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CHAPITRE XIII

28. Le Raumgitter, c’est-a-dire cette distribution parallélipipedique
de sommets sur les arétes du complexe cristallin, résultat direct de
la construction zonale du complexe et donc des 2 lois expérimentales
du erislal : constance des angles et lo1 des zones, traduites mathé-
matiquement par celle de la rationnalité des indices, a donc été con-
sidéré et étudié jusqu’ici & un point de vue purement théorique. La
notion, prise encore a ce méme point de vue, de Raumgitter symé-
trique a établi dans le dernier chapitre une distinction essentielle
entre le complexe cristallin n'impliquant aucune face avec aréte nor-
male et qui est le complexe du systéme cristallin tricline, et celui
qui en possede. Par rapport toujours a la syméirie du Raumgitter
primitif correspondant, les 7 types de complexes possibles dans la
donnée d’une face avec aréte normale, se réduisent essentiellement
a b qui sont les complexes des 5 autres systemes cristallins, c’est-a-
dire des 5 catégories, telles que la plupart des eristallographes les
établissent entre les cristaux d’espéce symétrique ; en d’autres termes
leurs éléments (arétes fondamentales et face-unité) représentent exac-
tement les divers systemes d’awes cristallographiques auxquels on
rapporte d’ordinaire la position des faces et arétes cristallines.

Mais 1l est maintenant surtout une 3= loi du cristal établie par
I'expérience, celle de sa symétrie expérimentale, qui donne au role
du Raumgitter dans l'étude du cristal toute sa valeur. Rapporté a la
symétrie des Raumgitters primitifs trouvés de chacun des systémes,
en tenant compte de ce qui sera dit ensuite, elle s’énonce tres
clairement : |

St dans le cristal en formation apparait une face de Uun des
complexes établis, apparaissent simullanément toutes les faces avec
lesquelles se couvre la premiére par le groupe entier des opérations
de symétrie du Rawmgitter correspondant, ou par Uun quelconque des
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leurs sous-groupes. Mais ce n'est 1a que le caracteére superficiel ; la
symétrie de la substance méme du cristal (reconnu entre autres par
la méthode des figures de corrosion, présence des autres propriétés
physiques, cohésion, dilatation, etc.) est celle du groupe complet ou
d’un sous-groupe quelconque des opérations du Gitter.

89. Les seules opérations de symétrie qui effectivement font se
superposer par un seul mouvement un Raumgitter symétrique avec
lui-meéme, sont done ses rotations autour de ses axes de symétrie ;
on les appelle ses opérations de symétrie de premiére espéce. Mais
le Raumgitter posséde par sa nature méme un centre de symétrie,
c’est-a-dire une opération de symétrie d’'un toul autre genre, I'inver-
sion; en remplacant par une infinité de mouvements chaque sommet
du Gitter par son sommet inverse le Raumgitter se retrouve en effet
apres cette opération, bien que chacun de ses sommets ait perdu sa
place primitive, de nouveau identique & lui-méme. Si donec nous
faisons suivre de I'inversion chaque rotation d’un Raumgitter symé-
trique, le Gitter se retrouvera chaque fois aprés les 2 opérations
successives encore ldentique a lui-méme.

L’opération unique qui ameénerait chaque sommet du Gitter a la
place ou 1l se trouve par ces 2 opérations successives, transforme
donc également le Raumgitter en lui-méme; on 'appelle une opéra-
tion de symétrie du Gitter de seconde espeéce (réflexion ou réflexion
combinée a une rotation: axe de symétrie de seconde espece). En
comptant 1'identité, c’est-a-dire I'absence de mouvement, comme opé-
ration de symétrie de premiére espece, par opposition a l'inversion,
opération de symétrie de seconde espéce, la symétrie d'un Raumgitter
(et ainsi celle des classes holoédriques correspondantes, § 94-100), est
don¢ constituée d'un nombre égal d’opérations de symétrie de pre-
miere espéce et d'opérations de symétrie de seconde espéce. Elles
sont évidemment toutes les opérations et les seules qui transforment
le Raumgitter en lui-méme; par le fait leur ensemble constitue un
groupe et en posseéde la propriété caractéristique : 'opération unique
équivalente & 2 opérations successives quelconques du groupe, est
toujours une opération du groupe.

Naturellement, comme nous le verrons d’ailleurs, certaines de
ces opeérations du groupe, se nécessitant 'une l'autre, constituent &
leur tour, dans le groupe lui-méme, un sous-groupe ndépendant,



— 109 —

possédant pour son propre compte la propriété qui vient d’étre énoncée.
Le probleme qui se pose maintenaut est précisément de déterminer
dans chaque symétrie de Raumgitter trouvée tous ces sous-groupes
d’opérations possibles ; les cristaux dont ils représenteront la symétrie,
constituent les différentes classes du systéeme cristallin correspondant.

Bravais, Sohncke, Mallard et d’autres ont basé sur cette structure
parallélipipedique du Gitter l'explication de la nature intime de la
substance cristalline ; Bravais place en chaque sommet du Raumgitter
symétrique un polyédre moléculaire dont la symétrie est celle du
groupe complet ou des sous-groupes indépendants des opérations’ du
Gitter. Comme quil en soit, les 3 lois expérimentales de la cristallo-
graphie établissent done, surtout celle de la symétrie du cristal, une
corrélation idéale entre la structure du Gitter et la symétrie du milieu
cristallin. Jusqu'a quel point nous permet-elle de pénétrer dans la
nature intime du cristal? Nous sommes trop peu aulorisé pour le
dire 1c1; nous n'avons eu d’autre but dans ce travail que de montrer
cette corrélation en établissant avec les différents types de complexes
la symétrie des Gitters primitifs correspondants, pour y adapter en-
suite la lo1 de symétrie et en déduire par une méthode nouvelle et
intéressante les 32 classes possibles de cristaux.

90. Si nous prenons 3 vecteurs-unités i, i, k, formant un systéme
trirectangulaire d’axes et que par une opération de symétrie de pre-
miere ou de seconde espece autour du point O, ces 3 vecteurs coin-
cident avec le nouveau systeme trirectangulaire ', i’, k', la somme
conventionnelle des 3 dyades *, formée chacune de la simple juxta-
position de ces 2 vecteurs:

b =iiij -+ kk
constitue un dyadic* représentant 1'opération donnée.

En effet soit un vecteur quelconque B déterminant le point P
de Tespace et décomposé selon les directions des 3 vecteurs-unités
i, 1, k:

R=xi+yj+zk

") Vectoranalysis: Gibbs. Le mot anglais «dyadic » pourrait se traduire en
francais dyadique (féminin) comme le mot anglais <« quadric» se traduit par le
mot francais quadrique. Comme pour le mot « dyade » j'ai gardé simplement le
mot anglais plus court « dyadic »; cela m’a paru sans aucune importance.
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Faisons ce que Gibbs appelle le produit scalaire du vecteur £
par le dyadic @ et qu’il écrit ainsi :
(xi - yi -+ 7h)- (i’ + i’ -+ ki)
¢’est-a-dire multiplions scalairement chaque composante du vecteur R

par le vecteur antécédent de chaque terme du dyadic (voir la re-
marque). Nous obtenons le nouveau vecteur:

R =xi"+yi + 2k

dont la position par rapport aux nouveaux axes i, {’, k" est iden-
tiquement celle du vecteur ® par rapport aux premiers. Le dyadic @
employé comme opérateur sur le vecteur B d’un point quelconque
de l'espace, lui fait donc subir autour du point O la méme opération
qui a amené i, §, k en i, {’, k’. Il est ainsi I'expression algébrique
de l'opération donnée et les positions extrémes des vecteurs-unités
i, {, k, déterminant T'opération en elle-méme, déterminent également
completement le dyadic qui la représente.

Remarque. La juxtaposition des 2 vecteurs qui constituent la dyade est pour
Gibbs une 3m¢ sorte de produit qu’il appelle produit indéfini de 2 vecteurs. Le
produit scalaire est une quantité pure et n'impose aux 2 vecte.rs qui le forment
qu'une condition: le produit de leurs tenseurs par le cos de leur angle. Le pro-
duit vectoriel est un vecteur et leur impose 3 conditions: le produit de lears ten-
seurs par le sinus de leur angle, le plan dans lequel ils se trouvent et leur posi-
tion réciproque. Le produit indéfini représente 2 vecteurs et leur impose 5 conditions:
la direction et le sens de chacun et le produit de leurs tenseurs. La dyade posséde
en effet la propriété associative ; il suffit de le montrer pour les 2 sortes de
produits, produits scalaires de dyades par vecteur et de dyades par dyades, qui
nous sont nécessaires ici. Si d’une maniére générale :

a, b, r, d, sont 4 vecteurs-unités quelconques et a—a’a”, le produit scalaire
de vecteur par dyade, c¢'est-d-dire le produit scalaire du vecteur par le vecteur
antécédent de la dyade pris comme coefficient du vecteur conséquent:

r-asb=r-a'aa’b=r.a”aa’'b=a’a”(r-a)b;

le produit scalaire de dyade par dyade, ¢’est-d-dire le produit scalaire des vecteurs
moyens pris comme coefficient de la dyade formée des vecteurs extrémes :

-anb—=rcd-a'na’b—rd-a”na’b=—a’a”(a d)cb
Donc: anb—a'na’b—=a”na’b—nab etec.

Pour cette raison si I'un des vecteurs est négatif, la dyade est négative; si
le coefficient de la dyade est nul, celui de chacun de ses vecteurs est également nul.

La dyade posséde également la propriété distributive, mais on ne peut
changer I'ordre des vecteurs qui se juxtaposent, c’est-a-dire:
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a (b4 ¢)==ab} ar
En effet: [ (b4 ¢)]=r-(ab 4 ar)
parce que: a(b+rc)—1r-.ab-4r- ac

On le démontrerait de méme pour le produit scalaire de dyade par dyade.

91. Soient maintenant les 2 opérations successives :

B, =i’ + i’ -+ hk’
D, =i+ kb

Si nous faisons le produit scalaire des 2 dyadics qui s’écrit:
(iif _I__ iif -_'_ hk!) . (ifif! + ifif/ _I_ hfk”)
et qui naturellement consiste dans la multiplication scalaire de chaque

dyade du premier par chaque dyade du second (remarque précédente),
nous obtenons le nouveau dyadic:

b, =" 4+ {i” + kk”

c’est-a-dire le dyadic qui représente l'opéralion unique équivalente
aux 2 opérations successives données. Les combinaisons d’opérations
de symélrie successives qui peuvent avoir lieu autour du pomnt O
s'expriment done par les produits scalaires des dyadies équivalents,
et si ces opérations sonl telles qu'elles constituent un groupe, le
groupe de leurs dyadics jouit de la propriété caractéristique : que le
produit scalaire de deux d’entre eux est toujours un dyadic du groupe.

Remarque. Naturellement les vecteurs i’, {’, k’; i”, {”, k” peuvent étre rap-
portés trés bien aux 3 axes trirectangulaires i, i, k et le dyadic:

&, =i’ +i{j’ + kK’
s'écrit également :
t(x1i+yii+ z1R) 4§ (x3i 4 y3§ -+ z5k) + R (x3i 4 yii + z5k)
Puisque la dyade posséde la propriété distributive et associative, il se déve-
loppe en nonion Form (Gibbs) représentant toujours le méme dyadic:

xiii4yiij+z{ik
+xGii yiii+ ik
+ xjki+ yiRi+ zikk
Le dyadic i’t” 4 {’{” 4+ k’k” rapporté aux axes i, {, k se développerait de la

méme maniére en nonion Form et inversement la nonion Form obtenue se réduirait
a la somme des 3 dyades, représentant encore le dyadic donné :

X7 xGxixg) i 4-(x [y f x5y S 4x3y5) i+ () R =]+ K[
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Les vecteurs des grandes parenthéses sont ainsi les nouvelles positions que
prennent les vecteurs i, i, k par I'o ération donnée i'i” + {’j” + W’k”. Rapporter
les positions successives i, {’, k', i”, {”, k”, etc., aux axes fondamentaux i, i, k,
de position fixe dans l'espace, revient donc & rapporter tous les dyadies a ces
axes, c’est-d-dire a4 donner & toutes les opérations équivalentes les positions pri-
mitives  {, {, k, pour point de départ. C’est ce que nous ferons pour chacun des
groupes de dyadics, représentant le groupe entier d’opérations du Gitter primitif
correspondant & chaque complexe, que nous allons écrire. D’ailleurs, sauf pour le
Gitter hexagonal dont les opérations d’ordre sénaire exigent des dyadics de forme
un peu moins facile, tout y est bien plus simple que ce qui vient d’étre dit d'une
maniére plutot générale.

Si nous écrivons en effet par ordre de symétrie de leurs Gitters les 5 com-
plexes ou systémes ecristallins : tricline, monocline, rhombique, quadratique et cu-
bique, on se rend compte immédiatement que les groupes d’opérations correspon-
dants : centre de symétrie, binaire, terbinaire, quaternaire, et terquaternaire, sont
impliqués chacun dans celui du systéme supérieur. Puisque le groupe d’opérations
de la symétrie terquaternaire se réduit en fait aux 48 maniéres possibles de
couvrir 3 vecteurs-unités triperpendiculaires {, {, k avec eux-mémes ou avec —ij,
—i» —hk, (les 3 arétes du cube élémentaire ne peuvent se couvrir qu'avec elles-
mémes ou les arétes inverses), les dyadies représentant les opérations de symétrie
de ces 5 premiers systémes se réduisent done chacun & 3 dyades de coefficient 1
ou —1 et dont i, {, h, dans un ordre ou un autre, sont & la fois les vecteurs an-
técédents et les vecteurs conséquents. Le produit de 2 quelconques de ces dyadies
revient donc uniquement & multiplier chaque dyade de I'un par la seule dyade de
l'autre qui a pour vecteur antécédent le vecteur conséquent de la premiére, et les
coefficients des nouvelles dyades sont également 1 ou —1 selon que les 2 dyades
dont elles résultent sont de méme signe ou de signe contraire.

Si nous appelons dyadics pairs ceux de ces dyadies qui ont un nombre pair
(0 ou 2) de dyades négatives et dyadies ¢mpairs ceux qui en ont un nombre im-
pair (1 ou 3) nous avons immédiatement cette propriété qui nous servira a préciser
les sous-groupes de ces dyadics: Le produit de 2 dyadics pairs ou de 2 dyadics
impairs est toujours un dyadic pair et le produit de 2 dyadics de parité différente
est toujours un dyadic impair. C’est une conséquence directe du fait que les com-
binaisons de signes 4+ et — — donne le signe positif et les combinaisons + —
et —+ donnent le signe négatif, et cela se démontre trés simplement. Le produit
des 2 dyadics, ou plutot en n’écrivant que les signes des dyades, des 2 rangées
de signes: e

+
(en multipliant done chaque signe de la premiére par un seul signe de la seconde)
donne comme résultat 3 dyades c'est-a-dire 3 signes positifs. Dés que I'on introduit
dans l'une des rangées un signe — en place d'un signe +, le produit posséde un
signe — ; si on en introduit un second dans la méme ou dans l'autre rangée, ou
bien il annule le premier ou bien donne un second signe —. Par le fait on en
introduisant un 3m¢ le résultat aura 1 ou 3 signes négatifs, et ainsi de suite. Si
donc la somme des signes négatifs introduits dans les 2 rangées est paire, en
d’autres termes si les 2 dyadics donnés sont de méme parité, le résultat a un
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nombre pair de signes négatifs; si cette somme est impaire ¢’est-a-dire si les 2
dyadies sont de parité différente, le résultat a un nombre impair de signes néga-
tifs, ¢. q. f. d.

Nous n’éerirons pour les 5 premiers systémes chaque dyadic qu'une fois,
c’est-d-dire que pour chaque systéme supérieur nous n’'écrirons que les dyadics
représentant les opérations nouvelles. La classe possédant la symétrie du groupe
complet des opérations du Gitter est la classe holoédrique du systéme. Selon que
le nombre des opérations ou des dyadics des sous-groupes obtenus est la demie,
le quart ou méme le huititme du nombre des dyadics du groupe enlier de symé-
trie, la classe correspondante est une hémiédrie ou hémimorphie, une tétartoédries
ou méme une octaédrie de cette classe holoédrique. Les dénominations ajoutées
entre parenthéses sont les dénominations maintenues aux classes par différents
cristallographes et empruntées généralement au nom de la forme cristalline normale
correspondante.

92. Systeme fricline. Son Raumgitter ne posséde ni axe de sy-
métrie et par le fait ni plan de symétrie; les seules opérations qui
le fassent coincider avec lui-méme sont l'identité et I'inversion autour
du point O:

L'identité est indépendante et détermine une classe: l'inversion
multipliée par elle-méme exige I'identité. Nous avons ainsi les 2 classes:

I. Classe tricline-hémiédrique (asymétrique). 1.
II. Classe tricline-holoédrique (pinakoidale). 1. 2.

93. Systeme monocline. Son Raumgitter (et d’ailleurs le com-
plexe lui-méme) posséde un axe binaire et par le fait un plan de
A symétrie normal. En effet si t et | sont
K p 2 vecteurs-unités perpendiculaires dans le
! plan normal a I'axe binaire et k le vec-
teur-unité coincidant avec cet axe, le dya-
dic 3, équivalent a l'axe binaire, multi-
pli¢ par linversion donne le dyadic 4,
qui est le plan de symétrie normal (fig.

19).

Lol
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Chacun de ces dyadics multiplié par lui-méme donne I'identité
et détermine une classe; multipliés 'un par lautre, ils exigent l'in-
version et représentent la symétrie de la classe holoédrique du systeme :

I1I. Classe monocline-hémimorphe (sphénoidique).
IV. Classe monocline-hémiédrique (domatique).
V. Classe monocline-holoedrique (prismatique).

94, Systeme rhombique. Le Raumgitter posséde avec l'axe bi-
naire k les 2 axes binaires perpendiculaires i et | dans le plan de
symétrie normal; les dyadics b et 6 équivalents, multiphés par l'in-
version, donnent les 2 autres plans de symétrie 7 et 8 correspondants
a ces axes:

5 Mol Bl
6. i ii— hk
7

==t 1§ -
8, it — i + kk
Les nouvelles classes sont immédiatement :
4 dyadics pairs 5. 6. 3. 1.
2 dyadics pairs et 2 impairs 7. 8. 3. 1.
Groupe holoédrique 5. 6. 7. 8 4. 3. 2. 1.

Toute autre combinaison par eux-mémes ou 2 a 2 de ces nou-
veaux dyadics détermine l'une des classes déja obtenues au systéme
précédent, sinon le groupe holoédrique des 8 dyadics donnés. Nous
avons donc les 3 nouvelles classes:

VI. Classe rhombique-hémiédrique (bisphénoidique).
VII. Classe rhombique-hémimorphe (pyramidale).
VIII. Classe rhombique-holoédrique (bipyramidale).

Pour ces 3 premiers systémes la forme des dyadics se réduit donc aux 8
variations que peuvent fournir les 3 signes des dyades de la forme générale :
ii + i + hh
L’identité est done en quelque sorte le dyadic fype de leurs opérations et si
nous multiplions par 'une d’elles I'un des dyadics quelconque des 5 autres iypes
qu'impliqueront les opérations des 2 systémes suivants (ce qui fait pour le systeme
cubique 6 types a 8 variations chacun = 48 dyadics), cette multiplication ne peut

que changer les signes du dyadic donné et le produit sera ainsi un dyadic du
méme type.
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95. Systeme quadratique ou tétragonal. L’axe binaire k devient
un axe quaternaire, et dans le plan normal aux 2 axes binaires i et |
s'ajoutent les 2 axes binaires diagonaux (fig. 19) i’ et j'. Les diadics
9. 10. 11. et 12. représentent les nouvelles rotations et multipliés par
I'inversion, exigent l'axe quaternaire de 2m¢ espeéce 13. et 14. (axe
quaternaire de 1r¢ espéce combiné a une réflexion dans le plan nor-
mal) et les 2 plans de symétrie normaux aux axes binaires 15 et 16:

! I[ s }I -+ Rk 1°* mouv.
10. —ij-Fiji -+ kk 3¢ mouv.
1. if =i hk
12, —ij —ii —hk

} axe (uat.

axes binaires i’ et |/

13. —ij+ii—Kkk 3me mouv., | axe quat.
14 ij —ji—kk 1¢* mouv. }Qe espéce
15, —ij—ji+ Rk plans desymétrienor-
16. ij + it + kk mauxaux axes i’ etj’.
Le dyadic-type : ij + ji + kk multiplié par lui-méme donne I'iden-
tite : (if + it 4+ kk)> =1i + {j + kk,

tandis que multiplié par I'un des 8 dyadics précédents, il donne (re-
marque précédente) l'une de ses 8 variations que nous venons d’écrire.
Les 2 dyadics impairs 9 et 10, comme les 2 dyadics pairs 13 et 14,
exigent donc les 2 variations paires de ['identité dont la dyade kk
est positive :

9. 10. 3. 1. puissances du dyadic 9.

13. 14. 3. 1 puissances du dyadic 13.

Les 2 groupes réunis exigent en outre les 2 variations impaires
de I'identité dont la dyade kk est négative:

9. 10. 13. 14. 4, 3. 2. 1.

Remarquons d’abord que le groupe suivant des 4 dyadics 11.
12. 15. et 16. représente de nouveau dans le systeme quadratique la
symétrie du systéme précédent, et qu’il est donc inutile de le prendre
a part pour retrouver les classes déja obtenues. En introduisant 11.
ou 15. dans le 1°* groupe trouvé, il faut y introduire 12. ou 16. par
le fait de la présence de 3.; nous obtenons ainsi soit leg,4 variations
impaires du nouveau type exigeant les 4 variations paires de 1'iden-
tité, soit les 4 variations du nouveau type dont la dyade kk est positive
exigeant les 4 variations de I'identité dont kk est également positif :
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9. 10. 11. 12, 5 6 3. 1
9. 10. 16, 16 7. & 3. 1,

En introduisant 11. ou 15. dans le 2me groupe trouvé, 1l faut y
introduire encore 12. ou 16. par le fait toujours de la présence de 3.;
nous obtencns soit les 4 nouvelles variations dont kk est négatif exi-
geant les 4 variations de I'identité dont kk est positif, soit le groupe
des 8 dyadics pairs compris dans les 16 dyadics donnés :

13. 14. 11. 12. 7. 8 3. 1.
13. 14. 15. 16. 5. 6. 3. 1.

Mais on voit immédiatement que ces 2 derniers groupes repré-
sentent la méme symétrie: l'axe quaternaire de 2° espece, 2 plans
de symétrie perpendiculaires passant par cet axe alternant avec 2
axes binaires perpendiculaires dans le plan normal.

Dés que l'on introduit maintenant dans I'un des groupes a 8
dyadics, I'un quelconque des dyadics donnés qu’il ne contient pas
encore, on obtient le groupe entier des 16 dyadics donnés, représen-
tant la symétrie du Gitter quaternaire et celle de la classe holoédrique
du systeme. Nous avons donc:

IX. Classe tetragon.-hémiédrique-hémimorphe (pyramidale).

X. Classe tetragon.-sphénoidique-tetartoédrique (bisphénoidique).
XI. Classe tétragon.-pyramidale -hémiédrique (bipyramidale).
XII. Classe tétragon.-trapézoédrique -hémiédrique (trapézoédrique).

XIII. Classe tétragon.-holoédrique-hémimorphe (ditetr. pyramidale).
XIV. Classe tétragon.-sphénoidique-hémiédrique (scalénoédrique).
XV. Classe tetragon.-holoédrique (ditétrag. bipyramidale).

96. Systeme cubique ou régulier. Les axes i et | sont également
quaternaires. A l'un et I'autre est donc attaché le systeme de dyadics
représentant la symétrie quaternaire correspondante, et ces 2 systéemes
s’écrivent immédiatement en donnant successivement a i et a i le
role de k dans les dyadics du § précédent:

Axe quaternaire i et axes binaires Axe quaternaire | et axes binaires
diagonaux dans le plan (jh) diagonaux dans le plan’ (ik)
17, did-jk—k 25, —ik-|-jj-|-ki
18, ii—ih 4k 26. ik ij— ki
19, — i+ ik - ki 97. ik — i+ ki

20. —ii—ik ki 98. — ik — {j — ki
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Multipliés par l'inversion :

Axe quaternaire i de 2v¢ espéce et Axe quaternaire i de 2" espéece et
plans de symétrie diagonaux pas. par 'axe. plans de symétrie diagonaux pas. par I'axe.
21, —ii — jk -+ ki 29. ik — - ki
22, —ii 4 jh — kj 30. — ik — jj -+ ki
23, ii— jk — ki 31. — ik - ij— ki
24 ii L ik ki 32, ik - i 4 ki

Les directions des 4 diagonales principales du cube élémentaire
sont en outre des axes ternaires (fig. 17), dont les 2 mouvements qui
ne sont pas lidentité s'écrivent immédiatement (fig. 19); multipliés
par I'inversion ils deviennent les 2 dyadics de 2me espéce qui sont
les 1¢* et 5me mouvement d’axes sénaires de 2me espece (axes sénaires
de 1'¢ espece combinés & une réflexion dans le plan normal, leur
3me mouvement est 'inversion) coincidant avec les axes ternaires.

1re axe 2me gxe
(en sens inverse des aiguilles d'une montre) (en remplacant dans le 1°% j par j et j par -{)
33, ij ik ki 37. —ik — ji 4+ kj
4. ik + i -+ ki 38, — ij+ ik —ki
35, — ij— jh— ki 39. ikt ik
36, — ik — ji—kj 4. i ik ki
3me gxe 4me gxe
(en remplacant dans le 1¢7 § p. -j et j par -{)  (en remplacant dans le 1¢7 { p. -j et { par -{)
M. ij— ik — ki 4. ik — i —k
42 — ik ji — ki 46— ij — ik - ki
43. - ij - jk - ki 47, — ik - ji -+ ki
4. ik — ik 48. i ik — ki

Il est inutile d’abord de chercher de nouveaux groupes de dyadics
pris exclusivement dans l'une seule des symétries quaternaires: ils
ont été déja trouvés au systéme précédent; comme aussi des groupes
impliquant un seul axe ternaire ou un seul axe sénaire de 2m¢ espéce :
il se retrouveront plus simplement et a plus juste titre dans les dyadies
du systeme suivant.

Les 4 axes ternaires sont tous des dyadics pairs dont les 2
formes types, multipliées chacune par elle-méme, exige la seconde, et
multipliées 'une par l'autre, exigent l'identité :
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(if -+ ik -+ ki)* = ik + {i +- ki
(il +- i 4 ki) = ij -+ ik |- ki
(i i -+ ki) - (ik - {i - ki) = ii +-ij + bk,

La présence de 2 quelconques de ces axes entraine donc celle
des 2 autres, et par le fait les 4 varations paires de l'identité :

33. 34. 37. 38. 41. 42. 45. 46.
5. 6. 3. 1.

Les 4 axes sénaires de 2m° espéece sont les variations impaires
des 2 types; la présence de 2 d’entre eux exige celle des 2 axes
ternaires correspondants et par suite le groupe complet des dyadies
des 2 types avec les variations paires et impaires de l'identité:

33 a 48
1 a8.

Deux quelconques des 3 types quaternaires donne comme pro-
duit un axe ternaire; et si l'on accouple un type quaternaire & l'un
ou l'autre des types ternaives, 1ils exigent les 2 autres types quater-
naires :

(it + ik -+ ki) - (ik 4 1§ + ki) = 1] |- jh - ki
(ik -+ §i + ki) - (it 4= ik 4 ki) =1k 431 + ki
(ik 4 §i + ki) - (if + ik + ki) =1l + jk 1 kj
(ih -+ i+ hi) - ik + §i - bi) = ij + fi + bk

Il n'existe donc pas de combinaisons de 2 types qualernaires
sans dyadics ternaires et on obtiendra les sous-groupes qui restent a
trouver en introduisant les dyadics quaternaires dans les 2 groupes
de types ternaires obtenus.

Si l'on introduit dans le groupe des 4 axes ternaires un dyadic
quaternaire impair, ses combinaisons avec les dyadics pairs des axes
ternaires fournissent les dyadies impairs des 3 types quaternaires, et
les produits de ces derniers sont soit & nouveau les dyadics pairs
des axes ternaires (combinaisons de 2 types), soit les 4 variations
paires de l'identité (combinaisons d'un méme type):

9. 10. 11. 12. 17. 18. 19. 20. 25. 26. 27. 28.
1. 3. 5. 6. 33. 34. 37. 38. 41. 42. 45. 46.

St l'on introduit dans ce groupe des 4 axes ternaires un dyadic
quaternaire pair, ses produits avec les dyadies pairs des axes ter-
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naires sont les dyadics pairs des 3 types quaternaires, et les combi-
naisons de ceux-ci fournissent encore soit & nouveau les dyadics pairs
des axes ternaires, soit les 4 variations paires de 'identité :

13. 14. 15. 16. 21. 22. 23. 24. 29. 30. 31. 32.
1. 3. 5. 6. 33. 34. 37. 38. 41. 42. 45. 46.

Par contre dés que l'on introduit dans le groupe des 4 axes
sénaires de 2m¢ espece un dyadic quaternaire quelconque, ses com-
binaisons avec toutes les variations paires et impaires des 2 types
ternaires sont les dyadics pairs et impairs des 3 types quaternaires,
et les produits de ces derniers comme ceux des types ternaires entre
eux, exigent les variations paires et impaires de l'identité. Nous ob-
tenons ainsi le groupe entier des 48 dyadics donnés, représentant
les 48 opérations possibles couvrant les 3 vecteurs-unités triperpen-
diculaires i, j, k avec eux-mémes ou — i, —{, —k, cest-a-dire le
groupe de symétrie de la classe holoédrique du systeme cubique. Les
5 nouvelles classes sont dans l'ordre trouvé:

XVL Classe réguliére-tétartoédrique (létraédr. pentagondodé
caédrique).
XVIIL Classe pentagonale-hémiédrique (dyakisdodecaédrique).
XVIIIL Classe gyroédrique-hémiédrique (pentagon.-icositetraédr.).
XIX. Classe tétraédrique-hémiédrique (hexakistetraédrique).
XX. Classe réguliére-holoédrique (hexakisoctaédrique).

97. Systéme hexagonal. Soient i et | 2 vecteurs-unités perpen-
diculaires pris sur 2 axes binaires du réseau fondamental el k le
vecteur-unité normal au plan de
la fig. 20 et coincidant avec I'axe
sénaire du  Raumgitter. L’unité
étant le coté du triangle équila-
téral élémentaire, les nouvelles
positions i, {’, kK* que prennent
les vecteurs i, {, k par le fer
mouvement de l'axe sénaire sont
immeédiatement :

. 3., 1. S
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et le dyadic représentant le mouvement s’écrit :

13 l.s

i =" 514 5i)+ bk

Le second mouvement (rotation de 1200) change i et jeni”et —1i”;
son dyadic s’écrit pareillement:

Vs,
9}

i (-5

(e 2=V 2= L 4w

Le 3me mouvement est celui de I'axe binaire impliqué dans I'axe
sénaire ; son dyadic est le dyadic 3 (§ 93). De la, pour les 2 autres
mouvements qui restent avant l'identité, les positions des vecteurs
i el | sont exactement les valeurs négatives de leurs positions apres
le 1er et le 2m¢ mouvement ; il suffit donc de changer les signes des
2 premiers termes des dyadics trouvés pour obtenir leurs dyadies
équivalents.

Le premier axe binaire i” change les vecteurs i el jeni’ et —
et k en —k; son dyadic correspondant est donec:

VB v ¢ V83 1,
‘(2 4" gil+il gt—~gi)—~Hik
Le second axe binaire i’ change inversement i en {” et | en i”,
son dyadic s’écrit :

(=gt S+ i S g —

L’axe binaire { comme l'axe binaire i sont les 2 axes binaires
du complexe rhombique impliqués dans la symétrie du Gitter hexa-
gonal et représentés par les dyadics b et 6 (§ 94). Enfin les 2 autres
axes binaires {” et |’, par le fait qu’ils sont normaux aux 2 premiers
axes binaires i” et i’, donnent par leur mouvement a i et & i les
directions inverses de celles que leur donnent les axes i” et i’, leurs
dyadics sont donc de nouveau les 2 dyadics trouvés avec leurs 2
premiers termes pris en signe contraire.

Dans chaque dyadic obtenu, nous faisons les produits indéfinis,
¢’est-a-dire nous formons les dyades comme 1l a été fait dans la re-
marque du § 91: nous appelons pour simplifier les dyadics a 2
termes (dyadics planaires):

LR v =i gy =

V3,

- - 0

gt — 1 pu =i —ii fn=V3
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Nous multiplions par l'inversion ces opérations de 1t espece
pour obtenir celles de seconde espeéce en changeant simplement les
signes des dyadics, et nous avons ainsi réuni en 24 dyadices le groupe
complet des opérations représentant la symétrie du Raumgitter hexa-
gonal et de la classe holoédrique correspondante :

Les 6 mouvements de I'axe sénaire. Les 6 axes binaires {7, ', |, 1", {’, i
v e + 294 1 RR 13’ e1py + Egs — KR

2" —egr+ gpu + kR 14" — e1pp +&ags — Rk

3’ — s kK 15’ o’ — Kk

4 — ey —eqy 1 kR 16" — &gy — &5 —kk

5’ eigr — &gy 1 kR 17 &g — £200 — kK

6 v, -+ kk 18’ "

Multipliés par I'inversion :

(mais en partant de 4’ et 16/ pour plus d’homogénité).

Les 6 mouvements de I'axe sénaire combinés . Les 6 plans de symétrie normaux aux
chacun avee une réflexion dans axes {”,{'.1',1”, i’,{ et dont les traces sur
le plan normal. le réseau fondam. sont donc §”, 1, i, i”, i’,i.
r ’
1 &1 + &4 — kR 19 &1z -+ &y -+ RR
8  — &g+ eaps —hR 20" — &gy + &5+ kR
9 oy — kK 21/ g hk
10" —e&q — &9, —hk 22" — &gy —&ps 1 kR
11’ &1pr — €2y — RR 23 &1y — &ap5 -+ kR
19/ o1 — kR 2 va - Rk

98. Nous appelons dyadics sénaires les dyadies numérotés d’un
chiffre impair et dyadics ternaires les dyadics numérotés d’un chiffre
pair. Les différentes formes des dyadics sénaires, abstraction faite de
leur dernieére dyade kk indépendante des 2 premiers termes dont les
dyadics ne renferment que les vecteurs i et {, sont uniquement :

&) + &y &Pz T &3
&P — &y §1P2 — &
— ¢ — @

En multiphant chacune des 4 premiéres de ces formes par elle-
méme et chacune des 3 autres, nous obtenons les 16 produits que
voici, dont les seconds membres sont uniquement chacune des 6 for-
mes correspondantes des dyadics ternaires :
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(69, + &0)° = — &0, + 5,9, (5,92 + 695)° = @,

(& Py — 829?4)2 — 5 — &y, (e, 0, — &,9,)° = 9y

(g0, + & @) (6,9, — £9,) = @, (&9 + &9,) (6,9, — &,9) = —&,0, + 5,9,
(8.9, — 696,90, + &9) =@, (219 — &) (69, + 8:005) = —&,9, — &,
(8,95 + £9,) (2,00 + 89) = @, (&9, + £:0,)-(8, 9y — &,00,) =—¢,, + &,
(e, 9y + &9,) (6,9, — &05) =@, (8,0 — &:@,) (6,0, — &,05) = —&,0, — &0,
(81(}9._, - ‘9290:!) (81‘?71 + 32904) =59, T &Py (81qj-g —Sg(f’;}) (81(7)1 - 8«3974) —

Ces produits s’effectuent trés simplement: les combinaisons scalaires ¢ ¢y
étant trouvées une fois pour toutes (les combinaisons ¢, ¢ = ¢k, car ¢, est li-
dentité planaire (if)), chaque produit se fait comme le produit de 2 binomes algé-
briques.

Ainsi: (2,9, + &,0,)" = &lgi + 25,600, + 39l = (6] — ) ¢, + &0, = —&,9,
+ &,¢,. Dailleurs les résultats des 6 premiers produits peuvent étre donnés a
priori : les puissances du 1°* mouvement de 'axe sénaire sont évidemment les 5
autres rotations différentes qu’il implique, celles du dyadic 2/, les dyadics 4' et 6’
qui sont les 2 autres mouvements de l'axe ternaire, et la seconde puissance d'un
axe binaire doit donner l'identité. Les résultats trouvés ne sont qu'une confirmation
par le calenl en dyadics de ce qui se déduit déja dans ce cas-ci plus s:mplement
par le raisonnement seul. D’ailleurs a vrai dire, & condition d’établir d’abord les
dépendances qui existent entre les éléments de symétrie : centre, axes et plans de
symétrie, toute cette déduction par les dyadics de la symétrie des 32 classes eris-
tallines de celle des 6 classes holoédriques se fait bien plus simplement an moins
pour certaines classes par le seul raisonnement en supprimant successivement les
éléments de symétrie dans chaque classe holoédrique. Les dyadies ont I'avantage
d’étre l'expression méme algébrique des opérations de symétrie, d’en impliquer
par le fait en eux-mémes les dépendances mutuelles et de fournir ainsi directement,
par leurs combinaisons réciproques, les combinaisons mémes de ces opérations sans
en laisser échapper aucune.

Naturellement si I'un des dyadics facteurs des 1¢ membres
change de signe, chaque terme ou chaque dyade du produit change
de signe et le second membre doit étre pris en signe contraire; par
suite si les 2 dyadies facteurs changent de signe a la fois, le résultat
ne change pas comme pour un produit ordinaire.

D’autre part, le dyadic — ¢, ne fait que changer le signe du
dyadic planaire (ij) qu’il multiplie (celui dont les dyades ne renfer-
ment que les vecteurs-unités i et | et dont l'opération équivalente a
lieu ainsi dans le plan de ces vecteurs); le dyadic — ¢, change ¢,
en —@,, ¢, en +g@; (cest-a-dire @y, =@y et @0, — — @), et -
versement change ¢, en — ¢, @3 en 4+ ¢, On se rend donc compte
sans peine que toute combinaison de I'une quelconque des 6 formes
sénaires écrites, avec elle-méme ou chacune des 5 autres, est toujours
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I'une des 6 formes ternaires correspondantes. Mais puisque les formes
des dyadics ternaires sont précisément celles des dyadics sénaires
prises en signe contraire, en vertu de ce qui vient d’étre dit du
changement de signe, et en considérant encore une fois les résultats
des produits effectués, les combinaisons des 6 formes sénaires et les
signes de la derniére dyade kk, nous obtenons immédiatement les 2
principes suivants dans le groupement des 24 dyadics donnés, qui
nous fournissent aussitot les 11 sous-groupes indépendants d’opérations
de la symétrie sénaire.

Le produit de 2 dyadics lernaires ou de 2 dyadics sénaires est
toujours un dyadic lernaire, tandis que le prodwil d'un dyadic
ternaire et d'un dyadic sénaire est towjours un dyadic sénaire.

Le produwit de 2 dyadics d’'une méme colonne, 1° a 12" ou 13’
a 24", (d'une méme rangée, 1" a 6 avec 13" a4 18 ou 7 a 12’
avec 19" a 24') est toujours un dyadic de la premiére colonne
(rangée), tandis que le produit de 2 dyadics pris un dans chaque
colonne (rangée) est toujours un dyadic de la seconde.

En effet dans ces conditions, chacun des groupes de dyadics qui

suivent est tel que le produit de 2 quelconques de ses dyadics ne
peut élre que l'un des dyadies du groupe :

7 a12 19 a 24 naires,

1’ a4 6 7' a 12" le produit de 2 dyadics de la 1 colonne est toujours
un dyadic de cette colonne: axe sénaire et plan de
symétrie normal.

-

1" a 6 13" a 18 } groupe holoédrique des 24 dyadics sénaires et ter-

1’ & 6 13’ a 18 le produit de 2 dyadics de la 1™ rangée ne peut étre
qu'un dyadic de cette rangée: axe sénaire et 6 axes

binaires.
17 a6 19" a 247  les 2 principes simultanément: axe sénaire et 6 plans

de symétrie,
17 a ¢ axe sénaire; puissances du dyadic 17,
! ’ ’ ’ ’ !’
52%’ 140’ 61 9 ;ﬁ’ ;g’ ;i’ } groupe complet des 12 dyadics ternaires.
variation du groupe précédent: les dyadics sénaires
2" 4 6 14 16" 1¥ 17’, V', ete, exigent également les dyadics ternaires
79 117 19 21’ 23/ J 2", 4’, ete.,, et inversement leurs produits avee ces
derniers les reproduisent eux-mémes.
Cette antre variation remplit aussi les mémes conditions:
2" 4 6 13’ 15’ 17’ mais représente a premiére vue la
79 117 200 227 24’ méme symétrie que la précédente.
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2 4 6 & 10° 12/ dyadies ternaires de la 1% colonne: axe ternaire et
plan de symétrie normal,

2 4 6 79 11 axe sénaire de seconde espece,

¥ & 6 14 16 18 variations de ces 2 groupes représentant encore a
' premiére vue les mémes symétries :

2! 4/ 6! 20; 22; 24; 9r 4/ 6 13" 15/ 17"

et 2 4 6 19 21" 28

)’ ’ ’ . .
2" 4 6 axe ternaire; puissances de 2’.

Ce sont done la 12 growpes indépendants d’opérations de la
symétrie sénaire, en négligeant naturellement les groupes de symétrie
binaire et terbinaire inclus dans la symétrie sénaire et fournis par
exemple par chaque dyadic de la 2me colonne multiplié par lui-méme
ou chaque couple de ces dyadics dont les formes planaires (i{) sont
de signe contraire. Si inversement on établit d’abord, comme il a été
plutot fait pour les systemes précédents, les 5 classes inférieures qui
se laissent immédiatement déterminer dans les 12 dyadies de la 1re
colonne et introduit ensuite successivement dans les groupes trouvés
les dyadics de la seconde colonne qui exigent nécessairement ceux
de la 1re, de maniére a ne laisser de coté aucune classe, on se rend
compte de suite que, a part ces groupes de symétrie binaire et ter-
binaire, il n’est pas d’autre groupe indépendant possible que les 12
établis, et qui représentant la symétrie des 12 classes suivantes
dans l'ordre trouvé:

XXI. Classe hexagonal-holoédrique (dihexagonal-bipyram.)

XXII. Classe hexag. pyramidale-hémiédrique (hexagon.-bipyram.).
XXIII. Classe hexag. trapezoédrique-hémiédrique (hexag.-trapezoéd.).
XXIV. Classe hexag. holoédrique-hémimorphe (dihexag.-pyram.).

XXYV. Classe hexag. pyram.-hémiédr.-hémimorphe (hexag.-pyram.).
XXVI. Classe trigonale-hémiédrique (ditrigonale-bipyram.).

XXVII. Classe rhomboédrique-hémiédr. (ditrigonale-scalénoédrique).
XXVIIIL Classe trigonale-tetartoédrique (trigonale-bipyramidale).

XXIX. Classe rhomboédrique-tétartoédrique (rhomboédrique).

XXX. Classe trapezoédrique-tétartoédrique (trigon.-trapezoédrique).
XXXI. Classe rhomboédrique-hémimorphe (ditrig.-pyramidale).
XXXII. Classe hexagon.-octaédrique (trig.-pyramidale).

L'ordre des classes dans les systémes étant en réalité sans aucune impor-
tance. nous nous sommes permis de dénommer ces classes directement dans I'ordre

ol nous les avons trouvées.


















	

