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CHAPITRE XII

81. Le Raumgitter, comme le complexe cristallin qu’il représente,
ne dépend donc uniquement que des directions relatives dans I'espace
des 4 aretes (4 faces) quelconques prises pour son point de départ.
Au méme complexe correspond une infinité de Raumgitter différents,
construits sur toutes les combinaisons possibles 4 a 4 de ses arétes;
par suite cette infinité de Raumgitter, impliqués chacun pour une
certaine longueur de leur aréte-unité dans le Raumgitter primitif et
dont chacun représente le méme complexe, constitue un fout absolu-
ment éndivis, inhérent aux complexe donné, restant identique a lui-
méme quel que soit celui de ces Gitter pris comme primitif, c’est-a-
dire quelles que soient les 4 arétes du complexe choisies comme
aréles élémentaires.

Sur les 3 directions primitives wu;t;, comme sur toule aréte
quelconque, d'un Raumgitter donné, on peut & volonté supprimer ou
ajonter un nombre quelconque de sommets, sans que rien ne soit
changé au complexe qull représente. En d’autres termes, tant que
les longueurs u; des 3 axes-unités d'un Raumgitter ne varient sur
leurs directions que dans des rapports simplement rationnels, le
complexe représenté reste identique a lui-méme ; les Raumgitter ob-
tenus sont tous compris dans linfinité des Gitter représentant ce
complexe, et on ne fait que changer le Raumgitter primitif par I'un
des Raumgitter qu'il implique..

Enfin en introduisant encore une derniére notion, celle de Raum-
gitter symétrique, en donnant ici au mot: symétrie son sens plus
exactement géométrique, que nous allons d'ailleurs préciser, il nous
sera facile maintenant avec ces données de déterminer dans le com-
plexe cristallin général étudié jusqu'ici, les différents fypes de com-
plexes possibles qui seront exactement les complexes des 6 systémes
cristallins tels que la plupart des cristallographes les établissent en
cristallographie (Baumhauer: Neuere Entwicklung des Kristall).
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82. Nous dirons qu'un Raumgitter posséde un degré plus ou
moins grand de symélrie, s’il existe un ou plusieurs mouvements de
ce Raumgitter autour du point O tels que le mouvement effectué,
chacun de ses sommets ait repris exactement la place qu’occupait
un autre sommet avant le mouvement. Puisque le point O reste fixe,
en vertu du principe connu de mécanique, ces mouvements se ra-
meénent dans tous les cas a une rotation autour d'un axe passant
par le point O; nous appelons un tel axe un axe de rotation ou de
symétrie du Raumgitter donné et son angle de rotation, le plus
petit angle « dont il faut tourner le Raumgitter autour de cet axe
pour que chacun de ses sommets ait repris le lien d’'un sommet pri-
mitif. |

Le point O est lui-méme un centre de symétrie du Raumgitter,
c¢'est-a-dire qu’a chaque point du Gitter correspond un autre point
sur la demi-aréte opposée a la méme distance que le premier du
point O; lopération qui consiste a remplacer ainsi chaque point du
Gitter par son point énverse, s’appelle I'inversion. Comme la rotation
elle transforme également le Raumgitter en lui-meéme.

Enfin on démontrera plus loin trés simplement (§ 93) que des
qu'un Raumgitter posséde un axe de symétrie binaire (a=—=1809), il
posséde également par le fait de la présence du centre O de symétrie,
un plan de symétrie normal, c’est-a-dire un plan partageant le Raum-
gitter en deux parties telles que l'une est la réflexion de 'autre dans
le plan donné. Réciproquement ce plan de symétrie, combiné au cen-
tre de symétrie, exige l'axe binaire normal ov mieux: le plan de
symétrie, le centre de symétrie et 'axe binaire normal sont 3 élé-
ments tels que la présence de 2 d'entre eux nécessite toujours le
troisieme et qu’ils constituent un groupe (§ 89 et 93). De la sorte,
il suffit de connaitre les axes de symétrie d'un Raumgitter pour con-
naitre également ses plans de symétrie et ainsi sa symétrie compléte.

83. Un Raumgitter symélrique exige dans le complexe qu’il
représente, une face avec une aréte normale.

Soit en effet donné un axe de symétrie d’'un Raumgitter passant
par le point O; puisque les espaces séparant les sommets du Gitter.
sont de dimensions finies, pour amener une nouvelle coincidence de
ces sommets, son angle de rotation @ ne saurait étre en tout cas
d’ordre infiniment petit.
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Soit un sommet A de situation quelconque par rapport a l'axe.
Ses positions successives coplanaires A’, A”, A”, etc. (fig. 14), cor-
respondant & chaque rotation d’angle @, sont donc elles-mémes des
sommets du Raumgitter ; et puisque chaque autre point du Gitter
(§ 65) doit étre dans une situation identique & celle des points A,
A’, A7, etc., par le point O doivent passer les arétes OB’, OB”, ete.,
telles que AA’=0B’, AA”=0B", et., et dont les rangées AA’, AA”,
etc., sont des rangées paralléles. Le plan (OB’B”) comme le plan (AA’A”)
est évidemment normal & I'axe de rotation; les points du Raumgitter
quil contient forment un réseau parallélogrammique, et 1'ensemble
des points du Raumgitter total se réduit au systeme (§ 68) de ré-
seaux superposés paralléles et équidistants, de parallélogramme élé-
mentaire identique et normaux a l'axe de symétrie donné.
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Fig. 14. Fig. 15.

Au cas ot a=180° Ila rotation du point A ne produit que son symétrique-
Af, et la rangée AA] ou l'aréte paralléle par le point O ne suffisent plus a déter-
miner le plan normal; mais en prenant un 3"¢ sommet C quelconque du Gitter,
les points C et C’/ exigent une seconde aréte OC| par le point O, et les points
0, Bf, C{, déterminent également le plan normal et ses réseaux paralléles.

L’axe de rotation est lui-méme une aréfe du Raumgitter. En
effet dans cette rotation, chacun de ces réseaux parallélogrammiques
normaux & l'axe doit coincider avec lui-méme et cela n’est possible
déja pour le réseau limitrophe supérieur, que si cet axe le perce en
un sommet (fig. 15 en traits continus), au centre ou sur le milieu
d'un coté du parallélogramme élémentaire (fig. 15 en traits pointillés).
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S’il le perce en un sommet, c’est une aréte du complexe; s’il le
perce sur le milieu de 'un des cotés ou au centre du parallélogramme
élémentaire, ou ce qui revient au méme sur le milieu de l'un quel-
conque des 3 cotés O;T; du triangle fondamental (O,T,T{), puisque
dans ces conditions T'T,=T,T”, l'intersection T” de la rangée TT,
et de I'axe OT” est un nouveau sommet du Gitter appartenant au
second réseau paralléle, et I'axe de rotation, passant par un sommet,
est encore une aréte du complexe.

Exceptionnellement dans le cas ou la maille du réseau est le losange & angle
au sommet de 60° (§ 85 VI), 'axe normal peut percer le réseau limitrophe au
centre du triangle équilatéral fondamental, c’est-a-dire au liers de la grande dia-
gonale dun losange élémentaire. Dans ce seul cas 'axe de symétrie n’atteint qu’an

3me réseau parallele I'un des sommets du Raumgilter, et est ainsi également une
aréte du complexe. ;

84. Le complexe cristallin qui ne possede aucune aréte normale
a l'une de ses faces, ne peut donc impliquer en lui-méme aucun
groupe de 4 arétes (ou 4 faces) déterminant un Raumgitter symé-
trique. C'est le complexe du systéme cristallin éricline ; ses 3 arétes
fondamentales sont en effet, quelles qu’elles soient, inclinées chacune
sur le plan des 2 autres. Le parallélipipéde élémentaire de ses Gutter
est un parallélipipede oblique quelconque; leur seul élément de symé-
trie est constitué par la présence du centre O de symétrie: c'est
exactement la symétrie des cristaux de la classe holoédrique du sys-
teme (§ 92). |

Inversement étant posée une face avec une aréte normale, a
chacun des 5 ({ypes essentiels de complexes qui peuvent s’établir
dans cette condition, correspond un Raumgitter primitif plus ou moins
symélrique. Les 5 types de complexes sont ceux des 5 autres sys-
temes cristallins d’espéce symétrique, et la symétrie des Raumgitters
primitifs correspondanls est celle des classes holoédriques établies
plus loin de chacun de ces systémes (§ 92—98).

Sotent en effet 'aréte normale et 2 arétes quelconques dans le
plan donné prises comme arétes fondamentales du complexe. En
vertu de la seconde remarque faite en commencant (§ 81), pour ob-
tenir des complexes différents, l'aréte-unité ne peut déterminer (par
la construction du parallélipipede élémentaire) sur ces 3 directions
que des segments uy, m,, u;, qui sont entre eux égauax ou dans des
rapports érrationnels. D’autre part la maille du réseau primitif que
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déterminent les paramétres minimas u, et u;, comme celle de toul
réseau parallélogrammique d’ailleurs, ne peut étre qu'un parallélo-
gramme quelconque ou 'une des 4 modalités spéciales de plus en
plus régulieres du parallélogramme : le rectangle, le losange, le lo-
sange avec angle au sommet de 60° (sa petite diagonale est égale
au coté) et le carré; ou mieux encore le triangle fondamental (OTT’),
fig. 15, ne peut étre que l'un des 5 types différents: scalene, rec-
tangle, isocele, équilatéral, ou rectangle-isocele. Le parallélipipéde
générateur du Raumgitter est le prisme droét (OTT'T”) a base pa-
rallélogrammique correspondante ; ses 3 arétes ¥y, u,t,, usty, dé-
terminent a elles seules la position de tous les points du Gitter, et
autant de fois le triedre qu’elles constituent peut se couvrir avec
elles-mémes, leurs prolongements ou des arétes égales (complexe hexa-
gonal § 85, IV), autant de fois le Raumgitter coincide également
tout entier avec lui-méme. Les rotations possibles du triedre fonda-
mental déterminent donc exactement celles du Raumgitter lu1 -méme
et ainsi les éléments de sa symétrie compléte.

85. 1. Systéme cristallin ou complexe monocline.
Raumgitter binaire.

Le parallélipipede élémentaire du Raumgitter est le prisme droit
a base parallélogrammique quelconque (OTTT”), fig. 15. Les 2 para-
métres minimas OT et OT’ ne peuvent se couvrir qu'avec leurs pro-
longement OT, et OT} ; 'aréte normale OT” est donc un axe binaire
du Raumgitter total, et par suite le plan donné OTT’ un plan de
symétrie. Ce sont les seuls éléments de symétrie du Raumgitter ; sl
existait en effet un autre axe de rotation, le parametre OT” qui est
la distance méme des réseaux paralléles, devrait se couvrir avec un
segment du plan OTT’, et dans ce cas les 2 parameétres minimas du
plan OT et OT’- ne pourrait atteindre ni l'un ni l'autre le réseau
limitrophe. D’ailleurs les 3 axes-unités étant entre eux dans des rap-
ports érrationnels, le plan fondamental OTT’ est la seule face du
complexe possédant une arréte normale (§ 45).

On se rend compte sans peine (la fig. 15 en pointillé est faite pour le second
cas) que en centrant par un nouveau sommet T{" le centre de figure du paralléli-
pipéde droit générateur ou par les nouveaux sommets T, et T/ 2 de ses faces
latérales opposées, c'est-d-dire en intercalant entre chaque couple de réseaux sue-
cessifs paralléles au plan OTT” un nouveau réseau de nature identique disposé de
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maniére que I'axe normal perce son parallélogramme élémentaire en son centre ou
sur le milieu de 'un des cotés, le Raumgitter obtenu de parallélipipéde élémentaire
(OTT'T,) ou (OTT'T]) posséde également I'axe binaire OT” et le plan de symétrie
normal. Il est dailleurs, les nouveaux:sommets étant intercalés & égale distance
entre 2 sommets primitifs, un de linfinité des Gitters représentant le méme com-
plexe que le premier.

II. Complexe (systéme ecristallin) rhombique.
Raumgitter terbinaire.

Le parallélipipede élémentaire du Raumgitter est le prisme droit
a base rectangulaire ; les 3 axes-unités OT, OT’, OT” sont entre
eux dans des rapports érrationnels et forment un triédre trirectangle
dont chaque aréte se trouve dans les mémes conditions par rapport
a I'ensemble des points du Gitter: elles passent chacune par les som-
mets de réseaux paralleles successifs a maille rectangulaire. Ces 3
arétes fondamentales sont ainsi des axes binaires et par suite chaque
plan fondamental est un plan de symétrie du Raumgitter total. Par
le méme raisonuement que pour le Gitter précédent, ce sont la les
seuls éléments de symétrie du Raumgitter trouvé, et d’ailleurs, les 3
axes-unités étant entre eux dans des rapports irrationnels, seuls les
3 plans fondamentaux du complexe possédent une aréte normale (§ 45).

S1 le parallélogramme élémentaire du réseau fondamental OTT’
est losange, en centrant d'un nouveau sommet chacune de ses mailles,
ce réseau fondamental devient rectangulaire, et les cotés du rectangle
étant 1rrationnels, le complexe représenté est encore un complexe
rhombique. Le Raumgitter correspondant posséde d’ailleurs la méme
symétrie que le Raumgitter trouvé; il revient en effet inversement a
centrer les 2 bases rectangulaires du prisme droit générateur du Raum-
gitter terbinaire, et cela, on le voit aussitot, n’influe en rien sur la
présence des 3 axes binaires obtenus.

On peut done centrer les 2 bases, c’est-a-dire 2 faces latérales opposées quel-
conques du prisme rectangulaire droit (O TT'T~); on peut également ou bien le
centrer en son centre de figure, ou bien sur chacune de ses 6 faces rectangulaires.
Dans chacun des 3 cas, on s’en rend compte facilement en projetant sur le plan

du résean OTT’ le systéme de ses réseaux paralléles, le Raumgitter obtenu posséde
la symétrie terbinaire et naturellement représente le méme complexe que le premier.

III. Complexe quadratique. Raumgilter quaternaire.

Le parallélipipéede élémentaire du Raumgitter est le prisme droit
a base carrée; des 3 axes-unités irrationnels du complexe rhombique
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2 quelconques OT et OT” deviennent égaua. Par suite 'axe binaire
normal OT” devient un axe qualernaire (a —=90°) et dans leur plan
les diagonales du carré élémentaire sont 2 nouveaux axes binaires
du Raumgitter total. La symétrie compléte se trouve ainsi constituée
d’'un axe quaternaire, 4 axes binaires dans le plan normal, formant
entre eux des angles de 45°, et 5 plans de symétrie dont 4 passant
par I'axe quaternaire et le 5™ normal a cet axe. On voit d’ailleurs
de nouveau immédiatement que ce sont l1a les seuls éléments de sy-
métrie du Gitter, parce qu’ils représentent les seules maniéres pos-
sibles de faire se couvrir avec ses arétes mémes ou les arétes in-
verses le triedre trirectangle OTT'T” dont 2 arétes sont égales.

Si I'on centre le prisme droit obtenu en son centre de figure, chacun des

axes de rotation trouvés subsiste, et le nouvean Gitter représentant le méme com-
plexe que le premier, posséde également la symétrie quaternaire.

IV. Complexe hexagonal. Raumgitter sénaire.

Si T'on construit le réseau primitif OTT’ (fig. 16) lorsque sa
maille est le losange a angle au sommet de 60° ou mieux son triangle
fondamental, le triangle équilatéral OT'T’, on voit immédiatement
que I'axe normal OT” est un axe sénaire (a=—60°) et que dans le
plan du réseau les 6 directions des cotés el des hauteurs du triangle
fondamental sont des axes binaires d’abord du réseau primitif lui-
méme, et par suite en construisant le Raumgitter de prisme droit
élémentaire (OTT'T”), du Raumgitter total.

~

Fig. 16. Fig. 17.

L’axe-unité OT” étant drrationnel par rapport aux 2 axes égaux
OT et OT’, (dailleurs il en sera de méme également dens le cas
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contraire, § suivant), ce sont la les seules rotations possibles qui
fassent se couvrir le (riedre élémentaire OTT'T” avec des arétes
égales, et la symétrie compléete du Raumgitter sénaire est ainsi con-
stituée d'un axe sénaire, 6 axes binaires dans le plan normal, for-
mant entre eux des angles de 30° et 7 plans de symétrie.

En intercalant entre chaque couple de réseaux successifs paralléles au réseau
hexagonal OTT’, 2 nouveaux réseaux de nature identique disposés de maniére que
I'axe sénaire les perce I'un au tiers et le second au ?/, de la grande diagonale du
losange élémentaire (centres des 2 triangles équilatéraux opposés constituant le
losange), ou ce qui revient au méme: en ajoutant a distances égales 2 nouveaux
sommets sur la diagonale principale passant par O du prisme droit & base rhom-
bique générateur du Raumgitter sénaire, on se rend compte facilement, en effec-
tuant les projections des réseaux paralléles sur le réseau fondamental OTT’, que
pour le nouveau Gitter obtenu I'axe sénaire devient une axe ternaire (o = 120°)

avec 3 axes binaires (par suite 3 plans de symétrie) au lieu de 6 dans le plan
des réseaux.

(C’est le Raumgitter fernaire, dont la symétrie est un sous-groupe caractéris-
tique de la symétrie sénaire (§ 98). Son parallélipipéde élémentaire est un rhom-
boédre quelconque, et en ajoutant maintenant & ce Gitter ternaire le Raumgitter
terquaternaire du complexe cubique qui reste & trouver, on établit facilement en
procédant un peu autrement (Bravais, Sohncke et d’autres), qu’il n'est pas d’autres
types possibles de Raumgitters symétriques que les 6 ainsi obtenus: binaire, ter-
binaire, quaternaire, sénaire, ternaire, et terquaternaire.

V. Complexe cubique. Raumgitter terquaternaire.

Le parallélipipede générateur du Raumgitter est un cube: les 3
axes-unités 1rrationnels du complexe rhombique deviennent égauc,
et se trouvent ainsi chacun dans des conditions identiques a celles de
l'axe OT” dans le Raumgitter quaternaire. Leurs 3 directions sont
donec des axes quaternaires, et dans chaque plan fondamental les
diagonales du carré élémentaire sont des axes binaires. En outre les
grandes diagonales passant par le point O des 8 cubes qui y sont
juxtaposés (fig. 17), en d’autres termes les 4 diagonales principales
du cube genérateur sont des axes fernaires (a=—120°) du Raumgitter.
Ce sont la en effet toutes les rotations possibles qui peuvent faire
se couvrir avec lui-méme ou les axes inverses le triple élémentaire
trirectangle d’axes égaux (OTT’T”, et par suite faire coincider avec
lui-méme le Raumgitter total. En y ajoutant les 3 plans de symétrie
fondamentaux et les 6 plans de symétrie normaux aux axes binaires,
passant 2 a 2 par chaque axe quaternaire, nous avons ainsi la sy-
métrie complete du Raumgitter terquaternaire.
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Il est facile de nouveau de voir que aucun de ces éléments de symétrie ne
disparait en centrant d'un nouveau sommet le centre de figure, ou d’un nouveau
sommet chacune des 6 faces carrées dun cube élémentaire; les 2 Gitters obtenus
sont les seuls de linfinité des Gitters impliqués dans le complexe cubique qui
possédent la symétrie terquaternaire.

86. Les 5 complexes précédents étant étabiis, qui sont les com-
plexes des 5 systémes cristallins symeétriques, il est encore en réalité,
dans cette condition d’'une face donnée avec une aréte normale, 2
autres types de complexe que nous avons négligés: le complexe mo-
nocline dans le cas ou l'axe-unité vertical u, serait égal a I'un des
2 autres irrationnels u, ou u;, et le complexe hexagonal dans lequel
les 3 axes-unités seralent égauwx. La différence essentielle qui fait
que ces 2 derniers complexes, au point de vue cristal, ne doivent
étre que des cas particuliers des 2 complexes monocline et hexagonal,
est que les Raumgitters primitifs des 2 complexes nommés a cette
variation de leur premier parameétre ¢, ne gagnent awucune symétrie
nouvelle. 11 serait inutile méme de le montrer par une maniére de
raisonner analogue encore a celle employée déja pour chacun des
complexes au § précédent.

Complexe monocline. Si w, = u,, dans une rotation le para-
meétre p, peut coincider avec u,; dans ce cas ou bien le second
parametre u; reste dans son plan et pour cela u, et uy; devraient
étre perpendiculaires, ou bien u, et pu; sortent de leur plan et
atteignent des points du

L réseau limitrophe, mais

b, alors u, coincide avec p,

et les 2 positions avant

9. > et apres la rotation de la

‘ ) b fig. 18 montrent 1mmé-
A

diatement quil devrait
Fig, 18 exister dans le réseau li-

mitrophe et par suite dans le plan fondamental un segment TT" ou

OT; normal avec u, et plus court que le paramétre minima ;.

Complexe hexagonal. St pu, = p, — uy, une nouvelle rotation,
autre que celles du Raumgitter sénaire, n'est possible que dans I'une
des 2 conditions suivantes: ou bien 'un des 2 axes-unités u, ou g
reste dans leur plan; dans ce cas w, doit lui rester normal (fig. 16)
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et ne peut se couvrir avec un parameétre du plan (u,u;); ou bien les
2 axes w, et wuy; sortent de leur plan; 'un ne peut alors que coincider
avec u, et I'autre ne peut évidemment pas atteindre le réseau supérieur.

Le fait que ces 2 variations des complexes monocline et hexa-
gonal ne sont pas des complexes correspondants a des systémes
cristallins déterminés, comme les b premiers types trouvés, est done
connexe au fait que les Gitters correspondants ne gagnent a cette
variation aucune symétrie. La répartition parallélipipedique dans
I'espace des sommels du Raumgitter est donc intimement liée a la
nature de la substance cristalline, et si momentanément, pour une
température donnée; le complexe d'un cristal monocline ou hexagonal
peut posséder les propriétés qu’entraine cette variation de son para-
metre vertical, la nature de la substance du cristal ne change pas,
pas plus que la symétrie du Gitter primitif correspondant.

87. Pour toute face d'un complexe a laquelle correspond une
aréte normale, chacun de l'infinité des Gitters qui peuvent se cons-
truire sur I'arete normale et 2 aréetes quelconques de la face comme
arétes fondamentales, a donc cette face comme plan de symétrie, et
I'aréte normale comme axe binaire, quaternaire ou sénaire, selon la
nature du réseau primitif de la face. Si nous ne considérons plus les
sommets de ces Gitters, mais simplement les arétes du complexe qui
les supportent, la face donnée est par suite également un plan de
symétrie et son aréte normale en tout cas un axe binaire du com-
plexe lui-méme.

De la, avec ce qui a été établi de la perpendicularité des faces
et des arétes (§ 43-45), découle immédiatement :

Chaque face du complexe cubique posséde une aréte normale ;
chaque face du complexe cubique est donc un plan de symétrie du
complexe total et par suite chaque aréte est non seulement un axe
binaire, mais en tant qu’axe zonal d’une infinit¢ de plans de symé-
trie *, est un axe de rotation autour duquel le complexe peut se
couvrir une infinité de fois sur lui-méme.

Le complexe cubique posséde donc la symétrie sphérique; en
d’autres termes la distribution dans l'espace autour du point O des

*) 2 plans de symétrie successifs faisant un angle a équivalent & une rota-
tion d’angle 2 « autour de leur droite d’intersection.
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arétes et des faces du complexe est la méme dans toutes les direc-
tions, comme l'est la répartition de la masse sphérique autour de son
centre.

Pour les complexes hexagonal et quadratique, en plus des faces
fondamentales [, et [;, seules les faces de leur zone isotrope [, pos-
sédent une aréte normale ; seules donc ces faces sont plans de symétrie
de ces complexes. Leurs arétes normales coplanaires a la face [, en
sont des axes binaires et seul I'axe v, = OT” de leur zone isotrope
est un axe de rotation autour duquel ils peuvent se couvrir une
infinité de fois sur eux-mémes.

L’ellipsoide de révolution représente donc la symétrie de ces 2
complexes et la répartition dans l'espace de leurs faces et arétes
autour du point O.

Seules les 3 faces fondamentales du complexe rhombique et la
face fondamentale [, du complexe monocline possédent encore une
aréte normale. La symétrie du complexe rhombique est donc celle de
Uellipsoide, c'est-a-dire celle du Raumgitter lui-méme correspondant ;
celle des complexes monocline et tricline, comme celle des Gitters
correspondants, se réduit a un plan de symétrie avec 'axe binaire
normal ou & l'unique présence du centre O de symétrie.

Cette gradation de la symétrie complexiale des systémes cris-
tallins établis par Fedorow, est désignée par lui: Syngonie Syme-
trisches Ellipsoid-Gesetz.



	

