
Zeitschrift: Mémoires de la Société Fribourgeoise des Sciences Naturelles.
Mathématique et physique = Mitteilungen der Naturforschenden
Gesellschaft in Freiburg. Mathematik und Physik

Herausgeber: Société Fribourgeoise des Sciences Naturelles

Band: 2 (1912)

Artikel: Application des coordonnées sphériques homogènes à la
cristallographie géométrique

Autor: Bays, Sévérin

Kapitel: X

DOI: https://doi.org/10.5169/seals-306718

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-306718
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


CHAPITRE X

62. Sur la surface de la sphère de rayon-unité, les 4 droites

sphériques qu'y découpent 4 faces quelconques du complexe cristallin,
ou les 4 points d'affleurement de 4 quelconques de ses arêtes, nous
fournissent donc par déduction zonale, le réseau complet des droites
et points d'affleurement du complexe total, c'est-à-dire par le fait les

directions dans l'espace de toutes les faces et arêtes possibles du
cristal. Rapporté au système de référence de ces 4 faces ou arêtes
élémentaires, le faisceau de ces directions est le faisceau (au sens
ligure) des faces et arêtes à indices rationnels ; mais comme jusqu'ici
seuls les rapports des constantes fit et vt et des indices u-, et Xj
entraient en ligne de compte, ni les longueurs des 3 axes-unités suites

arêtes fondamentales, ni les tenseurs des arêtes et des vecteurs
des faces ne sont encore déterminés d'une manière absolue.

Puisque la longueur des arêtes et la grandeur des faces du cristal
n'est en principe limitée en aucune manière, fixons donc arbitrairement

la longueur de l'arête-unité ou la grandeur du triangle découpé

sur la face-unité déplacée parallèlement à elle-même (fig. 8), et
développons maintenant dans l'espace le noyau du complexe cristallin
constitué de ses faces et arêtes élémentaires, et représentant son
système complet de référence, tel que nous l'avons établi au chapitre V.

63. La déduction zonale partant
des 4 faces élémentaires l(),l,, I2,l3,

nous donne successivement (fig. 7),

en ne tenant compte que des faces,
les faces p,, p2, p.. ; puis pi, p2, p3
harmoniquement conjuguées avec
les premières par rapport au couple

correspondant de faces fonda-

La déduction zonale partant des

4 arêtes élémentaires r0, r,, r2, r3

nous donne successivement (fig, 7),

en ne tenant compte que des arêtes,
les arêtes nx, n2, n3 puis n{ n'.,,n'3,
harmoniquement conjuguées avec
les premières par rapport au couple

correspondant d'arêtes fonda-
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mentales et dont l'intersection
commune est l'arête harmonique r0,

choisie comme arête-unité du
système. L'aire fixée du triangle
découpé sur la face-unité (déplacée

parallèlement à elle-même),
déterminant la grandeur de ce déplacement,

et par le fait les longueurs
absolues des 3 axes-unités, le

complexe élémentaire de la fig. 7 fournit

dans l'espace, pour peu qu'on
suive ce développement on s'en
rend compte sans peine, précisément

tous les éléments du

parallèlipipède que nous allons
construire. Les 3 flèches sont dans la
direction des plans pi et pi, au
point du croisement des arêtes ni
et n[ ; les 3 arêtes intermédiaires
(P2P3). (p3Pi), (P1P2) sont les 3 gran-

mentales, et dont le plan commun
est la face harmonique I0, choisie

comme face-unité du système.
La longueur fixée de l'arête-

unité, déterminant par le fait les

longueurs absolues des 3 axes-
unités et ainsi les dimensions
relatives des faces et arêtes déduites,
le complexe élémentaire de la fig. 7

fournit dans l'espace, pour peu
qu'on suive ce développement on
s'en rend compte sans peine,
précisément tous les éléments du

parallèlipipède que nous allons
construire. Les 3 flèches sont au point
de croisement des arêtes nx et n[
et dans la direction des plans p,
et pi ; les 3 plans intermédiaires
(n2ns), (nsnx), (nxn2) sont les 6 plans

triangulaires (2 à 2 parallèles) au.

Arêtes ji3 et jr3 harmon. conjug. avec r, et X2

et plans p3 et p3 harmon. conjug. avec lt et l2

Fig. 9.

Arêtes 71., et n'.„
harmon. conjug. à t, et

rx et plans p., et p2
harmon. conjug. à l3

et lr

-a.

r\Ì

4

Arêtes .Tj et n\ harmon. conj. avec t., et r3
et plans p, et pî harmon. conj. avec l2 et J3.
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des diagonales autres que r0, qui
est elle-même l'arête-unité,
intersection commune des 3 plans pj.

très que le plan diagonal (ABC),
qui est lui-même la face-unité,

plan commun des 3 arêtes n[.

Juxtaposons ensuite sur les 6 faces de ce parallèlipipède primordial

6 parallélipipèdes identiques, et de là continuons à les entasser
à l'indéfini dans toutes les directions possibles. Les sommets de tous

ces parallélipipèdes constituent un assemblage de points régulièrement
distribués dans l'espace sur les 3 directions parallèles aux arêtes
fondamentales du parallèlipipède primitif. Les longueurs de ces arêtes
étant prises comme axes-unités, tous ces points ont des coordonnées

numériques entières, et de toute évidence ce sont là les seuls points
jouissants de cette propriété par rapport à ces axes. Nous appellerons
désormais un Raumgitter* un tel assemblage de points dans l'espace,
et le parallèlipipède primordial qui l'engendre, le parallèlipipède
élémentaire du Raumgitter.

64. Faisons pour le moment abstraction de toutes les arêtes et

diagonales parallèles des parallélipipèdes et ne laissons subsister que
le faisceau de droites partant du point 0 dans toutes les directions
et le réunissant à chaque sommet du Gitter. Tous les points dont
les coordonnées numériques ont entre elles les mêmes rapports se

trouvent évidemment sur la même droite, et le premier point sur
chaque droite à partir du point 0 a nécessairement pour ses 3
coordonnées des nombres premiers entre eux, sinon elles seraient
divisibles par un facteur commun, et nous aurions sur la même droite

un point plus rapproché que le premier du point 0.

Or toute arête possible du cristal est représentée par le vecteur :

/h^ih +i"2X2t2 4- /«8X8ïg

dans lequel, les fix étant précisément les longueurs prises pour axes-

*) J'ai employé le terme allemand : Raumgitter ou Gitter tout court au lieu
des termes français équivalents : assemblage réticulaire ou réseau spatial et me suis
réservé le mot français : réseau tout court pour signifier la même chose dans le

plan (§ 67) au lieu des termes : plan réticulaire ou réseau plan, uniquement pour
avoir à ma disposition 2 mots très courts essentiellement distincts pour les répéter
dès maintenant aussi souvent qu'il sera nécessaire dans la suite de mon travail
en toute facilité et sans crainte de confusion. J'emploierai indifféremment les

expressions : points et sommets pour signifier les points constituant le Raumgitter.
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unités des 3 arêtes fondamentales, les indices Xj ne sont autre chose

que les coordonnées numériques des différents points de cette arête

rapportée à ces mêmes axes. Mais ces indices x, sont rationnels pour
toutes les arêtes du cristal et uniquement pour elles ; c'est-à-dire sont
entiers pour certains points de ces arêtes et des fractions ayant
entre elles les mêmes rapports que ces nombres entiers pour les points
intermédiaires. Puisque les sommets du Gitter sont tous les points
et les seuls de coordonnées numériques entières, il s'ensuit très clairement

que toutes les arêtes du cristal el seules ces arêtes passent par
ces points, et donc que ce faisceau (au sens large) de droites joignant
le point O à tous les points du Gitter, n'est autre que le faisceau

ou le complexe même des arêtes possibles du cristal.
D'après ce que nous venons de dire plus _haut, chacune de ces

arêtes est ainsi le support d'une infinité de sommets du Raumgitter,
dont le premier à partii du point O a pour ses coordonnées
numériques, c'est-à-dire pour indices x,, des nombres premiers entre eux.
Le segment OT qui est la distance du point O à ce premier point
sur chaque arête, mesure en outre la distance constante entre 2 points
successifs quelconques de cette même arête ; en effet, ces points
successifs sont obtenus à partir du premier en multipliant par 2, par 3, etc,,
ses coordonnées numériques premières entre elles, c'est-à-dire en
doublant, triplant, etc., ses composantes sur les axes-unités et par le fait
sa propre distance au point O. Nous appelons ce segment OT le

segment primitif ou le paramètre de l'arête qui le supporte, et sa

longueur nous est immédiatement donnée par la racine carrée de la
forme quadratique ".»(xx), les indices x, y prenant les valeurs absolues
entières et premières entre elles, correspondantes au premier point
sur cette arête.

Enfin puisque seuls tous les plans de jonction de 2 quelconques
de ses arêtes, sont des faces possibles du cristal, seuls tous les plans

que déterminent avec le point O, 2 sommets quelconq s du Gitter,
sont ces faces possibles, et en un mot, le complexe des faces et

arêtes cristallines n'est autre que celui des droites et des plans
passant par le point O, et déterminés par chaque sommet ou cliaque
couple de sommets du Raumgitter.

65. La situation du point O est absolument celle de tous les

points du Gitter; chacun de ces points est en effet le sommet com-
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mun de 8 parallélipipèdes élémentaires, sur lesquels s'entassent à

l'indéfini dans toutes les directions des parallélipipèdes identiques. Le

groupement dans l'espace des sommets du Gitter est donc le même

autour de chaque point qu'il est autour du point O ; en d'autres

termes, chaque point doit être entouré par les autres d'une manière
absolument pareille à celle dont est entouré son voisin. Ce principe,
évident à première vue, qui n'est en quelque sorte que l'expression
même de la construction parallélipipédique du Raumgitter et que nous

pourrions appeler le principe de la symétrie du Gitter (en prêtant

pour l'instant au mot : symétrie, un sens plus large qu'un sens

exactement géométrique), est la source de toutes ses autres propriétés
qui en découlent d'ailleurs sans aucune difficulté.

66. Sur chaque arête l'un quelconque A des points qu'elle
supporte (fig. 10), exige de concert avec le point O, puisque chacun d'eux
doit être entouré sur cette arête de la même manière que l'autre, un
autre point dans chaque sens à une distance égale à la distance des

2 premiers, et par le fait une infinité d'autres points successifs, à

la même distance sur chacune des demi-droites indéfinies que constitue

l'arête partagée par le point O. Si c'est le sommet T le plus
rapproché de O, qui est pris avec lui comme points de départ, nous

avons ainsi l'infinité même des sommets du Raumgitter situés sur les

2 demi-droites de l'arête, à distance constante égale au paramètre,
comme nous venons déjà plus ou moins de l'établir au § précédent ;

les indices X[ des points que supporte la demi-droite opposée sont
les indices pris en signe contraire des points de la demi-droite directe.

K 8 T A A'

Fig. 10.

Puisque maintenant chaque autre point du Raumgitter doit être
dans une situation identique à celle du point O et des différents

points de l'arête considérée, chaque autre sommet du Gitter doit donc

se trouver sur une rangée parallèle de points de même equidistance.
L'ensemble des points du Raumgitter total est donc complètement
représenté par un faisceau (au sens propre du ternie) d'un nombre
indéfini de rangées de points équidistants, toutes parallèles et

identiques à la rangée de points que constitue l'une des arêtes quelconques
du complexe.
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67. Sur chaque plan P les 3 points qui le déterminent, les 2

points quelconques A et B du Gitter et le point O, nécessitent à eux
trois, puisque chacun d'eux doit être entouré dans ce plan de la
même manière qu'ils entourent chacun des 2 autres, 9 autres points
répartis sur le pourtour du triangle des 3 premiers, à des distances

égales aux côtés du triangle (fig. 11) et parle fait une infinité d'autres
points sur ce même plan, distribués régulièrement comme les sommets

de parallélogrammes identiques, juxtaposés dans toutes les

directions, et formant ainsi une sorte de réseau à maille parallélo-
grammique, qui est pour le plan qui le supporte exactement ce qu'est
le Raumgitter pour l'espace qu'il remplit.

Si nous prenons comme points de départ avec le point O, les
2 sommets du plan qui en sont les plus rapprochés, sans être
évidemment sur la même droite avec le point, les sommets du réseau

parallélogrammique obtenu doivent absorber sans exception tous
les points du Raumgitter situés sur ce plan. S'il existait en effet en
quelque endroit du plan, un point du Gitter localisé à l'intérieur ou
sur l'un des côtés du parallélogramme générateur, en vertu du principe

de la symétrie, ce point se retrouverait pour chacun des

parallélogrammes identiques (fig. 12), et de quelque manière que ce soit,
nous aurions un point plus rapproché du point O que les 2 sommets
T et T'.

n ;
- n

X
/

/ N ; x
V ' \' N ' x ;

/ s / N '
N.g/ V &----N---"T» N. v

/ ^ \ / N
N \ N

' \

----V-
M

i x

X-
/ N

--V--
s '

Fig. 11 et 12.

Le réseau parallélogrammique construit sur les 2 paramètres
minima du plan, implique donc à lui seul l'infinité des réseaux pa-
rallélogrammiques à maille plus grande, que détermine avec le point O
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chaque autre couple de points quelconques A et B situés dans ce

plan. Nous l'appellerons, simplement par rapport aux autres et pour
l'en distinguer, le réseau primitif du plan P, et son parallélogramme
générateur, celui dont les juxtapositions successives fournissent tous
les sommets du réseau, le parallélogramme élémentaire du même

plan.
Si nous prenons comme réseau primitif du plan P, le réseau

parallélogrammique de la fig. 11, en y supposant que les points A
et B sont les points T et T', on voit sans peine déjà que chaque
couple de côtés (OA, OB), (BO, OC), (OC, OD) du triangle OTT'
détermine également ce parallélogramme élémentaire. Tous les couples
de paramètres, dont le parallélogramme correspondant fournit ainsi

par ses juxtapositions successives tous les sommets du réseau, seront
appelés les couples conjugués du réseau primitif donné.

68. Les mêmes conclusions sont à tirer ici qu'à la fin du
paragraphe précédent. Puisque la situation du point O et des différents
points du réseau primitif du plan P, doit être de nouveau celle de

tous les points du Gitter, chacun d'eux doit être sommet d'un réseau
de même direction dans l'espace et en tout pareil au premier. La

superposition d'un nombre indéfini de réseaux parallèles et identiques
au réseau primitif d'un plan quelconque du complexe, représente
donc également l'ensemble des points du Raumgitter total.

Dans un même plan, les rangées
parallèles à la même arête sont

équidistantes (§ 66).
Si nous prenons en effet le

point B, (fig. 11), le plus
rapproché de O, sur l'arête OB doit
exister le point B' tel que OB
OB', et pour chaque arête menée

par le point O, les 2 rangées
parallèles passant par B et B' en
seront équidistantes. La même

preuve se répète pour les points
B, B" et O, et ainsi de suite.
Toutes les rangées]; d'un réseau

parallèles à la même arête, sont

Dans l'espace, les réseaux
parallèles au réseau primitif d'un
même plan sont équidistants.

Sur une arête menée par le

point O en un point B quelconque
du premier réseau supérieur, nous
avons un point B' à égale
distance en sens contraire, et pour
chaque plan passant par le point
O, les 2 réseaux parallèles par
B et B' en sont équidistants. La
même preuve se répète pour les

points B, B" et O, et ainsi de

suite. Tous les réseaux d'un Raumgitter,

parallèles au même plan,
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donc équidistantes, et les 2 rangées j sont donc équidistants et les 2

répassant par B et B', étant les

plus rapprochées de l'arête, sont

appelées ses 2 rangées
limitrophes.

seaux contenant B et B', étant les

plus rapprochés du plan, sont

appelés ses 2 réseaux plans
limitrophes.

L'ensemble de tous les points qui constituent le Raumgitter
peut donc se concevoir sous une double infinité de formes que l'on
se représente sans peine, et chaque élément du complexe détermine
l'une de ces formes.

A chaque arête correspond le faisceau constitué du nombre
indéfini de ses rangées parallèles et identiques de points équidistants ;

la distance de ces rangées est indéterminée, mais dans un même plan
elles sont équidistantes ; et si nous donnons avec le point O, la
position du point A déterminant l'arête et son paramètre, et celle d'un

point B quelconque de l'une de l'infinité des rangées limitrophes qui
l'entourent, il est facile de se rendre compte que le réseau primitif
lui même du plan (OAB) est entièrement déterminé (§ 70).

A chaque plan correspond le système de ses réseaux parallèles
en nombre indéfini, dont la maille a ses côtés parallèles et égaux à

ceux du parallélogramme élémentaire du plan. Ces réseaux parallèles
sont équidistants ; et si, avec les 3 points O, A el B déterminant le

plan et son réseau primitif, nous donnons la position d'un 4me point
C quelconque de l'un des réseaux limitrophes, la position de tous
les réseaux parallèles et ainsi de tous les points du Gitter, est par
le fait encore complètement déterminée (§ 75).

69. Si nous revenons maintenant aux définitions données à la
fin du § 67, l'unique condition à laquelle doit satisfaire un parallélogramme

d'un réseau pour être élémentaire, est donc qu'il ne renferme
à lui seul que 4 points du Gitter situés en chacun de ses sommets ;

ses juxtapositions successives reproduisent en effet dans ce cas
nécessairement tous les sommets du réseau.

De cette condition découle immédiatement que les aires de tous
les parallélogrammes élémentaires d'un réseau sont égales. En effet sur
une certaine surface indéfinie* du réseau suffisamment grande, à chaque

*) Cette démonstration donnée dans; Sommerfeld, Geometrische Cristallographie,

ji. 84, telle quelle, n'est pas rigoureuse au point de vue mathématique. Voir
plus loin § 80.
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parallélogramme élémentaire p', comme à chaque parallélogramme
élémentaire p, correspond exactement 4 sommets du Gitter. Le nombre
des sommets contenus dans cette surface considérée étant naturellement
le même qu'elle soit constituée de parallélogrammes p ou de

parallélogrammes p', il s'ensuit que le nombre des parallélogrammes p
constituant cette surface est égal au nombre des parallélogrammes p'
constituant la môme surface, et donc que les aires de ces parallélogrammes

sont équivalentes, comme il fallait le démontrer.

70. La même condition nous permet d'ailleurs de déterminer
très facilement tous les parallélogrammes élémentaires, c'est-à-dire
tous les couples conjugués d'un réseau parallélogrammique donné ;

et l'on verra sans peine que les résultats trouvés se trouvent en
réalité impliqués déjà dans les conclusions du § 68.

Les côtés d'un parallélogramme élémentaire ne sauraient être
d'abord que des segments primitifs ou des paramètres du réseau.
Soit donc un paramètre quelconque OT ; un autre paramètre ne

pourra former avec lui un couple conjugué que s'il se termine sur
l'une ou l'autre de ses 2 rangées limitrophes. S'il dépasse en effet
l'une de ses 2 rangées, ce ne peut être qu'en passant par un sommet

du réseau, et dans ce cas ce n'est plus un paramètre, ou en

coupant la rangée entre 2 de ses points successifs, mais alors le côté

parallèle par le sommet T la coupe également entre les 2 points
suivants, et le parallélogramme, enfermant un point dans son
intérieur, n'est plus élémentaire.

A chaque paramètre d'un réseau correspond donc une double
infinité de parallélogrammes élémentaires, ou une double infinité de

paramètres conjugués, se terminant en chaque point des 2 rangées
limitrophes. Sans même qu'il nous soit nécessaire de tenir compte
de la preuve du § précédent, tous ces parallélogrammes élémentaires
ont déjà la même surface ; ils ont en effet la même base, le
paramètre de l'arête, et des hauteurs égales, la distance de l'arête à la

rangée limitrophe.
Mais si nous la faisons intervenir, puisque toutes les aires égales

des parallélogrammes élémentaires du réseau sont comprises entre un
paramètre quelconque et ses 2 rangées limitrophes, les longueurs-
des paramètres sont en raison inverse de la distance des rangées
parallèles, ou en d'autres termes : la densité des points sur les
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rangées parallèles d'un réseau est en raison inverse de leur
equidistance.

Naturellement si au paramètre OT, nous accouplons un segment,
primitif ou non, se terminant en un point quelconque de l'une de

ses 2mes rangées parallèles, le parallélogramme qu'ils déterminent est
double du parallélogramme élémentaire. Il serait triple, quadruple,
etc., pour les rangées suivantes, et en s'exprimant encore d'une
manière générale.

A chaque paramètre du réseau correspond une double infinité de

parallélogrammes multiples du parallélogramme élémentaire ; le nombre

qui représente ce multiple donne le rang de la rangée parallèle qui
porte le côté du parallélogramme opposé au paramètre.

71. Nous obtenons sans peine la surface d'un parallélogramme
quelconque et celle du parallélogramme élémentaire d'un plan, dès

que nous sont donnés ses indices.
En effet soient xi et x" les indices ou coordonnées de 2 points

quelconques du réseau d'un plan représentant une face cristalline
donnée. Le tenseur du produit vectoriel des 2 vecteurs coïncidant

avec les segments que ces 2 points interceptent jusqu'au point O sur
les 2 arêtes qu'ils déterminent :

\ViXiri 4 f^-x-'ih + th^sh) (ftxi'v, + /*2x^r2 4- figX^xA

=/i2/i3sinaJx2X3-X3X2)li4/^3/^isina2(X3Xi-x;x3)l24/*i/^s.a.1(xixMx2xi')l3

nous donne la surface du parallélogramme construit sur ces 2

segments pour côtés, en fonction des valeurs (x'x")i (x'x")2 (x'x")3,
nécessairement entières puisque les xi,x" sont entières comme
coordonnées de points du Gitter, et qui sont les indices mêmes (31) du

plan donné.
Les produits fi2fi3 sin at fisfix sin a2 (ixfi2 sin a3 n'étant autres

que les surfaces des parallélogrammes élémentaires des plans
fondamentaux lx, L, lg, que nous pouvons appeler parallélogrammes-
unités, nous constatons d'abord, puisque les vecteurs fi2fi3 sin axix,

fi3fix sina2l2, fixfi2 sin a3l3, sont les vecteurs représentant ces

parallélogrammes-unités, que ces indices entiers du plan ou de la face cristalline

en question sont en même temps les composantes du vecteur
d'un parallélogramme quelconque de cette face par rapport à ceux
des parallélogrammes-unités ; tout comme les indices xt sont les

composantes entières par rapport aux axes-unités fixxx du segment
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pris sur l'arête correspondante à partir du point O, jusqu'à l'un
quelconque des points du Gitter qu'elle supporte.

Si nous mettons en facteur le quotient constant '"'(fi'"3, le

produit vectoriel trouvé s'écrit comme autrefois (§ 31) :

th th th
M.

^ [v, (x'x"), l, 4- y, (x'x")212 + v-a (x'x")3131 (37

et la surface du parallélogramme cherché est représentée par la racine
de la forme quadratique :

fi\ fi-, fi3
M. V^[(x'x") (x'x")]

72. Or les 2 triples d'indices entiers xj et x" peuvent prendre,
et cela indépendemment l'un de l'autre, toutes les valeurs entières
satisfaisant le couple d'équations :

xiuj +x2u24- XgUg 0
m

x?Ul 4-x'2,u24-xiiu3 0 U

ou, ce qui revient au même le système équivalent

x2x3 — x3x2 gux
des 3 équations: x3xi'— xixg gu2

x[x2 — x2xi' gu3

dans lesquelles, les u, étant les indices entiers premiers entre eux
du plan, g doit être, puisque ces composantes gui sont entières, un
facteur entier quelconque de proportionnalité.

Si donc nous donnons un triple quelconque xi, x2, x3 d'indices
entiers premiers entre eux, (c'est-à-dire représentant un paramètre),
satisfaisant son équation correspondante (I), chaque triple xi',x2, x3,
satisfaisant la seconde équation, combiné avec le premier dans les 3

équations suivantes, fournira une certaine valeur du facteur de

proportionnalité g, et son segment correspondant déterminera avec le

paramètre donné un certain parallélogramme dont l'aire a pour mesure :

th th th
9 M. \/(uu)

Or nous venons de voir au § 70 que tous les segments
déterminant avec un paramètre donné des parallélogrammes égaux, se
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terminent en chaque point de l'une de ses rangées parallèles. Tous
les triples x" qui, satisfaisant l'équation correspondante (I), donnent

une même valeur de g, sont donc les indices des points d'une même

rangée; et x{ x2, x.'. étant les indices donnés de l'extrémité d'un

paramètre quelconque, le système des 3 équations :

x2X;i — x3x2 Cu,

x.'.x" — x,'x3 Cu2

xjx2 — x2xi' -—Cu:!

représente dans le plan d'indices u, (toujours entiers et premier entre
eux), chacune de ses rangées parallèles. C est un facteur constant

pour la même rangée, mais prenant successivement toutes les valeurs
entières ; à 2 valeurs absolues égales, mais de signe contraire,
correspondent les 2 rangées parallèles à la même distance de part et

d'autre du paramètre, c'est-à-dire de l'arête donnée.

Naturellement pour la plus petite valeur de C qui est C ±l,
les xi' doivent prendre également parmi d'autres leurs plus petites
valeurs, (en tous cas seules des valeurs premières entre elles et les

points correspondants ne sauraient être tous sur une rangée qui ne
serait pas limitrophe) ; et les rangées correspondantes sont les 2

rangées les plus rapprochées de l'arête. Les 3 équations :

x2x3 X;'jX2 =± Ui

xiix? — x,'x3 =± u2

x'xx2 — X 2 x 'Ì ± u8

représente donc les 2 rangées limitrophes, et le produit MM'\/ß(uu)

dans lequel les u, sont les indices entiers et premiers entre eux d'une
face quelconque, est la surface du parallélogramme élémentaire du
réseau qu'elle contient.


	

