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I. TEIL

Systematische Zusammenstellung, Ergidnzung
ind Verallgemeinerung der bisherigen
Untersuchungen.

1. Dem allgemeinen Brauch entsprechend, wird den
folgenden Betrachtungen ein rechtwinkliges, rechtshindiges
Achsensystem x,y,z zugrunde gelegt, dessen x- und y-
Achse in der Querschnittsebene (Hauptschnitt) des Prismas
liegen und durch die Halbierungsebene des inneren bzw.
dufleren Prismenwinkels bestimmt sind. Die z-Achse steht
auf beiden senkrecht und féllt mit der brechenden Kante des
Prismas zusammen. Uber dem Hauptschnitt wird sie positiv
gerechnet, wihrend die positive Seite der x-Achse ins Innere
des Prismenwinkels gerichtet ist.

Neben diesem Xy z-System ist noch ein zweites, eben-
falls rechtwinkliges, rechtshidndiges Koordinatensystem &, n,
von Bedeutung, dessen Achsen durch den Ursprung O des
ersten Systems gehen und den Schwingungsrichtungen jener
Wellen parallel sind, die sich mit den Geschwindigkeiten
a bzw.b und ¢ (a>b=> c¢) (Hauptlichtgeschwindigkeiten) im
Prisma ausbreiten. &7, sind demnach die sog. Haupt-
schwingungsrichtungen oder optischen Symmetrieachsen. Fiir
die im allgemeinen unbekannten Richtungskosinus, welche
die positiven Richtungen der Achsen des einen Systems in
bezug auf die positiven Richtungen der Achsen des anderen
Systems festlegen, gelte das Schema I.
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2. Die Ausbreitung ebener Wellen erfolgt in optisch
zweiachsigen Kristallen nach einem ziemlich verwickelten Ge-
setz, dessen analytischer Ausdruck gewdohnlich auf die Form?)

vi ¥ n vi
q2._a2 q2.__b2 q2_.__c2
gebracht wird. Darin bedeuten: »,»,,v, die Richtungs-
kosinus der Wellennormalen in bezug auf &#,7; q die mit
der Richtung im allgemeinen verdnderliche Wellennormalen- .
geschwindigkeit und a, b, ¢ die bereits oben genannten Haupt-
~ lichtgeschwindigkeiten.

3. Die Messung jener Winkel, welche die Fortpilanzungs-
richtung und Geschwindigkeit einer ebenen Welle eindeutig
bestimmen, ist sehr umsténdlich, wenn die Welle schief zur
Prismenkante einfdllt. Mit einem gewdhnlichen einkreisigen
Goniometer ist sie iiberhaupt nicht ausfiihrbar; es braucht
zum mindesten ein dreikreisiges Instrument. Aus diesem
Grund hat man sich von jeher auf Wellen beschrinkt, die
parallel der brechenden Kante des Prismas einfallen und
darum sowohl beim Gang durch das Prisma als auch nach
dem Austritt aus demselben dieser Richtung parallel bleiben.
Ausnahmsweise machte ViolaZ?) mit Hilie des zweikreisigen
Goldschmidtschen Theodolitgoniometers Beobachtungen bei
,,schiefer Inzidenz*, ist aber genotigt, jene Stellungen des
Prismas und Fernrohrs aufzusuchen, fiir welche die mit
geeignetem Mikrometer meBbare Vertikalablenkung
ungeidndert bleibt, wenn Fernrohr und Kollimator vertauscht
werden, und muBl zudem in der Umgebung dieser Stelle fiir

1) Fiir Wellen, die parallel einer optischen Symmetrieachse
schwingen, versagt die Gleichung II, weil sich ein Term derselben
auf die Unbestimmtheitsform 0:0 reduziert.

2) Viola, Zeitschrift f. Krist. 32, 66 und 545; do. 43, 210 und 588.
Viola, Zeitschr. {. Instrumentenk. 19 (1899), 276. Pockels, Lehrbuch
der Kristalloptik. 148 ff. und Zeitschrift f. Krist. 43, 587.

Den Fall ,schiefer Inzidenz“ studierte iibrigens teilweise schon
A. Cornu in seiner Arbeit: Refraction a travers un prisme suivant une
loi quelconque. Ann. Ecole normale 1. 231 und 3. 1. In Betracht
kommt hauptsichlich 1, 255 ff.
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mehrere, etwa um je einen Grad verschiedene, am Vertikal-
kreis direkt ablesbare Werte von w (=,,Winkel, den die auf
die Eintritts- und Austrittswellen senkrechte Ebene mit der
Basis des Prismas einschlieBt*) die zugehdrigen Brechungs-
indizes bestimmen. Das Maximum oder Minimum derselben
liefert einen Hauptbrechungsindex.

4. Die Gesamtheit aller zur z-Achse parallelen Wellen,
welche gleichzeitig im Punkte O einfallen, umhiillt im Prisma
nach der Zeiteinheit eine Kurve C, welche das Schnittgebilde
der Wellennormaleniliche (Gl. II) mit der Querschnittsebene
des Prismas ist. Bezeichnet etwa v den Winkel, welchen
die Normale einer solchen Welle mit der positiven Richtung
der x-Achse einschlieft, so hat man fiir die Richtungskosinus
dieser Wellennormalen im xyz-System die Werte

Y, =cosy Y, =*siny Y, =0,
falls ¥ von +x iiber +y positiv gerechnet wird.

Zwischen v; und p bestehen wegen des Schemas I die
Beziehungen

v, =0, CoS YW+ a, Sin Y

Vy=[3, cosy+ B,siny

Vs =19, COS Y + ¥, siny,
die in Gleichung II eingesetzt, nach einigen Umiormungen,
die Gleichung') der Kurve C ergeben, nimlich :

q*—q?*(L,, cos*y+L,,sin*y+2L,, sinycosy)+

_ + (M, cos®?y + M,, sin®y + 2 M,, sin y cos y) = 0. i
Darin ist
Lik E(b2+02) aiak+(c2+aﬂ)ﬁiﬁk+(a2+b2) YiYk IVa

Mik5b2c2aiak+c2a2ﬁiﬁk—i—a‘*’b27i7k.

Die Konstanten L;x und M;, lassen sich theoretisch
mit Hilfe von sechs Wertpaaren (q», y,), die sich auf Grund
der Messungen am Spektrometer ohne Schwierigkeit ergeben,
eindeutig als Wurzeln eines Systems von sechs linearen
Gleichungen bestimmen. Wie die Rechnung praktisch aus-
zufiihren ist, wird sich spéter zeigen, hier soll nur ein ein-
faches Veriahren angegeben werden, um mittels des be-

1) Vergl. hierfiir und fiir das Folgende die Arbeit von Th.v. Liebisch
im Neuen Jahrbuch fiir Mineralogie und Geologie. 1886 I pag. 14 ff.

lt
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obachteten Einfalls- und Ablenkungswinkels (i, und A) q und (1
graphisch zu bestimmen. EOA (Fig. 1) sei ein Haupt-
schnitt des Prismas mit dem
brechenden Winkel 7", ] E eine
einfallende, AJ, eine austre-
tende Wellennormale. EW  und
AW, die zugehorigen Wel-
lenspuren. Macht man EJ, —
EW,=AW, =A], —q,, sosind
» die Projektionen von EW, und
AW auf die entsprechenden
Einfallslote EP und AQ bzw.
gleich q,sini, und q,sini, und
die gebrochene Wellenebene
ist der Richtung 0O, paralldl (also wegen ihrer zum Haupt-
schnitt senkrechten Lage vollkommen bestimmt), falls (85
den Schnittpunkt der projizierenden Geraden W,P und W,Q
bedeutet.

Der Beweis ergibt sich unmittelbar, da 00, den Winkel I"

derart in zwei Winkel') r, und r, teilt, daB
r,t+r,=1r
sinr,:sinr, =sini,:sini,.

Der fettgezeichnete Linienzug STUV (TU.LOO,) gibt
die drei aufeinanderfolgenden Lagen einer bestimmten Wellen-
normale an. \

Zur Bestimmung der Geschwindigkeit q, (=UW) kann
man sich der bekannten Huygensschen Konstruktion bedienen,
wie sie in der Figur angedeutet ist (UV=q,).

5. Die Hauptlichtgeschwindigkeiten a,b,c sowie die
Richtungskosinus a;, 3i,%: (i=1, 2, 3) berechnen sich aus
den Gleichungen IVa und sechs weiteren, die wegen der
Orthogonalitit der Achsen zwischen den Richtungskosinus
bestehen, nidmlich:

J,
Fig. 1

1) Man achte auf die Pfeile, denn nur fiir solche gerichtete
WinkelgroBen gelten die bekannten Relationen
Lh+rn=Clundiy+i,=TI+44
allgemein. '
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ai2+;812+712=1 aiak+ﬁiﬁk+g/iyk=0. IVb

- Man kann nun mit Th. v. Liebisch in den Gleichungssystemen

I

IVa und IVb die drei Gleichungen in «3%, 82, y7 fiir sich

betrachten, ebenso jene in «2, 3%, y2 sowie endlich diejenigen:

in o o, 3,8, 7,7, und findet durch einfache Rechnung
folgende Ausdriicke:

= Lgs 8%k My,

at*—L,a*+M,, a2=a4—L22a2+M22 o o —

(ae_b?.) (az_cz) (a2 — b?) (az_cz) 12 (az__bz) (a'*’—c‘-’)
bi_"Lllb2+M11 62=b4—“L22b2+M22 ﬁ )6’ _ _L12b2+M12
(b2""(22) (b'z_az) 2 (bz_ce) (bz__a2) 172 (bz_cz) ( 2_a2)
B - My o B L@ N, —L,cz+M,,

—a) (cr—by) 1P (er—ay (ci—by T

Beachtet man, daB
_ ' afagx(“1a2)2, i
so folgt aus den drei Gleichungen der ersten Zeile von V,
wenn a*—u gesetzt wird:
u“—'(Lu +L22) i 2 (Mu + M22+ L11L22 "“sz) e VI
LMy, +L,, M, —2L ,M;;)u+ (M, M,, —M,3)=0.
Das gleiche Verfahren mit den Gleichungstripeln der zweiten
und dritten Zeile von V liefert fiir b® und c? eine mit VI
identische Gleichung, so daB} sich also a? b?% c* als Wurzeln
dieser Gleichung vierten Grades ergeben, die aber im
allgemeinen noch eine vierte, von diesen verschiedene Wurzel
d? hat, {deren Wert Th. v. Liebisch durch Koetfizienten-
zerlegung zu
d*=a’a3+ b2 35+ c?ys

bestimmte. Es ldBt sich unschwer zeigen, daBl a* die groBite
und c? die kleinste Wurzel von VI ist, wihrend die beiden
mittleren (b? und d?) in keiner {esten, zum vorneherein
gegebenen GroBenbeziehung zu einander stehen, indem b?
ebensogut groBer wie kleiner als d* sein kann. Die Losung
des Problems ist darum im allgemeinen zweideutig.

6. Da in den eben gefundenen Wurzeln der Gleichung VI
von den neun Richtungskosinus des Schemas I nur e, 3,
und y, auftreten, so miissen wegen der bekannten Beziehung

(¢ —a) (¢ —b?)

\Y
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zwischen den Koeffizienten und Wurzeln einer algebraischen
Gleichung auch die Koeffizienten der Gleichung VI neben
a%,b? und c? nur noch von e, 8, und y,, nicht aber von den
sechs anderen Richtungskosinus abhidngen. Der direkte Nach-
weis mit Hilie der Werte fiir Lix und M;x auf Grund der
Orthogonalitdtsgleichungen bietet keine Schwierigkeit. Es
geniige, ihn etwa fiir M,, M,, — M2 durchzufiihren. Durch
Substitution der Gl. IVa, Ausfiihrung der Operationen und
einfache Kiirzung kommt:

MM, M=
a’b?c?[a*(B, 7, — B, 7)) TP (1, @y —yp)* + € (e, By — 0, B,)°].
Nun bestehen zwischen den neun Richtungskosinus
bekanntlich die Beziehungen

B.v.—Beri =0y 11— 7: =8, o, B;—a,B =y,
die, oben eingesetzt, das gewiinschte Resultat ergeben und
zugleich den eben erwidhnten Satz von Th. v. Liebisch
bestatigen:

M, M, ML=a*b*c*(a*a b 52 <c' vl

Gleichung VI ist demnach durch die Orientierung der
brechenden Kante des Prismas in bezug auf die optischen
Symmetrieachsen des Kristalls bei gegebenen a% b? und c?
vollig bestimmt und deshalb von der weiteren Lage des
Prismas ganz unabhidngig. Darin zeigt sich ein wesentlicher
Unterschied zwischen der Gleichung Il und der Gleichung VI.
Gleichung III ist der analytische Ausdruck fiir die Schnitt-
kurve C der Wellennormalenfliche mit der durch e, 3,, 7,
bestimmten Diametralebene und in ihrer Form durch das
Bezugssystem bedingt. Fiir die verschiedenen Prismen mit
gleichorientierter brechender Kante miissen sich ihre Koefii-
zienten dndern, trotzdem sie immer die gleiche Kurve dar-
stellt, eben weil sich das Bezugssystem idndert. Dagegen
bleibt Gl. VI fiir alle diese Prismen stets dieselbe. Sie wird
deshalb nur durch solche Eigenschaiten der Kurve C bestimmt,
welche von ihrer speziellen Orientierung unabhédngig sind.
Diese Eigenschaften sind die Lidngen der extremen Radien-
vektoren.
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7. Um dies zu zeigen, mdge in Gl Il der doppelte
Winkel eingefiihrt werden. Dadurch kommt nach einigen
Umstellungen:

i(q, ) =[My, —M,,)—(L;; —L;s) q*] cos2y
+2(M,;— Ly, q%) sin 29+ [2q* — (L, +Ly) g+ (M, + My,)] =0
oder abkiirzend:

f(q,)=Pcos2y+2Qsin2y +R=0. a)

Die Bedingung, daBl q ein Extremum werde, ist bekannt-

lich das Verschwinden von

of
also im allgemeinen das Verschwinden von é_

Man hat somit -
—Psin2y +2 Q cos 2y =0. b)
Wegen
sin? 2y + cos®* 2y =1 c)
kann man vy eliminieren, indem man etwa &) und &) nach
sin2y und cos 2y auflost und die gefundenen Werte in c¢)
einsetzt. Man erhilt auf diese Weise
R2 — P2 .__4 Q2 - O
P2+ 4Q? :
Das Nullwerden des Nenners in diesem Ausdruck ist bei
reellen Werten an die Bedingungen
P=0 und Q=0

und wegen a) auch

R=0
gekniipft, kann also, wenn iiberhaupt moglich, nur bei ganz
spezieller Orientierung des Prismas eintreten. Im allgemeinen
ist darum

RE—PE—~2 R

die gesuchte Maximums- resp. Minimumsbedingung und gibt
nach Einsetzung der Werte aus Illa, wenn noch

qQ*=u
gesetzt wird,
R*—P?*—4Q*=4[u*—(L,, +L,,) v*+(M,, +M,,+L,, L,,—L 2

—(L;y My, +L,, My, —2L,, M) u+ (M, M, — M1§)] =={)

d. h. genau die Gleichung VI w. z. b. w.

) u*

Illa
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8. Es ist fiir das folgende bedeutungsvoll, auch die
Gleichung |
- P*4+4Q%*=0
ndher zu untersuchen. Ersetzt man dieselbe durch das oben
gefundene, ihr dquivalente Gleichungssystem
| P =0, () =0, R=0,
so folgt durch Elimination von q®.aus den beiden ersten

Gleichungen
Lu “Lez " L12
, M,—M, M},
und hieraus nach Substitution der Werte aus IVa

a*b*(g, 72_62 1) (8, 7+ B, 7o) —atbt(y, aa—y, ) (0, 7, T 0 7,)
+bic? (y, a7, 0,)(y, ¢, Ty, @) —b*ce, By—a, 8,)(e, B, + 8, )
+0432(051182—“2181)(a1181+a2182)*c“’a'4(16’172“18271)(16171+ﬁ272)";0>
wofiir man wegen der bekannten Beziehungen

Bt Bsve=—8s% (und zwei dhnlichen)
Biy:— By =04 (und zwei dhnlichen)

die Gleichung
—a, 3,7, [a*b?(a® —Db?) 4+ b?c?(b®—c?)+ c?a®(c*—a?)|=
o, B, v, (a2 —b?) (b* — c?) (c*—a?) =0
erhédlt. Dieselbe kann jedoch nur bestehen, wenn

;; a31837s=0
ist, d. h. wenn die Prismenkante mindestens auf einer optischen
Symmetrieachse senkrecht steht.
Zur Untersuchung der dritten Gleichung

R=0
empfiehlt es sich, das soeben gefundene Ergebnis zu ver-
werten und zur Vereinfachung der Formeln die in der
xy-Ebene gelegene Symmetrieachse etwa mit der x-Achse
zusammentiallen zu lassen. Natiirlich kann jede der drei
Achsen &7, in Betracht kommen. Es geniige jedoch, die
Rechnung fiir

x| §

durchzufiihren. Dann spezialisiert sich das Schema I zu
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0 0

e
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0 |cosY| sind

n
| 0 |-sindcosd

—> —>
wo & den Winkel yn=z[ bedeutet, der von+x aus gesehen
im Gegenzeigersinn positiv gerechnet ist. Durch diese Koordi-
natentransformation wird

Q=0,

~ Lys=0 und M, =0,
und an Stelle von

weil

P=0 und R=0
erhédlt man nach einfacher Rechnung die Gleichungen
[2q2—(a®+ b2)] (q?— c?)=—(c2— b2) (q‘z — a?) sinz9
(a% — b?) (q? — c?) = (c* — b?) (q* — a?) sin®9,
deren gleichzeitiges Bestehen nur moglich ist, wenn entweder
q*=c? und sin*9=0
oder aber
q*=D>b? und sin®*3=1
was in beiden Fillen besagt, daB die z-Achse nicht bloB
auf einer optischen Symmetrieachse senkrecht
steht sondern selber eine solche ist. Die Kurve C
zerfdllt deshalb in einen Kreis und ein Oval und hat im
angenommenen Fall die Gleichung
(q* — ¢*) [q* — (b* cos®y + a® sin*y)| =0
bzw. (q*—b? [q®—(c? cos*y + a®sin*y)]=0.

Dem Kreis' eignet kein extremer Radiusvektor — eine
geometrische Eigenschaft, die ihren analytischen Ausdruck
darin findet, daB dq:dy in der Unbestimmtheitsiorm 0:0
auftritt, sobald die Kurve C in ein Oval und einen Kreis
zerfillt und q gleich dem Radius des Kreises gesetzt wird.
Denn da unter der Voraussetzung

P—=0, Q=0, R—0

auch die Gleichung
R2 S P2 =T 4Q"‘ =0
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identisch erfiillt ist, so gilt :
dqg R*—P?—4Q* 0O

dv,u P? +4Q? 0
AbschlleBend kann man sagen daB die Glelchung

P24 4Q%=

dann und nur dann besteht wenn die Prismen-
kante eine optische Symmetrieachse ist, und q
die Geschwindigkeitjener Wellebedeutet, welche
~parallel zur Prismenkante schwingt. — Im Folgenden
moge diese spezielle Orientierung, welche vorlauhg kein

weiteres Interesse bietet, ausgeschlossen sein.

9. In Gl Illa moge jetzt q ein bestimmter Wert bei-
gelegt werden: welches sind die zugehorigen Werte von y?
Um dieselben zu finden, kann man das Glied mit cos2y
auf die eine Seite, die beiden anderen Glieder auf die andere
Seite bringen, ‘sodann quadrieren und hernach cos? 2y durch
1 —sin®* 2y ersetzen. Man erhilt so
2QR+PV Pr—R:+4Q?

Pt 4 1P
In dhnlicher Weise bekommt man?)
PRF2QVP:—R*+40Q*
P2+ 4 Q2

Setzt man diese Werte in Illa ein, so ergibt sich, daB
in sin2y und cos2vy die Radikale mit entgegengesetztem
Vorzeichen zu nehmen sind, so wie es in den beiden Formeln
geschehen ist, wo die beiden obern und die beiden untern
Zeichen jedesmal zusammengehoren.

Um reelle Losungen fiir 9 zu erhalten, mu8 1. der
Radikand positiv und 2. der Zihler in beiden Briichen, ab-
solut genommen, kleiner wie der Nenner sein. Was die erste
Bedingung anbelangt, so beachte man, daB nach dem SchluB
von § 7 die Beziehung besteht

P:—R?+4 Q*=—4(q®—a?) (q*— b?) (q* — b (q* — c*),

sin2y=—

cos 2y = —

- 1) Ist P=Q=R=0, so werden sin2y und cos2y unbestimmt,
in Ubereinstimmung mit dem obigen Ergebnis.
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worin b} und b? die beiden mittleren Wurzeln bedeuten, so
zwar, daB
a'>b2>bZ>ch,

DemgemaB kann ¢* niemals zwischen b? und b2 liegen,
sondern muf} ausschlieBlich dem ersten oder dem dritten
Intervall angehdren, da einzig bei dieser Annahme stets eine
ungerade Anzahl jener vier Faktoren negativ, der ganze Aus-
druck also positiv ist.

Sind demnach die Radikale und damit die Zédhler von
sin 29 und cos 2y immer reell, so bietet die zweite Bedingung
keine Schwierigkeit mehr, wenn man beachtet, daB die Be-
ziehung

sin2y + cos*2y=1
identisch erfiillt wird.

Weil die Kurve C wegen Gl IIl zentrosymmetrisch ist,
kann man sich auf das Intervall

O=y=n
beschrinken und erhdlt somit eindeutig bestimmte Werte
von ¥ und zwar fiir jeden q-Wert zwei verschiedene Werte
von ¥ (0 <y <mn), ausgenommen wenn '
P2—R?*+4Q%*=

d. h. wenn q* eine der vier Wurzeln der Glelchung VI ist,
wodurch die beiden yw-Werte gleich werden. Daraus folgt,
daf die Kurve C im allgemeinen vier gleiche Radienvektoren
hat, die zu je zweien auf einem-Durchmesser liegen. Dagegen
kommen die Radienvektoren mit den Lingen a, b, ¢ und d,
welche an das Verschwinden des Radikanden P? —R?%-+4 (Q?
‘gebunden sind, nur je zweimal vor und bestimmen zusammen
vier ausgezeichnete Durchmesser der Kurve C. Drei dieser
Durchmesser (ndmlich a, b und ¢) miissen, wie eine einfache
Uberlegung an Hand einer Skizze der Wellennormaleniliche
zeigt, die Schnittlinien der optischen Symmetrieebenen mit
dem Hauptschnitt des Prismas sein, wihrend sich die Be-
deutung der vierten Richtung mit Hille des Indexellipsoides
" (Elastizitatsellipsoides) ergibt. Nach Fresnel sind ndmlich fiir
jede Fortpflanzungsrichtung die zugehorigen Schwingungs-
richtungen und Wellennormalengeschwindigkeiten bestimmt
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durch die Richtung und reziproke Linge der Halbachsen
jener Ellipse, in welcher das Indexellipsoid von der zur Fort-
pilanzungsrichtung senkrechten Diametralebene geschnitten
wird. Da sich nun die Gleichung dieses Ellipsoides, be-
zogen auf die Hauptschwingungsrichtungen als Achsen, in

der Form schreibt
1

2+b21/2+c2v2—@
so ergibt sich aus dem Schema I unmittelbar, daB
d*=a?aZ+b*B2+c?y?

das Quadrat der reziproken Ldnge jenes Radiusvekfors des
Indexellipsoides ist, der auf dem Prismenhauptschnitt senk-
recht steht, oder anders ausgedriickt, daB d?* das Quadrat
- der Fortpflanzungsgeschwindigkeit jener Welle ist, die parallel
zur brechenden Kante des Prismas schwingt. Jener vierte
Durchmesser gibt darum die Richtung an, in der sich diese durch
thre Schwingungsrichtung ausgezeichnete Welle fortpflanzt.

10. An Hand einer Skizze der Wellennormaleniflache ')
erkennt man leicht, da a dem #uBeren, ¢ aber dem inneren
Zweige der Kurve angehort, wihrend b bald auf dem inneren,
bald auf dem &uBeren Zweige liegen kann, und zwar ist b
Minimum des duBeren und d Maximum des inneren Zweiges,
wenn der Prismenquerschnitt durch jenen Winkel der optischen
Achsen geht, der von der &-Achse halbiert wird, dagegen
ist b Maximum des inneren und d Minimum des &uBeren
Zweiges, wenn der Prismenquerschnitt durch jenen Winkel
der optischen Achsen geht, der von der Z-Achse halbiert
wird. Im ersten Fall ist b>d, im zweiten b<d und es
gibt fiir den betreffenden Schnitt.-keinen Kurven-
radius, dessen Lange dem Intervall (b, d) angehort
(vergl. d:e Diskussion in § 9).

11. Ohne aui Einzelheiten einzugehen, sei bei dieser
Gelegenheit doch darauf hingewiesen, daB die Entscheidung

1) Man vergl. fiir das folgende: Chr. Soret, Uber die An-
wendung der Totalreflexion zur Messung der Brechungsexponenten
zweiachsiger Kristalle. Zeitsch. fiir Krist. und Mineral. 16. 45. In
Betracht kommt namentlich S. 47 f.
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zwischen b und d getroifen werden kdnnte, wenn die Lage
der optischen Achsen wenigstens insoweit bekannt wire, daB
man wiiBte, durch welchen Winkel derselben der Prismen-
querschnitt verlduft. Da aber die Lagebestimmung der
optischen Achsen den Wert von b meistens voraussetzt oder
selber liefert, so wird diese Methode in der Mehrzahl der
Fille praktisch wertlos. — Die Entscheidung zwischen b und
d konnte natiirlich auch dann getrofien werden, wenn, um
andere, dem Mineralogen weniger naheliegende Beziehungen
zu iibergehen, etwa der scheinbare Winkel der optischen
Achsen bekannt wire oder wenn die Kurve C an einem
zweiten, anders orientierten Prisma?) bestimmt wiirde, wodurch
sich im allgemeinen eine von d verschiedene Wurzel d' ergébe.

12. Damit a, b, ¢ und d wirklich extreme Radienvektoren
der Kurve C seien, miissen neben der Gleichung (vergl. § 7)

ot
oy
noch die beiden Bedingungen
2 2f.
B e £ O
0q dy? oY* oq

erfiillt sein. Die partielle Differentiation von f(q,v) (Gl. Illa)
nach q ergibt den Ausdruck

of ;

g qmzq{4q ~[(Lyy + L) +(Lyy = Lyy) 9529+ 2L, sin 291,
der nach Ersetzung von cos 2w und sin 2w durch die § 9 ge-
fundenen Werte und mit Riicksicht auf den Umstand, dal wegen

qua‘z: b, e, dz.

P2+ 4Q*=R?
gesetzt werden kann, schlieBlich die Form annimmt:

of 2 .
q R {8(17_6 (L, +Lo) @*+ 4 (L, Lyy + M, + M, —LJ) ¢

auch (§ 7)

—2 (Lu M22 T L22 Mu —2 L12 Mm) q}-

1) Das analoge Problem im Fall der Totalreflexion an einer
beliebig orientierten Kristalliliche wurde von Ch.Soretund L.Perrot
behandelt. Vergl. Pockels Lehrbuch p. 130.
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Der Klammerausdruck ist die erste Ableitung der
Gleichung VI (falls darin u wieder durch q? ersetzt wird) und
darum sicher von Null verschieden, wofern die Gleichung VI
keine Doppelwurzel hat. Eine solche wire aber einzig dadurch
moglich, daB d mit einer Hauptlichtgeschwindigkeit zusammen-
fallen — also, um von einem anderen gleich zu behandelnden
Fall vorldufig abzusehen, die Prismenkante eine optische
Symmetrieachse wiirde, was hier ausgeschlossen ist.

Wegen der Annahme, dal die Prismenkante nicht optische
Symmetrieachse sei, ist auch R von Null verschieden, und
da zudem der Klammerausdruck selber fiir keinen der in
Betracht kommenden Werte unendlich groB werden kann,
so bleibt 6i:0q notwendigerweise endlich.

Damit endlich noch

- diq:dy?=+0,
ist wegen des letzten Ergebnisses, wornach of:0q weder
unendlich klein noch unendlich groBl werden kann, notwendig
und hinreichend, daB

0?1 .
=_4(Pcos2v+20Qsin2v)+0
! w+2Qsin2y)

oder daB ; :
Pcos2y+2Qsin2y+0

oder, wenn die trigonometrischen Funktionen wiederum durch
ihre Ausdriicke in P,.Q und R ersetzt werden, daB
P2+ 4 Q?
R .
eine Bedingung, die immer erfiillt ist, wenn
Pr 400 R =2=0,
ohne daB gleichzeitig ‘
P=0, Q=0, R=0,
was hier ja vorausgesetzt ist.
13. Nun moge noch der soeben ausgeschlossene Fall
erledigt werden, wo d gleich einer Hauptlichtgeschwindig- -
keit wird.

Neben dem bereits in § 8 erwéhnten Fall, wo die Prismen-
kante optische Symmetrieachse ist, kann sich das Zusammen-
fallen von zwei Wurzeln der Gl. VI bei zweiachsigen Kristallen

=R=+0,



auch dann noch ereignen, wenn, wie in anderem Zusammen-
hang bewiesen werden soll, eine der beiden optischen Achsen
in die Querschnittsebene des Prismas zu liegen kommt. Eine
einfache Uberlegung zeigt, daB dann die Kurve C zwei Doppel-
punkte hat, fiir welche die Ableitung von q nach ¥ die un-
bestimmte Form
dq:dy=0:0

annehmen muB. Merkwiirdigerweise wird aber der Radius-
vektor dieses Doppelpunktes ein Extremum in vollkommener
Ubereinstimmung mit den obigen Erwidgungen, wornach b
und c¢ die maximalen und minimalen Radienvektoren des
duBeren und inneren Zweiges der Kurve C sind. Ndhern sich
namlich die beiden Zweige, so vermindert sich die Differenz
von b und d, bis schlieBlich im Falle der Beriihrung b und d
gleich werden, so daB an der Beriihrungsstelle (oder besser
Durchdringungsstelle) b maximaler Radiusvektor des inneren
und minimaler des duBeren Kurvenzweiges wird. |

Um dieses der Anschauung entnommene Resultat auch
analytisch herzuleiten, sollen zuerst die speziellen Werte der
Richtungskosinus «;, 8, 7; ermittelt werden. Hierbei empfiehlt
es sich, das £n-System, dessen Achsen zunichst mit x, y
und z zusammenfallen modgen, so um die n=y-Achse zu
drehen, daB etwa die zwischen + & und + { gelegene optische
Achse A, mit + x zusammenfalle. Hernach wird man, um
eine moglichst allgemeine Lage zu erhalten, das bereits ge-
drehte £n-System noch so weit um die x-Achse drehen,
bis +#n zwischen +y und + z zu liegen kommt und mit + y
einen Winkel ¢ bildet. Bezeichnet @ den in der urspriing-
lichen Lage von + z und A, eingeschlossenen Winkel, so
nimmt das Schema I die nachstehende spezielle Form an.

X ¥ z
g sin &2 sin ¢ cos £2 | — cos (p cos 2
n 0 cos ¢ sin ¢
§ cos 2 —singsin 2 | cos g sin Q




— 16 —

Mit Riicksicht auf die bekannten Beziehungen

a2 — h2 2 _ .2
sin .Q =\/ #—h cos Q —-\/b c
a2___c'2

_c2

wird

L,;=2Db?

L,,=—a®*+ ¢?

L,——sing V(a*—b?) (bt —c?)

M, =b*

M,D—a-c + (a? — b?) (b2 —c?)sin? ¢

M,=—Db?sing \/a —b?* (b*— c2.

Die Substitution dieser Werte in Gleichung III*) gibt fiir
w=0 ohne weiteres '

q*—2b%?q*+b*=(q®* —b??*=0,
dagegen fiir jeden anderen Wert von vy zwei Werte q'* und
q'"? derart, dall

q?<b*<q".

Der Beweis ist duBerst einfach. Ist namlich

f(x*)=x"—q"? (x*—q"*)=0
eine biquadratische Gleichung, so wird, wie bekannt, die
Funktion f(x?) fiir jeden reellen x*-Wert, der zwischen den
beiden reellen und positiven Wurzeln x2=q” und x"2=q"?
liegt, negativ, und umgekehrt muB jeder positive x*>-Wert,.
fiir den f(x?) negativ wird, zwischen den beiden reellen
Wurzeln g% und q"? liegen. Um also zu zeigen, daf die

Doppelungleichung
‘ q2<b® <"

fiir jeden y-Wert in der Umgebung von ¢ =0, n erfiillt ist,
geniigt es, etwa in Gl. llla q* durch b? zu ersetzen und den
vereinfachten Ausdruck auf sein Vorzeichen zu priifen. Eine
einfache Rechnung gibt

f(q*=Db% y)=—(a* —b?) (b* — c?) cos®p (1 — cos*y).
Da die rechte Seite im allgemeinen negativ ist und bei fest-

gegebenem ¢ ((p#:;—t, 3-?”) nur fiir =nn verschwindet, so

1) Die Substitution dieser nimlichen Werte in Gleichung Illa usw.
zeigt, dal fiir y =0 tatsdchlich dq:dy =0:0 wird.
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besagt sie also, daB in der Umgebung von w=0,7 der
Radiusvektor des innern Kurvenzweiges Kkleiner, der des
duBern groBer ist wie b.

Erwidhnenswert ist noch, daB wunter diesen Voraus-
setzungen a?% b?% b? und c? die vier Wurzeln der Gleichung VI
sind, so daB ihre Losungen ganz allgemein und ausnahmslos
die Quadrate der maximalen und minimalen Radienvektoren
der Kurve C ergeben. Sind zwei Wurzeln einander gleich,
so entsprechen sie entweder dem Radius eines Kreises, zu
dem sich der eine Kurvenzweig vereinfacht (uneigentliches
Extremum; die brechende Kante ist eine optische Symmetrie-
achse) oder aber den Doppelpunkten, in welchen sich die
beiden Kurvenzweige kreuzen (die brechende Kante steht
auf einer optischen Achse [=Binormalen] senkrecht).

14. Es war ausdriickliche Voraussetzung der bisherigen
Entwicklungen, da8 die optische Orientierung des Prismas,
d. h. die Lage des £n-Systems in bezug auf das x y z-System
unbekannt sei. Die zu losende Doppelauigabe bestand dem-
nach einerseits in der Ermittlung der drei Hauptlicht-
geschwindigkeiten und anderseits in der Lagebestimmung
der optischen Symmetrieachsen. Diese letztere, wenn iiber-
haupt moglich, hat aber nur dann einen Sinn, wenn es gelingt,
die Orientierung der Hauptschwingungsrichtungen auch
kristallographisch festzulegen. Dazu ist vor allem die Kenntnis
der kristallographischen Orientierung des Prismas erforderlich.
Diese vorausgesetzt, wird sich nun ein wesentlicher Unter-
schied zwischen den drei Systemen der zweiachsigen Kristalle

herausstellen.
I. Rhombische Kristalle.

15. Die kristallographischen Achsenebenen sind optische
Symmetrieebenen. Bei bekannter kristallographischer Orien-
tierung des Prismas ist es mdoglich, ihre Schnittgeraden mit
dem Prismenhauptschnitt zu berechnen und damit die Rich-
tungen festzulegen, lings derer eine Lichtgeschwindigkeit a
bzw. b oder c ist. Da die Fortpflanzungsrichtung der d-Welle
hiervon im allgemeinen verschieden ist — der Beweis soll
spater (§ 27) geliefert werden —, so ist es moglich, b und d

2
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zu unterscheiden und damit die Hauptlichtgeschwindigkeiten
mit Hilie eines beliebigen Prismas eindeutig zu bestimmen.
Wegen der unvermeidlichen Messungsiehler wird die Uber-
einstimmung zwischen Rechnung und Beobachtung nicht
vollkommen sein. Man erhdlt darum drei Bedingungs-
gleichungen als Aquivalent der drei iiberzédhligen Beobach-
tungsreihen.

16. M. Born') kam vor vielen Jahren zu einem &@hnlichen
Resultat, indem er, die Kenntnis der Richtungs-
kosinus des SchemasI voraussetzend, die Gleichung III
nach b?c? c?a? a?b? a? b% und c? ordnet und mit sechs Wert-
paaren (q;, i)} ’
b%ct=A, cfa’=B, a®?=C,

al=A, b =B, G/l
berechnet. Wegen der uberschusmgen Beobachtungen ergeben
sich die Bedingungsgleichungen
A2:B'C1 Bzzgli Cz=ﬁl_§_1.
©A ° B, * G

Nicht unerwdhnt bleibe, daB die Lage der optischen
Symmetrieachsen nicht als vollig bekannt vorausgesetzt zu
werden braucht, sondern daB es geniigt, zu wissen, daB die
betreffenden Richtungen iiberhaupt Symmetrieachsen sind.
Welche derselben die & bzw. - und Z-Achse sei, ergibt
sich dann hinterher durch einfache Uberlegungen.

17. Die einzige Ausnahme dieser Regel tritt ein, wenn
der Prismenhauptschnitt durch eine und nur eine optische
Symmetrieachse geht, so da zwei jener Ebenenspuren zu-
sammentfallen. Ist diese Symmetrieachse die &- oder Z-Achse,
so ist freilich die eindeutige Bestimmung der Hauptlicht-
geschwindigkeiten (und, wie sich spiter § 23 Anm. zeigen
wird, auch der optischen Orientierung) noch maoglich, denn
mit der Richtung dieser Symmetrieachse fallen die Radien-
vektoren b und ¢ bzw. a und b zusammen, wihrend der
Radiusvektor d in anderer Richtung (vergl. § 27) liegt (wegen
der Voraussetzung, daB der Prismenhauptschnitt nur eine

1) M. Born, N. Jahrb. fiir Miner. B.-Bd.8& (1877), 40 ff.
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optische Symmetrieachse enthalte). b ist folglich durch die
bekannte Richtung des zugeordneten Radiusvektors der
Kurve C ausgezeichnet und d gegeniiber kenntlich gemacht.
Wird dagegen die im Prismenhauptschnitt gelegene optische
Symmetrieachse zur 7-Achse, so fallen mit dieser bekannten
Richtung' die a und ¢ zugeordneten Radienvektoren zusammen,
wihrend die zu b und d gehorigen Radienvektoren der Kurve C
hiermit einen rechten Winkel bilden, also die gleiche Richtung
haben und folglich nicht mehr unterschieden werden konnen.

18. Eine eindeutige Losung kann indessen in anderer
Weise erzielt werden. Denn wegen der bekannten kristallo-
graphischen Orientierung des
Prismas sind nur die in Fig.2a
und Fig. 2b veranschaulichten
Anordnungen mdglich. Das
Schema I geht dabei in das
folgende (iiber. Fig. 2a Fig. 2b

Fig. 2a X y z

3 singsin{ | —cosg sinY cos &
i

COS (p sin ¢ 0
c --sin¢ cos ¢| cos¢q cos & sin 4
Fig. 2b X y z
£ —sing cos 3| cosqcos I sin
n cos sin 0
C —sing sind |+ cosgsind| —cosd

Auf Grund dieses Schemas, worin ¢ und 3 bekannt sind,
1dBt sich, da beziiglich der Werte von a® und c® jeder Zweifel
ausgeschlossen ist, nicht nur b® von d*® unterscheiden, sondern
auch ermitteln, ob der eine oder der andere der beiden Fille
vorliege. Es ist ndmlich im Falle der Fig. 2a
d?=a?cos*% + c?sin? &
2#
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und im Falle der Fig.2b
d*—=a?sin®* 9 --c? cos®* 9.

Einer dieser Werte von d?, die sich zum vorneherein berechnen
lassen, mufl mit einer der mittleren Wurzeln von Gleichung VI
tibereinstimmen. Dadurch fillt die Zweideutigkeit beziiglich
b? sowohl als auch der Orientierung dahin. Einzig fiir 9 =45°
oder 135° stellt sich eine Zweideutigkeit ein, indem es unmog-
lich wird zu entscheiden, ob es sich um den in Fig. 2a oder
in Fig. 2b dargestellten Fall handelt, ohne daB aber dabei die
Entscheidung zwischen b? und d* selber unmdoglich wiirde.

19. Es ist iibrigens interessant, daB wenn 7 in den
Prismenquerschnitt fillt, die von M. Born angegebene Methode
versagt, denn nach Fig. 2a') und mit Riicksicht auf die zu-
gehorige Form des Schemas I geht Gleichung III iiber in:

sin® (¢ — ;) sin* 3 - b? ¢* + cos® (¢ — ;) - c* a*
- +sin? (@—y) cos?F - a?b? — qi® [cos? (¢ — )
+ sin® (—y) cos® F] a® — qi* sin® (@ — ) - b?
— qi*[sin® (@ — ) sin® & + cos? (¢ — yi)| c* + qi* =0

Man beachtet nun leicht, daB das Gleichungssystem, welches sich
aus sechs zusammengehorigen Wertpaaren qi, ¥; (i=1,2..6)
ergibt, eine identisch verschwindende Determinante hat (weil
nach Abspaltung von sin*J resp. cos*$ die erste Kolonne
gleich der dritten wird usw.), also nicht I6sbar?) ist.

IlI. Monokline Kristalle.

20. Dem Gesagten zufolge ist jede Zweideutigkeit be-
hoben, falls die Orthodiagonale der n-Achse parallel ist, ohne
im Prismenhauptschnitt zu liegen.?)

Ill. Trikline Kristalle.

21. Die Entscheidung zwischen b und d kann nicht ge-
troffen werden.

1) Entsprechendes gilt fiir Fig. 2b.

2) Wiirde eine andere Hauptschwingungsrichtung in die Quer-
schnittsebene des Prismas fallen, so erhielte man die entsprechenden
Formeln durch zyklische Vertauschung von a2 b2 und c2 Daraus
folgt, daf auch in diesen Fillen die Methode Borns versagen mubB.

8) Die vorhergehenden Uberlegungen kénnen wegen Unkenntnis
des Winkels ¢ nicht auf das monokline System iibertragen werden.



—_ 2] —

22. Es ist bekannt, daB die Bestimmung der Brechungs-
indizes eines Kristalls mit Hilfe der Totalreflexion an einer
einzigen Flache zu Ergebnissen fiihrt, die den bisher ge-
fundenen?) dhnlich sind, nur handelt es sich dabei um eine
Kurve S, welche man als Grenzlinie der totalen Reflexion
bezeichnen kann. Sie besteht im allgemeinen aus zwei ge-
trennten Teilen, deren Maxima und Minima durch die Radien-
vektoren von der Lédnge a, b, ¢ und d;, bestimmt sind.
Wiederum ist die Losung zweideutig. Da aber d? das Quadrat
der reziproken Linge jenes Radiusvektors des Fresnelschen
Ellipsoides ist, der auf der Grenzebene senkrecht steht, so
mull die d,-Welle parallel der Einfallsebene schwingen und
kann mit Hilfe. eines Nikolschen Prismas von jeder anderen
Welle unterschieden — das Problem also eindeutig gelost
werden.

Es lige nun der Gedanke nahe, auch beim Prisma die
ausgezeichnete Schwingungsrichtung der d-Welle heranzu-
ziehen, um zwischen b und d zu entscheiden. Allein die
Tatsache, daBl der Schwingungszustand des ausgetretenen
Lichtes von demjenigen im Kristall im allgemeinen verschieden
ist, vor allem aber der Umstand, daB die Orientierung des
Prismas die Beobachtung der d-Welle ohne besondere Hilis-
mittel in den seltensten Fillen gestatten wird, machen die
angedeutete Methode, so naturgemidB sie auch erscheinen
mag, vollstandig illusorisch.

23. Wire nun in einem gegebenen Falle die eindeutige
Bestimmung der Hauptlichtgeschwindigkeiten aus irgendeinem
Grunde moglich, so gestatten die beiden ersten Gruppen
(Kolonnen) der Gleichung V die eindeutige Ermittlung der
absoluten Werte von «;, 8;, 7; (i=1,2). Damit sind natiirlich
auch die absoluten Werte von e, 8,7, eindeutig bestimmt.
Die Vorzeichen von e, 3,, 7, kann man beliebig wihlen,
weil dadurch nur der positive Richtungssinn der Achsen

! Auf die soeben erlduterte Ausnahmestellung der rhombischen
und z. T. monoklinen Kristalle, die natiirlich auch im Falle der Total-
reflexion bestehen bleibt, scheint bislang niemand aufmerksam ge-
macht zu haben.
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und die Rechts- oder Linkshédndigkeit des Systems festgelegt
wird. Wegen der dritten Gruppe der Gleichung V findet
man hierdurch ganz bestimmte Vorzeichen fiir ¢, 8., 7.,

wogegen aus
a2a3+26,2183+7273=0
o, a3+ﬁ1 t83+71 75 =10

nur die Verhiltnisse o, : 3, : 7, d.h. die relativen Vorzeichen
von a,, (3,, v, erhalten werden, so daB sowohl (¢, ,, ¢,)....
als auch (e, @,, —¢;).... Losungen der Gl IVb und V sind.
- Die Rechnung ergibt daher fiir die Hauptschwingungsrich-
tungen zwei, den beobachteten Erscheinungen geniigende
Orientierungen, die zur brechenden Kante des Prismas sym-
metrisch liegen. Das beweist — und die Diskussion der
GL IVDb und V bestidtigt es —, daB zur eindeutigen Bestim-
mung der Orientierung die Lage einer Hauptschwingungs-
richtung bekannt sein muf, die aber nicht im Hauptschnitt
des Prismas gelegen sein darf,!) weil sonst die Wahl zwischen
den beiden symmetrischen Systemen nicht moglich ist, da
die gegebene Richtung wegen ihrer symmetrischen Lage zur
brechenden Kante beiden Systemen angehort. Ebenfalls un-
bestimmt wird die Orientierung, wenn eine Hauptschwingungs-
richtung mit z einen Winkel von 45° bildet und eine andere
im Prismenhauptschnitt liegt (vergl. den Schlufl von § 18 und
die vorstehende Anmerkung).

24. Zum gleichen Resultat fiihrt das von Cornu?) und
Viola?) fiir das Reiflexionsproblem abgeleitete, aber auch im
vorliegenden Fall giiltige Gleichungssystem:

1) Wenn oben, § 17, gleichwohl gesagt wurde, die Orientie-
rung lasse sich eindeutig bestimmen, trotzdem die bekannte Haupt-
schwingungsrichtung in die Querschnittsebene des Prismas fillt, so
liegt der Grund darin, daB von den beiden moglichen Systemen, die
zur z-Achse symmetrisch sind, nur das eine mit dem krystallo-
graphischen Achsenkreuz zusammenfallen kann, falls nicht zufillig
die beiden, nicht im Hauptschnitt des Prismas gelegenen optischen
- Symmetrieachsen zur z-Achse selber symmetrisch liegen.

2) Cornu, Bulletin de la soc. fr. de minéral. 25. 17.

3) Zusammenstellung seiner zahlreichen diesbez. Publikationen
im Bull. min. 28. 88. Vergl. auch ib. 147.
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Y -
cos? o, = cotg AB - cotg CA
X -
cos’@; =cotg BC-cotgAB AB+BC+CA=2n
Y Vi |
cos®y;=cotg CA - cotg BC

Y 7Y - |
Die Winkel AB, BC und CA sind aus Fig. 3 verstidndlich,
in der OA, OB, OC die Richtungen angeben, lings derer
die Radienvektoren der Kurve C gleich
a, b und ¢ werden. Dabei wird zu-
nidchst vorausgesetzt, dal die z-Achse
in das Innere oder die Umgrenzung
des Trieders O&n falle — eine An-
nahme, die natiirlich immer zulédssig
ist, wofern die drei Richtungen O,
On und OZ ein rechts- oder links-
hindiges Achsensystem bilden kdnnen.
Will man aber beim einmal ange-
nommenen Rechtssystem bleiben, so
hat man — falls die iiber dem Prismenquerschnitt gelegenen
&n C-Richtungen kein Rechtssystem bilden — blof3 ihre Ver-
lingerungen iiber O hinaus zu betrachten. Da die Winkel
zwischen +z und den positiven Richtungen der &7 Z-Achsen
im einen Fall zu denjenigen im anderen Fall supplementir
sind, so verdndern sich die Quadrate ihrer Kosinus nicht
und das Cornu-Violasche Formelsystem bleibt giiltig, wofern
nur die positive oder negative z-Achse in das Innere oder die
Umrandung des Trieders O £ [ {illt, was immer realisierbar ist.

Aus der Beziehung zwischen A, B und C einerseits
und &, n und 7 anderseits folgt, daB sie aufeinander senkrecht
stehen. Die Pole von &... miissen daher auf den zu A...
senkrechten Durchmessern liegen. Da aber die Gleichungen
des fraglichen Systems in cose,... quadratisch sind, so
erhdlt man — Cornu und Viola scheinen dies nicht beachtet
zu haben — fiir ;... je vier Werte, (ndmlich+ e, ... und
nta,...), welche je zwei durch den Ursprung gehende
Gerade bestimmen. Die der positiven z-Achse zunichst-
liegenden Pole sind in der stereographischen Projektion der




Fig. 3 eingetragen und beweisen augenscheinlich das oben
auf anderem Weg gefundene Resultat.?)

25. Sind die Hauptlichtgeschwindigkeiten a, b und ¢
gegeben, so ist es bei bekannter Lage der Hauptschwingungs-
richtungen moglich, die Richtung OD zu bestimmen, ldngs
der sich jene vierte Welle mit der Geschwindigkeit d fort-
pilanzt. Cornu®) glaubte nun, hieraui eine Methode griinden
zu konnen, welche erlaubt, b und d zu unterscheiden. Nach
ihm brauchte man bloB den einen dieser Werte als den
richtigen anzunehmen und hernach d zu berechnen. Fillt
dieser berechnete Wert mit dem experimentell gefundenen
iiberein, so war die Wahl gut — wenn nicht, so hat man
einfach den anderen Wert als den richtigen zu nehmen.

Viola®) (z. T. auch schon Cornu?)) priiite diese Ansicht
am Beispiel der Weinsteinsdure, wofiir Cornu®) mit Hilfe der
Totalreflexion folgende auf vier Dezimalen abgerundete Werte
gefunden hatte:

1/a=1,4965 8209

1/b=1,5363°) AB=63 25, AD =43"1%

BC=50"15

1/c=1,6063 , DC=70°2%

Mit Hilfe von 1/a, 1/b, 1/c und den zugehdrigen Azimuten
ergibt die Rechnung:
1/d=1,5537 AD=43°40 BD=-—-19°45 CD=-—70°00".
Der Unterschied zwischen den beobachteten und berechneten
Werten ist daher: |

—0,0011 - 025 == [0 DG - == O,

1) Bestimmt man, was im Fall der Totalreflexion an einer Kristall-
platte (nicht aber bei der Lichtbrechung durch das Prisma) mdglich
ist, den Polarisationszustand des Lichtes, so kann die Entscheidung
zwischen den beiden Orientierungen des f 5 {-Systems leicht getrofien
werden. Auf die Weise verfuhr Viola und erhielt darum ohne weiteres
eindeutige Resultate.

2) Bull. min, 25, 19f.

3) Bull. min. 28, 150ff.

4) Bull. min. 28. 26{f.

5) Bull. min. 28. 25, 26.

6) Hierfiir setzt Cornu 1. c¢. pag. 26 félschlich 1,5637.
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Geht man aber umgekehrt von 1/a, 1/d, 1/c und AD, DC,
CA aus, so berechnen sich die Werte:
1/b=1,5353 AB=62°52" DB=19"40' CB=—50°48,
und die Differenz zwischen den gemessenen und berechneten
Werten ist:
—0,0010 0°33 0°30' 0° 33’

Die Unterschiede zwischen Beobachtung und Rechnung liegen
demnach in diesem zweiten Fall ebenso wie im ersten innert
den Grenzen der Beobachtungsiehler, so daB der Vorschlag
Cornus praktisch nicht verwertbar!) erscheint. Ja, er ist
nicht einmal theoretisch?) richtig, da sich zeigen ldf}t, daB
die eine Wertgruppe die notwendige Folge der anderen ist.

Um diesen Satz zu beweisen, kann man von den beiden
Indexellipsoiden?) a?g2+b2n2+c2rt—1

a?g't+ (a?cos? e+ b?cos? 8+ c*cos?y)n'?+ c2 %=1
ausgehen, deren Hauptachsen im allgemeinen verschieden
gerichtet sind, jedoch so, daB die drei Achsenebenen

E=0 FHw(Q z=0

durch eine Gerade gehen (Richtung des Radiusvektors von
der Linge a), welche zur x-Achse gewihlt werden maoge.
Man erhélt dadurch die aus dem nachstehenden Schema er-
sichtlichen Transformationsgleichungen. Dem Winkel o ist
dabei kein Richtungssinn zuzuschreiben.

X y z X y %
3 0 sin o coso) & 0 sin ¢/ cos o
cosy cosy’
i —cos B cotgalcos "= —cos & cotga'|cos
77 sin « g g ) s n - sin¢ s g B
cos 3 cos 3
: —cosycotgalcos ' : —cos¥' cotge|lcosy’
B sin o g | 718 sin o 7 g 7

1) Ob Pockels, Lehrb. der Krist. pag. 132, diese Tatsache oder
einen anderen Grund im Auge hatte, ist nicht recht ersichtlich.

?) Die § 18 verwertete Methode ist in einem gewissen Sinn mit
dem Vorschlage Cornus identisch, unterscheidet sich aber davon
wesentlich darin, dafl die beiden Wellennormalenilichen bzw. Ellipsoide
zusammenfallende Hauptachsen haben.

8) @, g, y seien die Winkel, welche &, 7, { mit z bilden. Entsprechendes
gelte fiir «', 8, 7.
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Nun sollen voraussetzungsgemiB auch die drei Ebenen
;=0 r'=0 z=0
durch eine Gerade gehen (Richtung des Radiusvektors mit
der Linge c). Das ergibt als erste Bedingung

cos 3
: —cosy cotga cosy cos 3
sin « : cos y cotg &
o SIn «
cos 3 , , == , =
. —cosy cotge’ cosy cos 3 , ,
sin o .—— Cosy cotga
sin ¢
0 0 |
Z ' ' '
cos 3 cosy cosa  cos 3 cosy cos e 0
- : ; - : : ; =W
sin ¢’ sin ¢ sin ¢ sin «
oder da
sinz+0 und sin¢ +0
auch
cos 3’ cosy cosa=cos 3 cosy’ cosc'. a)

Da ferner der Abschnitt des einen Ellipsoides auf der
z-Achse gleich der mittleren Halbachse des anderen Ellip-
soides sein soll, so erhdlt man als zweite Bedingungsgleichung

a?cos? o' + (a? cos? @+ b? cos? B+ c* cos? y) cos? '

+ c?cos?y’ =Db?. b)

Nun sind die Richtungen zu beriicksichtigen, deren
zugeordnete Wellen parallel der Prismenkante schwingen. -
Um sie zu ermitteln, lege man durch die z-Achse zwei
Ebenen, welche die beiden Ellipsoide derart in zwei Ellipsen
schneiden, daB je eine ihrer Hauptachsen mit der z-Achse
zusammenfalle. Diese Ebenen sind, wie die analytische
Geometrie lehrt, dadurch ausgezeichnet, daB sie die Tangential-
ebenen im Punkte 0,0,z je lings einer Geraden schneiden,
die der xy-Ebene parallel ist. Zur Auistellung der Gleichung
der besagten Tangentialebene oder noch einfacher der zu
ihr parallelen, durch den Ursprung gehenden Ebene empfiehlt
es sich, die Ellipsoide mit Hilfe des Schemas I zuerst auf
das xyz-System zu transformieren, woraui man durch ein-
fache Rechnung (bei allgemeiner Schreibweise) den Ausdruck
erhalt
(a2 0, +b2 B, 8, + 2y, 7)) x+(ata, 0, + b2 B, B, + ¥y, 7, ¥y

+(a*e2+b*B2+c’y2) z=0.
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Die Schnittgeraden dieser Ebenen mit der xy-Ebene haben
Richtungskoeffizienten von der Form

aea?’a +b263ﬁl —{—ceyc‘lyl

atay a3 +b* B, 8, +cty, 7,

Wegen der bekannten Eigenschaiten des Indexellipsoides muB
diese Gerade (m bzw. m’) senkrecht sein zur Schnittgeraden
der Ebene z=0 mit =0 (resp. =0), in denen sich die
Wellen mit der Geschwmdlgkelt q=Db" (resp. q=D>b) fort-
pilanzen. Die Richtungskoeifizienten dieser letzteren sind

COSs cosy’
w=— ” __ und uw=— : 4 :
cosa cosf3 cosc’ cos/3
Man hat somit die Beziehungen
1 1
m=—— und m'=——,
u' w

die sich mit Benutzung der obigen speziellen Formen des
Schemas [ schreiben:

(b*—c?) cosf cosy cos ¢ cos e cos 3
a®sin® ¢ —b? cos? @ — c? cos®y cosy’
und

¢)

(a® cos®* ¢+ b? cos? @ — c?sin®y) cos 3' cos ¥’
a? sin? o' — (a? cos? @ + b? cos? 3 + c? cos®y) cos? ' —c? cos* ¥’
cos o' cosa cos
_ B d)
cos y

Aus der quadrierten Gleichung @) und aus der Gleichung &)
kann man mit Hilfe von

cos? o' + cos? '+ cos?y =1
cos? @ und cos®y’ eliminieren und bekommt nach einfachen
Transformationen die Gleichung
(a® sin® ¢ — b? cos? 8 — c? cos? ) cos® B cos* o’ +
[(a® sin®e cos?e. — b? sin?B cos?B + c? (cos?3— cos® &) cos?y] cos®e’
— (b®*—c?*) cos* e cos*y =0
deren emzxge in Betracht fallende Losung

(b*~c* cos’y
a?sin® ¢ —b?cos? 3 —c*cos® y
ist, da 1 e andere Losung

cos? o =




cos’ o

cos* o' = —
cos?f3

keine reellen Werte fiir o' liefert.
Bringt man Gleichung @) aui die Form
l___cosﬁ cos ¥’ cos o
~ cos 3 cosy cos
und multipliziert die beiden Seiten derselben mit den ent-
sprechenden Seiten der Gleichung ¢), so kommt unmittelbar
(b*—c?) cos®y
a®sin? ¢ —b? cos* § — c*cos® y
Weiterhin gibt Gleichung d), wenn ihre rechte Seite wegen
Gleichung ) mit

cos? o =

| cos @3 cos y cos &

cos 8 cosy’ cosa’
multipliziert wird, nach einigen Umstellungen
a?cos’a+ b*cos* 3 —c?sin®y
a®sin? o — (a? cos® & + b? cos? B + c¢? cos® y) cos? 3’ — c® cos? y'

- cos*a

cos?y
woraus man mit abermaliger Benutzung der Gleichung @) und
Abspaltung eines von null verschiedenen Faktors wiederum

(b*—¢* cus®y

a*sina —b? cos®* B —c? cos’y
erhdlt. Die Bedingungsgleichungen 4), ¢) und d) sind mit-
hin dquivalent, denn sie unterscheiden sich nur durch einen
Zahlenfaktor. Demnach sind auch die Eigenschaiten der
beiden Ellipsoide, welche zur Aufstellung der dritten und
vierten Bedingungsgleichung fiihrten, bloBe Folgen der zuerst
genannten, und damit ist die Unhaltbarkeit des Cornuschen
Gedankens bewiesen.

Diese Ableitungcn beweisen zundchst nur, daB der
Gedanke Cornus nicht auf die Prismen iibertragbar ist. Sie
sind  aber ohne weiteres im Falle Cornus verwendbar, sofern
die Hauptlichtgeschwindigkeiten durch die Hauptbrechungs-
indizes, d. h. die Indexellipsoide, durch die zugehorigen
Fresnelschen Ellipsoide ersetzt werden.

cos? o =




— 29 __

Ubrigens ist der Inhalt des bewiesenen Satzes gleich-
wertig dem bekannten Satz von Brill.

26. Erweist sich dem Gesagten zufolge die Annahme
Cornus nicht als zutreffend, so gestatten doch die Cornu-
Violaschen Formeln im monoklinen System, wo die Entschei-
dung zwischen b und d nach dem Bisherigen noch nicht in
jedem Fall getroifen werden konnte, eine restlose Losung
des Prismenproblems, falls die kristallographische Orientierung
des Prismas gegeben ist und die brechende Kante desselben
nicht senkrecht zur Orthodiagonale?!) steht.

Der Beweis hierfiir ist einfach. Im monoklinen System
ist die Orthodiagonale optische Symmetrieachse, so daB bei
bekannter kristallographischer Orientierung des Prismas eine
der GroBen

a35 63’ ?/3
einen gegebenen Wert haben muB. Da aber nach den

Formeln von Cornu-Vicla diese Werte Funktionen der
bekannten Azimute von A, B, C und D sind, so hat man
nur zu priifen, fiir welchen der beiden Werte b und d die
Ubereinstimmung befriedigt.?)

DaB bei dieser Uberlegung nicht der gleiche Fehler
unterlaufen ist, wie bei Cornu, ergibt sich schon daraus, daB
die Wahl zwischen b und d nicht auf Grund geometrischer
Eigenschaiten der Kurve C, sondern auf Grund einer dieser
Kurve fremden gegebenen Grofe getroffen wurde, kann aber.
zum UberfluB noch strenge bewiesen werden. Dabei kann
der Fall, wo die Orthodiagonale zur 7n-Achse wird, hier iiber-
gangen werden, weil er bereits friiher (§ 20) erledigt wurde.

1) Fillt die im Prismenhauptschnitt liegende Orthodiagonale mit
der - oder {-Achse zusammen, so ergibt sich nach einer Uberlegung,
die derjenigen von § 17 ganz d&hnlich ist, auf Grund der in § 23
gefundenen Resultate, dafl nur die Orientierung zweideutig ist; fallt
sie aber mit der y-Achse zusammen, so ist, wie bereits § 20 bemerkt
wurde, neben der Lagebestimmung der Hauptschwingungsrichtungen
auch die Ermittelung der Hauptlichtgeschwindigkeiten zweideutig.

2) Dieses Verfahren fiihrt auch im Falle der Totalreflexion zum
Ziel, scheint aber bislang keine Beachtung gefunden zu haben, was
allerdings um so begreiflicher ist, als die allgemeine Methode von
Viola in der Anwendung einfach und sicher ist. '
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Es kommen darum nur noch die beiden Fille in Betracht,
wo eine der GroBen e, und y, einen zum voraus gegebenen
Wert hat. Fiir beide kann der Beweis in iibereinstimmender
Weise gefiihrt werden, so daB es geniigt, ihn fiir den Fall
durchzufiihren, wo etwa «, den gegebenen Wert annimmt.
Bezeichnet M die Richtung, lings der sich die b- oder d-Welle
fortpflanzt, so gilt die Beziehung:
‘ cos” e, = cotg AM-cotg CA,
woraus
cotg AM = cos? -tg CA.

Diese Gleichung gibt aber fiir AM einen einzigen, zwischen
0 und 7 gelegenen Wert, so daB wegen des einmal an-
genommenen Umlauisinnes die Richtung OM eindeutig festliegt.

Stillschweigende Voraussetzung dieses Beweises ist die
Annahme, daB die Fortpilanzungsrichtungen der b- und
d-Welle nicht zusammenfallen. -

Nach getroffener Entscheidung zwischen b und d ist,
wenn die brechende Kante nicht senkrecht zur Orthodiagonale
steht, natiirlich auch die Berechnung der Lage der optischen
Symmetrieachsen eindeutig, eben weil die Lage einer solchen
bekannt ist.

27. An dieser Stelle moge der Beweis dafiir erbracht
werden, daB die Fortpflanzungsrichtungen der b-und d-Welle im
allgemeinen nicht zusammenfallen ),
Zu diesem Zwecke diene die beisteh-
ende Fig. 4, welche in stereogra-
phischer Projektion auf den Prismen-
hauptschnitt die optischen Symmetrie-
ebenen sowie die sogen. optischen
Achsen A, und A, darstellt. Die Fort-
pilanzungsrichtung OD jener Welle,
die parallel Oz schwingt, ist bekannt-
: lich dadurch bestimmt, daB die Ebenen

Flgu 4 ODA, und ODA, in bezug auf den
Grundkreis gleichgeneigt sind. Nimmt man von A, das

1) Auf diesen Beweis wurde im vorangehenden schon mehrmals
verwiesen, z. B. § 15,
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Spiegelbild A, beziiglich der Grundebene, oder — was wegen
der symmetrischen Eigenschaiten der Kugel ohne weiteres
gestattet ist, den Gegenpunkt von A, also A',, so ist die
Schnittgerade der Ebene A OA’, mit der Grundebene die
gesuchte Richtung. Ein Blick auf-die Figur zeigt sofort, daB
diese Richtung nur dann mit der b-Richtung zusammentfillt,
wenn 7 oder eine optische Achse in der Querschnittsebene
liegt. Da aber durch die bloBe Anndherung von 7 oder
einer optischen Achse an diese Grenzlage der Winkel BOD
sich immer mehr und mehr verkleinert, so wird infolge der un-
vermeidlichen Beobachtungsiehler die Entscheidung zwischen
b und d praktisch ebenfalls unméglich, doch ist es fiir die
Bestimmung der Hauptlichtgeschwindigkeiten dann belanglos,
wenn gleichzeitig mit der Abnahme des Winkels BOD auch
der Unterschied von b und d kleiner wird, d. h. wenn die
optische Achse in die Prismenquerschnittsebene fillt.

28. Selbstverstdandlich wird durch den Umstand, daB es
moglich ist, mit Hilie eines einzigen Prismas bekannter
kristallographischer Orientierung die optischen Konstanten
rhombischer und monokliner Kristalle eindeutig zu bestimmen,
der Satz von Brill in keiner Weise in Frage gezogen, denn
es sind eben, wie nochmals bemerkt sei, nicht die geome-
trischen Eigenschaften der Kurve C, welche diese eindeutige
Losung gestatten, sondern kristallographische Beziehungen,
durch welche wesentlich neue Elemente einbezogen werden.

29. So interessant nun diese Ergebnisse auch sind, so
haben sie doch bis dahin wegen ihrer Umstédndlichkeit keine
praktische Verwertung gefunden und sind vom rein theoreti-
schen Standpunkt aus insofern unelegant, als sie mehr Be-
obachtungen erheischen, wie Unbekannte vorkommen, wobei
sich dann allerdings als Gegenwert der iiberschiissigen Be-
obachtungen gleichviele Bedingungsgleichungen ergeben, auf
Grund derer die Ausgleichungssrechnung gestatten wiirde,
bessere, von den Beobachtungsiehlern unabhingigere Endwerte
zu berechnen. Es ist darum ganz begreiilich, daB die Praxis
des Mineralogen ausschlieBlich solche Prismen beriicksichtige,
welche eine 1. vollkommen eindeutige und 2. moglichst ein-



fache Bestimmung (Minimum der Ablenkung bei symmetri-
schem Durchgang) der optischen Konstanten erlauben. Die
einschlidgigen theoretischen Fragen sind von Liebisch, Born,
Viola usw. eingehend!) behandelt worden. Gleichwohl moge
es gestattet sein, hier nech einige Punkte besonders zu
beleuchten.

30. Fiir welche speziellen Prismenorientie-
rungen ergeben die Wurzeln der Gleichung VI
eine eindeutige Losung des Problems?

Es sind drei Fille denkbar.

a) Man weiBl, welcher der beiden Werte b und d der
groBere ist. Praktische Bedeutung hat dieser Fall im triklinen
(und z. T. monoklinen) System. Liegt ndmlich ein kiinstlich
hergestelltes Prisma vor, dessen xyz-Achsen mit den opti-
schen Symmetrieachsen fiir eine bestimmte Lichtart zusammen-
fallen, so mochte man versucht sein, mit demselben auch die
Brechungsindizes fiir Licht anderer Wellenldnge zu bestimmen.
Das ist oifenbar mdglich. Denn wiewohl sich die Orientierung
mit der Wellenlidnge stetig dndert, so diirfte man doch immer,
zumal wenn man sich wenig auseinanderliegender Spektral-
linien bedient, in der Lage sein, zu entscheiden, durch welchen
der Winkel der optischen Achsen der Prismenquerschnitt
jedesmal verlaufe, und damit die Entscheidnng zwischen b
und d eindeutig zu treffen. Dagegen bleibt die Orientierung
der Hauptschwingungsrichtungen zweideutig, weil die Aus-
gangslage der optischen Symmetrieachse zu speziell ist, um
daraus giiltige Schliisse auf ihre neue Lage ziehen zu konnen,
denn die Anderung kann ja ebensogut im einen wie im
anderen Sinn erfolgen.

Ein kiinstliches, genau orientiertes Prisma aus einem
triklinen Kristall herzustellen, ist iibrigens keine leichte Sache
und scheint bisher einzig von C. Pape ausgefiihrt worden zu
sein, der folgenden Untersuchungsgang vorgeschlagen und
im wesentlichen auch eingehalten hat: ,Um die Richtung der
optischen Achsen sowie die drei Hauptbrechungsexponenten

1) Uber die reiche Literatur vergl. z. B. Pockels, Lehrb. 144.
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zu bestimmen, muB bei Kristallen des 1 + 1-gliedrigen Systems
im allgemeinen zunidchst die Ebene der optischen Achsen
ihrer Lage nach ungefihr bekannt sein und darauf mittels
eines aus dem Kristalle geschlifienen Prismas, dessen brechende
Kante senkrecht zu dieser Ebene steht, der mittlere Brechungs-
exponent angendhert ermittelt werden. Darauf ist eine Platte
aus dem Kiristall zu schleifen, deren parallele Flichen recht-
winklig zu der ersten Mittellinie stehen, und an derselben der
Winkel der scheinbaren optischen Achsen zu messen, sowie
die Lage beider zu der dem Beobachter zugekehrten, nach
ihrer Lage am Kristall bekannten Fliche und noch- zweien
an der Platte vorhandenen natiirlichen Kristallilichen. Aus
diesen Beobachtungen und dem zuerst gefundenen mittleren
Brechungsexponenten 148t sich dann die Richtung der wahren
optischen Achsen ableiten. Nach diesen Resultaten sind
darauf Prismen anzufertigen, deren brechende Kanten den
drei Elastizititsachsen parallel laufen, und an ihnen die drei
Brechungsexponenten zu beobachten. Da jedes richtig ge-
schliffene Prisma zwei Brechungsexponenten liefert, bei drei
Prismen jeder also doppelt bestimmt ist, so besitzt man im
Vergleiche beider das Mittel, zu priifen, ob die urspriingliche
Bestimmung des mittleren Brechungsexponenten hinreichend
zuverldssig ist oder nicht. Im letzteren Falle wiirde man
mit dem Mittel aus seinen zuletzt erhaltenen Werten die
wahren optischen Achsen von neuem berechnen und nach
dieser Rechnung neue Prismen schleifen miissen.“!) |

Es wire entschieden einfacher, an einem triklinen Kristall
zuerst die Ebene der optischen Achsen fiir eine bestimmte
Lichtart moglichst genau zu bestimmen und hierauf ein
Prisma so herzustellen, daB sein Hauptschnitt mit jener Ebene
einen Winkel von ca. 20— 30° oder 60—70° bilden wiirde und
zu den beiden optischen Achsen ungeidhr gleich geneigt
widre. In diesem Falle wire die Richtung der b-Welle fiir
jene Farbe genau bekannt, widhrend diejenige der d-Welle
hierzu fast senkrecht stinde. Da sich die optischen Kon-
stanten mit der Wellenldnge stetig dndern, wire es moglich,

1) C. Pape, Pogg. Ann. Ergb. 6, 387.
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die Hauptlichtgeschwindigkeiten sowie die Lage der zugehd-
rigen Schwingungsrichtungen fiir alle Wellenlingen zu
bestimmen, wofern man sich wenig auseinanderliegender
Spektrallinien bedienen wiirde.

b) -d? {dllt mit einer der drei anderen Wurzeln der
Gleichung VI zusammen. Sei diese Wurzel etwa a%. Man
erhidlt dann die Beziehung

a’=a*o5+b*Bi+c?yl,
welche mittels der bekannten Identitit
@+ G+ yi=1
auf die Form
(a?—Db?% @2+ (a® —c?) y2=0
gebracht werden kann. Weil voraussetzungsgemaB
a>b>c,

so ist diese Gleichung nur moglich, wenn

| B;=0und y,=0
d. h, wenn die Prismenkante gleichzeitig §&-Achse ist. Wegen
der damit bekannten Lage einer Hauptschwingungsrichtung
wird dem Friiheren zufolge auch die Ermittlung aller Haupt-
schwingungsrichtungen eindeutig, und da fiir die beiden
anderen Fille eine #hnliche Uberlegung gilt, so ergibt sich
der bekannte Satz: Die Bestimmung der Hauptlicht-
geschwindigkeiten sowie der Lage der Haupt-
schwingungsrichtungen eines zweiachsigen Kristalls
ist mit Hilie eineseinzigen Prismas in allen jenen
Fidllenmoglich, wo die brechende Kante mit einer
optischen Symmetrieachse zusammentallt.

Die Identitit

bt*=afal+b? 031 cly2
1aBt neben a;=0, 82=1, 7,=0 noch andere reelle Lésungen
zu. In der Tat ergibt sich mit Riicksicht auf die Bedingungs-
gleichung |

| i+ B2+ y2i=1 a)
dhnlich wie oben |

(a%—Db" a2 (b= " y2=10. b)
FaBt man nun e, 8,, 7, als rechtwinklige Koordinaten auf, so
stellen die Gleichungen @) und 4) zwei Kreise dar, die beide
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das Zentrum im Ursprung haben und sich aui der n-Achse
schneiden. Die trigonometrische Tangente ihres Neigungs-
winkels zur Z-Achse ist
)
iva2_b2
Sie stehen also auf den optischen Achsen senkrecht. Mithin
der weitere Satz: Die eindeutige Bestimmung der
Hauptlichtgeschwindigkeiteneines zweiachsigen
Kristalls ist in allen jenen Fillen moglich, wo die
brechende Kante auf einer optischen Achse senk-
recht steht!) Beziiglich der Orientierung gilt das friiher
Gesagte. Praktische Bedeutung kommt aber dieser Losung
keine zu, weil die kristallographische Lage der optischen
Achsen nicht ohne weiteres gegeben ist. Uberdies konnte
wegen ihrer Dispersion die Orientierung des Prismas nur
fiir eine Wellenlinge genau ertiillt sein.

c) b oder d oder beide zugleich sind der direkten
Beobachtung zuginglich. Das ist (praktisch genommen) so
zu verstehen, dal sich diese Werte beim Minimum der
Ablenkung mit symmetrischem Durchgang ergeben. Nach
den bereits genannten Arbeiten v. Liebischs und Violas ist
dazu notwendig und hinreichend, daB die x-Achse mit der
n-Achse susammenialle (b und d) oder daB die Halbierungs-
ebene des inneren Prismenwinkels eine die n-Achse enthal-
tende optische Symmetrieebene - sei (b) oder endlich daB} x
zur &- oder Z-Achse werde (d). Die anderen Fille, wo die
Halbierungsebene des &@uBeren Prismenwinkels den Winkel
der beiden von y und den optischen Achsen gebildeten Ebenen
halbiert — also die Beobachtung von d moglich wire —
sind praktisch wertlos.

In allen diesen Fillen liefert das Theorem von Brill, falls
die z-Achse nicht selber optische Symmetrieachse ist oder auf
einer optischen Achse senkrecht steht eine doppelte Losung.
Wird sie hier eindeutig, so liegt der tiefere Grund darin, daB
z. T. kristallographische Elemente, z. T. die Schwingungs-

2

= cotg Q.

1) Dieser Satz wurde bereits in § 13 verwertet.
3*



—_ 36 —

richtung — in jedem Fall also GroBen, welche den geome-
trischen Eigenschaiten der Kurve C fremd sind, herangezogen
und beriicksichtigt werden. ‘

31. Prismen spezieller Orientierung. Es wurde
bereits oben darauf hingewiesen, daBl der Mineraloge zur
Bestimmung der optischen Konstanten eines Minerals mit
Vorliebe, ja mit AusschlieBlichkeit solche Prismen benutzt,
welche die direkte Ermittlung der Hauptlichtgeschwindig-
keiten gestatten. Hierbei kommen einzig die eben genannten
speziellen Orientierungen in Betracht, wo die Prismenkante
oder die Halbierungslinien des inneren oder duBeren Prismen-
winkels Symmetrieachsen sind. In allen diesen Fillen ist
das Minimum der Ablenkung wenigstens fiir eine Welle mit
symmetrischem Durchgang verbunden, Messung und Rechnung
folglich iiberaus einfach. Die entsprechende Welle wird an
ithrer Schwingungsrichtung erkannt. Dabei ist aber nicht zu
vergessen, daB sich die Schwingungsrichtung beim Ubergang
vom Kristall zur Luft in manchen Fillen in wahrnehmbarer
Weise dndern muB. Diese Anderung konnte an einem Prisma
von rhombischem Schwefel, das von (111) und (111) gebildet
war und Prof. Baumhauer?) seinerzeit zur optischen Unter-
suchung dieses Minerales diente, deutlich wahrgenommen
werden. Indessen diirfte sie in keinem praktischen Fall so
groBl werden, daB man iiber die Schwingungsrichtung der
Welle im Kristall im Zweifel sein konnte.

Es ist besonderer Erwidhnung wert, daB in den soeben
genannten drei Fillen, wo also eine Achse des xy z-Systems
optische Symmetrieachse ist, nicht nur die direkte Bestimmung
einer oder zwei Hauptlichtgeschwindigkeiten ermoglicht ist,
sondern die Bestimmung aller wesentlich vereinfacht wird.
Einige Hinweise auf dieses z. T. vieltach behandelte Problem
sowie die Hervorhebung einiger noch weniger beachteter
Punkte mogen geniigen.

a) Die Prismenkante ist optische Symmetrieachse. Die
Kurve C zerfillt in einen Kreis und ein Oval. Das ist die

1) Baumhauer, Zeitschr, f. Krist. 47, 12.



e B e

einzige Orientierung, die bis anhin dazu gedient hat, mit
Hilie eines einzigen Prismas sdmtliche Hauptlichtgeschwindig-
keiten eines Kristalls zu bestimmen,?)

b) Die Halbierungslinie des inneren Prismenwinkels sei
eine optische Symmetrieachse und falle etwa mit § zusammen.
Bezeichnet 9 den, von + x aus gesehen, im Gegenzeigersinn

.‘
gemessenen Winkel z[, so gilt das folgende Schema:

X y z

£ 1 0 0

n 0 cosJ | sind

0 —gind| cosd

- Die Gleichung Il nimmt damit die einfache Form an
q*—q*(L,, cos*y +L,,sin*y) + M,, cos?y + M,, sin*y =0,
wo
L,,=b%+¢? L =4+ b¥sin* 3+ ctcos S

M, =b?¢? M,,=a? (b?sin?* 3 + c? cos?* ).

Beim Minimum der Ablenkung, das aus Symmetriegriinden
bei gleichem Einfalls- und Austrittswinkel (also ¥ = m/2) er-
folgt, liefert die voranstehende Gleichung, mit Riicksicht auf
die getroffenen Festsetzungen, fiir jene Welle, die parallel
der Symmetrieachse (also parallel der Querschnittsebene)
schwingt, direkt den Wert von a, fiir die andere aber

q2=b?*sin*J + c® cos*J.
Da hierdurch L,, und M,, bekannt?) sind, so geniigen zwei?®)
weitere Messungen zur Bestimmung von L,, und M,,. b?und
c® berechnen sich dann als Wurzeln der Gleichung

- w—L,, 8+ M, =0,

3 wird, vom rhombischen System abgesehen, mehrdeutig.

1) Lang,Wiener Sitz.76,793. Born, N. Jahrb. . Mineral. B.-B. &, 42.

2) Eine mehrmalige Wiederholung der Messungen macht von
den Einstellungsfehlern ziemlich unabhidngig und liefert, falls das
Prisma tadellos geschliffen und homogen ist, sehr gute Werte von
ng und M22- '

8) Um sich von den Einstellungsfehlern maglichst unabhidngig
zu machen, sind natiirlich mehr Messungen erfordert.
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Ahnliche Formeln erhdlt man fiir die beiden anderen
moglichen Fille. |
c) Die Halbierungslinie des duBeren Prismenwinkels sei
eine Symmetrieachse und falle
«) mit der §-Achse zusammen. Bei analoger Voraussetzung
iiber den Winkel 9 wie im vorangehenden Falle b) ergibt
, sich das Schema:

X y z

0 1 0

—cos 3 0 sin 9

| 3 Uy

sin 9 0 cos&

An Stelle der Gleichung III kommt

q*— q*(L,, cos®y+L,, sin*y) + (M, cos*y + M,, sin%*y) =0,
wo , ;
L,,=a*+ b®sin*J + c? cos*I L =b2 43
M,, =a?*(b?sin?*3 + c? cos?9) M, —bic:.
Aus Symmetriegriinden ist ohne weiteres ersichtlich, daB beim
Minimum der Ablenkung direkt b? und c? gefunden werden.
Wie vorher geniigen noch zwei weitere Messungen zur
Bestimmung der Konstanten L, und M,,, und a? findet sich als
groBte Wurzel der Gleichung

u*—L;; u+M,=0.

& ist im monoklinen System (das trikline kommt praktisch
nicht in Betracht) natiirlich zweideutig. Die Zweideutigkeit
besteht darin, daB den Formeln zufolge  ebensogut im Winkel
x0z wie xOz liegen kann. Beriicksichtigt man aber beim
Minimum der Ablenkung den Schwingungszustand der ent-
sprechenden Welle, so diirite die Zweideutigkeit oit behoben
werden konnen. Im rhombischen System wird sie schon durch
die kristallographische Orientierung des Prismas umgangen.

@3) Fillt die Z-Achse mit der y-Achse zusammen, so erhilt

man beim Minimum der Ablenkung direkt a und b, wihrend
man aus den Gleichungen |
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L,, =c®+ a?sin®9 + b? cos®F

M,, =c?(a?sin’3 + b? cos?9)
dhnlich wie soeben c? als die kleinere Wurzel der quadra-
tischen Gleichung

W' —L,u+M, =0
findet, wihrend die andere, gréBere wiederum gleich dem
Quadrat der Geschwindigkeit jener Welle ist, die senkrecht
zur Querschnittsebene des Prismas schwingt.
Beziiglich & gilt das soeben Gesagte.

y) Ganz anders, wenn n mit y zusammenfillt! Das Mini-
mum der Ablenkung liefert a und c, widhrend man aus zwei
weiteren Messungen die Gleichungen erhilt

L. =b*+i¢? gin® & -4 cos* 3

M,, =Db?*(c?*sin*3 + a®cos?® ).
Die Wurzeln der quadratischen Gleichung

u*—L, u+M, =0
sind b? und d?=c?sin* 3 + a%cos? &, von denen die eine ebenso-
gut groBer oder kleiner wie die andere sein kann. Im mo-
noklinen System ist die Losung mithin unbestimmt, wogegen
im rhombischen System die Uberlegungen von § 18 Geltung
haben. |
In den beiden Fillen b) und c) wurde vorausgesetzt,

dal eine der optischen Symmetrieachsen mit der Halbierungs-
linie des inneren oder duBeren Prismenwinkels zusammen-
falle, widhrend die iibrige Orientierung als unbekannt be-
trachtet wurde. Das Problem ist also gegeniiber der Be-
handlung bei Pockels!) wesentlich verallgemeinert, indem
daselbst der Fall b) nicht ganz erledigt und c) nur unter der
ausdriicklichen Voraussetzung studiert wird, daB der Winkel
bekannt?) sei. Im rhombischen System mag diese Annahme
keine wesentliche Einschrinkung bedeuten, wohl aber im
monoklinen System, wo wegen der geringeren Symmetrie die
Verhiltnisse viel komplizierter liegen. |

B

1) Lehrb. d. Krist. pag. 146 und 147.

2) Wire ¢ bekannt, so wiirde sich im Fall ¢, der Wert von b
eindeutig bestimmen, weil d2=a%cos23+c2sin2?% eine bekannte Funktion
von a, ¢ und ¢ ist und darum von b2 unterschieden werden kann.
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Bei eingehender Betrachtung der unter b) und c) ent-
wickelten Formeln geht hervor, daBl es sogar ohne Bedeutung
ist, zu wissen, welche der drei optischen Symmetrieachsen
den inneren resp. duBeren Prismenwinkel halbiere. Die
beiden Methoden gewinnen dadurch noch mehr an aligemeinem
Wert und konnen in allen jenen Fillen Verwendung finden,
wo aus der bloBen kristallographischen Orientierung des
Prismas hervorgeht, daB die Halbierungslinie des inneren
oder duBeren Prismenwinkels mit einer optischen Symmetrie-
achse zusammenfallen muB.

DaB sich im rhombischen System alle dret
Fidlle, wo eine Achse des xyz-Systems optische
Symmetrieachse ist, zur Bestimmung der Bre-
chungsindizes, mit Hilie eines einzigen Prismasin
gleicher Weise eignen, ist ein unmittelbares und
praktisch wertvolles Ergebnis dieser Ausfiih-
rungen?)

1) Durch Verallgemeinerung einer Bemerkung v. Groth’s, Physi-
kalische Kristallographie pag. 102f., kénnen diesen Fillen noch jene
angegliedert werden, wo die eine Prismenfliche Symmetrieebene bzw.
ihre Schnittlinie mit der Querschnittsebene oder endlich ihre Normale
Symmetrieachse ist.
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