht Losungs-
systeme fiir die Polarisationskonstanten. In der Tat aus

X14 und XI2 kommen die Werte
a5, =P, —ay, .
@ (5)311 =P,, —ay,,
welche in XIa und XIa eingesetzt
ags =54 (P, —ag) — Qyy
a3y =y, (Py; —ay5) — Qy
6) . L 3, o
ergeben, wiahrend aus XI1% mit Beriicksichtigung von XI1% folgt:
255 83, =853 P, — Q.
Werden beide Seiten dieser Gleichung quadriert und fiir
a2, und aZ, die soeben gefundenen Werte eingesetzt, so erhilt
man zur Bestimmung von a,;, die Gleichung vierten. Grades

a;;;_' (Pu + P22) 323 + (Pu P22 o sz + Qu + sz) a§3 XII
—(Py; Qap T Py Q;; —2P, Q) a5 +(Qy; Qe — 32)=0.

Diese Gleichung muf mit Gleichung VI identisch sein, wie

aus der Beziehung zwischen Lix und M einerseits sowie

1) Die Benutzung der fritheren Abkiirzungen Lik und Mik empfiehlt
sich nicht, weil sie zu (natiirlich blofi formalen) Widerspriichen fiihrt
zwischen einigen Sdtzen des ersten und zweiten Teiles.
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P;x und Qix anderseits sofort hervorgeht. Man kann darum
ohne weiteres schlieBen, daB

a?,b% c* und a;;, =a* a2+ b* 82+ c?y2
die Wurzeln der Gleichung XII sind ( vergl § 5).

37. Da nach den Gleichungen X12 die Pix und Qix be-
kannte Funktionen von a;; sind, so kann man sie mit Hilfe
der Gleichungen VIII als Funktionen von a% b? c? a;, 5; und y;
ausdriicken und so sechs Beziehungen zwischen diesen zwdli
GroBen und den sechs Polarisationskonstanten aufstellen. Die
vier Werte von a,;, welche die Gleichung XII liefert, ergeben
dann der Reihe nach fiir a,, und a,, je einen zugeordneten
Wert, wihrend sich fiir a,; und a,;, je zwei Werte finden, die
aber nur im Vorzeichen verschieden sind. a,, hat fiir alle
vier Werte von a,; immer denselben festen Wert

P,=a%c a,+b*8 8,1+ 2y, 7.
Die folgende Tabelle I liefert die Resultate in anschaulicher
Ubersicht. Die Werte je einer Kolonne gehdren zusammen.
Bei a,; und a,;, entsprechen sich die oberen resp. die unteren
Vorzeichen. Der Beweis hierfiir ergibt sich aus der Identitit
Q=22 —aya,,.
Wie man sieht, werden fiir
a;, —a? c?
a,; und a,, im allgemeinen?) imagindr. Diese beiden Wurzeln
von XII scheiden darum aus und die Gleichung XII wird wie
die Gleichung VI praktisch zweideutig. Ihre Wurzeln be-

stimmen mit den zugeordneten Losungen der Gleichungen XIa
zwei Ellipsoide mit verschieden gerichteten Hauptachsen. Die
groBte und kleinste haben in beiden je dieselbe Linge, da-
gegen ist die mittlere Achse des einen gleich dem Abschnitt
des anderen auf der z-Achse (entsprechend dem in § 25 ge-
fundenen Ergebnis). Jedes dieser Ellipsoide kommt in zwei
Orientierungen vor, die wegen der Zweideutigkeit der Vor-
zeichen von a,; und a;, die Eigenschait haben, daB die eine
Lage aus der anderen durch Drehung von 180° um die

1) Einzig liir ¢; =a; =0 resp. y; =y, =0 bleiben diese Werte bzw.
reell, werden dann aber mit der vierten Losung identisch.



Tabelle I

' 2 2
dgs a b

a,, [b2+ c?—(a?a2+ b2 B2 + c?y?) ¢t + a2 — (a® a2+ b2 B2 + cty?)

a,, [bY et (aeag+ b2 82+ e®pd) ¥k a2—(aﬁa_§+ b*p%1-iclyd)

| e V(ct—a?)(a?—b? + 5, V/(a? — b?) (b? — c?)

Al + o \/@:2 — a?) (a? —b?) +8:V/(a? — b*) (b* —c?)

a,| ate,a,+ b8, 0, Fctyy, | afe 0+ b8 B+ cty,

2 B hlk 2 2 L 4
a, c a*aZ-+b ,@s—l—c i

a,, |a*+b?*—(a*a2+b? 82+ c?y?) a’a2+b*B2+c?yl

2

a, |a*+b*—(a?a2+b2@2+c*y?)|  ate?+b?R2+ iy

&y T7Vibr— c?) (c?—a?) |T(a%ayuy b3, 0+ Cty,ys)

a| +7e \/(b2 —c?) (c—a?) |+ (@’ o, +Db* B, 8, + ey, 7))

: al2 a2ala2+b2181182+cgy172 a2al a2+b218].182+c27172

z-Achse abgeleitet werden kann (in genauer Ubereinstimmung
mit dem in § 23 Gesagten). Der Beweis ist einfach.. Ersetzt
man X und y durch ihre entgegengesetzten Werte, so geht die
Gleichung des einen Ellipsoides in diejenige des anderen iiber.

Die Unbestimmtheit liegt dem Gesagten zu-
folge in der Zweideutigkeit der Gleichung XII
(a;g=Db*a’ a2 +b*B2+c*y2) sowie des Wertes von ag
(die Vorzeichen von a,; und a;, bestimmen sich gegenseitig).
Dieselbe kann nun in einfacher Weise umgangen werden,
wenn die Schwingungsrichtungen jener zwei Wellen in



Betracht gezogen werden, deren Ebenen parallel zur Aus-
trittsflache des Prismas (xz-Ebene) sind.

38. Es ist bekannt, daB die Schwingungsrichtung sich
im allgemeinen dndert, wenn die Welle aus dem Kristall in
die Luit iibertritt. Der Grund liegt darin, daB die Schwingungs-
richtung der beiden an der Austrittsebene in den Kristall
hineinreflektierten Wellen im allgemeinen verschieden ist von
der Schwingungsrichtung der im Kristall einfallenden Welle.
Féllt aber die Welle im Kristall parallel zur Grenzebene auf,
so wird sie beim Ubergang in die Luit nicht nur nicht ab-
gelenkt, sondern auch die beiden, durch Reflexion entstandenen
Wellen sind parallel zur Grenzebene und schwingen parallel
und senkrecht zur Schwingungsebene der im Kristall ein-
fallenden Welle. Dann aber ist die Energie der reflektierten
Welle, die senkrecht zur Schwingungsrichtung der einfallenden
schwingt, null, und wegen der Erhaltung der Energie muf
die ausgetretene Welle parallel zur einfallenden schwingen.

39. Es seien nun q, und q, (q, <q,) die Geschwindig-
keiten der beiden Wellen, deren Ebenen parallel zur Aus-
trittsiliche sind und & und e, die Azimute der zugehorigen
Schwingungsrichtungen, die im Gegenzeigersinn von 4 z iiber
+X (von 4y aus gesehen) positiv gerechnet werden. Selbst-
verstiandlich unterscheiden sich ¢, und &, um 7/2, und man kann

g =

: g, =€+ 7|2
setzen. Nach dem Fresnelschen Satze wird das Indexellipsoid
von der zx-Ebene in einer Ellipse geschnitten, deren Halb-
~ achsen die Linge 1:q, und 1:q, haben und mit der z-Achse
die Winkel ¢ und ¢ + 72 einschlieBen. Ihre auf diese Rich-
tungen als Achsen bezogene Gleichung lautet daher

QP72+ g2 X*—1=0.
Durch die Substitution
Z=zcose+xsing
; ‘X=—zsine-+xcose
erhdlt man ihre auf das zx-Sxstem bezogene Gleichung
(q? cos® & + g%sin’¢) z? +2(q3 — q3) sine cos e zx
+(q%sin*e +q3cos’e)x*—1=0.
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Anderseits bekommt man fiir diese ndmliche Ellipse aus der
Gleichung des Indexellipsoides
a,2°1+2a;,zx+a,, x*—1=0,
Durch Vergleichung beider Ausdriicke erhdlt man daher
a,=q?sin*e+qicos?e=R,,
a,,=(q?—q? sinecose =R, - XIb
a3 =q2cos’e+ g2sin* s =R,,.
Hieraus und aus den Gleichungen Xla ergeben sich fiir die
Polarisationskonstanten die Werte:

a,, =R, a5 =P, — Ry a;, =Ry,
a’3 (Pl2 R33 Ql2 adl R13 al% p 2"
Daneben bestehen noch dle dre1 Bedmgungsglelchungen
a, =R, R‘_,3
a223H(Pll Qll P12 R.—)& Q122)2: R123
aj, =R, Ra.«; sz

Da aber die oben ermittelten Werte diesen Gleichungen nicht
streng geniigen, indem die aus den Beobachtungen abgelei-
teten Zahlen Pj, Qix und Rj nicht fehlerfrei sind, so dienen
sie dazu, um an den Polarisationskonstanten Verbesserungen
anzubringen, die sich nach den Regeln der Ausgleichungs-
rechnung finden lassen.

40. Die soeben entwickelte Methode hat sich bei der
experimentellen Priifung leider nicht bewéhrt. Die Rechnung
hat namlich in den untersuchten Fillen (Colemanit und Kupfer-
vitriol) ergeben, daBl mindestens die fiinf ersten Dezimalstellen

im Zihler von
o (P Ry — Qys): R
verschwinden, so dal derselbe, bei der am Goniometer erreich-
baren Genauigkeit gar nicht mehr bestimmbar ist. Selbst das
Vorzeichen von a,; wird zweifelhait, da es bei dieser Gro8en-
ordnung von allerhand Zufilligkeiten abhédngt, ob die Ditierenz
PRy —Qpe

positiv oder negativ wird (zumal wenn P,, und Q,, gleiches
Vorzeichen haben).

Diese experimentell gefundene Tatsache kann beziiglich
ihrer allgemeinen Geltung rechnerisch gepriift werden. Um
aber den Gang der hier vor allem wichtigen Ableitung nicht

4
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zu unterbrechen, soll die betreffende Untersuchung als Anhang
dieses zweiten Teiles gegeben werden.

41. Die eben genannten Schwierigkeiten konnen um-
gangen werden, wenn neben dem Polarisationszustand der
zur Austrittsfliche parallelen Wellenebenen auch der Polari-
sationszustand jener Wellen in Rechnung gezogen wird, deren
Normalen senkrecht zur anderen Grenziliche sind. Bei der
Messung wird es am einfachsten sein, das Prisma so um
die z-Achse zu drehen, daB jene Grenziliche des Prismas,
die vorher Austrittsebene der Wellen war, nun zur Eintritts-
ebene wird und umgekehrt. Analytisch wird diese Drehung
durch die Transformationsformeln

x=xcos’+y sinl
y=—x'sinl"t+y' cosl’

zum Ausdruck gebracht. Natiirlich ist im x'y’z'-System y’ in
das Kristallinnere hineingerichtet, sofern die positive x'-Achse
von der Kante des Prismas nach der Basis verlauien soll.
Auf dieses System bezogen, schreibt sich die Gleichung des
Indexellipsoides in der Form:
(a,, cos*I't+ a,, sin®*I'—2a,,sinl'cos ') x'2+

(a,, sin®*I'+ a,, cos*I't+ 2a,,sinl'cos ") y'?+a,, z'* +

2(a,, sinl'cosI'— a,, sinl'cos I'—a,, sin*/"+a,, cos*I') X'y’ +

2 (ayy cosl™ta,, sinl")y'z' + 2 (a;, cosl™—a,; sinl’) z'x' — 1 =0.
Von der z'x'-Ebene wird diese Flidche in der Kurve

(a,, coa®l+a,, sin*l"—2a,.sinFcosl’) x*

| +a,, 22+ 2(a;, cos'—a,sinl) z'x'=1

geschnitten. Anderseits liefert die Beobachtung zunichst die
reziproken Werte ihrer Hauptachsen q', und ¢, (q', <{',) und
- wegen der Schwingungsrichtung auch die Orientierung der-
selben. Das Azimut der Schwingungsrichtung von q';, werde
mit & bezeichnet und von +z iiber —x im Gegenzeigersinn
(von aullen gesehen) gemessen., Fiir die andere Welle kann
es gleich &+ /2 gesetzt werden.

Bezogen auf diese Schwingungsrichtungen als Achsen
hat die Schnittellipse der x'z-Ebene mit dem Indexellipsoid

die Gleichung
q2Z"*+q2X"%=1,
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und da |
Z'=—x'sing + z' cosé’
X'=—x'cos¢ — z'sin¢,
so kommt datiir |
(q'2sin*¢’ + q'2cos?e’) x'? —2(q'2 — q'2) sing’' cose’ x'z' +
(q'2 cos*e’ + q'2sin*e) z* = 1.
Daraus folgt
a;, cos’I'=2a, sinl'cosI"+ a,, sin* I'=q'?sin*¢’ + q'2 cos*’s’ =R,
a;, cosl'—a sinl'=—(q'2—q'?) sin¢ cose’ =R'|; Xlc
a5, =q'jcos’s +q'3sin*¢ =Ry
und hieraus o -
(q'2—q'%) sine cose + a,, cosI”
sinl’
Die Genauigkeit dieser letzten Formel sowie ihr Vorteil der
friiheren gegeniiber ist bei spiterer Gelegenheit noch ein-
gehend zu untersuchen.

42, Durch die hiermit eindeutig gegebenen Polarisations-
konstanten ist das Indexellipsoid vollstindig bestimmt. Zur
Ermittlung der Hauptlichtgeschwindigkeiten und der optischen
Orientierung des Kristalls ist es dem Gesagten zufolge nur
mehr notig, GroBe und Lage der Hauptachsen des Index-
ellipsoides zu finden. Das ist aber ein ganz gewdhnliches
Problem der analytischen Geometrie. Bekanntlich sind die
Koordinaten u,v,w des Endpunktes einer solchen Achse den
Komponenten der zugehorigen Flichennormale, d. h. den
partiellen Differentialquotienten von ‘

a,, u*+ta,,v:+a,w?+2a,uv+2a, vw+2a, wu=1
proportional. Man hat daher

a, uta,vta,,w=1iu
a,uta,vta,w=Aav XIII
a ,uta,v-ta,w=Iiw,
wo A ein Proportionalititsfaktor ist. Dieses System von
Gleichungen hat aber dann und nur dann von (0,0, 0) ver-
schiedene Losungen, falls

' a,—4 A a3 I
a, a,—i .a, ’=O. XIV
a3 By A4

4*
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Diese Determinante stellt eine Gleichung dritten Grades in 2
dar, deren Wurzeln im allgemeinen verschieden und nach
dem bekannten WeierstraBschen Beweis reell sind. Man
erhilt darum drei Werte von 4 und somit auch drei Systeme
von Losungen ,

UjiVvi:wj (i=],2,3).
Multipliziert man die drei Gleichungen XIII der Reihe nach
mit u, v, w und addiert, so erhidlt man, falls man 2 und die
Variablen mit dem Index behaitet,

Ai (Ui T v+ wif) = 1.
Wegen der Voraussetzungen iiber u, v, w stellt

1

ut+vif+wy?
das Quadrat der reziproken Lénge einer Hauptachse des
Indexellipsoides dar, weshalb die Beziehungen gelten

a=\/l_1: b=\/i_2’ Cz\/g’

> Ao >> 4y

wofern

gewidhlt wird.
Die Richtungskosinus ergeben sich jetzt unmittelbar.
Man findet beispielshalber

u,

Vuz+vz+w?
und dhnliche Ausdriicke fiir die anderen acht Richtungskosinus.
Ihre Werte dndern sich also nicht, wenn beliebige Vielfache

von uj, vi, w; beniitzt werden, was insofern von Bedeutung
ist, als die Gleichungen XIII nur die Verhiltnisse

o, =u, a=

U;:Vi.Wj
zu finden erlauben.

43. Nachdem es so gelungen ist, das Prismenproblem
allgemein und unabhidngig vom Kiristallsystem eindeutig zu
16sen, werden jetzt jene Fidlle ndher zu betrachten sein, bei
denen die entwickelte Methode versagt oder doch zu versagen
scheint. Dies trifit zu, wenn die Ein- oder Austrittsebene
des Prismas oder beide zugleich je auf einer optischen Achse
- (=DBinormale) senkrecht stehen — die zu diesen Flichen
. parallelen Wellenebenen also keine bestimmte Schwingungs-
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richtung haben. Damit wird natiirlich die angegebene Methode
illusorisch und die Formeln XIb bzw. XIc kénnen und
diirfen streng genommen nicht mehr zur Bestimmung der aj
herangezogen werden, da die Voraussetzungen (bestimmte
Schwingungsrichtung), auf Grund derer sie abgeleitet wurden,
nicht mehr erfiillt sind. Indessen ergibt eine kurze Uber-
legung analoge Ausdriicke. Es geniige, dies fiir den Fall
zu zeigen, daB} die xz-Ebene auf einer optischen Achse
senkrecht stehe. Das Indexellipsoid wird von derselben in
einem Kreis geschnitten, als dessen Gleichung sich

A X0+ 28, X2 +8g 28— =10
ergibt. Da der Radius desselben gleich 1/b (b ist die
Normalengeschwindigkeit lings der optischen Achse), so folgt
a,, = ag, =Db? 313=O
Es ist nun interessant zu sehen, daB die Gleichungen XIb

sich genau auf diese Werte reduzieren und somit auch in
diesem Grenziall giiltig bleiben. In der Tat, da

QIzq‘a:b’

a,, = ay, = b? (sin® & + cos®¢) =Db?
a,3=(q2—q3) sine cose =0.

so kommt

Die iibrigen Formeln bleiben unverdndert, nur zeigt
sich, wie die Bestimmung von a,, nach der Gleichung

Pl2 R53 Q12 13)

die, wie bereits bemerkt, auch im allgemeinen kein giinstiges
Resultat liefert, hier zum vorneherein versagt, weil Nenner
und Zéhler verschwinden und a,, sich auf die unbestimmte Form
a,;—0:0 reduziert — ein Grund mehr, die urspriingliche
Fassung der Methode fallen zu lassen. Die ndmliche Schwie-
rigkeit (Unbestimmtheit von a,,) hitte sich iibrigens immer
eingestellt, wenn a,; —0, was offenbar, vom eben behandelten
Fall abgesehen, nur noch eintritt, wenn die zur xz-Ebene
parallelen Wellenebenen parallel und senkrecht zur Prismen-
kante schwingen d. h.

1) wenn die Querschnittsebene eine Symmetrieebene ist.
Aus Symmetriegriinden verschwindet dann aber neben a
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auch a,;, was zur. Folge hat, daB selbst ohne Riicksicht auf
den Polarisationszustand der zu den Grenzilichen parallelen
Wellen die Polarisationskonstanten lediglich auf Grund der

Gleichungen XI1% eindeutig bestimmt werden kénnen. Ubrigens
handelt es sich hier um den bereits erledigten Fall a) von § 31;

2) wenn die yz-Ebene eine Symmetrieebene ist (vergl.
§ 31 ¢) und Anm. ganz am SchluB desselben Paragraphen);

3) wenn die Strahlen, die zu den parallel austretenden
Wellen gehoren, in der Querschnittsebene bzw. in der
yz-Ebene liegen.

Im folgenden soll nun die Methode fiir die verschiedenen
Systeme spezialisiert werden.

l. Triklines System.

44. Im triklinen System besteht zwischen kristallo-
graphischer Richtung und optischer Orientierung kein direkt
erkennbarer Zusammenhang. Zudem ist die Lage simtlicher
Hauptschwingungsrichtungen fiir die verschiedenen Farben
verschieden. Zur Bestimmung der optischen Konstanten
kommt daher die angegebene Methode in ihrer allgemeinen
Fassung zur Anwendung.

Il. Monoklines System.

45. Im monoklinen System fillt eine Hauptschwingungs-
richtung mit der Orthodiagonale zusammen, wihrend die
beiden anderen in der Symmetrieebene liegen und mit der
Vertikalachse die unbekannten Winkel 9 und 7/2+ & bilden,
so daB im ganzen nur vier Grofen zu bestimmen sind. Dem-
entsprechend mufl sich auch die Zahl der Beobachtungen
vermindern.

Die Beobachtung der Geschwindigkeiten und Schwin-
gungsrichtungen der zu den Grenzebenen des Prismas paral-
lelen Wellenebenen liefert die sechs Gleichungen

a,, =R, a,, cos’ '+ a,, sin* I'— 2a,, sin 'cos '=R’,
. ’

a,,=R,, ag, cos I'—a, sin '=R';
3 ’

a53=R43 a3 =Ry,

die aber zur Bestimmung der Polarisationskonstanten nicht



. By —

hinreichen, weil a,, und a,, nur in einer und derselben Glei-
chung auftreten, a,; dagegen doppelt bestimmt wird.

Sind A,B,C die bekannten Richtungskosinus der
Orthodiagonale in hezug auf das xyz-System, so muB die
Normale des Indexellipsoides in jenem Punkt, dessen Koor-
dinaten x, y,z den GroBen A, B, C proportional sind, dieselben
Richtungskosinus haben. Bezeichnet daher m einen Pro-
portionalitdtsfaktor, so mul nach den Gleichungen Xlll

a,Xta,,ytazz=—mA
8,x+a,yt+a,z=mB
a,sxﬂ-azay—kaﬁZ—mC
sein. Hieraus folgt nach emlgen Umstellungen und mit
Riicksicht auf die Beziehung

das Gleichungssystem
(a,,—@)A+ 8,y B-F a,;, C=0
a;, A+(a,—¢)B+ 2,, C=0
* 313A+ a,3 Bt (a;—0) C=0,
das durch Elimination des Proportionalititsiaktors ¢ die Doppel-
gleichung
a,A+a,B+a,C a,A+a,B+a,C a,A+a,B+a,C
A B C
ergibt. Im Verein mit XIb und XIc¢ hat man somit zur Be-
stimmung der sechs Polarisationskonstanten acht Gleichungen,
so daB dieselben iiberbestimmt sind und sich die Methode
der kleinsten Quadrate zur Ermittlung genauerer Werte ver-
wenden 146t.
46. Die Gleichungen XV bieten etwelche Schwierig-
keiten, wenn eine oder zwei der GroBen A, B, C verschwinden.
I. Die Orthodiagonale liege in einer Achsenebene des
Xyz-Systems und zwar
1) in der Querschnittsebene. Da
' A=cosi, B=sini, C=0,
so bekommt man aus den beiden ersten Gliedern der Doppel-
gleichung XV

(a,, —ay)sin21—2a,cos21=0.

XV
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Das dritte Glied muB8 den beiden ersten, welche endlich sind,
gleich sein. Das ist nur dadurch mdoglich, daB der Zéahler
desselben verschwindet, d. h. dal
a,, COS Lt a,;sin 1 =0.
Statt der beiden Gleichungen XV ergeben sich somit zwei
speziellere, welche fiir die Rechnung sehr bequem sind.
2) in der yz-Ebene. Die Richtungskosinus der Ortho-
diagonale haben die Werte
A=0, B=cos u, C=sinu,
und eine analoge Uberlegung wie soeben fiihrt an Stelle der
Gleichungen XV auf die ebenfalls bequemen Ausdriicke
(a5, —ay)SIN2 0 — 22,5, c082 =0
a,cosuta,sinu=0.
3) in der Austrittsebene. Setzt man
A =sinv, B=0, C=cpsv,
so kommt
a,, siny +a,, cosy=0
(agg—a,;)sin2v¥ —2a,4cos 2y =0.

Die letztere Gleichung gibt nichts Neues, sondern stellt
vielmehr eine Beziehung dar, welcher -die Ri. identisch ge-
niigen. Denn nach den Gleichungen XIb ist

a3, —a;,=(q}—q3)cos2¢
zalsz(qf_qg)f’_ip_ze
also auch n
(a;;—a,,)sin2e—2a,, cos2e=0.
Weiter erkennt man aus der Bedeutung von &, daB eine der
beiden Beziehungen

_ e=vbzw.et+ 2=y
erfiillt sein muB. Dadurch kommt in jedem Fall
(a33—a,,)sin2v—2a,,cos2v=(Ry; —R,,) sin2»— 2R ;cos2»=0.
Zur Berechnung der Polarisationskonstanten kommt demnach
neben den Gleichungen XIb, XIc nur die Gleichung

a,, siny+a,, cosy=0
in Betracht. Wegen der Bedingung

- R33=R'33
bleibt aber fiir die Ausgleichungsrechnung immer noch Raum.

Wiirde die Orthodiagonale in dieandere Begrenzungsebene
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des Prismas fallen, so miite sich aus der Doppelgleichung XV
eine Beziehung ergeben, der die R'jc identisch geniigen.
II. Die Orthodiagonale falle mit einer Achse des xyz-

Systems zusammen, und zwar

1) mit der z-Achse. Die Querschnittsebene ist eine Sym-
metrieebene, und die Losung ergibt sich, wie bereits bemerkt,
in einfachster Weise nach § 31a).

2) mit der y-Achse. Da die Richtungskosinus der Ortho-

diagonale A—0, B—=1, C—0
werden, das erste und letzte Glied der Gleichungen XV aber
endlich bleiben miissen, so kommt

' a,—0 und a,—0,
wie sich iibrigens dlrekt aus den Symmetrleelgenschaiten des
Indexellipsoides folgern lieBe.

3) mit der x-Achse. Es wird einerseits
A=1, B=0, C=0

a,=0 und a,=0,
und fiir die Anwendung der Ausgleichungsrechnung bleibt,
wie auch im vorangehenden Fall, die einzige Bedingung
Ry =R’y
Es ist beachtenswert, daB in allen Fdllen des monoklinen
Systems die Bestimmung der Pix an und.fiir sich iiberfliissig ist.

IIl. Rhombisches System.

47. Infolge der Symmetrie dieses Systems fallen die
Hauptschwingungsrichtungen fiir alle Farben mit den kristallo-
graphischen Achsen zusammen. Seien, von der soeben ge-
brauchten Bezeichnung etwas abweichend, A, A,,A;; B,,B,,B;;
C,,C,,C, die Richtungskosinus der Brachy- resp Makro-
diagonale und der Vertikalachse in bezug auf x,y,z. Nach
der Doppelgleichung XV gelten die Beziehungen:

auA +a, A, ta A, __ A, +a,A,ta, Ay a A ta A tag A,

und anderseits

A A, - A,
aHBl+al2 B2+ alBB3=al2Bl+a22 BQ+ 3'23 Bs=a13B1+a23 B?+a33B3 XV]
B, B, B, .

all C1+a12CZ+ a13c3=a12cl+a22 C2+328 C3=alﬁcl _I_ a23c2+ a33 C3
C, C, Cy
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Diese neun Beziehungen sind nicht voneinander unabhingig.
Es gilt vielmehr der Satz: Von den neun Beziehungen
der Gleichungen XVI sind nur drei voneinander
unabhingig, die aber im allgemeinen auf 78 ver-
schiedene Arten kombiniert werden k6nnen. Man
kann also in 78-facher Weise aus den neun Gleichungen XVI
so drei wihlen, daB die iibrigen sechs hierdurch bedingt sind.

Zur Erleichterung des Beweises und im Interesse spéterer
Anwendungen seien vier Vorbemerkungen gestattet. «) Eine
einfache Kontrollrechnung zeigt, da aus zwei Gleichungen
je einer Zeile zwei beliebige Polarisationskonstanten als Funk-
tionen der vier anderen gefunden werden konnen. — 3) Man
beweist ferner, dal von den drei Gleichungen, deren Glieder
nur zwei Kolonnen angehoren, jede durch die beiden anderen
bedingt ist. In der Tat, schafit man z. B. in den zwei
Gleichungen der zwei ersten Zeilen und Kolonnen die Nenner
weg und addiert, so kommt
(A A, +B,By)a,, +(Aj+Bi— A7 —Bja, +(A, A, +B,B))a,,

—(AA, +B,B,)ay, — (A A+ B By ay, #0°
Mit Riicksicht auf die Orthogonalititsbedingungen folgt hierfiir
C,C, ()~ ay,) T (C3—Cfa, + C,Cya; — C,Cyay, =0.

Das ist aber genau die den beiden Ausgangsgleichungen
entsprechende dritte Gleichung, falls man darin die Nenner
wegschafft. — y) Weiterhin kann man zeigen, daB zwei in der
genannten Weise aufgestellte Gleichungen nicht unabhingig
sind von den zwei Gleichungen, die sich durch andere
Kombination der Kolonnen ergeben. Man betrachte zu diesem
Zweck die vier Gleichungen:

a A ta, A, ta Ay a,A ta, A, tay A _

A, A, ' 0

a’llBl_}—alg B2+alBB3___a12 Bl+a22 B2+a23B3=0
B, B,

a,A ta,A,Ta, As___ a3 A ta, A, tay, Asﬁo
A, Ay

a, B, +a,,B,+a,B, 9 B, +a,B,ta;B, —0.

B, B,
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Subtrahiert man von der ersten Gleichung die zweite, so
kommt der Ausdruck

A, A, B, B). (A, B A, B,
(—_ A _“—+ 1)312_(_5_—§) a23+( _‘%)adlqo
2

A, A, BB A, B A, B,
der mit
' o) A, B,
A;B,

multipliziert und zur dritten Gleichung addiert nach einigen
Uménderungen die Beziehung ergibt:

A, (A;B,—A,B,)(A,B,+A,B,)
11k - +
AS—AZ A B A B, — A, B,)
i ] .,,1—0.
A, A, A,B,  A,B,

Beachtet man, dafB
AB +A B, +A B —10
und formt man den Koeffizienten von a,; in folgende Weise um:
AlB,B;,—A}B,B,+A B A;B,— A B A,B;

A,B,A,B,
A,;B,(A;B,+ A B)—A,B;(A,B,+AB,) A,A,(B;—Bj
| A,B,A,B, - A,A,-B,B,

so erhdlt man, falls man die Koeffizienten von a,, und a;; in
selbstverstindlicher Weise erweitert,
a1281+a22B2+a23B3 alSBl+a23B2+a33B
B, B,
d. h. genau die vierte Gleichung. — ) Hieraus ergibt sich
endlich, daB je eine Gleichung aus jeder Zeile zusammen
ein unabhéngiges System bilden, wofern dieselben so gewihlt
werden, daB ihre Glieder nicht sdmtlich in den zwei ndm-
lichen Kolonnen figurieren.
Der Beweis des Satzes ist nun leicht zu fithren. Da
im ganzen neun Gleichungen vorhanden sind, so kann man
dieselben in

50

9, 9.8.7
= —84
(3) 1.2.3

‘verschiedene Gruppen von je drei Gleichungen zusammen-

i
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fassen. Hiervon fallen drei Gruppen weg, weil die Glieder
ihrer Gleichungen nur je einer Zeile angehoren. Ebenso
fallen jene drei Gruppen weg, deren Gleichungen aus sechs
Gliedern auigebaut sind, die nur in je zwei Kolonnen aui-
treten. Es verbleiben somit 78 verschiedene Kombinationen
von drei unabhingigen Gleichungen des Systems XVI.

48. Zur Bestimmung der Polarisationskonstanten geniigt
die Ermittlung der Geschwindigkeiten und Scbwingungs-
richtungen der zur xz-Ebene parallelen Wellenebenen, da
diese letzteren drei Polarisationskonstanten liefern (au,als,ass)
und die drei anderen sich aus den Gleichungen XVI ergeben.
Am einfachsten ist die Rechnung, wenn man die Gleichungen
zweier Zeilen nimmt, deren Glieder in der ersten und dritten
Kolonne stehen. Man erhilt so a,, und a,; und kann sie in
eine jener beiden Gleichungen eintragen, welche ein Glied der
zweiten Kolonne der noch verbleibenden Zeile enthalten
Dadurch ergibt sich a,,. :

Es hat keinen Zweck, die entsprechenden Gleichungen
fir a,,, a,, und a,, explizit aufzustellen, da man schlieBlich
alle 78 Systeme betrachten miiBte. Sie geben zwar alle das
gleiche Resultat, aber nicht alle brauchen fiir die Rechnung
gleich giinstig zu sein.

Das gleiche Problem (Bestimmung der Hauptlicht-
geschwindigkeiten eines rhombischen Kristalls mit Hilfe eines
einzigen Prismas von beliebiger Orientierung) wurde schon
frither (§ 15 if.) behandelt. Die Losung erwies sich moglich,
aber nur auf Grund sehr umstidndlicher Uberlegungen. Auch
die von Born') angegebene Methode, deren Voraussetzungen
zudem spezieller sind wie die hier gemachten, erfordert die
Bestimmung der Kurve C und demzufolge die Ermittlung
von mindestens sechs Wertpaaren (q, w). Um wieviel ein-
facher ist demgegeniiber die soeben entwickelte Methode, die
auf Grund der Ermittlung zweier Lichtgeschwindigkeiten der-
selben Fortpilanzungsrichtung und der zugehdrigen Schwin-
gungsrichtungen — im ganzen also drei unabhidngige Be-

1) N. Jahrbuch f. Mineral. B.-Bd. 5, 40.
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obachtungen — die Berechnung der Hauptlichtgeschwindig-
keiten a, b,c gestattet und iiberdies ergibt, in welcher Weise
sich die optischen Symmetrieachsen auf die kristallographischen
Achsen verteilen.?)

49. Ist die Ori_enﬁ'erung des Prismas spezieller Art, so
vereinfachen sich die Gleichungen XVI, was eventuell eine
Vermehrung der Beobachtungen nach sich ziehen kann.

I. Eine kristallographische Achse liege in einer Achsen-
ebene des xyz-Systems, wogegen die beiden anderen eine
-willkiirliche Lage haben. Von den neun Richtungskosinus
A;, B;, C; wird einer null. Es verbleiben aber immer noch
genug unabhdngige Gleichungssysteme, um die allgemeine
Methode anwenden zu konnen. Ubrigens kann es von Vorteil
sein, dhnliche Uberlegungen wie etwa im Falle I, 1. des mono-
klinen Systems (§ 46) anzustellen und damit einfachere Be-
ziehungen abzuleiten. Wire z. B. A, =0, so kidme

s BTl g A==l
Die anderen Gleichungen vereinfachen sich nicht.

II. Eine kristallographische Achse falle mit einer Achse

des xyz-Systems zusammen und zwar

1) Die Brachydiagonale mit der x-Achse. Die neun
Richtungskosinus nehmen die speziellen Werte

A=1 A,=0 A,=0
B,=0 B,=cosu B,=sinu
C,=0  C,=-—sinu C;,=cosu
an und statt der Gleichungen XVI kommt
a,—0 a,,="0

(ag, —ay,) sin 2 —2a,,cos2u=0.
Zur Berechnung der aj ist es notwendig, die R'jx heran-
zuziehen, wodurch Uberbestimmung und damit die Moglichkeit
der Anwendung der Ausgleichungsrechnung vorhanden - ist.

2) Die Brachydiagonale mit der y-Achse. Da

1) Hier sei erwihnt, dafl auf Grund der nimlichen Beobachtungs-
daten — jedoch mit Hilfe einer wesentlich anderen Formel Th. v. Liebisch
die Bestimmung der optischen Konstanten rhombischer Kristalle theore-
tisch durchgefiihrt hat. (Zeitschr. f. Krist. und Min. Z. 433—437).
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A =0 A1 A,=0
B, =singw * B,=~0 B,=cosu
C,=cosu @ C,=0 C,=—siny,
erhdlt man analog wie vorher
a,,="0 2y3=0

(a,; —agy)sin2u +2a,,cos2u—0.
Die letztere Gleichung ist, wie in § 46, I, 3 gezeigt wurde,
eine Identitit und scheidet darum aus, so daB abermals die
R'ix heranzuziehen sind.

3) Die Brachydiagonale mit der z-Achse. — Die Losung
‘ergibt sich, wie schon mehrmals bemerkt, am einfachsten
nach der gewohnlichen Methode.

Wiirde statt der Brachydiagonale die Makrodiagonale
oder die Vertikalachse mit einer Achse des xyz- Systems
zusammentiallen, so wiirden die voranstehenden Formeln lm
wesentlichen unverdndert bleiben.

lll. Das xyz-System fillt mit dem kristallographischen
Achsenkreuz zusammen. Man kommt damit auf den aller-
gewdohnlichsten Fall, der keiner weiteren Erorterung bedart.

50. Es bleibt noch der interessante Fall zu erledigen,
wo die optische Orientierung beliebig, aber gegeben!) ist.
Man hat ohne weiteres

R,,—a%a2+b*B2+ cty?
Rg~ata.a. 108 B, 1 iy v,
R=—afa2+bi g2 +chtyl, -
Die Determinante dieses Systemes ist \
of Bt 7 of+Bityt B vi| |} BT 7

o0y 8,85 717s|= a1a3+/6’1183+7173 B85 7,7s| =10 8.8, Tils ™
o 8% 7 a}+83+tys B 75 I 8% 73

=B8.8,7: = B3, 7st By 75— BBV =8,y (Bivs— Buya) +
+ 8,71 81 ys— Bs7) = (8175~ Bs7:) (Bsys+ Biyi) =0,0,7,

1) Th. v. Liebisch, N. Jahrb, f. Mineral. 1886. I Seite 23.

M. Born, N. J. f. Min. B. Bd. 5 (1887) Seite 40.

Dem § 48 gegeniiber wird hier vorausgesetzt, daB es bekannt
sei, mit welchen kristallographischen Achsen die einzelnen optischen
Symmetrieachsen zusammentfallen. Dadurch wird aber nur eine rech-
nerische, nicht aber eine sachliche Vereinfachung erreicht.
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und darum sicher von null verschiedén, wenn die y-Achse
auf keiner optischen Symmetrieachse senkrecht steht. Grund
fiir das Verschwinden der Determinante ist der, daBl in allen
diesen Fillen wenigstens eine optische Symmetrieachse in
die zx-Ebene zu liegen kommt, so daB der Winkel ¢ zum
vorneherein gegeben ist. Es verbleiben demnach nur noch
zwei unabhidngige Beobachtungsreihen, die natiirlich zur
Bestimmung der drei Unbekannten nicht hinreichen.

51. In Kiirze sei noch auf die Verwendungsméoglichkeit
der Methode im Falle optisch einachsiger Kristalle aui-
merksam gemacht.

Setzt man a=b=o0 und c=e (wobei allerdings die
Annahme a>b > ¢ ganz dahinfillt, indem o ebensogut groBer
wie kleiner als e sein kann), so kommt

dji = (OC12 + ﬂig) 0° ‘}"7’12 e’
aix = (ejox + Bi Bk) 02 + iy €2
Wegen der Identitdten
o+ 8+ yif =1

oo+ Bifk + yiyr=0
kann die Gleichung VII des Indexellipsoides auf die Form
[o*d(e® —o®o2] x5 0¥ [ef—0Y vi] ¥ | o*F (et 0% p2 ] 2
T2(e* —0%)y,y, Xy +2(e* — 0%y yy yz + 2(e* — 0%y, 2x =1
gebracht werden, aus der die Ausnahmestellung der optischen
Achse allen anderen Richtungen gegeniiber deutlich wird

Zugleich ergeben sich fiir die Polarisationskonstanten die
Werte :

und wegen

a;, —o?+ (=07 g
a,, =0%+(e? — 0?)y2

Es sind nun zwei wesentlich verschiedene Probleme zu
unterscheiden. |
1) Die kristallographische Orientierung des
Prismas, welches zur Bestimmung der optischen
Konstanten dienen soll, ist unbekannt und un-
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bestimmbar. Zur Ermittlung von e und o (und der Lage
- der optischen Achse) geniigen die Gleichungen XIb und Xlec.
In der Tat, da die vier den Grenzilichen parallelen Wellen-
ebenen (q,q, und q',,q’,) zweimal den Wert o ergeben, so
kommt mit Riicksicht auf die eben gefundenen Werte der
Polarisationskonstanten :

(e* — o) y2=R,, — o* a)
(e*—0%y3 71 =Ry b)
(e? —o?) y, ¥, cos'—(e? — 0%y, 7, sml"— Ry ¢)

Aus 4) und ¢) bekommt man
7,_Ry cos I'— R,

/ R, sinl"
und aus @) und &)
- Ys_ Ry
7y R,—0o?
und damit wegen der Identltat
| y: 1
+%+h 75

die beiden Losungen
Yo 70 ¥s UNd — 7y, —y5 — ¥y,
welche mit Hilfe etwa der Gleichung ) den eindeutigen Wert
ph=gk
liefern. Da o® bereits bekannt ist, folgt daraus unmittelbar eZ,
Die iibrigen drei Gleichungen von XIb und Xlc dienen
zur Anwendung der Ausgleichungsrechnung.

2) Die kristallographische Orientierung des
Prismas ist bekannt. Zur Bestimmung von o und e
geniigt die Beobachtung von q, und q,. & =¢ und s,=¢+7/2
lassen sich aus y,,y, und 5, berechnen. Man kennt darum
die Schwingungsrichtung von o zum vorneherein und kann
somit leicht entscheiden, welcher der beiden Werte q, und q,
der ordentlichen Wellengeschwindigkeit entspreche. Da ferner
| a,, Ta,=20"+(e*—o%) (yi+y3)=qi+d}

8o ist
| qi+q;—20*

yity}?

e2— o —

Das Problem ist also erledigt.
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Ubrigens hat schon Th. v. Liebisch?) gezeigt, daB die Haupt-
lichtgeschwindigkeiten eines einachsigen Kristalls mit Hilie
eines Prismas beliebiger Orientierung gefunden werden kdnnen.

52. Anhangsweise sei noch die in § 40 erwihnte Tatsache rech-
nerisch untersucht. Zu dem Zweck sollen zwei Sitze bewiesen werden.

1.Satz: Die absoluten Werte von a; (ay, a3, a3) liegen
zwischen null und (a2—c?):2. DaB a;, verschwinden kann, ist
leicht ersichtlich, geniigt es doch, daB z. B. das xyz-System mit dem
£nl-System zusammenfalle. Es eriibrigt somit noch der Beweis, daB
{a?—c?):2 die obere Grenze von a;, ist.

Mit Riicksicht auf die zweite Gleichung des Systems XIb laBt
sich das Bildungsgesetz der a;, (i+k) leicht erkennen. Darnach wird,
falls der besseren Formulierung wegen

ap=2a; (i+j+k=1,2,3)

gesetzt wird, — wodurch die Beziehung zu einer bestimmten Achse
des xyz-Systems besonders hervortritt — a; bestimmt durch die Differenz
der Geschwindigkeitsquadrate und die Azimute des Schwingungs-
zustandes jener Wellen, die sich parallel der x-, y- oder z-Achse fort-
pflanzen (j=1, 2 oder 3). Bei gegebener Lage der j-Achse kann das
Azimutder dazu senkrechten i- und k-Achse, auf welche die Schwingungs-
trichtungen bezogen werden, sich noch beliebig indern.

2 15 T
== (Qj — )-sm £ COS &
setzt sich darum aus den véllig unabhingigen Faktoren ;> — q? und
sine cose zusammen. Der maximale Wert eines solchen Produktes ist
aber gleich dem Produkt der maximalen Werte seiner Faktoren, d. h.
Max a;, — Max (q}z— qurz) - Max sin g, cose;,.
Der erste Faktor hat den selbstverstindlichen Wert a2—c2, wahrend

der zweite Faktor sein Maximum fiir e=(4n+1)-2/4 erreicht. Es
kommt somit

a2— c?
"
Der hiernach bewiesene Satz erlaubt bereits eine Anwendung

auf das in Rede stehende Problem. Es ist nimlich der Zihler von ayg
gegeben dlirch

Max a;, —

ap3 + 431 = P13 Rg3 — Qo
Bedenkt man, daﬁ fiir den maximalen Wert von ay; der Wert von ag,
verschwindet, was mit Riicksicht auf die Werte «;= y, = 8, = 83 =0 sofort
begreiflich ist, so folgt, daB der maximale Wert von P53 Rg3— Qs sicher
kleiner ist als das Produkt der maximalen Werte von ay und 331; d. h.

a2 — ¢c2)2
PiaRg3— Qs [ < “(*"T)—

1) In der mehrfach erwdhnten Arbeit im N. Jahrb. . Miner. 1886 1. 14.
5



Es 148t sich aber noch eine schirfere Grenze finden, da ein weiterer
Satz besteht. | |
2. Satz: Der absolute Wert von a 3-a, liegt zwischen
null und (a2—c2)2:8.
Mit Beriicksichtigung der Bedeutung von a;3 und a,; sowie der
sechs unabhingigen Gleichungen zwischen den neun Richtungskosinus
des Schemas I wird | a;3- ap3| Maximum, wenn dies der Fall ist fiir

atwyagcl +bh g By +cty, yav3 + a2 b? (eqag By B + ag g By f) +
+b2c2 (8383 y3y1 T 72v3B3hy) T cBa(yaygagey Hezagygyy) +
+ky (ey@g + 8182 Ty172) T Ko (gag + B9 83+ va v3) + K3 (agey + 8381 T ¥371)
+ky (o + T+~ DF b (GH B+ — D) ke (G + 45 +75— 1)
Hieraus bildet man durch partielle Differentiation nach den neun
Richtungskosinus folgende Gleichungen:
A, =at azag +a2b? agByBs +c2al yyyzay + Ky ag +Kgag+2ky ey =0
A, = a4ala3 a2b2«gB 3 t+c2aygy gtk +kyag+2ksay=0
Ag=2atajayag + a2 b2 (agfy 3+ @82 83) T c2a? (yy 730y +eyy3y) T koag +
tkye; +2kgag=0
= bt ﬂaﬂs +a?b2agugfy b2 ypy383 T ki + kB3 +2ky 5y =0
Ba =b4 g5+ atbagey Byt b2 Byygy; +ky Byt Ky Byt 2Ks B3 =0
Bg =2b44,6383+ a2b2(agagfy +agay fo) +b2C2 (Bayg vy +72738:) T kg 3+
+kyp, +2 kg B3 =0
C, =chyay;tb2c?pypsystctatagegys t Ky yatkyys+2kyy, =0
Co=Cly y3+bBc2ygps8; +c2a yyagay +ky 9+ Kyys+2Ks =0
Cg =2cty 73yg+ bEcE (82371 vaBsfy) T c2 a2 (ypegey T agagy,) thyyp +
+k3y;t2kgys=0
Mit Hilfe der Orthogonalititsgleichungen beweist man leicht, da8
nachstehende Identitidten gelten.
ay Ay +4 B +y G = s aggt+2k;=0
wg Ayt By Bl +y, Gy = a5+ k; =0
ag Ay + By By +y3 Cy =agz 253 + k3=10
e, Ag+ 8, Byt ngafs+kl=0
ag Agt 83 Byt y9Cy=ajgag+2ky=0
ag Ayt A3 By ty3 Ca=agga;3+ke=0
@y Agt+ 8 B3ty Cs=a3a;31a;, 237 k3=0
ay Agt+ 3Byt 7, Cs=ag a3t apag+k;=0
wg Ag T A3 By +y;C3=2a3a,3+2ks=0
Diese neun Gleichungen gestatten, die k; als Funktionen von a, b, c,
a;, 8; und y; zu berechnen und liefern iiberdies drei von k; unabhéngige
Beziehungen, die mit den sechs Orthogonalititsgleichungen jene Werte
von «;, 8;, v; (i=1,2,3) zu finden erlauben, fiir welche

l Ay 323}1 = Max. .
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Die neun soeben genannten Gleichungen sind folgende:

az=aj (=—k)
agg 87 = Agg a3y 1 ay9 Agg (=—ky)

. 3223 333 = ay; a3 T 259 23 (=—ky)
o A+ yi=1
e o BB T i v =0 -
Die erste Gleichung zerfillt in die zwei linearen Gleichungen

Apg = dg, | gz = — agyy
mit deren Beriicksichtigung aus den iibrigen folgt:
a3 (ag3 — agg) = a;p Ay3 a3 (agg — agp) = — a;9 453
a;3'(agg —ay;) =ajpay3 | a3 (agg —ay;) =— ayp ay3.

a
agg=ag =0
jedenfalls nicht die extremsten Maxima und Minima von ag, ag

ergeben, so kann man an Stelle der obigen drei ersten Gleichungen
folgende zwei Systeme setzen.

A. ap3 = agy B. a9 = — gy
Agg — dgg = Ay9 dgg — dgg = — a4
agg —aq; = ajg dgg —ady = — Ay

Zur Auflésung der Gleichungen diirfte es sich empfehlen, die
geometrische und physikalische Bedeutung der Polarisationskonstanten
heranzuziehen.

Im Falle A wird man ohne weiteres bemerken, daB a,; = a,y, ags
und ayg=ag; jene Konstanten sind, welche in den Gleichungen der
Schnittellipsen des Indexellipsoides mit dem beiden Achsenebenen

y=0 und x=0
auftreten, denn wegen Gleichung VII schreiben sich diese Ellipsen-
gleichungen ohne weiteres in der Form

au X2+2a13 Xz+a33 22= l
Agg y2+2323 yz+a3322== 1.

Diese beiden Ellipsen sind den Beziehungen A zufolge gleich und
konnen zur Deckung gebracht werden, falls die xz-Ebene soweit um

die z-Achse gedreht wird, bis +x mit +y zusammenfillt. — Sie sind
also symmetrisch nach der Ebene .
X—y=0,

die mithin eine optische Symmetrieebene sein muf. In dieser Ebene
liegen zwei optische Symmetrie-
achsen; senkrecht dazu ist die

dritte. Es sind folgende drei  J&/- NS e/
durch die Figuren 5a, 5b und £ S A SN
5c erlduterten Fille denkbar, * = =

fiir welche das Schema I die Fig.5a Fig.5b Fig. 5¢

umstehende spezielle Form annimmt. Setzt man diese Ausdriicke,
5#
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welche den sechs Orthogonalitdtsbedingungen sowie der ersten und
der Differenz der beiden andern der Gleichungen A identisch ge-
niigen, in die dritte Gleichung, namlich
d3g — 411 = d19,
5T S
4 4

ein, so erhalt man

und findet fiir | agg agy | bzw.
(b2 — c2)? (a2 — c2)2 (a? — b2)2
8 8 8
Im Falle B bestimmen
a1 = agg, Agg, Apg=—dg _
wiederum die beiden Schnittellipsen des Indexellipsoides mit den Ebenen
y=0 und x=0. .
Ihre Gleichungen sind wie soeben
a;;x2+2a;3xz+aggz2=1
a50y2 +2a,3yz +aggz2=1.
Die hierdurch dargestellten Ellipsen sind wegen der Gleichungen B
ersichtlich gleich und gelangen zur Deckung, wenn die xz-Ebene
soweit um die z-Achse gedreht wird, bis + x mit — y zusammentillt, Sie
sind also symmetrisch beziiglich

- x+y=0. 5 . X
Méglich sind demnach nur fol- (>~ (o] /5 N 6
gende drei durch die Figuren 6a, W
6b und 6c dargestellten Orien- ' vy .
tierungen, fiir welche das Schemal Fig. 6a Fig.6b Fig.6¢

die auf der vorangehenden Seite zusammengestellten Formen annimmt.
Verfahrt man wie bei A, so berechnet sich abermals

bl 2

4 4
und fiir | agg ag, | kommt genau wie vorher
(b2 —c2)2 (a2 —c2)2 (a2 —b2)2
. ;

8 8 8
Einige numerische Beispiele mogen diese Formeln erldutern.
Tabelle 11
2.
a c _(a_-i)i!
8
Rhomb. Schwefel 0,51270 | 0,44632 |0,000507 |
Aragonit 0,65354 | 0,59316 | 0,000708
Gips 0,65771 | 0,65376 |0,000003
a« — Athylpyruvat-Hydrazon | 0,67264 | 0,53186 |0,003594

Diese Zahlen erkldren die Erfahrungen, die sich bei der numerischen Prii-
fungderauseinandergesetzten Methode unliebsam geltend gemacht haben.
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