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CHAPITRE XIII

88. Le Raumgitter, c'est-à-dire cette distribution parallélipipèdique
de sommets sur les arêtes du complexe cristallin, résultat direct de

la construction zonale du complexe et donc des 2 lois expérimentales
du cristal : constance des angles et loi des zones, traduites
mathématiquement par celle de la rationnalité des indices, a donc été
considéré et étudié jusqu'ici à un point de vue purement théorique. La
notion, prise encore à ce même point de vue, de Raumgitter
symétrique a établi dans le dernier chapitre une distinction essentielle
entre le complexe cristallin n'impliquant aucune face avec arête
normale et qui est le complexe du système cristallin tricline, et celui

qui en possède. Par rapport toujours à la symétrie du Raumgitter
primitif correspondant, les 7 types de complexes possibles dans la
donnée d'une face avec arête normale, se réduisent essentiellement
à 5 qui sont les complexes des 5 autres systèmes cristallins, c'est-à-
dire des 5 catégories, telles que la plupart des cristallographes les

établissent entre les cristaux d'espèce symétrique ; en d'autres termes
leurs éléments (arêtes fondamentales et face-unité) représentent
exactement les divers systèmes d'axes cristallographiques auxquels on

rapporte d'ordinaire la position des faces et arêtes cristallines.
Mais il est maintenant surtout une 3me loi du cristal établie par

l'expérience, celle de sa symétrie expérimentale, qui donne au rôle
du Raumgitter dans l'étude du cristal toute sa valeur. Rapporté à la
symétrie des Raumgitters primitifs trouvés de chacun des systèmes,
en tenant compte de ce qui sera dit ensuite, elle s'énonce très
clairement :

Si dans le cristal en formation apparaît une face de l'un des

complexes établis, apparaissent simultanément toutes les faces avec
lesquelles se couvre la première par le groupe entier des opérations
de symétrie du Raumgitter correspondant, ou par l'un quelconque des
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leurs sous-groupes. Mais ce n'est là que le caractère superficiel ; la
symétrie de la substance même du cristal (reconnu entre autres palla

méthode des figures de corrosion, présence des autres propriétés
physiques, cohésion, dilatation, etc.) est celle du groupe complet ou
d'un sous-groupe quelconque des opérations du Gitter.

89. Les seules opérations de symétrie qui effectivement font se

superposer par un seul mouvement un Raumgitter symétrique avec
lui-même, sont donc ses rotations autour de ses axes de symétrie ;

on les appelle ses opérations de symétrie de première espèce. Mais
le Raumgitter possède par sa nature même un centre de symétrie,
c'est-à-dire une opération de symétrie d'un tout autre genre, l'inversion;

en remplaçant par une infinité de mouvements chaque sommet
du Gitter par son sommet inverse le Raumgitter se retrouve en effet

après cette opération, bien que chacun de ses sommets ait perdu sa

place primitive, de nouveau identique à lui-même. Si donc nous
faisons suivre de l'inversion chaque rotation d'un Raumgitter
symétrique, le Gitter se retrouvera chaque fois après les 2 opérations
successives encore identique à lui-même.

L'opération unique qui amènerait chaque sommet du Gitter à la

place où il se trouve par ces 2 opérations successives, transforme
donc également le Raumgitter en lui-même ; on l'appelle une opération

de symétrie du Gitter de seconde espèce (réflexion ou réflexion
combinée à une rotation : axe de symétrie de seconde espèce). En

comptant l'identité, c'est-à-dire l'absence de mouvement, comme
opération de symétrie de première espèce, par opposition à l'inversion,
opération de symétrie de seconde espèce, la symétrie d'un Raumgitter
(et ainsi celle des classes holoédriques correspondantes, § 94-100), est

donc constituée d'un nombre égal d'opérations de symétrie de

première espèce et d'opérations de symétrie de seconde espèce. Elles
sont évidemment toutes les opérations et les seules qui transforment
le Raumgitter en lui-même ; par le fait leur ensemble constitue un

groupe et en possède la propriété caractéristique : l'opération unique
équivalente à 2 opérations successives quelconques du groupe, est

toujours une opération du groupe.
Naturellement, comme nous le verrons d'ailleurs, certaines de

ces opérations du groupe, se nécessitant l'une l'autre, constituent à

leur tour, dans le groupe lui-même, un sous-groupe indépendant,
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possédant pour son propre compte la propriété qui vient d'être énoncée.

Le problème qui se pose maintenaut est précisément de déterminer
dans chaque symétrie de Raumgitter trouvée tous ces sous-groupes
d'opérations possibles ; les cristaux dont ils représenteront la symétrie,
constituent les différentes classes du système cristallin correspondant.

Bravais, Sohncke, Mallard et d'autres ont basé sur cette structure
parallélipipèdique du Gitter l'explication de la nature intime de la
substance cristalline ; Bravais place en chaque sommet du Raumgitter
symétrique un polyèdre moléculaire dont la symétrie est celle du

groupe complet ou des sous-groupes indépendants des opérations du

Gitter. Comme qu'il en soit, les 3 lois expérimentales de la cristallographie

établissent donc, surtout celle de la symétrie du cristal, une
corrélation idéale entre la structure du Gitter et la symétrie du milieu
cristallin. Jusqu'à quel point nous permet-elle de pénétrer dans la
nature intime du cristal? Nous sommes trop peu autorisé pour le

dire ici ; nous n'avons eu d'autre but dans ce travail que de montrer
cette corrélation en établissant avec les différents types de complexes
la symétrie des Gitters primitifs correspondants, pour y adapter
ensuite la loi de symétrie et en déduire par une méthode nouvelle et
intéressante les 32 classes possibles de cristaux.

90 Si nous prenons 3 vecteurs-unités i, j, k, formant un système
trirectangulaire d'axes et que par une opération de symétrie de
première ou de seconde espèce autour du point O, ces 3 vecteurs
coïncident avec le nouveau système trirectangulaire i', j', k', la somme
conventionnelle des 3 dyades *, formée chacune de la simple
juxtaposition de ces 2 vecteurs :

0 H 4- jj 4- kk

constitue un dyadic* représentant l'opération donnée.

En effet soit un vecteur quelconque §1 déterminant le point P
de l'espace et décomposé selon les directions des 3 vecteurs-unités

t, j, k:
$ xi 4- yj 4- zk

*) Vcctoranalysis : Gibbs. Le mot anglais « dyadic » pourrait se traduire cn
français dyadique (féminin) comme le mot anglais « quadric » se traduit par le
mot français quadrique. Comme pour le mot « dyade » j'ai gardé simplement le
mot anglais plus court « dyadic » ; cela m'a paru sans aucune importance.
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Faisons ce que Gibbs appelle le produit scalaire du vecteur $

par le dyadic 0 et qu'il écrit ainsi :

(xt4-yj4-zk)-(tt'4-ii'4-fcfO
c'est-à-dire multiplions scalairement chaque composante du vecteur $
par le vecteur antécédent de chaque terme du dyadic (voir la
remarque). Nous obtenons le nouveau vecteur :

r xi'+ yj'+ zk'

dont la position par rapport aux nouveaux axes i', j', k' est

identiquement celle du vecteur $ par rapport aux premiers. Le dyadic 0
employé comme opérateur sur le vecteur fl d'un point quelconque
de l'espace, lui fait donc subir autour du point O la même opération
qui a amené t, j, k en i', j', k'. Il est ainsi l'expression algébrique
de l'opération donnée et les positions extrêmes des vecteurs-unités
i, j, k, déterminant l'opération en elle-même, déterminent également
complètement le dyadic qui la représente.

Remarque. La juxtaposition des 2 vecteurs qui constituent la dyade est pour
Gibbs une 3",e sorte de produit qu'il appelle produit indéfini de 2 vecteurs. Le

produit scalaire est une quantité pure et n'impose aux 2 vecte rs qui le forment
qu'une condition : le produit de leurs tenseurs par le cos de leur angle. Le produit

vectoriel est un vecteur et leur impose 3 conditions : le produit de leurs
tenseurs par le sinus de leur angle, le plan dans lequel ils se trouvent et leur position

réciproque. Le produit indéfini représente 2 vecteurs et leur impose 5 conditions :

la direction et le sens de chacun et le produit de leurs tenseurs. La dyade possède

en effet la propriété associative ; il suffit de le montrer pour les 2 sortes de

produits, produits scalaires de dyades par vecteur et de dyades par dyades, qui
nous sont nécessaires ici. Si d'une manière générale :

0, b, t, b, sont 4 vecteurs-unités quelconques et a a'a", le produit scalaire
de vecteur par dyade, c'est-à-dire le produit scalaire du vecteur par le vecteur
antécédent de la dyade pris comme coefficient du vecteur conséquent :

r aab r- a'aa"b r- a"„a'b a'a"(r-a)b ;

le produit scalaire de dyade par dyade, c'est-à-dire le produit scalaire dos vecteurs

moyens pris comme coefficient de la dyade formée des vecteurs extrêmes :

tò- aob cb- a'na"b=ci>-a"(ia'b a'a"(a b) cb

Donc: anb a'oa"b — a"ita'b=:uab etc.

Pour cette raison si l'un des vecteurs est négatif, la dyade est négative; si
le coefficient de la dyade est nul, celui de chacun de ses vecteurs est également nul.

La dyade possède également la propriété distributive, mais on ne peut
changer l'ordre des vecteurs qui se juxtaposent, c'est-à-dire :
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n(b4- f)= »b 4- at
En effet: x ¦ [a (b 4-1)} x - (ab + ne)

parce que : x ¦ a (b 4- c) r • ob 4- r- ot

On le démontrerait de même pour le produit scalaire de dyade par dyade.

91. Soient maintenant les 2 opérations successives :

$x \ï + jj' 4-bk'
<2>2-M't"4-j'j"4-k'k"

Si nous faisons le produit scalaire des 2 dyadics qui s'écrit:

(it'4-ij' + kk').(i't"4-i'i" + h'k")

et qui naturellement consiste dans la multiplication scalaire de chaque
dyade du premier par chaque dyade du second (remarque précédente),

nous obtenons le nouveau dyadic :

<Ê3=tt"-HJ"+kk"
c'est-à-dire le dyadic qui représente l'opération unique équivalente
aux 2 opérations successives données. Les combinaisons d'opérations
de symétrie successives qui peuvent avoir lieu autour du point O

s'expriment donc par les produits scalaires des dyadics équivalents,
et si ces opérations soni telles qu'elles constituent un groupe, le

groupe de leurs dyadics jouit de la propriété caractéristique : que le

produit scalaire de deux d'entre eux est toujours un dyadic du groupe.

Remarque. Naturellement les vecteurs t', j', fc' ; i", j", ft" peuvent être
rapportés très bien aux 3 axes trirectangulaires i, j, k et le dyadic :

<2>i 3= ii' 4- jj' 4- hk'
s'écrit également :

i(xi't 4- yij 4- zi'k) -f- j (x2t 4- y2j 4- zi>k) 4- k (xjt 4- y3j 4- z8k)

Puisque la dyade possède la propriété distributive et associative, il se
développe en nonion Form (Gibbs) représentant toujours le même dyadic :

xi tt~L yitj -f- ziik
+ x^t4-y2jj-{-z2jh
4-x3kt4-y3kj4-z3kk

Le dyadic i't" 4 )'l" + fc'fc" rapporté aux axes i, j, k se développerait de la
même manière en nonion Form et inversement la nonion Form obtenue se réduirait
à la somme des 3 dyades, représentant encore le dyadic donné :

t[(xixi'4-x.,x;'4-x:ixï)t4-(xiyi'+x.2y:;4-x^y;;)j4-(....)k]4-j[....]4-k[....]
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Les vecteurs des grandes parenthèses sont ainsi les nouvelles positions que
prennent les vecteurs i, j, h par l'o ération donnée i'i" 4 i'i" + k'k". Rapporter
les positions successives j', j', k', i", \", k", etc.. aux axes fondamentaux i, j, k,

de position fixe dans l'espace, revient donc à rapporter tous les dyadics à ces

axes, c'est-à-dire à donner à toutes les opérations équivalentes les positions
primitives i, j, k, pour point de départ. C'est ce que nous ferons pour chacun des

groupes de dyadics, représentant le groupe entier d'opérations du Gitter primitif
correspondant à chaque complexe, que nous allons écrire. D'ailleurs, sauf pour le
Gitter hexagonal dont les opérations d'ordre sénaire exigent des dyadics de forme
un peu moins facile, tout y est bien plus simple que ce qui vient d'être dit d'une
manière plutôt générale.

Si nous écrivons en effet par ordre de symétrie de leurs Gitters les 5

complexes ou systèmes cristallins : tricline, monocline, rhombique, quadratique et
cubique, on se rend compte immédiatement que les groupes d'opérations correspondants

: centre de symétrie, binaire, terbinaire, quaternaire, et terquaternaire, sont

impliqués chacun dans celui du système supérieur. Puisque le groupe d'opérations
de la symétrie terquaternaire se réduit en fait aux 48 manières possibles de

couvrir 3 vecteurs-unités triperpendiculaires j, j, k avec eux-mêmes ou avec —i,
—j, —k, (les 3 arêtes du cube élémentaire ne peuvent se couvrir qu'avec elles-
mêmes ou les arêtes inverses), les dyadics représentant les opérations de symétrie
de ces 5 premiers systèmes se réduisent donc chacun à 3 dyades de coefficient 1

ou —1 et dont j, j, k, dans un ordre ou un autre, sont à la fois les vecteurs
antécédents et les vecteurs conséquents. Le produit de 2 quelconques de ces dyadics
revient donc uniquement à multiplier chaque dyade de l'un par la seule dyade de

l'autre qui a pour vecteur antécédent le vecteur conséquent de la première, et les
coefficients des nouvelles dyades sont également 1 ou — 1 selon que les 2 dyades
dont elles résultent sont de même signe ou de signe contraire.

Si nous appelons dyadics pairs ceux de ces dyadics qui ont un nombre pair
(0 ou 2) de dyades négatives et dyadics impairs ceux qui en ont un nombre
impair (1 ou 3) nous avons immédiatement cette propriété qui nous servira à préciser
les sous-groupes de ces dyadics : Le produit de 2 dyadics pairs ou de 2 dyadics
impairs est toujours un dyadic pair et le produit de 2 dyadics de parité différente
est toujours un dyadic impair. C'est une conséquence directe du fait que les
combinaisons de signes 4+ et donne le signe positif et les combinaisons -j
et —|- donnent le signe négatif, et cela se démontre très simplement. Le produit
des 2 dyadics, ou plutôt en n'écrivant que les signes des dyades, des 2 rangées
de signes : 4 + +

+ + +
(en multipliant donc chaque signe de la première par un seul signe de la seconde)
donne comme résultat 3 dyades c'est-à-dire 3 signes positifs. Dès que l'on introduit
dans l'une des rangées un signe — en place d'un signe 4> 'e produit possède un
signe — ; si on en introduit un second dans la même ou dans l'autre rangée, ou
bien il annule le premier ou bien donne un second signe —. Par le fait on en
introduisant un 3me le résultat aura 1 ou 3 signes négatifs, et ainsi de suite. Si
donc la somme des signes négatifs introduits dans les 2 rangées est paire, en
d'autres termes si les 2 dyadics donnés sont de même parité, le résultat a un
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nombre pair de signes négatifs ; si cette somme est impaire c'est-à-dire si les 2

dyadics sont de parité différente, le résultat a un nombre impair de signes négatifs,

c. q. f. d.

Nous n'écrirons pour les 5 premiers systèmes chaque dyadic qu'une fois,
c'est-à-dire que pour chaque système supérieur nous n'écrirons que les dyadics
représentant les opérations nouvelles. La classe possédant la symétrie du groupe
complet des opérations du Gitter est la classe holoédrique du système. Selon que
le nombre des opérations ou des dyadics des sous-groupes obtenus est la demie,
le quart ou même le huitième du nombre des dyadics du groupe entier de symétrie,

la classe correspondante est une hémiédrie ou hémimorphie, une tétartoédrie>
ou même une octaédrie de cette classe holoédrique. Les dénominations ajoutées
entre parenthèses sont les dénominations maintenues aux classes par différents
crislaliographes et empruntées généralement au nom de la forme cristalline normale
correspondante.

92. Système tricline. Son Raumgitter ne possède ni axe de
symétrie et par le fait ni plan de symétrie ; les seules opérations qui
le fassent coïncider avec lui-même sont l'identité et l'inversion autour
du point O :

1. fi + jj-fkk
2. — ti — jj — kk

L'identité est indépendante et détermine une classe ; l'inversion
multipliée par elle-même exige l'identité. Nous avons ainsi les 2 classes :

I. Classe tricline-hémiédrique (asymétrique). 1.

IL Classe tricline-holoédrique (pinakoidale). 1. 2.

93. Système monocline. Son Raumgitter (et d'ailleurs le

complexe lui-même) possède un axe binaire et par le fait un plan de

symétrie normal. En effet si t et j sont
2 vecteurs-unités perpendiculaires dans le

plan normal à l'axe binaire et k le

vecteur-unité coïncidant avec cet axe, le dyadic

3, équivalent à l'axe binaire, multiplié

par l'inversion donne le dyadic 4,

qui est le plan de symétrie normal (fig.
19).

M

3.

4.

it — jj 4- kk

it 4- Ü — kk



- 114 -
Chacun de ces dyadics multiplié par lui-même donne l'identité

et détermine une classe ; mullipliés l'un par l'autre, ils exigent
l'inversion et représentent la symétrie de la classe holoédrique du système :

III. Classe monocline-hémimorphe (sphénoidique).
IV. Classe monocline-hémiédrique (domatique).
V. Classe monocline-holoedrique (prismatique).

94. Système rhombique. Le Raumgitter possède avec l'axe
binaire k les 2 axes binaires perpendiculaires i et j dans le plan de

symétrie normal ; les dyadics 5 et 6 équivalents, multipliés par
l'inversion, donnent les 2 autres plans de symétrie 7 et 8 correspondants
à ces axes :

5. it — jj — kk
6- — ii 4- H — kk

7. -ii4-ji + kk
8. ü - jj + kk

Les nouvelles classes sont immédiatement :

4 dyadics pairs
2 dyadics pairs et 2 impairs
Groupe holoédrique 5. 6. 7. 8. 4. 3. 2. 1.

Toute autre combinaison par eux-mêmes ou 2 à 2 de ces
nouveaux dyadics détermine l'une des classes déjà obtenues au système
précédent, sinon le groupe holoédrique des 8 dyadics donnés. Nous

avons donc les 3 nouvelles classes :

VI. Classe rhombique-hémiédrique (bisphénoidique).
VII. Classe rhombique-hémimorphe (pyramidale).

VIII. Classe rhombique-holoédrique (bipyramidale).

Pour ces 3 premiers systèmes la forme des dyadics se réduit donc aux 8

variations que peuvent fournir les 3 signes des dyades de la forme générale :

H + jj 4 kk

L'identité est donc en quelque sorte le dyadic type de leurs opérations et si

nous multiplions par l'une d'elles l'un des dyadics quelconque des 5 autres types
qu'impliqueront les opérations des 2 systèmes suivants (ce qui fait pour le système
cubique 6 types à 8 variations chacun 48 dyadics), cette multiplication ne peut
que changer les signes du dyadic donné et le produit sera ainsi un dyadic du

même type.

5. 6. 3. 1.

7. 8. 3. 1.

5. 6. 7. 8.
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95. Système quadratique ou tetragonal. L'axe binaire k devient

un axe quaternaire, et dans le plan normal aux 2 axes binaires i et j
s'ajoutent les 2 axes binaires diagonaux (fig. 19) i' et j'. Les diadics
9. 10. 11. et 12. représentent les nouvelles rotations et multipliés par
l'inversion, exigent l'axe quaternaire de 2"'° espèce 13. et 14. (axe

quaternaire de 1re espèce combiné à une réflexion dans le plan
normal) et les 2 plans de symétrie normaux aux axes binaires 15 et 16:

9. tj — jt 4" kk Ie' mouv.
10. — ij 4- ji 4- kk 3 )axe quat.

11. tj-Hi — kk

12. -ij —ji —kk axes binaires j' et j'

13. — i| —j— |i — kk 3me mouv. \ axe quat.
14. {î ij ({({ 1er mouv. j 2e espèce

15. — tj —- ji -f- kk plans de symétrie nor-

\ß jj _1_ ij _L JiJj mauxauxaxes i'etj'.

Le dyadic-type : t| -f- jt -J— hk multiplié par lui-même donne l'identité

: (ij 4- ji 4- kk)2 ti 4- n 4- kk,

tandis que multiplié par l'un des 8 dyadics précédents, il donne

(remarque précédente) l'une de ses 8 variations que nous venons d'écrire.
Les 2 dyadics impairs 9 et 10, comme les 2 dyadics pairs 13 et 14,

exigent donc les 2 variations paires de l'identité dont la dyade kk

est positive :

9. 10. 3. 1. puissances du dyadic 9.

13. 14. 3. 1. puissances du dyadic 13.

Les 2 groupes réunis exigent en outre les 2 variations impaires
de l'identité dont la dyade kk est négative :

9. 10. 13. 14. 4, 3. 2. 1.

Remarquons d'abord que le groupe suivant des 4 dyadics 11.

12. 15. et 16. représente de nouveau dans le système quadratique la
symétrie du système précédent, et qu'il est donc inutile de le prendre
à part pour retrouver les classes déjà obtenues. En introduisant 11.

ou 15. dans le 1er groupe trouvé, il faut y introduire 12. ou 16. par
le fait de la présence de 3. ; nous obtenons ainsi soit les^4 variations
impaires du nouveau type exigeant les 4 variations paires de l'identité,

soit les 4 variations du nouveau type dont la dyade kk est positive
exigeant les 4 variations de l'identité dont kk est également positif :
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9. 10. 11. 12. 5. 6. 3. 1

9. IO. 15. it;. 7. 8. 3. L

En introduisant 11. ou 15. dans le 2me groupe trouvé, il faut y
introduire encore 12. ou 16. par le fait toujours de la présence de 3.;
nous obtenons soit les 4 nouvelles variations dont kk est négatif
exigeant les 4 variations de l'identité dont kk est positif, soit le groupe
des 8 dyadics pairs compris dans les 16 dyadics donnés :

13. 14. 11. 12. 7. 8. 3. 1.

13. 14. 15. 16. 5. 6. 3. 1.

Mais on voit immédiatement que ces 2 derniers groupes
représentent la même symétrie : l'axe quaternaire de 2e espèce, 2 plans
de symétrie perpendiculaires passant par cet axe alternant avec 2

axes binaires perpendiculaires dans le plan normal.
Dès que l'on introduit maintenant dans l'un des groupes à 8

dyadics, l'un quelconque des dyadics donnés qu'il ne contient pas
encore, on obtient le groupe entier des 16 dyadics donnés, représentant

la symétrie du Gitter quaternaire et celle de la classe holoédrique
du système. Nous avons donc :

IX. Classe tetragon.-hémiédrique-hémimorphe (pyramidale).
X. Classe tetragon.-sphénoidique-tetartoédrique (bisphénoidique).

XL Classe tetragon.-pyramidale hémiédrique (bipyramidale).
XII. Classe tetragon.-trapézoédrique hémiédrique (trapézoédrique).

XIII. Classe tetragon.-holoédrique-hémimorphe (ditetr. pyramidale).
XIV. Classe tetragon.-sphénoidique-hémiédrique (scalénoédrique).
XV. Classe tetragon.-holoédrique (ditétrag. bipyramidale).

96. Système cubique ou régulier. Les axes i et j sont également
quaternaires. A l'un et l'autre est donc attaché le système de dyadics
représentant la symétrie quaternaire correspondante, et ces 2 systèmes
s'écrivent immédiatement en donnant successivement à i et à j le
rôle de k dans les dyadics du § précédent :

Axe quaternaire i et axes binaires Axe quaternaire j et axes binaires
diagonaux dans le plan (jk) diagonaux dans le plan (th)

17.» it -h jk — kj 25. — ik4-jj4-ki
18. ti —jk-f-kj 26. tk-J-jj-kt
19. _ü-fjk4hj 27. tk —jj4-ki
20. -ii — jk — kj 28. — ih — jj — kt
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Multipliés par l'inversion :

Axe quaternaire i de 2",<! espèce et Axe quaternaire j de 2m<! espèce et

plans de symétrie diagonaux pas. par l'axe, plans de symétrie diagonaux pas. par l'axe.

21. — ii — jk + kj 29. ih —jj —ht
22. — ii4-jk —kj 30. — ik —jj4-ki
23. ii-jk —kj 31. — ih + jj-hi
24. ii4-jh4-hj 32. th4-jj4-ki

Les directions des 4 diagonales principales du cube élémentaire
sont en outre des axes ternaires (fig. 17), dont les 2 mouvements qui
ne sont pas l'identité s'écrivent immédiatement (fig. 19) ; multipliés
par l'inversion ils deviennent les 2 dyadics de 2me espèce qui sont
les 1er et 5me mouvement d'axes sénaires de 2",e espèce (axes sénaires
de lre espèce combinés à une réflexion dans le plan normal, leur
3me mouvement est l'inversion) coïncidant avec les axes ternaires.

lre axe 2me axe
(en sens inverse des aiguilles d'une montre) (en remplaçant dans le 1er i par j et j par -i)

33. tj + jk -f- hi 37. — ih—)i4-hj
34. ik 4- ji 4- kj 38. — ij + jk — ki

39. ik -f ji — kj
40. ij — jh 4- ki

4",e axe
et j par -j) (en remplaçant dans le 1er i p. -j et j par -j)

35. — ij — jk --Iti
36. — ik — ji —

3mo axe

kj

(en remplaçant dans le 1er t p. -ici

41. ij - jk - ht

42.- — tk+ ji- kj

43. -ij + ik-f-l;i
44. th — ji 4- kj

45.
46.

ih — ji — kj
— ii — jh 4- ht

47.

48.
— ih + ji 4- hj

tj 4- jh — ht

Il est inutile d'abord de chercher de nouveaux groupes de dyadics
pris exclusivement dans l'une seule des symétries quaternaires : ils
ont été déjà trouvés au système précédent; comme aussi des groupes
impliquant un seul axe ternaire ou un seul axe sénaire de 2me espèce :

il se retrouveront plus simplement et à plus juste titre dans les dyadics
du système suivant.

Les 4 axes ternaires sont tous des dyadics pairs dont les 2

formes types, multipliées chacune par elle-même, exige la seconde, et

multipliées l'une par l'autre, exigent l'identité :
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(ij-Hk + ki)2=Mk4ji4-ki
(Ìh4-it4-ki)2 ij + jk4-ht

(tj4- Jh4-ht)-(ih4-it4-ki) it4-ii4-kk.

La présence de 2 quelconques de ces axes entraîne donc celle
des 2 autres, et par le fait les 4 variations paires de l'identité :

33. 34. 37. 38. 41. 42. 45. 46.
5. 6. 3. 1.

Les 4 axes sénaires de 2me espèce sont les variations impaires
des 2 types ; la présence de 2 d'entre eux exige celle des 2 axes
ternaires correspondants et par suite le groupe complet des dyadics
des 2 types avec les variations paires et impaires de l'identité :

33 à 48
1 à 8.

Deux quelconques des 3 types quaternaires donne comme produit

un axe ternaire ; et si l'on accouple un type quaternaire à l'un
ou l'autre des types ternaires, ils exigent les 2 autres types quaternaires

:

(ii 4- jk 4- kj) • (ik 4- jj + kt) tj 4- jk 4 ki

(ik -4 jj + ht) • (it 4- jh 4- kj) ih -f- ji + kj

(ik 4- jj + ki) - (ij -f jk 4- kt) ti + jk f kj
(ik-f- Ü 4- kt) • (ih + it 4- kj) tj + ji + kk

11 n'existe donc pas de combinaisons de 2 types quaternaires
sans dyadics ternaires et on obtiendra les sous-groupes qui restent à

trouver en introduisant les dyadics quaternaires dans les 2 groupes
de types ternaires obtenus.

Si l'on introduit dans le groupe des 4 axes ternaires un dyadic
quaternaire impair, ses combinaisons avec les dyadics pairs des axes
ternaires fournissent les dyadics impairs des 3 types quaternaires, et

les produits de ces derniers sont soit à nouveau les dyadics pairs
des axes ternaires (combinaisons de 2 types), soit les 4 variations
paires de l'identité (combinaisons d'un même type) :

9. 10. 11. 12. 17. 18. 19. 20. 25. 26. 27. 28.

1. 3. 5. 6. 33. 34. 37. 38. 41. 42. 45. 46.

Si l'on introduit dans ce groupe des 4 axes ternaires un dyadic
quaternaire pair, ses produits avec les dyadics pairs des axes ter-
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nahes sont les dyadics pairs des 3 types quaternaires, et les
combinaisons de ceux-ci fournissent encore soit à nouveau les dyadics pairs
des axes ternaires, soit les 4 variations paires de l'identité :

13. 14. 15. 16. 21. 22. 23. 24. 29. 30. 31. 32.
1. 3. 5. 6. 33. 34. 37. 38. 41. 42. 45. 46.

Par contre dès que l'on introduit dans le groupe des 4 axes
sénaires de 2me espèce un dyadic quaternaire quelconque, ses
combinaisons avec toutes les variations paires et impaires des 2 types
ternaires sont les dyadics pairs et impairs des 3 types quaternaires,
et les produits de ces derniers comme ceux des types ternaires entre
eux, exigent les variations paires et impaires de l'identité. Nous
obtenons ainsi le groupe entier des 48 dyadics donnés, représentant
les 48 opérations possibles couvrant les 3 vecteurs-unités triperpen-
diculaires i, j, h avec eux-mêmes ou — i, — j, — k, c'est-à-dire le

groupe de symétrie de la classe holoédrique du système cubique. Les
5 nouvelles classes sont dans l'ordre trouvé :

XVI. Classe régulière-tétartoédrique (létraédr. pentagondodé
caédrique).

XVII. Classe pentagonale-hémiédrique (dyakisdodecaédrique).
XVIII. Classe gyroédrique-hémiédrique (pentagon.-icositetraédr.).

XIX. Classe tétraédrique-hémiédrique (hexakistetraédrique).
XX. Classe régulière-holoédrique (hexakisoctaédrique).

97. Système hexagonal. Soient i et j 2 vecteurs-unités
perpendiculaires pris sur 2 axes binaires du réseau fondamental et k le

vecteur-unité normal au plan de

la fig. 20 et coïncidant avec l'axe
sénaire du Raumgitter. L'unité
étant le côté du triangle equilateral

élémentaire, les nouvelles
positions i', j', k' que prennent
les vecteurs i, j, k par le 1er

mouvement de l'axe sénaire sont
immédiatement :

•f 13 1- iM + Tl Ii'
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et le dyadic représentant le mouvement s'écrit :

i4i4-l/| j) + i(-1/|-i+|i)4-kk
Le second mouvement (rotation de 120°) change t et j en j" et — i" ;

son dyadic s'écrit pareillement :

i Vu., vu. iM—Ï-+ 2"l) + l(- yi— yl) + kk

Le 3me mouvement est celui de l'axe binaire impliqué dans l'axe
sénaire ; son dyadic est le dyadic 3 (§ 93). De là, pour les 2 autres
mouvements qui restent avant l'identité, les positions des vecteurs
i et j sont exactement les valeurs négatives de leurs positions après
le 1er et le 2me mouvement ; il suffit donc de changer les signes des

2 premiers termes des dyadics trouvés pour obtenir leurs dyadics
équivalents.

Le premier axe binaire i" change les vecteurs t et j en i' et —j'
et k en — h ; son dyadic correspondant est donc :

1 VU .VU 1

t(yt+ yl) + l( 2-t-yj)-hk
Le second axe binaire t' change inversement i en j" et j en i",

son dyadic s'écrit :

i Vu.. .vu. ii(-yt+ yl)4-l( y»4-yl) —kk

L'axe binaire j comme l'axe binaire i sont les 2 axes binaires
du complexe rhombique impliqués dans la symétrie du Gitter hexagonal

et représentés par les dyadics 5 et 6 (§ 94). Enfin les 2 autres

axes binaires j" et j', par le fait qu'ils sont normaux aux 2 premiers
axes binaires i" et i', donnent par leur mouvement à i et à j les

directions inverses de celles que leur donnent les axes i" et i', leurs
dyadics sont donc de nouveau les 2 dyadics trouvés avec leurs 2

premiers termes pris en signe contraire.
Dans chaque dyadic obtenu, nous faisons les produits indéfinis,

c'est-à-dire nous formons les dyades comme il a été fait dans la

remarque du § 91 ; nous appelons pour simplifier les dyadics à 2

termes (dyadics planaires) :

9>i=ii + Ü 9?s ÌÌ4-ÌÌ «1=2

<p2=U — jj <^ ij —ji E2~V\
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Nous multiplions par l'inversion ces opérations de lre espèce

pour obtenir celles de seconde espèce en changeant simplement les

signes des dyadics, et nous avons ainsi réuni en 24 dyadics le groupe
complet des opérations représentant la symétrie du Raumgitter
hexagonal et de la classe holoédrique correspondante :

Les 6 mouvements de l'axe sénaire. Les 6 axes binaires j", j', j, j", j', j.

1' ei<Pi s s2<Pi i kk 13' exip2 4" s2<Pa — kk

2' hi'i + e-2<Pi + kk 14' — Ei<p-2 4" E'2fa — kk

3' — n 4- kk L;V — co2 — hk

4' — ^ltyl —^29rl ~~M "" 16' ^19^2 ^29^3 ^"
5' «in — «2?'4 4" kk 17' ^19^2 ^29*2 "R

6' <px 4- kk 18' <p2 - kk

Multipliés par l'inversion :

(mais en partant de 4' et 16' pour plus d'homogénité).

Les 6 mouvements de l'axe sénaire combinés

cbaeun avec une réflexion dans
le plan normal.

6i*>i 4" e2<Pi — kk

ei<pi -\- e-2<pi — kk

— qix — kk

•£iri — s-2<Pi — kk

exipx — e2</)4 — hk

</>i — kk

T
8'
9'

10'
11'
12'

Les 0 plans de symétrie normaux aux
axes i", i'. i', l", i', j et dont les traces sur
le réseau fondam. sont donc j", \ ,\, j", j',j.

19' ex<p2 4- £2<pa 4~ kk
20' — excp2 4- e2V3 4- hk

21' — <p2 4- kk
22' — sx<P2— e2<p3 + kk

24' ç>24-kk

98. Nous appelons dyadics sénaires les dyadics numérotés d'un
chiffre impair et dyadics ternaires les dyadics numérotés d'un chiffre
pair. Les différentes formes des dyadics sénaires, abstraction faite de

leur dernière dyade kk indépendante des 2 premiers termes dont les

dyadics ne renferment que les vecteurs i et j, sont uniquement :

sxcpx 4- E2cpi excp.2 4- e.2cp3

«i9?i — E-2<Pi E\<P-2 — E-2<Pa

— <Pi — <P-2

En multipliant chacune des 4 premières de ces formes par elle-
même et chacune des 3 autres, nous obtenons les 16 produits que
voici, dont les seconds membres sont uniquement chacune des 6

formes correspondantes des dyadics ternaires :
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(e1(p1 4 r.2<pi)- — rt<pl 4 e.,^4 («l9)s 4 t.,r3)J — <p,

(esipt — e2ipkf — e1ip1 — s.,iPl (rlV., — e2<psY — Vl
(s1<p1 4 s2<pi).(e1<pl — e,9?4) — os, (f,^., 4 £,9?.,) (e^ — «,<?>.,) —«^, 4 e2ç>4

(«,97, — «^J.fo?, 4 «>fl) fl («1 f2 — «2fs) («1 f2 + «>f :l) —«if1 — «2f4

(«ifi + «sfj («ifs + «sfa) —«ifs + «sfa («if i — «sfj («if» + ««fa) f«
(«if2 + «2f8l («ifi + «sfJ <P-2 («if,. + «>f:i)-(«if i — h<Pi) — —«if2 + «afa

(«if + «üf4) («if2 — «sfa) f2 («if 1 — «sf l)-(«lf2 — «îfs)= ~«if2 ~ «sfa
(«if2 — «2f:>) («ifi + «sfj) —«if 2 — «sfa («if2 —«sfa) («if i — «»fé) f2

Ces produits s'effectuent très simplement : les combinaisons scalaires cp, <pk

étant trouvées une fois pour toutes (les combinaisons cptcpk r-zz <pk car cpl est
l'identité planaire (ij)), chaque produit se fait comme le produit de 2 binômes
algébriques.

Ainsi : (e1<p1 4 e.2(pA- e\<p\ 4 2 e1si<p1<pi 4 «if! («? — «2) f1 + «2f4 —«if1

4 «>f j- D'ailleurs les résultats des 6 premiers produits peuvent être donnés à

priori : les puissances du 1er mouvement de l'axe sénaire sont évidemment les 5

autres rotations différentes qu'il implique, celles du dyadic 2', les dyadics 4' et 6'
qui sont les 2 autres mouvements de l'axe ternaire, et la seconde puissance d'un

axe binaire doit donner l'identité. Les résultats trouvés ne sont qu'une confirmation

par le calcul en dyadics de ce qui se déduit déjà dans ce cas-ci plus simplement

par le raisonnement seul. D'ailleurs à vrai dire, à condition d'établir d'abord les

dépendances qui existent entre les éléments de symétrie : centre, axes et plans de

symétrie, toute cette déduction par les dyadics de la symétrie des 32 classes
cristallines de celle des 6 classes holoédriques se fait bien plus simplement au moins

pour certaines classes par le seul raisonnement en supprimant successivement les
éléments de symétrie dans chaque classe holoédrique. Les dyadics ont l'avantage
d'être l'expression même algébrique des opérations de symétrie, d'en impliquer
par le fait en eux-mêmes les dépendances mutuelles et de fournir ainsi directement,

par leurs combinaisons réciproques, les combinaisons mêmes de ces opérations sans
en laisser échapper aucune.

Naturellement si l'un des dyadics facteurs des 1ers membres

change de signe, chaque terme ou chaque dyade du produit change
de signe et le second membre doit être pris en signe contraire ; par
suite si les 2 dyadics facteurs changent de signe à la fois, le résultat
ne change pas comme pour un produit ordinaire.

D'autre part, le dyadic — qox ne fait que changer le signe du

dyadic planaire (ij) qu'il multiplie (celui dont les dyades ne renferment

que les vecteurs-unités i et j et dont l'opération équivalente a

lieu ainsi dans le plan de ces vecteurs) ; le dyadic — q>2 change cpx

en —cp.2, cpi en ±953 (c'est-à-dire <p2qji qj3 et <piq>2 — 95,), et

inversement change cp2 en —cpx, ç>8 en ±ç>4. On se rend donc compte
sans peine que toute combinaison de l'une quelconque des 6 formes
sénaires écrites, avec elle-même ou chacune des 5 autres, est toujours
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l'une des 6 formes ternaires correspondantes. Mais puisque les formes
des dyadics ternaires sont précisément celles des dyadics sénaires

prises en signe contraire, en vertu de ce qui vient d'être dit du

changement de signe, et en considérant encore une fois les résultats
des produits effectués, les combinaisons des 6 formes sénaires et les

signes de la dernière dyade kk, nous obtenons immédiatement les 2

principes suivants dans le groupement des 24 dyadics donnés, qui
nous fournissent aussitôt les 11 sous-groupes indépendants d'opérations
de la symétrie sénaire.

Le produit de 2 dyadics ternaires ou de 2 dyadics sénaires est

toujours un dyadic ternaire, tandis que le produit d'un dyadic
ternaire et d'un dyadic sénaire est toujours un dyadic sénaire.

Le produit de 2 dyadics d'une même colonne, ï à 12' ou 13'
à 24', (d'une même rangée, ï à 6' avec 13' à 18' ou 7' à 12'
avec 19' à 24') est toujours un dyadic de la première colonne

(rangée), tandis que le produit de 2 dyadics pris un dans chaque
colonne (rangée) est toujours un dyadic de la seconde.

En effet dans ces conditions, chacun des groupes de dyadics qui
suivent est tel que le produit de 2 quelconques de ses dyadics ne

peut être que l'un des dyadics du groupe :

1' à 6' 13' à 18M groupe holoédrique des 24 dyadics sénaires et ter-
v ÌT à 12' 19' à 24' / naires.

1' à 6' 7' à 12' Ie produit de 2 dyadics de la 1" colonne est toujours
un dyadic de cette colonne : axe sénaire et plan de

symétrie normal.

1' à 6' 13' à 18' Ie produit de 2 dyadics de la 1" rangée ne peut être
qu'un dyadic de cette rangée : axe sénaire ct 6 axes

binaires.
1' à 6' 19' à 24' les 2 principes simultanément: axe sénaire et 6 plans

de symétrie.
1 a O axe sénaire; puissances du dyadic 1'.

2' 4' 6' 14' 16' 18'
8' 10' 12' 20' 22' 24

1 variation du groupe précédent : les dyadics sénaires
2 4 6 14 16 18 7', 9', etc., exigent également les dyadics ternaires
7' 9' 11' 19' 21' 23' 2', 4', etc., et inversement leurs produits avec ces

J derniers les reproduisent eux-mêmes.
Cette autre variation remplit aussi les mêmes conditions :

2' 4' 6' 13' 15' 17' mais représente à première vue la
7' 9' 11' 20' 22' 24' même symétrie que la précédente.

f groupe complet des 12 dyadics ternaires.
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2' 4' 6' 8' 10' 12' dyadics ternaires de la 1" colonne : axe ternaire et

plan de symétrie normal.

2' 4' 6' 7' 9' 11' axe sénaire de seconde espèce.

2' 4' 6' 14' 1 fl' 18' variations de ces 2 groupes représentant encore à
première vue les mêmes symétries :

2' 4' 6' 20' 22' 24' 2' 4' 6' 13' 15' 17'
et 2' 4' 6' 19' 21' 23'

2 4 6 axe ternaire; puissances de 2'.

Ce sont donc là 12 groupes indépendants d'opérations de la
symétrie sénaire, en négligeant naturellement les groupes de symétrie
binaire et terbinaire inclus dans la symétrie sénaire et fournis par
exemple par chaque dyadic de la 2me colonne multiplié par lui-même
ou chaque couple de ces dyadics dont les formes planaires (i j) sont
de signe contraire. Si inversement on établit d'abord, comme il a été

plutôt fait pour les systèmes précédents, les 5 classes inférieures qui
se laissent immédiatement déterminer dans les 12 dyadics de la lre
colonne et introduit ensuite successivement dans les groupes trouvés
les dyadics de la seconde colonne qui exigent nécessairement ceux
de la lre, de manière à ne laisser de côté aucune classe, on se rend

compte de suite que, à part ces groupes de symétrie binaire et ter-
binaire, il n'est pas d'autre groupe indépendant possible que les 12

établis, et qui représentant la symétrie des 12 classes suivantes
dans l'ordre trouvé :

XXI. Classe hexagonal-holoédrique (dihexagonal-bipyram.)
XXII. Classe hexag. pyramidale-hémiédrique (hexagon.-bipyram.).

XXIII. Classe hexag. trapezoédrique-hémiédrique (hexag.-trapezoéd.).
XXIV. Classe hexag. holoédrique-hémimorphe (dihexag.-pyram.).
XXV. Classe hexag. pyram.-hémiédr.-hémimorphe (hexag.-pyram.).

XXVI. Classe trigonale-hémiédrique (ditrigonale-bipyram.).
XXVII. Classe rhomboédrique-hémiédr. (ditrigonale-scalénoédrique).

XXVIII. Classe trigonale-tetartoédrique (trigonale-bipyramidale).
XXIX. Classe rhomboédrique-tétartoédrique (rhomboédrique).
XXX. Classe trapezoédrique-tétartoédrique (trigon.-trapézoédrique).

XXXI. Classe rhomboédrique-hémimorphe (ditrig.-pyramidale).
XXXII. Classe hexagon.-octaédrique (trig.-pyramidale).

L'ordre des classes dans les systèmes étant en réalité sans aucune importance,

nous nous sommes permis de dénommer ces classes directement dans l'ordre
où nous les avons trouvées.












	

