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I. TEIL

Systematische Zusammenstellung, Ergänzung
itnd Verallgemeinerung der bisherigen

Untersuchungen.

1. Dem allgemeinen Brauch entsprechend, wird den
folgenden Betrachtungen ein rechtwinkliges, rechtshändiges
Achsensystem x, y, z zugrunde gelegt, dessen x- und y-
Achse in der Querschnittsebene (Hauptschnitt) des Prismas
liegen und durch die Halbierungsebene des inneren bzw.
äußeren Prismenwinkels bestimmt sind. Die z-Achse steht
auf beiden senkrecht und fällt mit der brechenden Kante des
Prismas zusammen. Über dem Hauptschnitt wird sie positiv
gerechnet, während die positive Seite der x-Achse ins Innere
des Prismenwinkels gerichtet ist.

Neben diesem xyz-System ist noch ein zweites, ebenfalls

rechtwinkliges, rechtshändiges Koordinatensystem £, t], Z

von Bedeutung, dessen Achsen durch den Ursprung 0 des
ersten Systems gehen und den Schwingungsrichtungen jener
Wellen parallel sind, die sich mit den Geschwindigkeiten
a bzw. b und c (a>b>c) (Hauptlichtgeschwindigkeiten) im
Prisma ausbreiten. '§, n, Z sind demnach die sog.
Hauptschwingungsrichtungen oder optischen Symmetrieachsen. Für
die im allgemeinen unbekannten Richtungskosinus, welche
die positiven Richtungen der Achsen des einen Systems in

bezug auf die positiven Richtungen der Achsen des anderen
Systems festlegen, gelte das Schema I.

X y z

«3§ «1 ce2

n A ßt ß.

£ Yx 72 73
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2. Die Ausbreitung ebener Wellen erfolgt in optisch

zweiachsigen Kristallen nach einem ziemlich verwickelten
Gesetz, dessen analytischer Ausdruck gewöhnlich auf die Form1)

q2 - a2 q2 - b2 q2 - c2

gebracht wird. Darin bedeuten: v^v^vs die Richtungskosinus

der Wellennormalen in bezug auf \\,r\,Z; q die mit
der Richtung im allgemeinen veränderliche Wellennormalen-
geschwindigkeit und a, b, c die bereits oben genannten
Hauptlichtgeschwindigkeiten.

3. Die Messung jener Winkel, welche die Fortpflanzungsrichtung

und Geschwindigkeit einer ebenen Welle eindeutig
bestimmen, ist sehr umständlich, wenn die Welle schief zur
Prismenkante einfällt. Mit einem gewöhnlichen einkreisigen
Goniometer ist sie überhaupt nicht ausführbar; es braucht
zum mindesten ein dreikreisiges Instrument. Aus diesem
Grund hat man sich von jeher auf Wellen beschränkt, die
parallel der brechenden Kante des Prismas einfallen und
darum sowohl beim Gang durch das Prisma als auch nach
dem Austritt aus demselben dieser Richtung parallel bleiben.
Ausnahmsweise machte Viola2) mit Hilfe des zweikreisigen
Goldschmidtschen Theodolitgoniometers Beobachtungen bei
„schiefer Inzidenz", ist aber genötigt, jene Stellungen des
Prismas und Fernrohrs aufzusuchen, für welche die mit
geeignetem Mikrometer meßbare Vertikalablenkung
ungeändert bleibt, wenn Fernrohr und Kollimator vertauscht
werden, und muß zudem in der Umgebung dieser Stelle für

Für Wellen, die parallel einer optischen Symmetrieachse
schwingen, versagt die Gleichung II, weil sich ein Term derselben
auf die Unbestimmtheitsform 0:0 reduziert.

8) Viola, Zeitschrift f. Krist. 32, 66 und 545; do. 43, 210 und 588.

Viola, Zeitschr. f. Instrumentenk. 19 (1899), 276. Po ekel 8, Lehrbuch
der Kristalloptik. 148 ff. und Zeitschrift f: Krist. 43, 587.

Den Fall „schiefer Inzidenz" studierte übrigens teilweise schon
A. Cornu in seiner Arbeit: Refraction à travers un prisme suivant une
loi quelconque. Ann. Ecole normale 1. 231 und 3. 1. In Betracht
kommt hauptsächlich 1. 255 ff.
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mehrere, etwa um je einen Grad verschiedene, am Vertikalkreis

direkt ablesbare Werte von co „Winkel, den die auf
die Eintritts- und Austrittswellen senkrechte Ebene mit der
Basis des Prismas einschließt") die zugehörigen Brechungsindizes

bestimmen. Das Maximum oder Minimum derselben
liefert einen Hauptbrechungsindex.

4. Die Gesamtheit aller zur z-Achse parallelen Wellen,
welche gleichzeitig im Punkte 0 einfallen, umhüllt im Prisma
nach der Zeiteinheit eine Kurve C, welche das Schnittgebilde
der Wellennormalenfläche (Gl. II) mit der Querschnittsebene
des Prismas ist. Bezeichnet etwa xp den Winkel, welchen
die Normale einer solchen Welle mit der positiven Richtung
der x-Achse einschließt, so hat man für die Richtungskosinus
dieser Wellennormalen im xyz-System die Werte

yjl cosip xp2=^s\mp ips 0,
falls xp von +x über +y positiv gerechnet wird.

Zwischen v\ und xp bestehen wegen des Schemas I die
Beziehungen

vl a1 cos xp + a2 sin xp

v2 ßl cos xp-\- ß2 sin xp

vi yx cos tp + y2 sin xp,

die in Gleichung II eingesetzt, nach einigen Umformungen,
die Gleichung1) der Kurve C ergeben, nämlich :

q4 —q2(Ln cos2i// + L22sin2t// + 2L12 sin tp cos xp) +
+ (Mn cos2 ip + M22 sin2 tp + 2 M12 sin xp cos ip) 0.

Darin ist
Lik (b2 + c2) «i ak + (c2 + a2) /9, ßk + (a2 + b2) y, yk
Mik b2 c2 «, ok + c2 a2 ßi ßk + a2 b2 y, yk.

Die Konstanten Llk und Mjk lassen sich 'theoretisch
mit Hilfe von sechs Wertpaaren (q„, tpy), die sich auf Grund
der Messungen am Spektrometer ohne Schwierigkeit ergeben,
eindeutig als Wurzeln eines Systems von sechs linearen
Gleichungen bestimmen. Wie die Rechnung praktisch
auszuführen ist, wird sich später zeigen, hier soll nur ein
einfaches Verfahren angegeben werden, um mittels des be-

l) Vergi, hierfür und für das Folgende die Arbeit von Th. v. Liebisch
im Neuen Jahrbuch für Mineralogie und Geologie. 1886 I pag. 14 ff.

1*
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IV.

Fig. 1

obachteten Einfalls- und Ablenkungswinkels (i0 und A) q und xp

graphisch zu bestimmen. EOA (Fig. 1) sei ein Haupt¬
schnitt des Prismas mit dem
brechenden Winkel ÎH, J0E eine
einfallende, AJr eine austretende

Wellennormale. EWc und
AWj die zugehörigen
Wellenspuren. Macht man EJ0=-
EW0 AWt AJj q0, so sind
die Projektionen von EW0 und
AW auf die entsprechenden
Einfallslote EP und AQ bzw.
gleich q0sini0 und q0sin ia und
die gebrochene Wellenebene

ist der Richtung OO, parallel (also wegen ihrer zum Hauptschnitt

senkrechten Lage vollkommen bestimmt), falls 0,
den Schnittpunkt der projizierenden Geraden W0P und W,Q
bedeutet.

Der Beweis ergibt sich unmittelbar, da 00x den Winkel T
derart in zwei Winkel') r0 und rt teilt, daß

sin r0 : sin rx sin i0 : sin i,.
Der fettgezeichnete Linienzug STUV (TU-LOOJ gibt

die drei aufeinanderfolgenden Lagen einer bestimmten
Wellennormale an.

Zur Bestimmung der Geschwindigkeit q, (—UW) kann
man sich der bekannten Huygensschen Konstruktion bedienen,
wie sie in der Figur angedeutet ist (UV q0).

5. Die Hauptlichtgeschwindigkeiten a, b, c sowie die
Richtungskosinus a» ß^ (i l, 2, 3) berechnen sich aus
den Gleichungen IVa und sechs weiteren, die wegen der
Orthogonalität der Achsen zwischen den Richtungskosinus
bestehen, nämlich:

*) Man achte auf die Pfeile, denn nur für solche gerichtete
Winkelgrößen gelten die bekannten Relationen

ro + r, Tundli0-)-i1= r-\-/l
allgemein.



a-2 + ßi2 + y-2=l aiak + ßißk + yiyiL 0. IVb

Man kann nun mit Th. v. Liebisch in den Gleichungssystemen
IVa und IVb die drei Gleichungen in a\, ß2, y\ für sich

betrachten, ebenso jene in a\, ß\, y\ sowie endlich diejenigen
in al a2, ß1 ß2, yt y2 und findet durch einfache Rechnung
folgende Ausdrücke:

a4-L92a2 + M„0 -L12a2 + M,
a% — a.a0a2-_ a4-Lna2-f-Mn

ß2

(a2-b2) (a2-c2)

b4-Lub2 + Mn

IV2-

(b2-c2) (b2-a2)

_c4-Lnc2 + Mn

(a2--b2; l (a2-c2)

b4--L22b2 + M22
1

(b2'-c2 (b2-a2)

c4-" ^22 c2 + M22

ßlßl

y2 tir tl± y y
(c2-a2) (c2-b2) '2 (c2-a2) (c2-b2)

(a2 -b2) (a—c2)
— L12b2 + M12

(b2 - c2) (bä - a2)

-L12c2-r-M12

Beachtet man, daß

a\a\^[alaiY, >

so folgt aus den drei Gleichungen der ersten Zeile von V,
wenn a2 u gesetzt wird:
u4 - (LM + L22) u3 + (Mn + M22 + Lu L22 - L,|) u2-

(L11M22-r-L22M11-2L12M12)u + (MuM22-M122) 0. V1

Das gleiche Verfahren mit den Gleichungstripeln der zweiten
und dritten Zeile von V liefert für b2 und c2 eine mit VI
identische Gleichung, so daß sich also a2, b2, c2 als Wurzeln
dieser Gleichung vierten Grades ergeben, die aber im
allgemeinen noch eine vierte, von diesen verschiedene Wurzel
d2 hat, -deren Wert Th. v. Liebisch durch Koeffizientenzerlegung

zu
d2 a2«^+b2/3^+c273

bestimmte. Es läßt sich unschwer zeigen, daß a2 die größte
und c2 die kleinste Wurzel von VI ist, während die beiden
mittleren (b2 und d2) in keiner festen, zum vorneherein
gegebenen Größenbeziehung zu einander stehen, indem b2

ebensogut größer wie kleiner als d2 sein kann. Die Lösung
des Problems ist darum im allgemeinen zweideutig.

6. Da in den eben gefundenen Wurzeln der Gleichung VI
von den neun Richtungskosinus des Schemas I nur aA, ß3
und ys auftreten, so müssen wegen der bekannten Beziehung



zwischen den Koeffizienten und Wurzeln einer algebraischen
Gleichung auch die Koeffizienten der Gleichung VI neben
a2, b2 und c2 nur noch von as, ßs und y3, nicht aber von den
sechs anderen Richtungskosinus abhängen. Der direkte Nachweis

mit Hilfe der Werte für L,k und Mik auf Grund der
Orthogonalitätsgleichungen bietet keine Schwierigkeit. Es

genüge, ihn etwa für Ma M22 —M,22 durchzuführen. Durch
Substitution der Gl. IVa, Ausführung der Operationen und
einfache Kürzung kommt:

MuM22-M22ee
a.ib*c*[a.*(ßlyt-ß2yiy + b*(y1a2-y.ial)2 + c2(alßi-atßin

Nun bestehen zwischen den neun Richtungskosinus
bekanntlich die Beziehungen

ßiY*~ßtYi=a» Yia2 — Y2ai=ß3 "ißi — a-ißi^Yv
die, oben eingesetzt, das gewünschte Resultat ergeben und
zugleich den eben erwähnten Satz von Th. v. Liebisch
bestätigen :

Mu MS2 - M 22 a3 b2 c2 (a2 a\ + b2 ß\ + c2 y\).

Gleichung VI ist demnach durch die Orientierung der
brechenden Kante des Prismas in bezug auf die optischen
Symmetrieachsen des Kristalls bei gegebenen a2, b2 und c2

völlig bestimmt und deshalb von der weiteren Lage des
Prismas ganz unabhängig. Darin zeigt sich ein wesentlicher
Unterschied zwischen der Gleichung III und der Gleichung VI.
Gleichung III ist der analytische Ausdruck für die Schnittkurve

C der Wellennormalenfläche mit der durch a3,ß3,yA
bestimmten Diametralebene und in ihrer Form durch das

Bezugssystem bedingt. Für die verschiedenen Prismen mit
gleichorientierter brechender Kante müssen sich ihre
Koeffizienten ändern, trotzdem sie immer die gleiche Kurve
darstellt, eben weil sich das Bezugssystem ändert. Dagegen
bleibt Gl. VI für alle diese Prismen stets dieselbe. Sie wird
deshalb nur durch solche Eigenschaften der Kurve C bestimmt,
welche von ihrer speziellen Orientierung unabhängig sind.
Diese Eigenschaften sind die Längen der extremen
Radienvektoren.



7. Um dies zu zeigen, möge in Gl. III der doppelte
Winkel eingeführt werden. Dadurch kommt nach einigen
Umstellungen :

f (q, xp) [(Mu - M22) - (Lu - L22) q2] cos 2 xp

+ 2(M12-L12q2)sin2i^ + [2q4-(Ln+L22)q2 + (Mn + MS2)] 0 M*
oder abkürzend:

f(q,t//) Pcos2i// + 2Qsin2i/> + R 0. a)
Die Bedingung, daß q ein Extremum werde, ist bekanntlich

das Verschwinden von
dq=_jVf_ ,òi_
dxp dxp (5q

also im allgemeinen das Verschwinden von8 dtp
Man hat somit

-Psin2^ + 2Qcos2i// 0. b)
Wegen

sin2 2tp + cos2 2xp l c)
kann man xp eliminieren, indem man etwa a) und b) nach
sin 2xp und cos 2xp auflöst und die gefundenen Werte in c)

einsetzt. Man erhält auf diese Weise

R2-P2-4Q2— 0.
P2 + 4Q2

Das Nullwerden des Nenners in diesem Ausdruck ist bei
reellen Werten an die Bedingungen

P 0 und Q 0
und wegen a) auch

R 0

geknüpft, kann also, wenn überhaupt möglich, nur bei ganz
spezieller Orientierung des Prismas eintreten. Im allgemeinen
ist darum

R2-P2-4Q2 0
die gesuchte Maximums- resp. Minimumsbedingung und gibt
nach Einsetzung der Werte aus lila, wenn noch

q2 u
gesetzt wird,
R2-P2-4Q2EE4[u4-(L11+L22)u3-f-(Mll + M22+LllL22-L12)u2

-(LnM224-L22M11-2L12M12)u + (M11M2!-M12)] 0
d. h. genau die Gleichung VI w. z. b. w.
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8. Es ist für das folgende bedeutungsvoll, auch die
Gleichung

ps + 4Q2 0

näher zu untersuchen. Ersetzt man dieselbe durch das oben
gefundene, ihr äquivalente Gleichungssystem

p 0, Q 0, R 0,

so folgt durch Elimination von q2 aus den beiden ersten
Gleichungen

i-ll ^22 k|2

Mn-M22 M12

und hieraus nach Substitution der Werte aus IV a

atb2{ßly2-ß2y1){ßly1 + ß2y2)-a2bi(yla2-y2al)(alyl + a2y2)
+b*c2{y1a2—y2al){y1al+y2a2)—b2ci{alß2—a2ß1){alßi-r-ß2a2)
+c*ai(a1ß2-a2ßi){aißl-\-a2ß2)~c2SLi(ß1y2-ß2yi)(ßiy1+ß2y2)^0,

wofür man wegen der bekannten Beziehungen

ßi Yi^"ßi Y* ~ßi Yi (uncI zwe* ähnlichen)
ßi Yi ~ ßi Yi — aa (un(^ zwe' ähnlichen)

die Gleichung

- a3 ßa yz [a2 b2 (a2- b2) + b2 c2 (b2- c2) + c2 a2 (c2 - a2)]

«3/33r3(a2-b2)(b2-c2)(c2-a2) 0

erhält. Dieselbe kann jedoch nur bestehen, wenn

ist, d. h. wenn die Prismenkante mindestens auf einer optischen
Symmetrieachse senkrecht steht.

Zur Untersuchung der dritten Gleichung
R 0

empfiehlt es sich, das soeben gefundene Ergebnis zu
verwerten und zur Vereinfachung der Formeln die in der
xy-Ebene gelegene Symmetrieachse etwa mit der x-Achse
zusammenfallen zu lassen. Natürlich kann jede der drei
Achsen H,n,Z in Betracht kommen. Es genüge jedoch, die
Rechnung für

x||I
durchzuführen. Dann spezialisiert sich das Schema I zu



- x y z

1 1 0 0

V 0 cos# sint9-

Ç 0 -sin# C0S.9-

wo 6r den Winkel yr/ z£ bedeutet, der von + x aus gesehen
im Gegenzeigersinn positiv gerechnet ist. Durch diese
Koordinatentransformation wird

Q 0,
weil

L12 0 und M12 0,
und an Stelle von

P 0 und R 0
erhält man nach einfacher Rechnung die Gleichungen

[2 q2 - (a2 + b2)] (q2 - c2) - (c2- b2) (q2 - a2) sin26r

b2)(q2 (cs —b*)(qa-as)sin»0-,
deren gleichzeitiges Bestehen nur möglich ist, wenn entweder

q2 c2 und sin2# 0
oder aber

q2 b2 und sin2#=l
was in beiden Fällen besagt, daß die z-Achse nicht bloß
auf einer optischen Symmetrieachse senkrecht
steht sondern selber eine solche ist. Die Kurve C

zerfällt deshalb in einen Kreis und ein Oval und hat im
angenommenen Fall die Gleichung

(q2 - c2) [q2 - (b2 cos2xp + a2 sin»] 0

bzw. (q2 —b2) [q2 — (c2 cos2t/> + a2 sin2U>)] 0.

Dem Kreis eignet kein extremer Radiusvektor — eine

geometrische Eigenschaft, die ihren analytischen Ausdruck
darin findet, daß dq : dxp in der Unbestimmtheitsform 0:0
auftritt, sobald die Kurve C in ein Oval und einen Kreis
zerfällt und q gleich dem Radius des Kreises gesetzt wird.
Denn da unter der Voraussetzung

P 0, Q=0, R 0
auch die Gleichung

R2-P2-4Q2 0
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identisch erfüllt ist, so gilt
dq R2-P2-4Q2 Jo
dxp~ P2 + 4Q2 ~0

Abschließend kann man sagen, daß die Gleichung
p-2 + 4Q2 0

dann und nur dann besteht, wenn die Prismenkante

eine optische Symmetrieachse ist, und q
die Geschwindigkeit jener Welle bedeutet, welche
parallel zur Prismenkante schwingt. — Im Folgenden
möge diese spezielle Orientierung, welche vorläufig kein
weiteres Interesse bietet, ausgeschlossen sein.

9. In Gl. Illa möge jetzt q ein bestimmter Wert
beigelegt werden: welches sind die zugehörigen Werte von tp?
Um dieselben zu finden, kann man das Glied mit cos2i//
auf die eine Seite, die beiden anderen Glieder auf die andere
Seite bringen, sodann quadrieren und hernach cos2 2xp durch
1 — sin2 2 xp ersetzen. Man erhält so

„ 2QR + PV/P2-R2 + 4Q2
sin 2 xp —= — •

P2 + 4Q2
In ähnlicher Weise bekommt man1)

PR + 2QN/P2-R2 + 4Q2
cos 2tp -C—i< :<_.

P2 + 4Q2
Setzt man diese Werte in lila ein, so ergibt sich, daß

in %\x\2xp und cos2xp die Radikale mit entgegengesetztem
Vorzeichen zu nehmen sind, so wie es in den beiden Formeln
geschehen ist, wo die beiden obern und die beiden untern
Zeichen jedesmal zusammengehören.

Um reelle Lösungen für xp zu erhalten, muß 1. der
Radikand positiv und 2. der Zähler in beiden Brüchen,
absolut genommen, kleiner wie der Nenner sein. Was die erste
Bedingung anbelangt, so beachte man, daß nach dem Schluß
von § 7 die Beziehung besteht

P2 - R2 + 4 Q2 - 4 (q2 - a2) (q2 - b2) (q2 - b2) (q2 - c2),

i) Ist P Q R 0, so werden sin2>.'' und cos2t^ unbestimmt,
in Übereinstimmung mit dem obigen Ergebnis.
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worin b2 und b2 die beiden mittleren Wurzeln bedeuten, so

zwar, daß
a2>b2>b2>c2.

Demgemäß kann q2 niemals zwischen b2 und b| liegen,
sondern muß ausschließlich dem ersten oder dem dritten
Intervall angehören, da einzig bei dieser Annahme stets eine
ungerade Anzahl jener vier Faktoren negativ, der ganze
Ausdruck also positiv ist.

Sind demnach die Radikale und damit die Zähler von
sin 2xp und cos 2xp immer reell, so bietet die zweite Bedingung
keine Schwierigkeit mehr, wenn man beachtet, daß die
Beziehung

sin2 2 xp ¦+ còs2 2 xp 1

identisch erfüllt wird.
Weil die Kurve C wegen Gl. III zentrosymmetrisch ist,

kann man sich auf das Intervall

0<xp<n
beschränken und erhält somit eindeutig bestimmte Werte
von tp und zwar für jeden q-Wert zwei verschiedene Werte

von tp [0 <tp <n), ausgenommen wenn
P2-R2 + 4Q2 0

d. h. wenn q2 eine der vier Wurzeln der Gleichung VI ist,
wodurch die beiden i//-Werte gleich werden. Daraus folgt,
daß die Kurve C im allgemeinen vier gleiche Radienvektoren
hat, die zu je zweien auf einem Durchmesser liegen. Dagegen
kommen die Radienvektoren mit den Längen a, b, c und d,
welche an das Verschwinden des Radikanden P2 — R2 + 4 Q2

gebunden sind, nur je zweimal vor und bestimmen zusammen
vier ausgezeichnete Durchmesser der Kurve C. Drei dieser
Durchmesser (nämlich a, b und c) müssen, wie eine einfache
Überlegung an Hand einer Skizze der Wellennormalenfläche
zeigt, die Schnittlinien der optischen Symmetrieebenen mit
dem Hauptschnitt des Prismas sein, während sich die
Bedeutung der vierten Richtung mit Hilfe des Indexellipsoides
(Elastizitätsellipsoides) ergibt. Nach Fresnel sind nämlich für
jede Fortpflanzungsrichtung die zugehörigen Schwingungsrichtungen

und Wellennormalengeschwindigkeiten bestimmt
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durch die Richtung und reziproke Länge der Halbachsen
jener Ellipse, in welcher das Indexellipsoid von der zur
Fortpflanzungsrichtung senkrechten Diametralebene geschnitten
wird. Da sich nun die Gleichung dieses Ellipsoïdes,
bezogen auf die Hauptschwingungsrichtungen als Achsen, in
der Form schreibt

a2 v2 + b2 v2 + c2 v\ —,1 2 3 Q2>

so ergibt sich aus dem Schema I unmittelbar, daß

d2 a.2al + b2ß2 + c2y2
das Quadrat der reziproken Länge jenes Radiusvektors des

"Indexellipsoides ist, der auf dem Prismenhauptschnitt senkrecht

steht, oder anders ausgedrückt, daß d2 das Quadrat
der Fortpflanzungsgeschwindigkeit jener Welle ist, die parallel
zur brechenden Kante des Prismas schwingt. Jener vierte
Durchmesser gibt darum die Richtung an, in der sich diese durch
ihre Schwingungsrichtung ausgezeichnete Welle fortpflanzt.

10. An Hand einer Skizze der Wellennormalenfläche1)
erkennt man leicht, daß a dem äußeren, c aber dem inneren
Zweige der Kurve angehört, während b bald auf dem inneren,
bald auf dem äußeren Zweige liegen kann, und zwar ist b

Minimum des äußeren und d Maximum des inneren Zweiges,
wenn der Prismenquerschnitt durch jenen Winkel der optischen
Achsen geht, der von der £-Achse halbiert wird, dagegen
ist b Maximum des inneren und d Minimum des äußeren
Zweiges, wenn der Prismenquerschnitt durch jenen Winkel
der optischen Achsen geht, der von der £-Achse halbiert
wird. Im ersten Fall ist b>d, im zweiten b<d und es
gibt für den betreffenden Schnitt keinen Kurvenradius,

dessen Länge dem Intervall (b, d) angehört
(vergi, die Diskussion in § 9).

11. Ohne auf Einzelheiten einzugehen, sei bei dieser
Gelegenheit doch darauf hingewiesen, daß die Entscheidung

*) Man vergi, für das folgende: Chr. Soret, Über die
Anwendung der Totalreflexion zur Messung der Brechungsexponenten
zweiachsiger Kristalle. Zeitsch. für Krist. und Mineral. 15. 45. In
Betracht kommt namentlich S. 47 f.
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zwischen b und d getroffen werden könnte, wenn die Lage
der optischen Achsen wenigstens insoweit bekannt wäre, daß

man wüßte, durch welchen Winkel derselben der Prisme'n-
querschnitt verläuft. Da aber die Lagebestimmung der
optischen Achsen den Wert von b meistens voraussetzt oder
selber liefert, so wird diese Methode in der Mehrzahl der
Fälle praktisch wertlos. — Die Entscheidung zwischen b und
d könnte natürlich auch dann getroffen werden, wenn, um
andere, dem Mineralogen weniger naheliegende Beziehungen
zu übergehen, etwa der scheinbare Winkel der optischen
Achsen bekannt wäre oder wenn die Kurve C an einem
zweiten, anders orientierten Prisma1) bestimmt würde, wodurch
sich im allgemeinen eine von d verschiedene Wurzel d' ergäbe.

12. Damit a, b, c und d wirklich extreme Radienvektoren
der Kurve C seien, müssen neben der Gleichung (vergi. § 7)

dxp
noch die beiden Bedingungen

— +0,o= und——0 -: — #0
oq dxp2 dxp2 <5q

erfüllt sein. Die partielle Differentiation von î {q,xp) (Gl. lila)
nach q ergibt den Ausdruck

— 2q j 4q2 - [(Ln + L22) +(lis- L22) cps 2xp + 2 L12 sin 2^]},
der nach Ersetzung von cos 2tp und sin 2xp durch die § 9
gefundenen Werte und mit Rücksicht auf den Umstand, daß wegen

q2 a2, b2, c2, d2

auch (§ 7)
P2 + 4Q2eeR2

gesetzt werden kann, schließlich die Form annimmt:

^ |{8q^-6(Lu-f-L22)q5 + 4(LnL22 + Mn+M22-L12)q3
oq Kl

- 2 (Lu M22 + L22 Mn - 2 L12 M12) q J.

*) Das analoge Problem im Fall der Totalreflexion an einer
beliebig orientierten Kristallfläche wurde von C h. S o r e t und L. P e r r o t
behandelt. Vergi. Pockels Lehrbuch p. 130.'
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Der Klammerausdruck ist die erste Ableitung der
Gleichung VI (falls darin u wieder durch q2 ersetzt wird) und
darum sicher von Null verschieden, wofern die Gleichung VI
keine Doppelwurzel hat. Eine solche wäre aber einzig dadurch
möglich, daß d mit einer Hauptlichtgeschwindigkeit zusammenfallen

— also, um von einem anderen gleich zu behandelnden
Fall vorläufig abzusehen, die Prismenkante eine optische
Symmetrieachse würde, was hier ausgeschlossen ist.

Wegen der Annahme, daß die Prismenkante nicht optische
Symmetrieachse sei, ist auch R von Null verschieden, und
da zudem der Klammerausdruck selber für keinen der in
Betracht kommenden Werte unendlich groß werden kann,
so bleibt df:òq notwendigerweise endlich.

Damit endlich noch
d2q : dxp2 * 0,

ist wegen des letzten Ergebnisses, wornach of:òq weder
unendlich klein noch unendlich groß werden kann, notwendig
und hinreichend, daß

— - 4 (P cos 2 xp + 2 Q sin 2 tp) 4= 0
dxp2

oder daß
P cos 2 xp + 2 Q sin 2 xp 4= 0

oder, wenn die trigonometrischen Funktionen wiederum durch
ihre Ausdrücke in P, Q und R ersetzt werden, daß

R

eine Bedingung, die immer erfüllt ist, wenn
P2 + 4Q2-R2 0,

ohne daß gleichzeitig
P 0, Q 0, R 0,

was hier ja vorausgesetzt ist.

13. Nun möge noch der soeben ausgeschlossene Fall

erledigt werden, wo d gleich einer Hauptlichtgeschwindigkeit
wird.
Neben dem bereits in § 8 erwähnten Fall, wo die Prismenkante

optische Symmetrieachse ist, kann sich das Zusammenfallen

von zwei Wurzeln der Gl. VI bei zweiachsigen Kristallen
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auch dann noch ereignen, wenn, wie in anderem Zusammenhang

bewiesen werden soll, eine der beiden optischen Achsen
in die Querschnittsebene des Prismas zu liegen kommt. Eine
einfache Überlegung zeigt, daß dann die Kurve C zwei Doppelpunkte

hat, für welche die Ableitung von q nach xp die
unbestimmte Form

dq : dxp 0 : 0

annehmen muß. Merkwürdigerweise wird aber der Radiusvektor

dieses Doppelpunktes ein Extremum in vollkommener
Übereinstimmung mit den obigen Erwägungen, wornach b

und c die maximalen und minimalen Radienvektoren des
äußeren und inneren Zweiges der Kurve C sind. Nähern sich
nämlich die beiden Zweige, so vermindert sich die Differenz
von b und d, bis schließlich im Falle der Berührung b und d

gleich werden, so daß an der Berührungsstelle (oder besser

Durchdringungsstelle) b maximaler Radiusvektor des inneren
und minimaler des äußeren Kurvenzweiges wird.

Um dieses der Anschauung entnommene Resultat auch
analytisch herzuleiten, sollen zuerst die speziellen Werte der
Richtungskosinus au ß\, y\ ermittelt werden. Hierbei empfiehlt
es sich, das \\nZ-System, dessen Achsen zunächst mit x, y
und z zusammenfallen mögen, so um die rj y-Achse zu
drehen, daß etwa die zwischen +1 und + Z gelegene optische
Achse Aj mit + x zusammenfalle. Hernach wird man, um
eine möglichst allgemeine Lage zu erhalten, das bereits
gedrehte CwZ-System noch so weit um die x-Achse drehen,
bis + n zwischen + y und + z zu liegen kommt und mit + y
einen Winkel ip bildet. Bezeichnet il den in der ursprünglichen

Lage von + z und Aj eingeschlossenen Winkel, so
nimmt das Schema I die nachstehende spezielle Form an.

X y z

§ sinii sin cp cos il — cosy cos il
n 0 cos<p sin y

cosi2 — sin q> sin il cos (p sin il



lb

Mit Rücksicht auf die bekannten Beziehungen

sin i2 — y cos il V —V „2 ~2 V „2 _

wird
Lu=2b2
L22 - a2 -r c2

L12 -siny \/(a*-b*) (b2-c2)
M„=b*
M22 a2 c« + (a2 - b2) (b2 - c2) sin2 y
M12 =— b2 sin (p V{&2 - b2) (b2 - c2).

Die Substitution dieser Werte in Gleichung III1) gibt für
xp 0 ohne weiteres

q4-2b2q2 + b4 (q2-b2)2 0,

dagegen für jeden anderen Wert von xp zwei Werte q'2 und
q"a derart, daß

q'2<b2<q"2.
Der Beweis ist äußerst einfach. Ist nämlich

f (x2) (x2 - q'2) (x2 - q"2) 0

eine biquadratische Gleichung, so wird, wie bekannt, die
Funktion i(x2) für jeden reellen x2-Wert, der zwischen den
beiden reellen und positiven Wurzeln x'2=q'2 und x"2=q"2
liegt, negativ, und umgekehrt muß jeder positive x2-Wert,
für den f(x2) negativ wird, zwischen den beiden reellen
Wurzeln q'2 und q"2 liegen. Um also zu zeigen, daß die

Doppelungleichung
q'2<b2<q"2

für jeden xp-Wert in der Umgebung von xp 0,n erfüllt ist,

genügt es, etwa in Gl. lila q2 durch b2 zu ersetzen und den

vereinfachten Ausdruck auf sein Vorzeichen zu prüfen. Eine
einfache Rechnung gibt

î (q2 b2, tp) - (a2 - b2) (b2 - c2) cos2y 1 ~ cosh/>).

Da die rechte Seite im allgemeinen negativ ist und bei

festgegebenem cp (<jp4=—i—) nur für xp nn verschwindet, so

Die Substitution dieser nämlichen Werte in Gleichung lila usw.
zeigt, daß für \]> 0 tatsächlich dq : di/> 0: 0 wird.
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besagt sie also, daß in der Umgebung von xp 0,7i der
Radiusvektor des innern Kurvenzweiges kleiner, der des
äußern größer ist wie b.

Erwähnenswert ist noch, daß unter diesen
Voraussetzungen a2, b2, b2 und c2 die vier Wurzeln der Gleichung VI
sind, so daß ihre Lösungen ganz allgemein und ausnahmslos
die Quadrate der maximalen und minimalen Radienvektoren
der Kurve C ergeben. Sind zwei Wurzeln einander gleich,
so entsprechen sie entweder dem Radius eines Kreises, zu
dem sich der eine Kurvenzweig vereinfacht (uneigentliches
Extremum ; die brechende Kante ist eine optische Symmetrieachse)

oder aber den Doppelpunkten, in welchen sich die
beiden Kurvenzweige kreuzen (die brechende Kante steht
auf einer optischen Achse [= Binormalen] senkrecht).

14. Es war ausdrückliche Voraussetzung der bisherigen
Entwicklungen, daß die optische Orientierung des Prismas,
d. h. die Lage des £77 £-Systems in bezug auf das xyz-System
unbekannt sei. Die zu lösende Doppelaufgabe bestand demnach

einerseits in der Ermittlung der drei
Hauptlichtgeschwindigkeiten und anderseits in der Lagebestimmung
der optischen Symmetrieachsen. Diese letztere, wenn
überhaupt möglich, hat aber nur dann einen Sinn, wenn es gelingt,
die Orientierung der Hauptschwingungsrichtungen auch

kristallographisch festzulegen. Dazu ist vor allem die Kenntnis
der kristallographischen Orientierung des Prismas erforderlich.
Diese vorausgesetzt, wird sich nun ein wesentlicher Unterschied

zwischen den drei Systemen der zweiachsigen Kristalle
herausstellen.

/. Rhombische Kristalle.
15. Die kristallographischen Achsenebenen sind optische

Symmetrieebenen. Bei bekannter kristallographischer
Orientierung des Prismas ist es möglich, ihre Schnittgeraden mit
dem Prismenhauptschnitt zu berechnen und damit die
Richtungen festzulegen, längs derer eine Lichtgeschwindigkeit a

bzw. b oder c ist. Da die Fortpflanzungsrichtung der d-Welle
hiervon im allgemeinen verschieden ist — der Beweis soll
später (§ 27) geliefert werden —, so ist es möglich, b und d

2



— 18 —

zu unterscheiden und damit die Hauptlichtgeschwindigkeiten
mit Hilfe eines beliebigen Prismas eindeutig zu bestimmen.
Wegen der unvermeidlichen Messungsfehler wird die
Übereinstimmung zwischen Rechnung und Beobachtung nicht
vollkommen sein. Man erhält darum drei Bedingungsgleichungen

als Äquivalent der drei überzähligen
Beobachtungsreihen.

16. M. Born1) kam vor vielen Jahren zu einem ähnlichen
Resultat, indem er, die Kenntnis der Richtungskosinus

des Schemas I voraussetzend, die Gleichung III
nach b2c2, c2a2, a2b2, a2, b2 und c2 ordnet und mit sechs

Wertpaaren [qi,xp\)\
b2c2 Ax c2a2 B1 a2b2 Cj

a2 A2 b2 B2 c2 C2

berechnet. Wegen der überschüssigen Beobachtungen ergeben
sich die Bedingungsgleichungen

j\2 ^1^' B2 ^1^' C2 A'fy
2

A,
2

B,
2

Cx

Nicht unerwähnt bleibe, daß die Lage der optischen
Symmetrieachsen nicht als völlig bekannt vorausgesetzt zu
werden braucht, sondern daß es genügt, zu wissen, daß die
betreffenden Richtungen überhaupt Symmetrieachsen sind.
Welche derselben die {•- bzw. n- und £-Achse sei, ergibt
sich dann hinterher durch einfache Überlegungen.

17. Die einzige Ausnahme dieser Regel tritt ein, wenn
der Prismenhauptschnitt durch eine und nur eine optische
Symmetrieachse geht, so daß zwei jener Ebenenspuren
zusammenfällen. Ist diese Symmetrieachse die g- oder £-Achse,
so ist freilich die eindeutige Bestimmung der
Hauptlichtgeschwindigkeiten (und, wie sich später § 23 Anm. zeigen
wird, auch der optischen Orientierung) noch möglich, denn
mit der Richtung dieser Symmetrieachse fallen die
Radienvektoren b und c bzw. a und b zusammen, während der
Radiusvektor d in anderer Richtung (vergi. § 27) liegt (wegen
der Voraussetzung, daß der Prismenhauptschnitt nur eine

i) M. Born, N. Jahrb. für Miner. B.-Bd.5 (1877), 40 ff.
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optische Symmetrieachse enthalte), b ist folglich durch die
bekannte Richtung des zugeordneten Radiusvektors der
Kurve C ausgezeichnet und d gegenüber kenntlich gemacht.
Wird dagegen die im Prismenhauptschnitt gelegene optische
Symmetrieachse zur ??-Achse, so fallen mit dieser bekannten
Richtung"die a und c zugeordneten Radienvektoren zusammen,
während die zu b und d gehörigen Radienvektoren der Kurve C
hiermit einen rechten Winkel bilden, also die gleiche Richtung
haben und folglich nicht mehr unterschieden werden können.

18. Eine eindeutige Lösung kann indessen in anderer
Weise erzielt werden. Denn wegen der bekannten
kristallographischen Orientierung des

Prismas sind nur die in Fig. 2 a

und Fig. 2 b veranschaulichten
Anordnungen möglich. Das
Schema I geht dabei in das

folgende über. Fig. 2 a Fig. 2b

Fig. 2 a X y z

§ sin q> sin 3- — cosy sin>9- cos#

V cosy sin y 0

— sin y cos & cosy cos «9- sin .9-

Fig. 2b X y z

f — sin y cosi9- cos y cos ß- sin ,9

V cosy sin y 0

5 — sin y sin & + cos y sin .9- — COS.'?'

Auf Grund dieses Schemas, worin y und S- bekannt sind,
läßt sich, da bezüglich der Werte von a2 und c2 jeder Zweifel
ausgeschlossen ist, nicht nur b2 von d2 unterscheiden, sondern
auch ermitteln, ob der eine oder der andere der beiden Fälle

vorliege. Es ist nämlich im Falle der Fig. 2a
d2 a2cos2#-r c2sin2#

2*
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und im Falle der Fig. 2 b
d2 a2sin2# + c2cos2#.

Einer dieser Werte von d2, die sich zum vorneherein berechnen
lassen, muß mit einer der mittleren Wurzeln von Gleichung VI
übereinstimmen. Dadurch fällt die Zweideutigkeit bezüglich
b2 sowohl als auch der Orientierung dahin. Einzig für & 45°

oder 135° stellt sich eine Zweideutigkeit ein, indem es unmöglich

wird zu entscheiden, ob es sich um den in Fig. 2 a oder
in Fig. 2 b dargestellten Fall handelt, ohne daß aber dabei die

Entscheidung zwischen b2 und d"2 selber unmöglich würde.
19. Es ist übrigens interessant, daß wenn r\ in den

Prismenquerschnitt fällt, die von M. Born angegebene Methode
versagt, denn nach Fig. 2 a1) und mit Rücksicht auf die
zugehörige Form des Schemas I geht Gleichung III über in:

sin2 (y — xpi) sin2 d- • b2 c2 + cos2 (y — xp-,) ¦ c2 a2

+ sin2 (y—xpi) cos2 & • a2 b2 — qi2 [cos2 (y — xpi)

+ sin2 (y—xpi) cos219] a2 — qi2 sin2 (y — xpi) • b2

- qi2 [sin2 (y - xpi) sin2,9 + cos2 (y - xpi)] c2 + qi4 — 0
Man beachtet nun leicht, daß das Gleichungssystem, welches sich
aus sechs zusammengehörigen Wertpaaren qi, xp-, (i=l,2..6)
ergibt, eine identisch verschwindende Determinante hat (weil
nach Abspaltung von sin2*9 resp. cos2 & die erste Kolonne
gleich der dritten wird usw.), also nicht lösbar2) ist.

//. Monokline Kristalle.
20. Dem Gesagten zufolge ist jede Zweideutigkeit

behoben, falls die Orthodiagonale der rç-Achse parallel ist, ohne
im Prismenhauptschnitt zu liegen.3)

///. Trikline Kristalle.
21. Die Entscheidung zwischen b und d kann nicht

getroffen werden.

') Entsprechendes gilt für Fig. 2 b.
2) Würde eine andere Hauptschwingungsrichtung in die

Querschnittsebene des Prismas fallen, so erhielte man die entsprechenden
Formeln durch zyklische Vertauschung von a2, b2 und c2. Daraus
folgt, daß auch in diesen Fällen die Methode Borns versagen muß.

8) Die vorhergehenden Überlegungen können wegen Unkenntnis
des Winkels * nicht auf das monokline System übertragen werden.
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22. Es ist bekannt, daß die Bestimmung der Brechungsindizes

eines .Kristalls mit Hilfe der Totalreflexion an einer
einzigen Fläche zu Ergebnissen führt, die den bisher
gefundenen1) ähnlich sind, nur handelt es sich dabei um eine
Kurve S, welche man als Grenzlinie der totalen Reflexion
bezeichnen kann. Sie besteht im allgemeinen aus zwei
getrennten Teilen, deren Maxima und Minima durch die
Radienvektoren von der Länge a, b, c und dt bestimmt sind.
Wiederum ist die Lösung zweideutig. Da aber d2 das Quadrat
der reziproken Länge jenes Radiusvektors des Fresnelschen
Ellipsoïdes ist, der auf der Grenzebene senkrecht steht, so
muß die dj-Welle parallel der Einfallsebene schwingen und
kann mit Hilfe eines Nikolschen Prismas von jeder anderen
Welle unterschieden — das Problem also eindeutig gelöst
werden.

Es läge nun der Gedanke nahe, auch beim Prisma die
ausgezeichnete Schwingungsrichtung der d-Welle heranzuziehen,

um zwischen b und d zu entscheiden. Allein die
Tatsache, daß der Schwingungszustand des ausgetretenen
Lichtes von demjenigen im Kristall im allgemeinen verschieden
ist, vor allem aber der Umstand, daß die Orientierung des
Prismas die Beobachtung der d-Welle ohne besondere
Hilfsmittel in den seltensten Fällen gestatten wird, machen die

angedeutete Methode, so naturgemäß sie auch erscheinen

mag, vollständig illusorisch.
23. Wäre nun in einem gegebenen Falle die eindeutige

Bestimmung der Hauptlichtgeschwindigkeiten aus irgendeinem
Grunde möglich, so gestatten die beiden ersten Gruppen
(Kolonnen) der Gleichung V die eindeutige Ermittlung der
absoluten Werte von ai,ßi,y-x (i—1,2). Damit sind natürlich
auch die absoluten Werte von a3,ßs,yA eindeutig bestimmt.
Die Vorzeichen von alt ßu yl kann man beliebig wählen,
weil dadurch nur der positive Richtungssinn der Achsen

1 Auf die soeben erläuterte Ausnahmestellung der rhombischen
und z. T. monoklinen Kristalle, die natürlich auch im Falle der
Totalreflexion bestehen bleibt, scheint bislang niemand aufmerksam
gemacht zu haben.
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und die Rechts- oder Linkshändigkeit des Systems festgelegt
wird. Wegen der dritten Gruppe der Gleichung V findet
man hierdurch ganz bestimmte Vorzeichen für a2, ß2, y2,
wogegen aus

«2 «8 + ßi ßs+Y2Y-6
«1 «8 + ßi ß3 + Yi Y6 0

nur die Verhältnisse as : ßB : ys, d. h. die relativen Vorzeichen
von a3, ßit y3 erhalten werden, so daß sowohl (aita2, aA)

als auch (aita2, — aa) Lösungen der Gl. IVb und V sind.
Die Rechnung ergibt daher für die Hauptschwingungsrichtungen

zwei, den beobachteten Erscheinungen genügende
Orientierungen, die zur brechenden Kante des Prismas
symmetrisch liegen. Das beweist — und die Diskussion der
Gl. IVb und V bestätigt es —, daß zur eindeutigen Bestimmung

der Orientierung die Lage einer Hauptschwingungsrichtung

bekannt sein muß, die aber nicht im Hauptschnitt
des Prismas gelegen sein darf,1) weil sonst die Wahl zwischen
den beiden symmetrischen Systemen nicht möglich ist, da
die gegebene Richtung wegen ihrer symmetrischen Lage zur
brechenden Kante beiden Systemen angehört. Ebenfalls
unbestimmt wird die Orientierung, wenn eine Hauptschwingungsrichtung

mit z einen Winkel von 45° bildet und eine andere
im Prismenhauptschnitt liegt (vergi, den Schluß von § 18 und
die vorstehende Anmerkung).

24. Zum gleichen Resultat führt das von Cornu2) und
Viola3) für das Reflexionsproblem abgeleitete, aber auch im
vorliegenden Fall gültige Gleichungssystem:

*) Wenn oben, § 17, gleichwohl gesagt wurde, die Orientierung

lasse sich eindeutig bestimmen, trotzdem die bekannte
Hauptschwingungsrichtung in die Querschnittsebene des Prismas fällt, so

liegt der Grund darin, daß von den beiden möglichen Systemen, die

zur z-Achse symmetrisch sind, nur das eine mit dem krystallo-
graphischen Achsenkreuz zusammenfallen kann, falls nicht zufällig
die beiden, nicht im Hauptschnitt des Prismas gelegenen optischen
Symmetrieachsen zur z-Achse selber symmetrisch liegen.

2) Cornu, Bulletin de la soc. fr. de minéral. 25. 17.

3) Zusammenstellung seiner zahlreichen diesbez. Publikationen
im Bull. min. 25. 88. Vergi, auch ib. 147.
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AB + BC + CA ¦ 2n

cos2 a.A cotg AB • cotg C A

cos2#, cotg BC • cotg AB

cos2 y3 cotg CA • cotg BC

Die Winkel AB, BC und CA sind aus Fig. 3 verständlich,
in der OA, OB, OC die Richtungen angeben, längs derer
die Radienvektoren der Kurve C gleich
a, b und c werden. Dabei wird
zunächst vorausgesetzt, daß die z-Achse
in das Innere oder die Umgrenzung
des Trieders O'ÇrjZ falle — eine
Annahme, die natürlich immer zulässig
ist, wofern die drei Richtungen 0£,
Or] und 0£ ein rechts- oder
linkshändiges Achsensystem bilden können.
Will man aber beim einmal
angenommenen Rechtssystem bleiben, so FlS- 3

hat man — falls die über dem Prismenquerschnitt gelegenen
£ r\ ^-Richtungen kein Rechtssystem bilden — bloß ihre
Verlängerungen über 0 hinaus zu betrachten. Da die Winkel
zwischen+z und den positiven Richtungen der ^j/T-Achsen
im einen Fall zu denjenigen im anderen Fall supplementär
sind, so verändern sich die Quadrate ihrer Kosinus nicht
und das Cornu-Violasche Formelsystem bleibt gültig, wofern
nur die positive oder negative z-Achse in das Innere oder die

Umrandung des Trieders Oi-rj Z fällt, was immer realisierbar ist.

Aus der Beziehung zwischen A, B und C einerseits
und £, rj und Z anderseits folgt, daß sie aufeinander senkrecht
stehen. Die Pole von £... müssen daher auf den zu A...
senkrechten Durchmessern liegen. Da aber die Gleichungen
des fraglichen Systems in cos a.ò... quadratisch sind, so
erhält man — Cornu und Viola scheinen dies nicht beachtet
zu haben — für oc8... je vier Werte, (nämlich + ad und

ji + tt,...), welche je zwei durch den Ursprung gehende
Gerade bestimmen. Die der positiven z-Achse zunächstliegenden

Pole sind in der stereographischen Projektion der
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Fig. 3 eingetragen und beweisen augenscheinlich das oben
auf anderem Weg gefundene Resultat.1)

25. Sind die Hauptlichtgeschwindigkeiten a, b und c
gegeben, so ist es bei bekannter Lage der Hauptschwingungsrichtungen

möglich, die Richtung OD zu bestimmen, längs
der sich jene vierte Welle mit der Geschwindigkeit d

fortpflanzt. Cornu2) glaubte nun, hierauf eine Methode gründen
zu können, welche erlaubt, b und d zu unterscheiden. Nach
ihm brauchte man bloß den einen dieser Werte als den

richtigen anzunehmen und hernach d zu berechnen. Fällt
dieser berechnete Wert mit dem experimentell gefundenen
überein, so war die Wahl gut — wenn nicht, so hat man
einfach den anderen Wert als den richtigen zu nehmen.

Viola3) (z. T. auch schon Cornu4)) prüfte diese Ansicht
am Beispiel der Weinsteinsäure, wofür Cornu5) mit Hilfe der
Totalreflexion folgende auf vier Dezimalen abgerundete Werte
gefunden hatte:

l/a= 1,4965 AB 63»25' Ari „„,_,l/b 153636) AD 43° 15'IL BC 50M5'
l/c= 1,6063 DC 70° 25'
l/d-1^526 CA 66020'-180» UL

Mit Hilfe von 1/a, 1/b, 1/c und den zugehörigen Azimuten
ergibt die Rechnung:
l/d= 1,5537 AD 43° 40' BD -19°45' CD -70° 00'.
Der Unterschied zwischen den beobachteten und berechneten
Werten ist daher:

-0,0011 -0°25' -0°25' -0°25'.

!•) Bestimmt man, was im Fall der Totalreflexion an einer Kristallplatte

(nicht aber bei der Lichtbrechung durch das Prisma) möglich
ist, den Polarisationszustand des Lichtes, so kann die Entscheidung
zwischen den beiden Orientierungen des J n f-Systems leicht getroffen
werden. Auf die Weise verfuhr Viola und erhielt darum ohne weiteres
eindeutige Resultate.

-') Bull. min. 25. 19 f.
3) Bull. min. 25. 150 ff.
*) Bull. min. 25. 26«.
5) Bull. min. 25. 25, 26.

«) Hierfür setzt Cornu I. c. pag. 26 fälschlich 1,5637.



— 25

Geht man aber umgekehrt von 1/a, 1/d, 1/c und AD, DC,
CA aus, so berechnen sich die Werte:

l/b= 1,5353 AB 62° 52' DB 19° 40' CB=-50°48',
und die Differenz zwischen den gemessenen und berechneten
Werten ist:

-0,0010 0°33' 0°30' 0°33'.
Die Unterschiede zwischen Beobachtung und Rechnung liegen
demnach in diesem zweiten Fall ebenso wie im ersten innert
den Grenzen der Beobachtungsfehler, so daß der Vorschlag
Cornus praktisch nicht verwertbar1) erscheint. Ja, er ist
nicht einmal theoretisch2) richtig, da sich zeigen läßt, daß
die eine Wertgruppe die notwendige Folge der anderen ist.

Um diesen Satz zu beweisen, kann man von den beiden

Indexellipsoiden3) a2 & _|_ ^2 „2 _|_ c2 £2 j
a2 £'2+ (a2 cos2 a + b2 cos2 ß + c2 cos2 y) rj'2+ c2 Z'2= 1

ausgehen, deren Hauptachsen im allgemeinen verschieden

gerichtet sind, jedoch so, daß die drei Achsenebenen

| 0 £' 0 z 0
durch eine Gerade gehen (Richtung des Radiusvektors von
der Länge a), welche zur x-Achse gewählt werden möge.
Man erhält dadurch die aus dem nachstehenden Schema
ersichtlichen Transformationsgleichungen. Dem Winkel a ist
dabei kein Richtungssinn zuzuschreiben.

X y z X y z

£ 0 sina cosa r 0 sin a' cosa'

V
cos y
since

—cos/9 cotga cos/9 V'
cos y' -cos/9'cotg a' cos/9'sina'

Ç
cos ß
sina

— cosj^cotga cosy t cos/9'
sina' —cos y' cotga' cosy'

*) Ob Pockels, Lehrb. der Krist. pag. 132, diese Tatsache oder
einen anderen Grund im Auge hatte, ist nicht recht ersichtlich.

a) Die § 18 verwertete Methode ist in einem gewissen Sinn mit
dem Vorschlage Cornus identisch, unterscheidet sich aber davon
wesentlich darin, daß die beiden Wellennormalenflächen bzw. Ellipsoïde
zusammenfallende Hauptachsen haben.

8) «, ß, y seien die Winkel, welche {, n, C mit z bilden. Entsprechendes
gelte für «',/»',/.
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Nun sollen voraussetzungsgemäß auch die drei Ebenen
£ 0 Z' ° z °

durch eine Gerade gehen (Richtung des Radiusvektors mit
der Länge c). Das ergibt als erste Bedingung

cos ß
sina
cos/9'

— cos y cotg a cosy

— cos y' cotga' cos /
sina

cos /9' cos y cos a cos /9 cos y' cos a'

sina
0 0 1

cos/9

sina
cos ß'

cos y cotg a

cos/cotga'

0,
Sina Sina sin a sin a

oder da
sin a =4=0 und sin a'4=0

auch
cos/9' cos}' cos a cos /3 cos/ cosa'. a,)

Da ferner der Abschnitt des einen Ellipsoïdes auf der
z-Achse gleich der mittleren Halbachse des anderen
Ellipsoïdes sein soll, so erhält man als zweite Bedingungsgleichung

a2 cos2 a! + (a2 cos2 a + b2 cos2 ß + c2 cos2 y) cos2 /9'

+ c2 cos2 y' b2. b)
Nun sind die Richtungen zu berücksichtigen, deren

zugeordnete Wellen parallel der Prismenkante schwingen.
Um sie zu ermitteln, lege man durch die z-Achse zwei
Ebenen, welche die beiden Ellipsoide derart in zwei Ellipsen
schneiden, daß je eine ihrer Hauptachsen mit der z-Achse
zusammenfalle. Diese Ebenen sind, wie die analytische
Geometrie lehrt, dadurch ausgezeichnet, daß sie die Tangentialebenen

im Punkte 0, 0, z je längs einer Geraden schneiden,
die der xy-Ebene parallel ist. Zur Aufstellung der Gleichung
der besagten Tangentialebene oder noch einfacher der zu
ihr parallelen, durch den Ursprung gehenden Ebene empfiehlt
es sich, die Ellipsoide mit Hilfe des Schemas I zuerst auf
das xyz-System zu transformieren, worauf man durch
einfache Rechnung (bei allgemeiner Schreibweise) den Ausdruck
erhält
(a2 a, o, + b2ß.Aßx + c2y.i7l)x + (a2 a2 «„ + b2 ß2 ßt + c2 y2 y.A) y

+ (a2a2 + b2/9| + c272)z 0.
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Die Schnittgeraden dieser Ebenen mit der xy-Ebene haben

Richtungskoeffizienten von der Form

m_ a2a3a, + b2/93/9t + c2 y3 y,
^

a2a2a3 + b2/92/93 + c2y2y3'

Wegen der bekannten Eigenschaften des Indexellipsoides muß
diese Gerade (m bzw. m') senkrecht sein zur Schnittgeraden
der Ebene z 0 mit tj' 0 (resp. J? 0), in denen sich die
Wellen mit der Geschwindigkeit q b' (resp. q b)

fortpflanzen. Die Richtungskoeffizienten dieser letzteren sind

cosy cos/
11 und u -

cosa cos/9 cosa' cos/9'
Man hat somit die Beziehungen

1

a •
x

m und m

die sich mit Benutzung der obigen speziellen Formen des
Schemas I schreiben:

(b2 — c2) cos/3 cosy _ cos a'cos a cos/9'
a2sin2a —b2 cos2/3 —c2 cos2y cos/

und
(a2 cos2 a + b2 cos2 ß — c2 sin2 y) cos /9' cos /

a2 sin2 d — (a2 cos2 a + b2 cos2 ß + c2 cos2 y) cos2 /9' — c2 cos2 /
cosq' cosa cos/9tL d)

cosy
Aus der quadrierten Gleichung a) und aus der Gleichung b)
kann man mit Hilfe von

cos2 a' + cos2 /9' -1- cos2 / 1

cos2/9' und cos2/ eliminieren und bekommt nach einfachen
Transformationen die Gleichung
(a2 sin2 a — b2 cos2 ß — c2 cos2 y) cos2 /9 cos4 a' +
[(a2 sin2a cos2a — b2 sin2/9 cos2/9 + c2 (cos2/9—cos2 a) cos2y] cos2a'

— (b2 — c2) cos2 q cos2 y 0,

deren einzige in Betracht fallende Lösung

„ (b2 —c2)cos2y
cos2 q '-

a2 sin2 q — b2 cos2 /9 — c2 cos2 y
ist, da H e andere Lösung
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cos2/9
keine reellen Werte für d liefert.

Bringt man Gleichung a) auf die Form
cosß cosy' cosa'

cos/9'cosy cosq
und multipliziert die beiden Seiten derselben mit den

entsprechenden Seiten der Gleichung c), so kommt unmittelbar

„ (b2 — c2)cos2y
cos2 q ¦ ¦ -

a2 sin2 q — b2 cos2 ß — c2 cos2 y
Weiterhin gibt Gleichung d), wenn ihre rechte Seite wegen
Gleichung a) mit

_ cos /9' cos y cosa
cos/9 cosy' cosq'

multipliziert wird, nach einigen Umstellungen
a2 cos2 q -t- b2 cos2 /9 — c2 sin2 y

a2 sin2 q' — (a2 cos2 a + b2 cos2 /9 + c2 cos2 y) cos2 /3' — c2 cos2 y'
_cos2a

cos2 y
woraus man mit abermaliger Benutzung der Gleichung a) und
Abspaltung eines von null verschiedenen Faktors wiederum

(b2-c2)cos2ycos2 a '-
a2 sin2 a — b2 cos2 ß — c2 cos2 y

erhält. Die Bedingungsgleichungen b), c) und d) sind mithin

äquivalent, denn sie unterscheiden sich nur durch einen
Zahlenfaktor. Demnach sind auch die Eigenschaften der
beiden Ellipsoide, welche zur Aufstellung der dritten und
vierten Bedingungsgleichung führten, bloße Folgen der zuerst
genannten, und damit ist die Unhaltbarkeit des Cornuschen
Gedankens bewiesen.

Diese Ableitungen beweisen zunächst nur, daß der
Gedanke Cornus nicht auf die Prismen übertragbar ist. Sie
sind aber ohne weiteres im Falle Cornus verwendbar, sofern
die Hauptlichtgeschwindigkeiten durch die Hauptbrechungsindizes,

d. h. die Indexellipsoide, durch die zugehörigen
Fresnelschen Ellipsoide ersetzt werden.
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Übrigens ist der Inhalt des bewiesenen Satzes gleichwertig

dem bekannten Satz von Brill.
26. Erweist sich dem Gesagten zufolge die Annahme

Cornus nicht als zutreffend, so gestatten doch die Cornu-
Violaschen Formeln im monoklinen System, wo die Entscheidung

zwischen b und d nach dem Bisherigen noch nicht in
jedem Fall getroffen werden konnte, eine restlose Lösung
des Prismenproblems, falls die kristallographische Orientierung
des Prismas gegeben ist und die brechende Kante desselben
nicht senkrecht zur Orthodiagonale1) steht.

Der Beweis hierfür ist einfach. Im monoklinen System
ist die Orthodiagonale optische Symmetrieachse, so daß bei
bekannter kristallographischer Orientierung des Prismas eine
der Größen

<*3> ßv Ys

einen gegebenen Wert haben muß. Da aber nach den
Formeln von Cornu-Viola diese Werte Funktionen der
bekannten Azimute von A, B, C und D sind, so hat man
nur zu prüfen, für welchen der beiden Werte b und d die
Übereinstimmung befriedigt.2)

Daß bei dieser Überlegung nicht der gleiche Fehler
unterlaufen ist, wie bei Cornu, ergibt sich schon daraus, daß

die Wahl zwischen b und d nicht auf Grund geometrischer
Eigenschaften der Kurve C, sondern auf Grund einer dieser
Kurve fremden gegebenen Größe getroffen wurde, kann aber,

zum Überfluß noch strenge bewiesen werden. Dabei kann
der Fall, wo die Orthodiagonale zur ??-Achse wird, hier
übergangen werden, weil er bereits früher (§ 20) erledigt wurde.

Fällt die im Prismenhauptschnitt liegende Orthodiagonale mit
der J- oder f-Achse zusammen, so ergibt sich nach einer Überlegung,
die derjenigen von § 17 ganz ähnlich ist, auf Grund der in § 23

gefundenen Resultate, daß nur die Orientierung zweideutig ist; fällt
sie aber mit der ^-Achse zusammen, so ist, wie bereits § 20 bemerkt
wurde, neben der Lagebestimmung der Hauptschwingungsrichtungen
auch die Ermittelung der Hauptlichtgeschwindigkeiten zweideutig.

2) Dieses Verfahren führt auch im Falle der Totalreflexion zum
Ziel, scheint aber bislang keine Beachtung gefunden zu haben, was
allerdings um so begreiflicher ist, als die allgemeine Methode von
Viola in der Anwendung einfach und sicher ist.
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Es kommen darum nur noch die beiden Fälle in Betracht,
wo eine der Größen a3 und y3 einen zum voraus gegebenen
Wert hat. Für beide kann der Beweis in übereinstimmender
Weise geführt werden, so daß es genügt, ihn für den Fall
durchzuführen, wo etwa a3 den gegebenen Wert annimmt.
Bezeichnet M die Richtung, längs der sich die b- oder d-Welle
fortpflanzt, so gilt die Beziehung:

cos2 a3 cotg AM-cotg CA,
woraus

cotg AM cos2 a3-tg CA.
Diese Gleichung gibt aber für AM einen einzigen, zwischen
0 und n gelegenen Wert, so daß wegen des einmal
angenommenen Umlaufsinnes die Richtung OM eindeutig festliegt.

Stillschweigende Voraussetzung dieses Beweises ist die
Annahme, daß die Fortpflanzungsrichtungen der b- und
d-Welle nicht zusammenfallen.

Nach getroffener Entscheidung zwischen b und d ist,
wenn die brechende Kante nicht senkrecht zur Orthodiagonale
steht, natürlich auch die Berechnung der Lage der optischen
Symmetrieachsen eindeutig, eben weil die Lage einer solchen
bekannt ist.

27. An dieser Stelle möge der Beweis dafür erbracht
werden, daß die Fortpflanzungsrichtungen derb-und d-Welle im

allgemeinen nicht zusammenfallen1).
Zu diesem Zwecke diene die beistehende

Fig. 4, welche in stereographischer

Projektion auf den
Prismenhauptschnitt die optischen Symmetrieebenen

sowie die sogen, optischen
Achsen At und A2 darstellt. Die
Fortpflanzungsrichtung OD jener Welle,
die parallel Oz schwingt, ist bekanntlich

dadurch bestimmt, daß die Ebenen
ODA, und ODA2 in bezug auf den

Grundkreis gleichgeneigt sind. Nimmt man von A2 das

*) Auf diesen Beweis wurde im vorangehenden schon mehrmals
verwiesen, z. B. § 15.

Fig. 4
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Spiegelbild A2 bezüglich der Grundebene, oder — was wegen
der symmetrischen Eigenschaften der Kugel ohne weiteres

gestattet ist, den Gegenpunkt von A2 also A'2, so ist die

Schnittgerade der Ebene AjOA'2 mit der Grundebene die

gesuchte Richtung. Ein Blick auf die Figur zeigt sofort, daß
diese Richtung nur dann mit der b-Richtung zusammenfällt,
wenn r\ oder eine optische Achse in der Querschnittsebene
liegt. Da aber durch die bloße Annäherung von r\ oder
einer optischen Achse an diese Grenzlage der Winkel BOD
sich immer mehr und mehr verkleinert, so wird infolge der
unvermeidlichen Beobachtungsfehler die Entscheidung zwischen
b und d praktisch ebenfalls unmöglich, doch ist es für die
Bestimmung der Hauptlichtgeschwindigkeiten dann belanglos,
wenn gleichzeitig mit der Abnahme des Winkels BOD auch
der Unterschied von b und d kleiner wird, d. h. wenn die

optische Achse in die Prismenquerschnittsebene fällt.
28 Selbstverständlich wird durch den Umstand, daß es

möglich ist, mit Hilfe eines einzigen Prismas bekannter
kristallographischer Orientierung die optischen Konstanten
rhombischer und monokliner Kristalle eindeutig zu bestimmen,
der Satz von Brill in keiner Weise in Frage gezogen, denn
es sind eben, wie nochmals bemerkt sei, nicht die
geometrischen Eigenschaften der Kurve C, welche diese eindeutige
Lösung gestatten, sondern kristallographische Beziehungen,
durch welche wesentlich neue Elemente einbezogen werden.

29. So interessant nun diese Ergebnisse auch sind, so
haben sie doch bis dahin wegen ihrer Umständlichkeit keine

praktische Verwertung gefunden und sind vom rein theoretischen

Standpunkt aus insofern unelegant, als sie mehr
Beobachtungen erheischen, wie Unbekannte vorkommen, wobei
sich dann allerdings als Gegenwert der überschüssigen
Beobachtungen gleichviele Bedingungsgleichungen ergeben, auf
Grund derer die Ausgleichungssrechnung gestatten würde,
bessere, von den Beobachtungsfehlern unabhängigere Endwerte
zu berechnen. Es ist darum ganz begreiflich, daß die Praxis
des Mineralogen ausschließlich solche Prismen berücksichtige,
welche eine 1. vollkommen eindeutige und 2. möglichst ein-
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fache Bestimmung (Minimum der Ablenkung bei symmetrischem

Durchgang) der optischen Konstanten erlauben. Die
einschlägigen theoretischen Fragen sind von Liebisch, Born,
Viola usw. eingehend1) behandelt worden. Gleichwohl möge
es gestattet sein, hier noch einige Punkte besonders zu
beleuchten.

30. Für welche speziellen Prismenorientierungen
ergeben die Wurzeln der Gleichung VI

eine eindeutige Lösung des Problems?
Es sind drei Fälle denkbar.

a) Man weiß, welcher der beiden Werte b und d der
größere ist. Praktische Bedeutung hat dieser Fall im triklinen
(und z. T. monoklinen) System. Liegt nämlich ein künstlich
hergestelltes Prisma vor, dessen xyz-Achsen mit den
optischen Symmetrieachsen für eine bestimmte Lichtart zusammenfallen,

so möchte man versucht sein, mit demselben auch die

Brechungsindizes für Licht anderer Wellenlänge zu bestimmen.
Das ist offenbar möglich. Denn wiewohl sich die Orientierung
mit der Wellenlänge stetig ändert, so dürfte man doch immer,
zumal wenn man sich wenig auseinanderliegender Spektrallinien

bedient, in der Lage sein, zu entscheiden, durch welchen
der Winkel der optischen Achsen der Prismenquerschnitt
jedesmal verlaufe, und damit die Entscheidnng zwischen b

und d eindeutig zu treffen. Dagegen bleibt die Orientierung
der Hauptschwingungsrichtungen zweideutig, weil die
Ausgangslage der optischen Symmetrieachse zu speziell ist, um
daraus gültige Schlüsse auf ihre neue Lage ziehen zu können,
denn die Änderung kann ja ebensogut im einen wie im
anderen Sinn erfolgen.

Ein künstliches, genau orientiertes Prisma aus einem
triklinen Kristall herzustellen, ist übrigens keine leichte Sache
und scheint bisher einzig von C. Pape ausgeführt worden zu
sein, der folgenden Untersuchungsgang vorgeschlagen und
im wesentlichen auch eingehalten hat: „Um die Richtung der
optischen Achsen sowie die drei Hauptbrechungsexponenten

Über die reiche Literatur vergi, z. B. Pockels, Lehrb. 144.
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zu bestimmen, muß bei Kristallen des 1 + 1-gliedrigen Systems
im allgemeinen zunächst die Ebene der optischen Achsen
ihrer Lage nach ungefähr bekannt sein und darauf mittels
eines aus dem Kristalle geschliffenen Prismas, dessen brechende
Kante senkrecht zu dieser Ebene steht, der mittlere Brechungsexponent

angenähert ermittelt werden. Darauf ist eine Platte
aus dem Kristall zu schleifen, deren parallele Flächen
rechtwinklig zu der ersten Mittellinie stehen, und an derselben der
Winkel der scheinbaren optischen Achsen zu messen, sowie
die Lage beider zu der dem Beobachter zugekehrten, nach
ihrer Lage am Kristall bekannten Fläche und noch zweien
an der Platte vorhandenen natürlichen Kristallflächen. Aus
diesen Beobachtungen und dem zuerst gefundenen mittleren
Brechungsexponenten läßt sich dann die Richtung der wahren
optischen Achsen ableiten. Nach diesen Resultaten sind
darauf Prismen anzufertigen, deren brechende Kanten den
drei Elastizitätsachsen parallel laufen, und an ihnen die drei
Brechungsexponenten zu beobachten. Da jedes richtig
geschliffene Prisma zwei Brechungsexponenten liefert, bei drei
Prismen jeder also doppelt bestimmt ist, so besitzt man im
Vergleiche beider das Mittel, zu prüfen, ob die ursprüngliche
Bestimmung des mittleren Brechungsexponenten hinreichend
zuverlässig ist oder nicht. Im letzteren Falle würde man
mit dem Mittel aus seinen zuletzt erhaltenen Werten die
wahren optischen Achsen von neuem berechnen und nach
dieser Rechnung neue Prismen schleifen müssen."1)

Es wäre entschieden einfacher, an einem triklinen Kristall
zuerst die Ebene der optischen Achsen für eine bestimmte
Lichtart möglichst genau zu bestimmen und hierauf ein
Prisma so herzustellen, daß sein Hauptschnitt mit jener Ebene
einen Winkel von ca. 20—30° oder 60—70° bilden würde und
zu den beiden optischen Achsen ungefähr gleich geneigt
wäre. In diesem Falle wäre die Richtung der b-Welle für
jene Farbe genau bekannt, während diejenige der d-Welle
hierzu fast senkrecht stände. Da sich die optischen
Konstanten mit der Wellenlänge stetig ändern, wäre es möglich,

0 C. Pape, Pogg. Ann. Ergb. 6, 387.



— 34 —

die Hauptlichtgeschwindigkeiten sowie die Lage der zugehörigen

Schwingungsrichtungen für alle Wellenlängen zu
bestimmen, wofern man sich wenig auseinanderliegender
Spektrallinien bedienen würde.

b) d2 fällt mit einer der drei anderen Wurzeln der
Gleichung VI zusammen. Sei diese Wurzel etwa a2. Man
erhält dann die Beziehung

a2 a2a2 + b2/92 + c2y2,
welche mittels der bekannten Identität

auf die Form
(a2-b2)/92 + (a2-c2)y2 0

gebracht werden kann. Weil voraussetzungsgemäß
a > b > c,

so ist diese Gleichung nur möglich, wenn
/93 0undy3 0

d. h. wenn die Prismenkante gleichzeitig £-Achse ist. Wegen
der damit bekannten Lage einer Hauptschwingungsrichtung
wird dem Früheren zufolge auch die Ermittlung aller
Hauptschwingungsrichtungen eindeutig, und da für die beiden
anderen Fälle eine ähnliche Überlegung gilt, so ergibt sich
der bekannte Satz: Die Bestimmung der
Hauptlichtgeschwindigkeiten sowie der Lage der
Hauptschwingungsrichtungen eines zweiachsigen Kristalls
ist mit Hilfe eines einzigen Prismas in allen jenen
Fällen möglich, wo die brechende Kante mit einer
optischen Symmetrieachse zusammenfällt.

Die Identität
b2 a2a2-r-b2/32-r-c2y2

läßt neben a3 0, /32= 1, yA 0 noch andere reelle Lösungen
zu. In der Tat ergibt sich mit Rücksicht auf die Bedingungsgleichung

<*l + ßl + Yl=i ")
ähnlich wie oben

(a2-b2)a2-(b2-c2)y2 0. b)
Faßt man nun aA, ß.A, y.A als rechtwinklige Koordinaten auf, so
stellen die Gleichungen a) und b) zwei Kreise dar, die beide
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das Zentrum im Ursprung haben und sich auf der rç-Achse
schneiden. Die trigonometrische Tangente ihres Neigungswinkels

zur Ç-Achse ist

Vb2-c2
COtg „Q-

a2-b2
Sie stehen also auf den optischen Achsen senkrecht. Mithin
der weitere Satz: Die eindeutige Bestimmung der
Hauptlichtgeschwindigkeiten eines zweiachsigen
Kristalls ist in allen jenen Fällen m öglich, wo die
brechende Kante auf einer optischen Achse senkrecht

steht.1) Bezüglich der Orientierung gilt das früher
Gesagte. Praktische Bedeutung kommt aber dieser Lösung
keine zu, weil die kristallographische Lage der optischen
Achsen nicht ohne weiteres gegeben ist. Überdies könnte

wegen ihrer Dispersion die Orientierung des Prismas nur
für eine Wellenlänge genau erfüllt sein.

c) b oder d oder beide zugleich sind der direkten
Beobachtung zugänglich. Das ist (praktisch genommen) so

zu verstehen, daß sich diese Werte beim Minimum der
Ablenkung mit symmetrischem Durchgang ergeben. Nach
den bereits genannten Arbeiten v. Liebischs und Violas ist
dazu notwendig und hinreichend, daß die x-Achse mit der
?7-Achse susammenfalle (b und d) oder daß die Halbierungsebene

des inneren Prismenwinkels eine die 77-Achse enthaltende

optische Symmetrieebene • sei (b) oder endlich daß x
zur £- oder t-Achse werde (d). Die anderen Fälle, wo die
Halbierungsebene des äußeren Prismenwinkels den Winkel
der beiden von y und den optischen Achsen gebildeten Ebenen
halbiert — also die Beobachtung von d möglich wäre —
sind praktisch wertlos.

In allen diesen Fällen liefert das Theorem von Brill, falls
die z-Achse nicht selber optische Symmetrieachse ist oder auf
einer optischen Achse senkrecht steht eine doppelte Lösung.
Wird sie hier eindeutig, so liegt der tiefere Grund darin, daß

z. T. kristallographische Elemente, z. T. die Schwingungs-

*) Dieser Satz wurde bereits in § 13 verwertet.
3*
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richtung — in jedem Fall also Größen, welche den
geometrischen Eigenschaften der Kurve C fremd sind, herangezogen
und berücksichtigt werden.

31. Prismen spezieller Orientierung. Es wurde
bereits oben darauf hingewiesen, daß der Mineraloge zur
Bestimmung der optischen Konstanten eines Minerals mit
Vorliebe, ja mit Ausschließlichkeit solche Prismen benutzt,
welche die direkte Ermittlung der Hauptlichtgeschwindigkeiten

gestatten. Hierbei kommen einzig die eben genannten
speziellen Orientierungen in Betracht, wo die Prismenkante
oder die Halbierungslinien des inneren oder äußeren Prismenwinkels

Symmetrieachsen sind. In allen diesen Fällen ist
das Minimum der Ablenkung wenigstens für eine Welle mit
symmetrischem Durchgang verbunden, Messung und Rechnung
folglich überaus einfach. Die entsprechende Welle wird an
ihrer Schwingungsrichtung erkannt. Dabei ist aber nicht zu
vergessen, daß sich die Schwingungsrichtung beim Übergang
vom Kristall zur Luft in manchen Fällen in wahrnehmbarer
Weise ändern muß. Diese Änderung konnte an einem Prisma
von rhombischem Schwefel, das von (111) und (1 Fl) gebildet
war und Prof. Baumhauer1) seinerzeit zur optischen
Untersuchung dieses Minérales diente, deutlich wahrgenommen
werden. Indessen dürfte sie in keinem praktischen Fall so
groß werden, daß man über die Schwingungsrichtung der
Welle im Kristall im Zweifel sein könnte.

Es ist besonderer Erwähnung wert, daß in den soeben

genannten drei Fällen, wo also eine Achse des xyz-Systems
optische Symmetrieachse ist, nicht nur die direkte Bestimmung
einer oder zwei Hauptlichtgeschwindigkeiten ermöglicht ist,
sondern die Bestimmung aller wesentlich vereinfacht wird.
Einige Hinweise auf dieses z. T. vielfach behandelte Problem
sowie die Hervorhebung einiger noch weniger beachteter
Punkte mögen genügen.

a) Die Prismenkante ist optische Symmetrieachse. Die
Kurve C zerfällt in einen Kreis und ein Oval. Das ist die

i) Baumhauer, Zeitschr. f. Krist. 47, 12.
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einzige Orientierung, die bis anhin dazu gedient hat, mit
Hilfe eines einzigen Prismas sämtliche Hauptlichtgeschwindigkeiten

eines Kristalls zu bestimmen.1)
b) Die Halbierungslinie des inneren Prismenwinkels sei

eine optische Symmetrieachse und falle etwa mit £ zusammen.
Bezeichnet & den, von + x aus gesehen, im Gegenzeigersinn

gemessenen Winkel z'Q, so gilt das folgende Schema:

X y z

1 1 0 0

n 0 coso- sind

£ 0 — sind cosd

Die Gleichung III nimmt damit die einfache Form an
q4 — q2 (Ln cos2xp + L22s'm2xp) + Mu cos2"i/> + M22sin2t// 0,

wo
Ln b2-f-c2 L22=a2 + b2sin2d+c2cos2d

Mu b2c2 M22=a2(b2sin2d-r-c2cos2d).
Beim Minimum der Ablenkung, das aus Symmetriegründen

bei gleichem Einfalls- und Austrittswinkel (also tp n\2)
erfolgt, liefert die voranstehende Gleichung, mit Rücksicht auf
die getroffenen Festsetzungen, für jene Welle, die parallel
der Symmetrieachse (also parallel der Querschnittsebene)
schwingt, direkt den Wert von a, für die andere aber

q2=b2sin2d + c2cos2d.
Da hierdurch L22 und M22 bekannt2) sind, so genügen zwei3)
weitere Messungen zur Bestimmung von Ln und Mn. b2 und
c2 berechnen sich dann als Wurzeln der Gleichung

u2—Lnu + Mu—0.
& wird, vom rhombischen System abgesehen, mehrdeutig.

L ang,WienerSitz.76.793. B orn,N. Jahrb.f.Mineral. B.-B.5*42.
2) Eine mehrmalige Wiederholung der Messungen macht von

den Einstellungsfehlern ziemlich unabhängig und liefert, falls das
Prisma tadellos geschliffen und homogen ist, sehr gute Werte von
L22 und M22.

3) Um sich von den Einstellungsfehlern möglichst unabhängig
zu machen, sind natürlich mehr Messungen erfordert.
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Ähnliche Formeln erhält man für die beiden anderen
möglichen Fälle.

c) Die Halbierungslinie des äußeren Prismenwinkels sei
eine Symmetrieachse und falle

q) mit der £-Achse zusammen. Bei analoger Voraussetzung
über den Winkel d wie im vorangehenden Falle b) ergibt
sich das Schema:

X y z

I 0 i 0

n —cosd 0 sind

l sind 0 cosd

An Stelle der Gleichung III kommt

wo
q2 (Ln cos2i//-t- L22 sin2xp) + (Mn cos2xp + M22 sin2%p) — 0,

L22 b2 + c2

M22 b2c2.
Lu a2 + b2sin2d + c2cos2d
Mu a2 (b2 sin2d + c2 cos2d)

Aus Symmetriegründen ist ohne weiteres ersichtlich, daß beim
Minimum der Ablenkung direkt b2 und c2 gefunden werden.
Wie vorher genügen noch zwei weitere Messungen zur
Bestimmung der Konstanten Lu und Mn, und a2 findet sich als

größte Wurzel der Gleichung

u2-Lnu + Mn=0.
d ist im monoklinen System (das trikline kommt praktisch
nicht in Betracht) natürlich zweideutig. Die Zweideutigkeit
besteht darin, daß den Formeln zufolge r\ ebensogut im Winkel
xOz wie xOz liegen kann. Berücksichtigt man aber beim
Minimum der Ablenkung den Schwingungszustand der
entsprechenden Welle, so dürfte die Zweideutigkeit oft behoben
werden können. Im rhombischen System wird sie schon durch
die kristallographische Orientierung des Prismas umgangen.

ß) Fällt die £-Achse mit der y-Achse zusammen, so erhält
man beim Minimum der Ablenkung direkt a und b, während
man aus den Gleichungen
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Ln c2 + a2sin2d + b2cos2d
M„ — c2 (a2 sin2d + b2 cos2d)

ähnlich wie soeben c' als die kleinere Wurzel der quadratischen

Gleichung
u2-L11u-(-M11 0

findet, während die andere, größere wiederum gleich dem
Quadrat der Geschwindigkeit jener Welle ist, die senkrecht
zur Querschnittsebene des Prismas schwingt.

Bezüglich d gilt das soeben Gesagte.
y) Ganz anders, wenn r\ mit y zusammenfällt 1 Das Minimum

der Ablenkung liefert a und c, während man aus zwei
weiteren Messungen die Gleichungen erhält

Lu b2 + c2 sin2 d + a2 cos2 d
Mn b2 (c2 sin2d + a2 cos2 d).

Die Wurzeln der quadratischen Gleichung ^
u2-Lnu + Mu 0

sind b2 und d2 c2 sin2 d + a2 cos2 d, von denen die eine ebensogut

größer oder kleiner wie die andere sein kann. Im
monoklinen System ist die Lösung mithin unbestimmt, wogegen
im rhombischen System die Überlegungen von § 18 Geltung
haben.

In den beiden Fällen b) und c) wurde vorausgesetzt,
daß eine der optischen Symmetrieachsen mit der Halbierungslinie

des inneren oder äußeren Prismenwinkels zusammenfalle,

während die übrige Orientierung als unbekannt
betrachtet wurde. Das Problem ist also gegenüber der
Behandlung bei Pockels1) wesentlich verallgemeinert, indem
daselbst der Fall b) nicht ganz erledigt und c) nur unter der
ausdrücklichen Voraussetzung studiert wird, daß der Winkel d
bekannt2) sei. Im rhombischen System mag diese Annahme
keine wesentliche Einschränkung bedeuten, wohl aber im
monoklinen System, wo wegen der geringeren Symmetrie die
Verhältnisse viel komplizierter liegen.

4) Lehrb. d. Krist. pag. 146 und 147.

2) Wäre # bekannt, so würde sich im Fall cy der Wert von b
eindeutig bestimmen, weil d8—a3cos2»+c2sin9c> eine bekannte Funktion
von a, c und » ist und darum von ba unterschieden werden kann.
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Bei eingehender Betrachtung der unter b) und c)
entwickelten Formeln geht hervor, daß es sogar ohne Bedeutung
ist, zu wissen, welche der drei optischen Symmetrieachsen
den inneren resp. äußeren Prismenwinkel halbiere. Die
beiden Methoden gewinnen dadurch noch mehr an allgemeinem
Wert und können in allen jenen Fällen Verwendung finden,
wo aus der bloßen kristallographischen Orientierung des
Prismas hervorgeht, daß die Halbierungslinie des inneren
oder äußeren Prismenwinkels mit einer optischen Symmetrieachse

zusammenfallen muß.
Daß sich im rhombischen System alle drei

Fälle, wo eine Achse des xyz-Systems optische
Symmetrieachse ist, zur Bestimmung der
Brechungsindizes, mit Hilfe eines einzigen Prismas in
gleicher Weise eignen, ist ein unmittelbares und
praktisch wertvolles Ergebnis dieser
Ausführungen.1)

*) Durch Verallgemeinerung einer Bemerkung v. Groth's,
Physikalische Kristallographie pag. 102 f., können diesen Fällen noch jene
angegliedert werden, wo die eine Prismenfläche Symmetrieebene bzw.
ihre Schnittlinie mit der Querschnittsebene oder endlich ihre Normale
Symmetrieachse ist.
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